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Abstract - The study of the natural convection flow and heat transfer from hot surfaces in a porous medium 
has been of considerable interest in energy-related engineering problems. This paper is concerned with the 
free convection heat transfer over an arbitrary hot surface in a porous medium. It is assumed that the fluid and 
solid phases are not in local thermal equilibrium and therefore a two-temperature model of heat transfer is 
applied. The coupled momentum and energy equations are used and transformed into ODE’s. The similar 
equations obtained are solved numerically and the local heat flux is shown for three types of axisymmetric 
shapes, i.e., a vertical plate, horizontal cylinder and sphere. The results have also been validated with the 
available results in the literature; which show that our assumptions and numerical method are accurate. 
Mathematical derivation of a similarity solution for an arbitrary geometry in the heat transfer analysis is the 
main novelty of the present study.  
Keywords: Similarity Solution; Arbitrary Surface; Porous Medium; Natural Convection. 

 
 
 

INTRODUCTION 
 

The study of the natural convection flow and 
heat transfer from hot surfaces in a porous medium 
has been of considerable interest in energy-related 
engineering problems for many decades. A pioneer-
ing study by Cheng and Minkowycz (1977) investi-
gated convection induced by a hot vertical surface. 
The great majority of papers which have studied 
such problems usually have adopted a single field 
equation for the temperature field of the porous me-
dium. But a very recent work has been concerned 
with relaxing the assumption that the local tempera-
tures of the solid and fluid phases are equal. A sim-
ple example where this situation might arise is when 
a hot fluid is suddenly injected into a cold porous 

medium, and it takes time for the mean temperatures 
of the phases at any chosen point to tend towards the 
same value; see for example Rees et al. (2008) and 
Rees and Bassom (2010). Furthermore, such a lack 
of local thermal equilibrium is not confined to un-
steady configurations. Steady state examples include 
cavity convection studied by Baytaş and Pop (2002) 
and Mohamad (2000), Darcy-Bénard convection by 
Combarnous and Bories (1974) and Banu and Rees 
(2002) and the local thermal non-equilibrium ana-
logue of the vertical boundary layer of Cheng and 
Minkowycz (1977) by Rees and Pop (2000) and 
Rees (2003). In all of these cited papers, local ther-
mal non-equilibrium is modeled by two separate 
equations of heat transport, one for the fluid phase 
and one for the solid phase. The interstitial transfer 
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of heat between the phases is modeled macroscopi-
cally by a simple source/sink term which is propor-
tional to the local temperature difference between the 
phases. Reviews of these matters may be found in 
Kuznetsov (1998) and Rees and Pop (2005). Free 
convection heat transfer over a vertical cylinder with 
variable surface temperature distributions in a porous 
medium was also analyzed by Shakeri et al. (2012). 
The authors assumed that the fluid and solid phases 
are not in local thermal equilibrium. 

In the present paper we consider the combined 
effects of local thermal non-equilibrium (LTNE), 
and buoyancy due to the presence of variations of the 
temperature on buoyancy-induced flow from an ar-
bitrary shape surface. The similarity solutions have 
to be solved numerically, and this forms the focus of 
the present paper. Our work extends the previous 
papers by Cheng and Minkowycz (1977) and Bagai 
(2003). The important novelty of this study is the 
similarity solution in the case of the Thermal Non-
Equilibrium assumption in the porous medium, 
which has not been considered completely in the 
literature. 
 
 

ANALYSIS 
 

Consider the boundary layer flow due to free con-
vection from an arbitrary surface embedded in a 
porous medium (see Figure 1). Let ,x y  be the Carte-
sian coordinates along and normal to the surface, 
respectively, and ,u v  the corresponding velocity com-
ponents. Under the above assumption, the continuity 
equation is as follows (Bagai (2003), Nakayama and 
Koyama (1987)): 
 

* *( ) ( ) 0r u r v
x y

∂ ∂
+ =

∂ ∂
            (1) 

 
It is assumed that the x-component of velocity, 

i.e. u, is the dominant component; then by using the 
Boussinesq approximation and the assumptions of 
boundary layer, one can rewrite the equations for 
free convection in curvilinear system as follows 
(Bagai (2003), Nakayama and Koyama (1987)), 
 

( / ) ( )x fu K v g T Tβ ∞= −            (2) 
 

