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Novel simulation-based algorithms for optimal open-loop

and closed-loop scheduling of deficit irrigation systems

N. Schütze, M. de Paly and U. Shamir
ABSTRACT
The scarcity of water compared with the abundance of land constitutes the main drawback within

agricultural production. Besides the improvement of irrigation techniques a task of primary

importance is solving the problem of intra-seasonal irrigation scheduling under limited seasonal

water supply. An efficient scheduling algorithm has to take into account the crops’ response to water

stress at different stages throughout the growing season. Furthermore, for large-scale planning tools

compact presentations of the relationship between irrigation practices and grain yield, such as crop

water production functions, are often used which also rely on an optimal scheduling of the

considered irrigation systems. In this study, two new optimization algorithms for single-crop intra-

seasonal scheduling of deficit irrigation systems are introduced which are able to operate with

general crop growth simulation models. First, a tailored evolutionary optimization technique (EA)

searches for optimal schedules over a whole growing season within an open-loop optimization

framework. Second, a neuro-dynamic programming technique (NDP) is used for determining optimal

irrigation policy. In this paper, different management schemes are considered and crop-yield

functions generated with both the EA and the NDP optimization algorithms compared.
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NOTATION
Bn
 elitist set of a generation
c
 center vector of RBF
di
 date of irrigation event i
dmin
 minimum time between two irrigations
eps
 termination criteria
j
 number of growing period (1¼ initial, 2¼ crop devel-

opment, 3¼mid-season, 4¼ late season)
KY,j
 crop sensitivity factor for period j
M
 number of growing periods
nj
 index over stages belonging to the jth period
nt
 tournament size
ngen
 number of individuals in a population
nmax
 maximum number of iterations
N
 number of stages in a growing season
pt
 take-over probability
pcr
 crossover probability
s
 pair of irrigation parameters for one irrigation event
Sπ
 series of irrigation actions – schedule in NDP
S
 irrigation schedule for one growing season
U
 cost-to-go function

~U
 approximated cost-to-go function
U*
 optimal cost-to-go function
vi
 water volume for irrigation event i
V0
 given water volume
Vi
 remaining water volume until end of growing season
Vmin
 minimum water volume per irrigation event
Vmax
 maximum water volume per irrigation event
W
 weight matrix
x
 state vector
x
 state variable
X
 actual population of irrigation schedules
X
 set of all individuals of all generations
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yi
://iwaponl
daily contribution to yield response
Y
 relative yield
Ya
 actual yield
Ymax
 maximum yield
z
 eligibility vector
δi
 temporal difference
λ
 discount parameter
π
 policy or decision function
π*
 optimal policy
φ
 basis function
σ
 radius of an RBF
σd
 mutation rate for irrigation dates
σv
 mutation rate for water volumes
θr
 residual water content
θs
 saturated water content
ω
 weight
INTRODUCTION

The great challenge of the agricultural sector is to produce

more food and/or more revenue from less water, which

can be achieved by optimal irrigation management. A task

of primary importance is the problem of intra-seasonal irri-

gation scheduling (i.e. when and how much to irrigate)

under limited seasonal water supply. Here, a limited

amount of water has to be distributed over a number of irri-

gations, taking into account the crop’s response to water

stress at different stages during the growing season.

Dynamic programming (DP) has been extensively used for

the optimization of closed-loop irrigation scheduling pro-

blems (Bras & Cordova ; Rao et al. ; Sunantara &

Ramirez ; Prasad et al. ). An alternative approach

to calculate optimal irrigation schedules is provided by

open-loop scheduling techniques such as linear and non-

linear programming (Shang & Mao ; Gorantiwar

et al. ).

Open-loop optimization is based on forecasts generated

by simulation or analytic functions (Shani et al. ) of the

water balance and crop production of an irrigation system

for a whole growing period in advance. The open-loop irri-

gation scheduling problems can be formulated in two

ways. The first way considers the water volume of each
ine.com/jh/article-pdf/14/1/136/386651/136.pdf
day of the growing season as a decision variable, resulting

in a hard to solve nonlinear optimization problem (NLP)

with a high number of decision variables. The other way sig-

nificantly reduces the size of the search space by considering

only actual irrigation events (i.e. dates and amounts) leading

to a mixed integer nonlinear optimization problem

(MINLP) with an a priori unknown number of decision vari-

ables. Therefore, recent studies simplify the optimization

problem by fixing the irrigation dates (Loganathan &

Elango ; Shang & Mao ) or the irrigation intervals

(Montesinos et al. ; Gorantiwar et al. ; Brown et al.

). Beside these approaches heuristic optimization algor-

ithms where used like Nelder–Mead simplex method

(Shang & Mao ) or simulated annealing (Brown et al.

), which may fail in practice when local optimal sol-

utions exist or when the number of decision variables

becomes too large.

Alternatively, the problem can be solved by a closed-

loop optimization strategy like DP, which is designed to

obtain a lookup table containing optimal decisions for

each possible state of the soil–vegetation–atmosphere

system at each stage of the growing season. Depending on

the definition of the state variables (e.g. soil moisture distri-

bution and crop growth status) state updating based on real-

time measurements can be used in order to adjust irrigation

decisions and thus the optimal scenario of crop growth with-

out recalculating the lookup table. The popularity and

success of this technique can be attributed to the fact that

nonlinear and stochastic features of scheduling problems

can be handled by DP (Bertsekas ). However, it is

well known that computational requirements of DP

become overwhelming when the number of state and con-

trol variables is too large (Bellman & Dreyfus ). For

this reason all the studies applying DP for optimal irrigation

scheduling have their limitations because they use discrete

representations for both state space and decision space.