( ) ( )
2

2
f f f

p f s ff

T T T
c u v k h T T

x y y
ρ ε

∂ ∂ ∂⎛ ⎞
+ = + −⎜ ⎟∂ ∂ ∂⎝ ⎠

  (3) 

 

( ) ( ) ( )
2

21 1 0s
s f s

Tk h T T q
y

ε ε∂ ′′′− + − + − =
∂

     (4) 

where ε  is the porosity, K  is the permeability of the 
porous media, kf and ks are thermal conductivity of 
fluid and solid phases, ''q  is the internal heat genera-
tion in the solid phase, β is the coefficient of thermal 
expansion and h  is the interstitial heat transfer coef-
ficient between the solid and fluid phases. In Eq. (1), 
the parameter *r can be defined as, 
 

* 1 : Plane Flow
( ) : Axisymmetric Flow

r
r x
⎧

= ⎨
⎩  

 

 
 
Figure 1: Shape of the surface embedded in a porous 
medium. 
 

The gravity in this geometry can be defined as: 
 

1
2 2

1x
drg g
dx

⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

            (5) 

 
where g is total gravity and xg  is the local gravity in 
the boundary layer. The physical boundary condi-
tions are also given by: 
 

0 :
0 , ( ), ( ,0) ( ), ( ,0) ( )

:
( , ) 0 , ( , ) , ( , )

w f w s w

f s

At y
v T T x T x T x T x T x

As y
u x T x T T x T∞ ∞

=
= = = =

→∞
∞ = ∞ = ∞ =

 (6) 

 
The following expressions (i.e., stream function 

and non-dimensional temperature) are defined to 
transform the governing equations: 
 

( )
1* 2 ( , )xr Ra I f xψ α η=            (7) 

 
( , )wT T T xθ η∞− = Δ             (8) 
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where T is applicable for both fluid/solid phases. 
wTΔ and η can be expressed as: 

 

( )w wT T x T∞Δ = −              (9) 
 

1
2

xy Ra
x I

η ⎛ ⎞= ⎜ ⎟
⎝ ⎠

            (10) 

 
The new parameters are defined as: 

 

( )
3 *2

0
3 *2

x

w x

w x

T g r dx
I x

T g r x

Δ
=

Δ
∫

 
         (11) 

 

x w
x

K g T xRa β
αυ
Δ

=            (12) 

 

( )
f

p f

k
c
ε

α
ρ

=              (13) 

 
The physical velocities can be related to the 

stream function as follows: 
 

* *

1 1,u v
r y r x

ψ ψ∂ ∂
= = −

∂ ∂
        (14) 

 
The velocity components as well as temperature 

derivations can be obtained as follows: 
 

xf Rau
x

α ′
=             (15) 

 

( )

( )

*

*
*

x

x x

rRa I f
x

v
r fr Ra I f Ra I

x x

⎡ ⎤∂
⎢ ⎥∂⎢ ⎥= −

∂ ∂⎛ ⎞⎢ ⎥⎛ ⎞+ + ⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦
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( )w

w

TT T
x x x

θθ
∂ Δ∂ ∂

= + Δ
∂ ∂ ∂

        (17) 

 

1 x
w

T RaT
y x I

θ∂ ′= Δ
∂

          (18) 

 
2

2 2
w xT T Ra

y x I
θ∂ Δ ′′=

∂
           (19) 

 
By using the above mentioned equations, the 

transformed governing equations are (see Appendix 
A for the detailed derivations): 

ff θ′′ ′=               (20) 

 

( )
21

2f f f s f
f x

x InI f nIf h
k Ra

fIx f
x x

⎛ ⎞′′ ′ ′+ − − + −⎜ ⎟
⎝ ⎠
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  (21) 

 

( ) ( )
2

2

1
1

1 0

s f s
s w x

s w x

x I h
k T Ra

x I q
k T Ra

′′ + −
− Δ

′′′+ =
Δ

θ θ θ
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where n  is defined as: 
 

( ) ( ) [ln ]
[ln ]

w w

w

x T d Tn x
T x d x

∂ Δ Δ
= =
Δ ∂

      (23) 

 
To obtain the similarity solution, the convective 

heat transfer coefficient (h) and heat source in the 
solid phase ( '''q ) are now defined as: 
 

( )
1 3

21 3
f xk Rah e

x I

η
λε

λ

⎛ ⎞
⎜ ⎟+⎝ ⎠=

+
         (24) 

 

( )
1 3

21 3
s w xk T Raq e

x I

η
λ

λ

⎛ ⎞−⎜ ⎟+⎝ ⎠Δ′′′ =
+

        (25) 

 
The transformed boundary conditions are: 

 
( ) ( )
( ) ( ) ( )

0: 0 0, 0 0,

: 0, 0, 0 0.