Bras & Cordova () divided a growing season into 15

decision stages, which correspond to fixed irrigation inter-

vals of 8 days. Five different irrigation policies (from

irrigating up to field capacity down to not irrigating at all)

were considered and a rough discretization of the state vari-

ables (soil moisture and available irrigation water) was used.

Rao et al. () employed DP for optimal water allocation

over four growing stages combined with a heuristic
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method for the distribution of the allocated water in weekly

irrigation intervals during each crop growth stage. A further

development of the approach proposed by Sunantara &

Ramirez () avoids separating the optimization process

into a DP part and a heuristic part. Daily irrigation

decisions, however, would allow a more precise optimiz-

ation of the amount and date of the irrigation events and

the resulting lookup table would show its flexibility when

constraints (like fixed irrigation intervals or fixed irrigation

amounts) are present. Moreover, it is unfortunate that

almost all the optimal scheduling procedures proposed so

far rely solely upon water balance models although the pro-

cess modeling of soil water transport offers a far more

accurate representation of reality (Schmitz et al. ).

All attempts to use more comprehensive simulation

models in irrigation scheduling employ trial-and-error

methods, i.e., the generation and evaluation of a large set of

arbitrary chosen scenarios (Raghuwanshi & Wallender

; Scheierling et al. ; Singh & Singh ; Shang

et al. ). Raghuwanshi & Wallender () constructed a

seasonal furrow irrigation model (FIM) based on kinematic-

wave hydraulics to minimize seasonal irrigation cost for a

prescribed irrigation adequacy. This technique, however,

comprises also some restrictions due to: (i) a constant irriga-

tion interval and (ii) optimization by enumeration of all

possible strategies. This severely limits the complexity of

considered strategies in order to keep the ‘optimization’ com-

putationally feasible. Singh & Singh () calculated water

management response indicators (WMRI) for different soil

types which primarily prevent deep percolation. WMRI are

based on a number of irrigation scenarios simulated by the

water flow and transport model SWASALT. Also Scheierling

et al. () used a dynamic water flow model based on the

Richards equation for evaluating a number of 29¼ 512 sche-

dules (i.e. an enumeration of binary control vectors which

represent a schedule of nine irrigation decisions). They

found that crop yields vary enormously depending on the

timing of irrigation. Considering the computational effort of

this enumeration schememakes it obvious thatmore efficient

optimization methods are necessary. Shang et al. () car-

ried out nine simulations on the variation of soil moisture

and irrigation scheduling and concluded that simulations of

water dynamics under different irrigation conditions are

essential for irrigation planning.
om http://iwaponline.com/jh/article-pdf/14/1/136/386651/136.pdf
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The objective of this study is to demonstrate the feasibility

and effectiveness of a simulation–optimization strategy for

open- and closed-loop optimization of irrigation scheduling

which overcomes the above-mentioned restrictions. The

simulation–optimization approach combines a broader

range of simulation models with an optimization algorithm

for solving deterministic and stochastic optimization pro-

blems (e.g. to handle the uncertainty to account for the

impact of climate and soil variability is considered in optimal

scheduling). In the context of a simulation-based optimiz-

ation, a simulation model can be thought of as a function

that turns input parameters into output performance

measures that can only be evaluated by computer simulation

(Gosavi ). As such, these functions are usually con-

sidered as a black box for the optimization algorithm.

Evolutionary or genetic algorithms (EAs) are popular heuris-

tic methods which are capable of achieving global or near-

global optimal solutions to open-loop simulation-optimiz-

ation problems. The significant advantage of the EA is that

it can be directly linked with irrigation simulation models

without requiring further model simplifications or the calcu-

lation of derivatives (Onwubolu & Babu ). In the field of

irrigation, genetic algorithms were only applied to related

problems to irrigation scheduling, for example optimal irriga-

tion reservoir operation (Loganathan & Elango ;

Wardlaw & Bhaktikul ; Kumar et al. ) or water

delivery scheduling for an open-channel irrigation system

(Nixon et al. ). This paper introduces a problem-specific

EA which explicitly accounts for all possible constraints in

intra-seasonal irrigation scheduling.

For solving dynamic simulation–optimization problems

neuro-dynamic programming (NDP) is employed in this

study. NDP belongs to the class of reinforcement learning

methods, reducing the numerical complexity of standard

DP. It avoids the exponential increase of computations

through the use of parametric approximate representations

of the cost-to-go function (Bertsekas ). Compared to

the classical numerical solution approach for DP, which per-

forms exhaustive sampling of the entire state space in

solving the stage-wise optimization, these approaches

sample only a small, crucial fraction of the state space and

thus require less computations.

The remainder of this paper is organized as follows. In

the methodology section, we review the new EA for intra-
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seasonal irrigation scheduling and the least-squares temporal

difference (LSTD) algorithm for calculating the approximate

cost-to-go function for the DP approach. In the Results sec-

tion, a case study involving deficit irrigation of corn is

presented to illustrate the new methods and we discuss the

results, especially crop-yield functions generated using both

the open- and closed-loop simulation-optimization. Finally,

we offer some conclusions and suggestions for potential sto-

chastic applications, especially for the NDP approach.
METHODOLOGY

When irrigation is constrained by limited water availability,

a maximum crop yield is not achievable. With deficit irriga-

tion, the plants are consciously under-supplied with water

and a reduced crop yield is accepted as the penalty. How-

ever, each plant’s level of water stress sensitivity fluctuates

with respect to its different growth phases. For this reason,

when laying down the irrigation schedules for an entire

growth period, it is important to decide beforehand when

the crop in a growth phase requires generous irrigation

water volumes and, on the other hand, when smaller

volumes will suffice. The objective of the simulation–

optimization is to achieve maximum crop yield with a

given, but limited water volume, which can be arbitrary dis-

tributed over an adequate number of irrigations. The impact

of different irrigation schedules on crop yield is calculated

by an irrigation model. For the sake of simplicity, an irriga-

tion water balance model (Rao et al. ) is used in this

study. The model computes the average volumetric water

content θi in the soil at each stage which is determined by

θi ¼ min fc; max pwp;
��

θi�1Di�1 þ vi þ Pi � AETi þ θ0ðDi �Di�1Þ
Di

��
ð1Þ

where Di is the actual rooting depth, Pi is the precipitation,

vi is the irrigation water volume, AETi is the actual evapo-

transpiration (AET), fc is field capacity and pwp is the

permanent wilting point of the considered soil. AETi is com-

puted as the sum of evaporation and transpiration by the

plants and depends on the type of the crop and the potential
://iwaponline.com/jh/article-pdf/14/1/136/386651/136.pdf
evapotranspiration (PETi). It is calculated according to

AETi ¼

PETi θiDi ≥ 1� pðPETiÞ
ð fc� pwpÞDi

θIDiPETi

ð1� pðPETiÞÞð fc� pwpÞDi
θiDi < ð1� pðPETiÞÞ

ð fc� pwpÞDi

8>>>><>>>>:
ð2Þ

where p(PETi) is the crop-dependent soil water depletion

factor. The actual yield Ya is computed from the resulting

values of AETi according to the multiplicative FAO-33

crop yield response model (Doorenbos & Kassam )

which is

Y ¼ Ya

Ymax
¼
YM
j¼1

1�KY ;j 1�
Pnj

i¼nj�1þ1 AETiPnj

i¼n j�1þ1 PETi

0@ 1A0@ 1A ð3Þ

where Y is the relative yield and Ymax the maximum yield.
Formulation of the open-loop scheduling problem

The objective of open-loop optimization is to achieve maxi-

mum crop yield Y with a given, but limited, water volume

V0. V0 has to be distributed over the growing season, where

the time and the quantity of each irrigation have to be deter-

mined. The impact of an irrigation schedule on the crop

yield is calculated by an arbitrary seasonal irrigation water

balance model, e.g., Rao et al. (), or a more comprehen-

sive agricultural production model. The global optimization

problem can then be formulated as an MINLP with continu-

ous and discrete decision variables as follows:

Y� ¼ max YðSÞ: S ¼ fsigi¼1;...;n ¼ fðd1; v1Þ; . . . ;
ðdi; viÞ; . . . ; ðdn; vnÞgn; di ∈ N � vi ∈ R

ð4Þ

with the optimal solution for maximizing the yield Y:

S� ¼ argmaxYðSÞ ¼ argmaxYðfðdi; viÞgÞ i ¼ 1; . . . ;n ð5Þ

where S is the schedule for the whole growing season, con-

sisting of i¼ 1,…, n irrigation events si each defined by the

date di and the irrigation depth vi. The number n of irriga-

tion events si is not fixed a priori and is a decision variable



140 N. Schütze et al. | Optimal open-loop and closed-loop scheduling of deficit irrigation systems Journal of Hydroinformatics | 14.1 | 2012

Downloaded fr
by guest
on 20 August 2
itself. The set of feasible schedules is determined by the

three following constraints:

Xn
i¼1

vi ≤ V0 ð6Þ

jdi � djj ≥ dmin 8di;dj ∈ S; i ≠ j ð7Þ

Vmax ≥ vi ≥ Vmin ð8Þ

i.e.,

• Equation (6) limits the sum of the irrigation depth for the

growth period which must not exceed the given water

volume V0,

• Equation (7) sets a minimal time between two irrigations

which must not fall below dmin,

• Equation (8) provides bounds for each single irrigation

depth which must be within the prescribed range [Vmin,

Vmax].

Solving the open-loop optimization problem with a

new EA

The EA begins with a set of solutions, called population,

which, in our case, is a random set of schedules. Every
om http://iwaponline.com/jh/article-pdf/14/1/136/386651/136.pdf
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member of the set has a fitness value assigned that is directly

related to the objective function – its crop yield. In sequential

steps, the population of schedules is modified by applying the

four operators: selection, crossover,mutation and reconstruc-

tion. These operators mimic their counterparts from the

natural evolution process. Selection chooses individuals

according to their fitness from the previous generation,

which are the base for the individuals of the new generation.

The offspring are either generated by crossover which com-

bines two individuals into a new one or by mutation which

randomly changes a single individual. The details of the algor-

ithm are presented in Algorithm 1 and Algorithms 3–6 in the

appendix. The main features are as follows.