At f f

As f f f

′= = =

′ ′′ ′′′→ ∞ ∞ = ∞ = =

η

η
  (26) 

 

When the values of f
x
∂
∂

and f
x
′∂

∂
are small, the 

right hand side of equation (21) may be neglected 
and the governing equations can be obtained as: 
 

ff θ′ =               (27) 

 

( ) ( )1 3

1
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1 0
1 3

f f f

s f
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e
⎛ ⎞
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+ − =
+

η
λ

θ θ θ

θ θ
λ

      (28) 
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( ) ( )

( )

1 3

1 3

1 3

1 0
1 3

eff
s f s

k
e

e

⎛ ⎞
⎜ ⎟+⎝ ⎠
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+
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+
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λ

η
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θ θ θ
λ
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       (29) 

 
Equation (27) is obtained by integration of equa-

tion (20) under the boundary conditions specified by 
Eq. (26). effk is also the fluid-to-solid conductivity 
ratio as: 
 

( )1
f

eff
s

k
k

k
ε
ε

=
−

            (30) 

 
Now, we can define the new parameterξ as: 

 
*2

0
,

x

xg r dx= ∫ξ             (31) 

 
By considering Equations (11), (23) and (31), and 

assuming wT λξΔ ∝ , one would have (see Appendix 
B for the detailed derivations): 
 

( )
( ) ( )

3

0
3

ln
.

ln 1 3
ww

w

T dd T
n I

d x T

ξ
ξ λ

ξ λ

ΔΔ
= × =

Δ +
∫     (32) 

 
In the above equation, *2

xd g r dxξ = . In other 
words, to have a similarity solution, the temperature 
changes around the surface should be defined as an 
expansion function: 
 

wT λξΔ ∝              (33) 
 

The coupled equations can be solved numerically. 
Thus, the transformed governing equations and the 
associated boundary conditions are solved by means 
of the 4th order Runge-Kutta method along with the 
Shooting Method technique (see: Burden and Faires 
(2010), Chapter 11). 100 Uniform grid-points are 
used in the η  direction. The iteration process contin-
ues until the convergence criterion for all the vari-
ables, 10-5, is achieved. The correct selection of ηmax 
is important to ensure that: i) the boundary layer 
remains within the computational domain; ii) the 
selection of the distance from the surface for apply-
ing the infinity boundary does not affect the calcu-
lated results such as wall shear stress and the Nusselt 
number. Thus, the solution (such as the boundary 

layer) should asymptotically tend to zero at large 
values of η. 
 
 

GEOMETRICAL STATEMENT: SPECIAL 
CASES 

 
Various surface geometries with different thermal 

boundary conditions are considered as follows, con-
sidering Eq. (31): 
 

, Vertical Plategx=ξ          (34) 
 

( )1 cos , HorizontalCylindergr= − Φξ     (35) 
 

3 31 2cos cos , Sphere
3 3

gr ⎛ ⎞= Φ − Φ +⎜ ⎟
⎝ ⎠

ξ     (36) 

 

where 1sin x
r

− ⎛ ⎞Φ = ⎜ ⎟
⎝ ⎠

, r is the radius of the cylinder 

or sphere, and x  is the distance from the stagnation 
point. The local surface heat flux is calculated as: 
 

( )
00

1f s
w f s

yy

T Tq k k
y y

ε ε
==

∂ ∂
= − − −

∂ ∂
     (37) 

 
and the dimensionless local heat flux is defined as: 
 

1
2* w r wr r

wr f

q L K T gLq
T k

β
ε αυ

−⎛ ⎞ Δ⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟Δ ⎝ ⎠⎝ ⎠
      (38) 

 
where wrT  is the wall ambient temperature difference 
at the trailing edge or the rear stagnation point and 

rL  is the reference length. Equation (38) for the 
aforementioned geometries, described by Eqs. (34)-
(36), can be written as follows: 
 