A population Xn is a set of ngen individuals, i.e., irrigation

schedules S. Each irrigation schedule consists of a set of pairs

si¼ (di, Vi), where each pair contains the parameters of an

individual irrigation event. The entire set X – i.e., all those

individuals which are created during the optimization – can

be formed by bringing together all the individuals of all

generations:

X ¼ fXngn¼1;...;nmax
¼ ffSjgnj¼1;...;ngen

gn¼1;...;nmax

¼ fffðdi; viÞgji¼1;...;nj
gnj¼1;...;ngen

gn¼1;...;nmax
:

ð9Þ

The convergence and outcome of the EA are determined by

the following parameters: the maximum number of function



141 N. Schütze et al. | Optimal open-loop and closed-loop scheduling of deficit irrigation systems Journal of Hydroinformatics | 14.1 | 2012

Downloaded from http
by guest
on 20 August 2022
evaluations nmax, the stopping criteria eps – the difference of

the maximum objective function values in the population

between two consecutive generations – the mutation rate

for irrigation dates σd and volumes σv, the takeover prob-

ability pt and the crossover probability pcr.

The structure of the EA shown in Algorithm 1 deviates

in certain aspects from the standard operators of EAs –

selection, crossover and mutation. First, the deviations

include a change in the order in which the individual oper-

ators are activated. During each generation step the

selection is the first operation to be carried out, instead of

at the end. Second, an additional reconstruction step

rebuilds the created children in order to guarantee feasible

solutions which are in compliance with the constraints.

For doing this we used a priori knowledge about irrigation

scheduling, e.g., that it is better to irrigate for future crop

requirements in advance than to irrigate too late. The

implementation of the operators is explained subsequently

(for details see Algorithms 3–6 in the appendix).

Selection

To determine the parents of the next generation we employ

an elitistic tournament selection. This means the algorithm

iterates over all individuals of the current generation. Each

individual is set once as one participant of a tournament

with a set of nt�1 randomly chosen competitors from the

same generation, where nt is the tournament size. If the

set individual wins – i.e., it has the better objective function

value – it is retained in the elitist set of the generation Bn and

goes unchanged in the next generation. Otherwise a new

individual is generated from the best competitor using the

crossover, mutation, and reconstruction operators.
Crossover

The number of irrigation events can differ between the two

parent individuals. Thus, it is not possible to use one of the

standard crossover operators. Instead, the crossover oper-

ator must be altered to suit the structure of the data.

Because plant water uptake is time-dependent, with respect

to crossover it makes sense to preserve the relationship

between the irrigation time and volume of the schedules of

the two parents. This can be achieved by creating the
://iwaponline.com/jh/article-pdf/14/1/136/386651/136.pdf
offspring individual out of a selection of irrigation events

(pairs si), which themselves are chosen from the combined

total of the parents’ own irrigation schedules. Thus, in

implementation of the crossover operator each irrigation

event from the set union of the parents’ irrigation schedules

is selected with a certain probability pt and placed into the

offspring schedule.

Mutation

For all the irrigation times di and irrigation volumes vi of an

irrigation schedule, mutation is implemented by adding a

normally distributed random value, which has to be gener-

ated for each variable to be mutated. Different crops react

differently to changes made to the irrigation timing and/or

to the water volumes. For this reason, we distinguish

between the variances for the mutation of the irrigation

times σd and the variances for the mutation of the irrigation

volumes σv to control the mutation.

Reconstruction

Schedules of the new population are reorganized in the fol-

lowing manner: two water applications spaced by an

interval smaller than the given minimal irrigation interval

are combined into one water application. The water volumes

of the two are added and the irrigation time of the earlier

event is selected for the combined event. All the other water

applications remain in the schedule without change. There-

after, the amount of each water application is normalized to

meet the total availablewater volumewith the sumof the indi-

vidual irrigation water volumes. Once these steps have been

applied to the whole population, irrigation simulations are

performed with all the new individuals (schedules).

After this step one generation of an EA is completed.

The algorithm iterates until a certain desired degree of con-

vergence is reached.

With respect to the fact that there are numerous

examples of general evolutionary optimization procedures

in the literature, it is worth noting that optimal irrigation

scheduling is a challenging open-loop optimization problem.

In a recent study (de Paly & Zell ) we compared the per-

formance of the new developed algorithm with six state-of-

the-art general EAs, namely real-valued genetic algorithm,
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particle swarm optimization, differential evolution, evol-

ution strategy, covariance matrix adaptation evolution

strategy and shuffled complex evolution. Each algorithm

had the task of minimizing the yield loss while distributing

a given amount of water V0 over the entire growth period

of 130 day, with a possible irrigation at each day based on

the same irrigation model as used in this paper (see

Equation (1)). The resulting constrained high-dimensional

NLP showed to be hard to solve for the general EA, which

do not employ problem-specific operators. From Figure 1,

it can be seen that no general EA is able to find the global

optimal schedule within the given maximum number of

5,000 function evaluations.

EAs usually require many function evaluations for con-

vergence, making them computationally intensive. The

presented EA reduces the computational effort by restricting

the number of individuals, which have to be evaluated by

simulations, to feasible solutions. In addition, the overall

time necessary for one optimization run can be reduced

through extensive parallel processing of objective function

evolution for all individuals of one generation at once. At pre-

sent, interfaces to APSIM (Keating et al. ), DSSAT (Jones

et al. ), PILOTE (Kholedian et al. ) and DAISY

(Abrahamsen & Hansen ) crop growth models as well

as the FAO-33 yield response model are implemented.

Formulation of the closed-loop optimization problem

As a general framework for solving the closed-loop optimal

scheduling problem we used a dynamic program, consisting
Figure 1 | Performance of six general evolutionary and the new tailor-made scheduling

EA from de Paly & Zell (2009). For a detailed description of the general evol-

utionary algorithms see Streichert & Ulmer (2005).

om http://iwaponline.com/jh/article-pdf/14/1/136/386651/136.pdf
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of state variables, decision variables, a transition function, a

contribution or cost function, an objective function and a

decision function. For the irrigation scheduling problem the

state variables are the average soil water content θiwhich rep-

resents the amount of water in the soil water reservoir and Vi

the volume of water which is available for irrigation from

stage i until the end of the time horizon. The decision variable

at each stage is the depth of irrigation water vi which can

be applied. Daily decisions are provided by the decision func-

tion or operation policy π specified in the form vi¼ π(Vi, θi).

The transition function which describes the dynamics of

the irrigation system, i.e., the irrigation model, is defined as

in Equations (1) and (2). The objective function of the

dynamic problem for a limited water supply can then be

formulated as

Y� ¼ max
allS

π

XN
i¼1

yiðVi; θi; viÞ
 !

with

Sπ ¼ fv1; . . . ; vi; . . . ; vNg subject to
XN
i�1

vi ≤ V0

ð10Þ

where Sπ is a series of actions, i.e., an irrigation schedule

with the daily irrigation depth vi at stage i. The reward yi is

the daily contribution to the crop yield response, which is

determined by an additive formulation (see Equation (11))

derived from the multiplicative FAO-33 crop yield response

model given in Equation (3). yi can be interpreted as the

contribution to the reduction of crop yield response related

to potential yield as a result of actual water stress (see

Equation (12)):

Y ¼ Ya

Ymax
¼ 1þ

XM
j¼1

Yj�1

k¼0

Yk

 !
KY ;j

 

×
Xnj

i¼nj�1þ1

AETiPnj

l¼nj�1þ1 PETl
� 1
nj � nj�1

0@ 1A1A ð11Þ

yi ¼
Yj�1

k¼0

Yk

 !
KY ; j

AETiPnj

l¼nj�1þ1 PETl
� 1
nj � nj�1

0@ 1A ð12Þ

where Yk is the cumulative yield reduction according to

the crop sensitivity factor KY,j for the past growing periods
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k¼ 1,…, j–1. j is the actual growing period with the crop

sensitivity factor KY,j which starts at decision stage nj�1þ 1

and ends at stage nj. The other variables related to the

FAO-33 crop yield response model are the number of grow-

ing periods M, PET, AET and relative yield Y. The AET

depends on the water balance model used which is

defined in Equations (1) and (2) and thus yi depends on

the state variables θi and Vi and the decision variable vi.

Through the introduction of the optimal cost-to-go function

U* for each state (Vi, θi) given by the recursive equation of

the DP:

U�
i ðVi; θiÞ ¼ yiðVi; θi; viÞ þ max

vi∈½0;minðVi;VmaxÞ�
½Uiþ1ðVi � vi; θiþ1Þ�

for i ¼ 1; . . . ;N � 1 ð13Þ

and

U�
NðVN ; θnÞ ¼ yNðVN ; θNÞ ð14Þ

we are able to find the optimal policy or decision function π*

calculating

π�ðVi; θiÞ ¼ arg max
vi∈½0;minðVi ;VmaxÞ�

ðyiðVi; θi; viÞ

þ ½Uiþ1ðVi � vi; θiþ1Þ�Þ: ð15Þ

The optimal cost-to-go can be interpreted as the minimum

reduction in yield for the time period that remains after

a time i. To solve the optimality Equation (13) by DP, a

sequential calculation of U�
i is performed for all stages and

all states at each stage by backtracking starting from the

terminal stage N.

Solving the closed-loop optimization problem with NDP

Classical DP is based on the premise that the number of states

x of a system is finite. This is not the case if we apply irrigation

simulation models which use continuous variables (x1,…, xn).

The simulation-based approach of DP used here is neuro-

dynamic programming (NDP), which approximates the cost-

to-go function U*(x) by an approximation function eUðx;WÞ
in an iterative loop.NDPuses linear basis function approxima-

tors (Taylor series, tile coding or radial basis function) or

nonlinear universal approximators like multilayer perceptron
://iwaponline.com/jh/article-pdf/14/1/136/386651/136.pdf
to learn the cost-to-go function eU (Sutton & Barto ). In

this study we employed a linear approximation approach

where the cost-to-go function is given by the linear combi-

nation of l basis functions φk:

eUðx;WÞ ¼
Xl
k¼1

wkϕkðxÞ ð16Þ

with the parameter vectorwk and a radial basis function (RBF)

as the choice of φk:

ϕkðxÞ ¼ exp �kx� ckk2
2o2

 !
ð17Þ

where σ is a suitable chosen radius and ck are the centers of

the l basis functions.

The weight matrixW has to be determined by some form

of optimization, e.g., by using a least-squares framework,

minimizing the error of the temporal differences (TDs):

δi ¼ eUiðxi;WÞ � ðyi þ eUiþ1ðxiþ1;WÞÞ ð18Þ

From Equation (19), which is related to the Bellmann

Equation (13), it can be seen that TDs are the errors in the

estimates of the approximated cost-to-go function eUðx;WÞ
compared to the true reward yi between two temporally suc-

cessive predictions of the cost-to-go in an irrigation scenario.

TDs δi would be equal to zero in the ideal case for all simu-

lated states of the irrigation system for all irrigation

scenarios if eUðx;WÞ would be equal to U*(x).