( )
3 1

1 2
* 21 3 ,

Vertical Plate

s
f

eff r

xq
k L

−
⎡ ⎤′ ⎛ ⎞′= − − +⎢ ⎥ ⎜ ⎟
⎢ ⎥ ⎝ ⎠⎣ ⎦

λ

θθ λ      (39) 

 

( )
3

1 2* 2
1 cos1 cos ,

2

HorizontalCylinder

s
f

eff

q
k

⎡ ⎤′ − Φ⎛ ⎞′= − − + Φ⎢ ⎥ ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

λ

θθ    (40) 
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3 2
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2 cos

cos 3cos 21 cos , Sphere
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s
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q
k
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⎛ ⎞Φ − Φ +
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VALIDATION 
 

When effk  is infinite, it means that the porous me-
dium is in the equilibrium condition. In this condi-
tion, the value of (1 )f sk kε ε>> − and therefore the 
fluid and solid phases are in the thermal equilibrium 
condition. A validation study was done by compar-
ing the numerical results with those presented by 
Cheng and Minkowycz (1977). In this reference, the 
authors investigated a vertical plate in a porous me-
dium in the case of the thermal equilibrium condi-
tion. By choosing a large value for effk , the thermal 
equilibrium condition is clearly satisfied. The related 
calculations are presented in Table 1. According to 
the results, which are shown in the table; our solution 
methods as well as the numerical assumptions are 
accurate. 
 
Table 1: Comparing the values of *q  in a vertical 
plate for 1000effk = with the numerical results of 
Cheng and Minkowycz (1977). 
 

λ  Cheng and Minkowycz (1977) Present Results
0 0.4440 0.44397 
1

5
 0.5943 0.59429 

1
4

 0.6303 0.62687 

1
3

 0.6788 0.67799 

1
2

 0.7615 0.77075 

3
4

 0.8926 0.892795 
1 1.001 1.00051 

 
The results were also checked with those pre-

sented by Bagai (2003), who considered a porous 
medium in the thermal equilibrium condition in-
cluding heat generation in both the fluid/solid 
phases. In addition, the author presented the values 
of heat flux when there was no heat generation inside 
the phases. In order to have thermal equilibrium, we 
omitted the heat generation in the solid phase and 
assumed that effk  had a large value. Then, the results 
obtained can be compared with Bagai (2003) for two 

different geometries, namely the ‘’horizontal cylin-
der’’ and ‘’sphere’’ shapes. The results are shown in 
Figure (2). According to the results, our method as 
well as the numerical assumptions are accurate. 
 

 
(a) 

 
(b) 

Figure 2: Comparison with Bagai (2003) in the case 
of the thermal equilibrium condition, for keff=1000, 
without internal heat generation for (a) cylinder, (b) 
sphere. 
 
 

RESULTS AND DISCUSSION 
 

The present model can be employed for various 
values of λ for a vertical heated plate in a porous 
medium. As presented in Table 2, different values of 
keff are considered and the related heat flux, i.e., q*, is 
reported. The results obtained showed that, upon 
increasing the fluid-to-solid conductivity ratio, i.e., 
keff, the surface heat flux is decreased.  

As presented in the similarity equations, the value 
of λ=0 is related to a constant temperature of the 
surface. As the value of λ increases, the heat transfer 
rate, denominated by q*, is also increased. This is 
obviously related to the definition of the temperature 
difference, ΔTw, present in Eq. (33). As indicated in 
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this equation, increasing the value of λ leads to an 
increase in the value of the surface temperature and 
therefore clearly affected the heat transfer to the 
working fluid. 
 
Table 2: *q for Vertical Plate for different values 
of λ  and (a) 0.1effk =  (b) 1effk =  (c) 10effk = . 
 

λ  
*q  

0 1.4718 
1

5
 1.9339 

1
4

 2.0303 

1
3

 2.179 

1
2

 2.4404 

3
4

 2.7686 
1 3.0442 

(a) 

λ  
*q  

0 0.6232 
1

5
 0.8272 

1
4

 0.8709 

1
3

 0.9391 

1
2

 1.0616 

3
4

 1.2204 
1 1.3586 

(b) 

λ  
*q  

0 0.4652 
1

5
 0.6224 

1
4

 0.6565 

1
3

 0.7099 

1
2

 0.8067 

3
4

 0.934 
1 1.0462 

(c) 
 

The definition of keff in the governing equations 
clearly reflects the effects of the two phase approach 
in our simulation, which was not introduced in the 
work of Cheng and Minkowycz (1977). 