In this study, the cost-to-go approximation function is

constructed by least-squares temporal differences policy

evaluation LSTD(λ) (Boyan ) and ε-greedy policy

improvement, which finds a new policy by maximizing the

actual cost-to-go function in the space of feasible policies

(Sutton&Barto ). For obtaining the approximation func-

tion eUðx;WÞ the policy iteration algorithm alternates

between approximating policy evaluation steps and policy

improvement steps (see Figure 2).

Before we describe the algorithm in brief we need to

introduce the time t as a state variable. Since the application

of the policy iteration algorithm requires a stationary policy,

we define vi¼ π(x) ≡ vi¼ π(Vi, θi, ti). This is a precondition



Figure 2 | Basic structure of the policy iteration algorithm.
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for the application of the policy iteration algorithm. The

policy iteration algorithm (see Algorithm 2 and Figure 2)

contains the following procedures:

Simulation

The irrigation model simulates a scenario (trajectory) with

the actual policy Sn
π and calculates the rewards yi(xi, ~vi) for

all the states that are on the trajectory.

Accumulation of the TDs

During the simulation on each state transition the TDs

among all RBF φ are updated in A and b according to

their respective eligibilities zi. The eligibility vector can be
om http://iwaponline.com/jh/article-pdf/14/1/136/386651/136.pdf
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seen as an algebraic trick by which TD propagates rewards

backwards over the current scenario without having to

remember the scenario explicitly. Thus, each RBF’s eligi-

bility at time i depends on the scenario’s history. λ

controls how the TD errors between successive predictions

are passed back in time. If λ is set to 0, the error signal

only propagates to the previous state. If it is set to 1, all pre-

vious states are affected by an exponentially decaying

amount.

Policy evaluation

Updates of the approximation function eU are carried out off-

line, i.e., the weights W of eU are modified only at the end of

each scenario by solving the linear least-squares problem

W ¼ arg min | |AW-b| |2 using the pseudoinverse of A.

Policy improvement

The exploration policy uses an ε-greedy policy: The greedy

action ~vi (i.e. the one for which the sum of the reward yi
and the successor states estimated cost-to-go eU is the maxi-

mum) is chosen with probability 1� ε. In the other cases a

random action is drawn from a uniform distribution over

the range zero to the remaining water volume Vi. The

value of ε is reduced during learning, until the policy
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improvement step converges to an entirely greedy behavior.

For obtaining the greedy action ~vi a line search method is

employed.

In our study we used a random generated initial policy,

i.e., a random initial irrigation schedule that was appropriate

for the considered problem. The policy iteration algorithm

continues until suboptimal stable policies are achieved,

which is also reflected by good returns from the
Figure 3 | Approximated cost-to-go function in two dimensions with trajectories (sche-

dules) for different management constraints and climate conditions. (Colors

indicate maximum expected relative yield (blue/black: low; red/white: high;

water volume is normalized with respect to V0, soil moisture is normalized

with respect to θs).

://iwaponline.com/jh/article-pdf/14/1/136/386651/136.pdf
approximate cost-to-go function. Good estimates of the

initial policy can be used to accelerate the convergence ofeU and thus speed up the convergence of the entire

algorithm.

In order to give an idea of the shape of the cost-to-go func-

tion a simplified two-dimensional example is shown in

Figure 3. From the sample trajectories it can be seen how

the dynamic control of irrigation works. Two kinds of

changes in the state space are apparent. First, horizontal

movements are changes in the mean soil moisture either

caused by crop water consumption or in the other direction

(see Figure 3(b)) by rainfall. Second, a slant direction in the

movement corresponds to irrigation events when the avail-

able water volume is reduced and the mean soil moisture

increases (see Figure 3(a)). An optimal irrigation scenario

uses the path along the highest values of the cost-to-go func-

tion it can reach.

For the sake of simplicity basic state variables

and decision variables are used in this paper which need to

be extended when dealing with more complex transition

models, e.g. more complex SVAT (soil–vegetation–atmos-

phere transfer) models which also include 1D or 2D water

transport. This is necessary if amoreprecise control of the dis-

tribution of water around the emitter of high performance

irrigation systems, such as surface or subsurface drip irriga-

tion systems, is of importance. Then classical DP would be

hard to solve and even for NDP a low-dimensional represen-

tation of the spatial distribution of water in the soil is required

(Hinnell et al. ). In addition, the dimensionality of the

decision space increases considerably if management of ferti-

lization and leaching is considered at the same time. In all

those cases neural-dynamic programming may be the only

approach that can be used.
APPLICATION TO INTRA-SEASONAL SCHEDULING
IN DEFICIT IRRIGATION

We compared three management schemes in order to ana-

lyze the performance of the new scheduling algorithms.

First, a fully flexible scheme where no dates and no volumes

were fixed (referred to as ‘flexible’) is used. Second, a simpli-

fied scheduling problem is solved, where the possible dates

of the irrigation events were fixed at multiples of 10 days
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(referred to as ‘fixedD’). The third, and most inflexible, man-

agement scheme has the limitations of the second one and,

in addition, only fixed irrigation volumes (vi¼ 50 mm) were

allowed (referred to as ‘fixedDV’).
The irrigation scenario

In a real-case application a limited amount of 1–600 mm

water had to be distributed with irrigation schedules opti-

mized for maximum crop yield. Detailed and mostly

unpublished data of field experiments in Lavalette

(France) regarding volumetric soil moisture content, evapo-

transpiration and other aspects of the experiments were

kindly provided by Mailhol () from CEMAGREF

(France). In our study, the simulations were carried out by

a water balance model (Rao et al. ) based on these

experiments. In the irrigation scenario corn is grown over

a growing period of 132 days starting from 26 May 1999.