The values of heat flux, q*, as a function of keff 
are shown in Figure (3) for different values of λ. The 
results are related to three geometries, i.e., vertical 
plate, horizontal cylinder and sphere. 

According to the results obtained, it is found that, 
in all geometries, the dimensionless local heat flux 
increases with effk  for various values of λ. As shown 

in Figure (3), the value of 1sin ( / ) / 2x r π−Φ = = , 
which is related to a fixed point on the body. The 
values of the dimensionless local heat flux for a 
horizontal cylinder are also shown in Figure 4. The 
figures are presented for three different values of 
keff=0.1, 1 and 10. The value of λ=0 is related to a 
constant temperature of the cylinder surface. The 
horizontal axis is selected as ( )1sin /x rφ −= , where 
r is the radius of the cylinder, and x is distance from 
the stagnation point. As shown in this figure, there is 
a maximum (or minimum) value for the surface heat 
flux (q*) when the temperature of the body is not 
constant ( 0.λ ≠ ). This extremum location is strongly 
related to the values of the fluid-to-solid conductivity 
ratio. Similarly, the results obtained for a hot sphere 
in a porous medium are shown in Figure (5). 

 
 

  
(a) (b) 

 
(c) 

Figure 3: Local heat flux for different values of λ. (a) Vertical Plate, (b) Horizontal Cylinder with internal heat 
generation and / 2φ π= , (c) Sphere with internal heat generation and / 2φ π= . 



 
 
 
 

Novel Similarity-Solution Which is Applicable for Free Convection Over a Body of Arbitrary Shape: Thermal Non-Equilibrium in a Porous Medium   231 
 

 
Brazilian Journal of Chemical Engineering Vol. 32,  No. 01,  pp. 225 - 235,  January - March,  2015 

 
 
 
 

  
(a) (b) 

(c) 
Figure 4: Local heat flux for a horizontal cylinder with internal heat generation in the solid phase (a) 

0.1effk = , (b) 1effk = , (c) 10effk = . 

 
(a) (b) 

(c) 
Figure 5: Local heat flux for a sphere with internal heat generation in the solid phase (a) 0.1effk = , (b) 

1effk = , (c) 10effk = . 
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CONCLUSION AND HIGHLIGHTS 
 

The study of the natural convection flow and heat 
transfer from hot surfaces in a porous medium has 
been of considerable interest in energy-related engi-
neering problems. This paper is concerned with the 
free convection heat transfer over an arbitrary hot 
surface in a porous medium. Mathematical deriva-
tion of a similarity solution for an arbitrary geome-
try in the heat transfer analysis is the main novelty of 
the present study. The equations obtained are solved 
and the local heat flux is presented for three types of 
shapes, i.e., vertical plate, horizontal cylinder and 
sphere. The present model can be employed for 
analysis of heat transfer induced by arbitrary-shape 
surfaces. 
 
 

NOMENCLATURE 
 
List of Symbols 
 

pc  specific heat at constant pressure of the 
fluid 

f  dimensionless stream function 
g  acceleration due to gravity 
k  thermal conductivity 
K  permeability 
h  coefficient of convection heat transfer 
q′′′  internal heat generation per unit volume 

wq  local surface heat flux 
*q  local heat flux 

r  function representing wall geometry 
xRa  local Rayleigh number 

T  temperature 
,u v  velocity components in the x  and y  

directions 
,x y  boundary layer coordinates 

 
Greek Symbols  
 
α  thermal diffusivity  
β  coefficient of thermal expansion 
η  similarity variable 
θ  dimensionless temperature 
λ  exponent associated with the wall 

temperature increase 
ε  porosity 
ρ  density of fluid phase 
υ  kinematic viscosity 
ψ  stream function 

Subscripts  
 
eff  Effective 
f  fluid 
s  solid 
w  wall condition 
∞  ambient condition 
 
Superscript 
 
'  denotes derivative with respect to η  
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Governing equations: 
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The energy equation for the fluid phase is as 

follows: 
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By substituting the required parameters (such as u, v and gradients of T) into the energy equation, one would 
have: 
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and, after some mathematical manipulation: 
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When the RHS is small, the right hand side of the 
above equation may be neglected and the governing 
equations can be obtained as, 
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Similarly, for the solid phase energy equation:  
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