The irrigated field is a plot of silty loam, characterized by

a saturated soil moisture θs¼ 0.41, a residual soil moisture

θr¼ 0.05 and field capacity at fc¼ 0.4. To get a picture of

the meteorological situation the development of the PET is

shown in Figure 4. Values for corn for the development of

the root zone, crop sensitivity factors Ky and soil water
Figure 4 | Optimal schedules with a given water volume of 500 mm. Development of

evapotranspiration for EA (a), NDP (flexible) (b) and NDP (fixedDV) (c).
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depletion factor p were taken from Doorenbos & Kassam

().
The set-up of the EA

The basic parameters required by the EA are obtained by trial

and error. In this study we used a population size of 50 sche-

dules. The crossover probability and the take-over probability

were pcr¼ 0.33 and pt¼ 0.95, respectively. The variances for

irrigation dates were σd¼ 1.5 d and for volumes were σv¼
0.5 mm. The length of an entire optimization run was limited

to a maximum of 25 generations. In selection we applied the

prescribed elitism procedurewith a tournament size of nt¼ 4.

The minimal irrigation interval was set to 1 d for solving the

open-loop optimization problem using the ‘flexible’ irrigation

scheme. In order to generate the entire crop production func-

tion 61 optimization runs were carried out with the EA based

on varying available irrigationwater volumesV0¼ {0 mm,…,

10 mm,…, 600 mm}.
The set-up of the NDP algorithm

In NDP the accuracy of the approximate cost-to-go function

mainly depends on the number and the parameters of the

chosen basis function, namely the radius of the Gaussian σ

and their distribution in the state space. We fixed σ ¼ 0.1

and considered only a variation of the number of RBF

assuming always an uniformly spaced distribution of the

RBF centers. Based on preliminary experiments the

amount of RBF was fixed at 6 × 6 × 11 according to the

dimensions of the state space which was an acceptable

trade-off between accuracy and speed of training of the

approximator eU ((Vi}, θi, ti), W). The parameter λ in policy

evaluation was set to 1 which leads to a supervised linear

regression on the data of the simulated irrigation scenarios,

i.e., the relationship of the simulated states and crop returns.

For the policy improvement we started with an initial value

ε¼ 1 which was gradually decreased with increasing

number of training steps n as in ε¼ exp(–10n/nmax). In the

case of NDP only a single application of the policy iteration

algorithmwas necessary to generate a universal approximate

cost-to-go functionwhich allowed us to perform all the optim-

ization runs for each of the prescribed management scheme.
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RESULTS

To examine the performance of the different optimization

strategy consider Figure 4 which depicts the optimal irriga-

tion schedule for a water volume of 500 mm and the

corresponding development of PET and AET over the grow-

ing season for EA (flexible), NDP (flexible) and NDP (fixed

DV), respectively. Figure 5 shows the development of the

various parameters over the growing season: Figure 5(a)

soil moisture and allowable depletion for the EA (flexible)

case and Figure 5(b) crop sensitivity factor for corn in four

periods of the growing season (0–25, 25–65, 65–105 and

105–132 days). The normalized crop production functions,

which were generated under the ‘flexible’ scheme by the

EA and under all schemes generated by NDP using the

approximate cost-to-go, are presented in Figure 6.
Figure 5 | Development of the cropping system with a given water volume of 500 mm.

Development of the soil moisture for EA (a) and crop sensitivity factor Ky for

corn (b).

Figure 6 | Normalized seasonal crop production function.

://iwaponline.com/jh/article-pdf/14/1/136/386651/136.pdf
From Figure 6, it can be seen that the EA achieved the

best schedules, i.e., the highest yields for a given amount

of water. The crop production function under the ‘flexible’

scheme is nonlinear in two ranges. The first range is in the

vicinity of the point where all crop water requirements

during a growing season are satisfied. The second range is

between 200 and 300 mm of available water. At a water

volume of 300 mm the crop water requirements of the

third growth period, which has the highest stress sensitivity,

are fully satisfied (which is Ky¼ 1.3 compared to Ky¼ 0.4

and 0.5 in the other crop growth periods – see Figure 5(b)).

The nonlinearity is due to a side effect caused by a more

and more adequate irrigation of the third period. The last

growing period with a lower Ky and a higher allowable

depletion (see Figure 5(a)) benefits disproportionately from

the water which is stored in the soil at the time of transition

from the third period to the fourth.

The results provided by an optimization using the

approximate cost-to-go generated by the NDP algorithm

and employing the ‘flexible’ scheme in the application are

directly comparable to those determined by the EA.

Slight variations can be observed which result in margin-

ally modified schedules (see Figure 4(a,b)). The deviations

of the NDP method are mainly caused by the approxi-

mation error which could be reduced by an increased

number of RBFs. The crop production function under the

‘fixedDV’ scheme, which uses the same approximate cost-

to-go function, shows a significant yield reduction caused

by the limitations of this management scheme. An excep-

tion can be seen in the lower part of the crop production

function for water volumes below 200 mm. The second

nonlinearity range moved from 300 to 400 mm. This can be

explained by the inflexibility of the management scheme,

which does not always allow us to irrigate in an adequate

way when the water stress sensitivity of corn is high. From a

water volume of 550 mm onwards, there is no further

improvement in the yield if more water is applied. This

implies that all the additional water is percolating because

field capacity was already been achieved in all days when irri-

gation is possible. The ‘fixedD’ scheme achieves better yields

than the ‘fixedDV’ scheme, which are almost similar to the

‘flexible’ scheme. Some substantial deviations can be

observed in the range between 200 mm and 400 mm where

exact timing of the irrigations events is necessary in order to
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meet the crop water requirements of the most sensitive

growth period.

Figure 4 shows optimal schedules generated by the EA

and the NDP algorithm using the ‘flexible scheme’ for a

given water volume of 500 mm. The development of the

mean soil moisture in the soil (Figure 5(a)) relates to the

soil water stored in the root zone whose depth increases lin-

early from 0.1 m to 1.2 m up to the 78th day and then

remains constant. Figure 5(a) also shows the lower limit of

the soil moisture where no reduction of the AET occurs.

Figure 4(a,b) show that at the start of the third growth

period an irrigation with a large amount of water is necess-

ary, in order to accommodate (1) for the high water stress

sensitivity and (2) for the low allowable depletion depth.

As can also be seen, the schedule generated by the NDP

algorithm tends to distribute more water in the first part of

the growing season than the EA-generated one does.

This leads to a larger reduction of the AET in the last

crop growth period resulting in diminished yields caused

by the slightly higher value of Ky¼ 0.5 in the fourth

growth period compared to Ky¼ 0.4 in the first and

second growth period. The schedule generated by the

application of the approximate cost-to-go employing the

‘fixedDV’ scheme shows a high density of irrigations

before and shortly after the transition to the third crop

growth period. This schedule can only partly account for

the specific crop water requirements and leads to losses

due to percolation (not shown in the graph).

We also investigated the computational efficiency of the

EA and the NDP algorithm on a Pentium PC (2.8 GHz). In

the EA case one optimization run needed less than a minute

(convergence after a maximum of 1,000 function evalu-

ations). But it has to be taken into account that one

optimization run is necessary for each point of the crop pro-

duction function. The computational effort of the NDP

algorithm depends on various parameters. The LSTD algor-

ithm for the policy evaluation has a cost of O(N2) for the

accumulation of the TDs and O(N3) for the matrix inversion,

where N is the number of the RBFs used. The line search in

the policy improvement step required an average of 10 func-

tion evaluations but the computational costs increase only

linearly with the number of iterations. The NDP algorithm

converged after a maximum of 2,000 LSTD iterations and

is able to provide a set of crop production functions for a
om http://iwaponline.com/jh/article-pdf/14/1/136/386651/136.pdf
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specific site. Overall, the time for learning or approximating

the cost-to-go function was around 10 h and the application

time needed less than a second. However, the NDP method-

ology offers an improvement of the performance, taking into

account that with the approximate cost-to-go function differ-

ent tasks (different management schemes, different given

amounts of volume, etc.) can be performed with a single

(expensive) approximation step.
CONCLUSIONS AND FUTURE WORK

We presented two new optimization algorithms for simu-

lation-optimization of scheduling under deficit irrigation

throughout a whole growing season. If an open-loop optim-

ization strategy is adopted, the tailor-made EA can be

coupled with any irrigation model. In this case the model

used for optimization has to be as accurate as possible and

information about the future development of the climate

variables is necessary or has to be provided by a framework

for generating (stochastic) climate scenarios. With these pre-

conditions the EA can provide optimal schedules which

achieve maximum yield for a given amount of water

within a reasonable computational time. The tailor-made

EA is proven to be highly reliable compared to the

Nelder–Mead simplex algorithm, simulated annealing and

most recent general evolutionary optimization approaches.

Therefore, the EA is the algorithm of choice if there is no

lack of information and if the management scheme has no

limitation (schemes such as the ‘fixedD’ and the ‘fixedDV’

schemes were difficult to implement). In these cases it can

also be used as a reference algorithm for the generation of

crop production functions with the highest potential yield,

i.e., highest water use efficiency.

The NDP algorithm for closed-loop optimization has a

wider range of application in irrigation operation. Once an

approximate cost-to-go function is calculated it can be

used for irrigation scheduling under any arbitrary manage-

ment scheme. In the example application used in this

paper the NDP algorithm showed its robustness in various

runs. For example, only minor changes in yield occurred

when dmin was varied between 0 and 10 days. The approxi-

mation of the cost-to-go function overcomes the ‘curse of

dimensionality’ but still needs considerable time for the
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determination of the optimal weights of a linear basis func-

tion approximation of the cost-to-go by the policy iteration

algorithm using LSTD. It is worthwhile to improve this

method because closed-loop optimization offers some

advantages over open-loop optimization including (1) feed-

back control which can respond immediately to external

effects (e.g. rainfall), (2) stable performance even with

model uncertainties or uncertainties of the initial or bound-

ary conditions (e.g. climate conditions) and (3) reduced

sensitivity to parameter variations.

Future work will focus on the application of both algor-

ithms under uncertain climate conditions and/or soil

hydraulic parameters. In this context, NDP overcomes the

‘curse of modeling’, which means that the transition prob-

abilities do not have to be computed explicitly for

stochastic DP. It uses the distribution of the random vari-

ables with no limitation placed on the stochastic model to

simulate the system’s behavior. Further investigations are

under progress which already included more comprehensive

irrigation models such as the FIM (Wöhling & Schmitz

a, b; Schmitz et al. ) and the SVAT models

DAISY (Abrahamsen & Hansen ; Schütze & Schmitz

) and APSIM (Keating et al. ; Schütze et al. )

in the optimization of deficit irrigation systems.

Availability

The EA written in Matlab® is available on request from the

first and second authors.
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