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Abstract

In the present work, an efficient numerical technique, called q-homotopy analysis transform method (briefly, q-HATM), is 

applied to nonlinear Fisher’s equation of fractional order. The homotopy polynomials are employed, in order to handle the 

nonlinear terms. Numerical examples are illustrated to examine the efficiency of the proposed technique. The suggested 

algorithm provides the auxiliary parameters ℏ and n , which help us to control and adjust the convergence region of the 

series solution. The outcomes of the study reveal that the q-HATM is computationally very effective and accurate to analyse 

nonlinear fractional differential equations.
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Introduction

Calculus of fractional order is pretty antique subject in math-

ematics. Fractional derivatives were debut in 1695, as in 

the question of the extension of meaning. Derivatives and 

integrals of arbitrary order afford more factual models of the 

real-world phenomenon [1], than classical calculus. During 

the twentieth century, a bulky amount of research on frac-

tional calculus published by many pioneers includes Caputo 

[2], Miller and Ross [3], Podlubny [4], Liao [5], and others.

The problems relating to applications of fractional cal-

culus are located in various connected branches of science 

and engineering, like finance [6], nanotechnology [7], elec-

trodynamics [8], and many other fields. The analytical and 

numerical solution of fractional partial differential equations 

plays a vital role in describing the characters of nonlinear 

problems that arise in daily life.

In 1937, Fisher proposed a model for the temporal and 

spatial propagation of a virile gene in an infinite medium, 

called Fisher’s equation [9]. The simplest and classical case 

of Fisher’s equation so-called reaction diffusion equation is 

given by [10] 

which basically the Logistic equation and the conjunction 

of diffusion equation with diffusion factor � and birth rate 

� . Here, u(x, t) specifies the state evolution over the spa-

tial–temporal domain characterized by the coordinates x , t, 

respectively. Fisher’s equation is widely used in chemical 

kinetics [11], Neolithic transitions [12], branching Brownian 

motion [13], epidemics and bacteria [14] and many other 

disciplines.

Many researchers studied various techniques like, Ado-

mian decomposition method [15], homotopy perturbation 

Sumudu transform method [16], Haar wavelet method [17], 

optimal homotopy asymptotic method [17], homotopy 

perturbation method [18], Chebyshev spectral collocation 

method [19], and fractional natural decomposition method 

[20] to obtain numerical solutions for the Fisher’s equation 

of fractional order. Recently, Singh et al. [21] introduced and 

nurtured the new homotopy technique known as q-HATM to 

study nonlinear problems (including, classical and arbitrary 

order) arises in nature [22, 23]. This method is an elegant 

amalgamation of homotopy algorithm through Laplace 

transform.

(1)
�u

�t

= �
�2

u

�x2
+ �u(x, t) (1 − u(x, t)),

 * Haci Mehmet Baskonus 

 hmbaskonus@gmail.com

 P. Veeresha 

 viru0913@gmail.com

 D. G. Prakasha 

 prakashadg@gmail.com; dgprakasha@kud.ac.in

1 Faculty of Science &Technology, Department 

of Mathematics, Karnatak University, Dharwad, India

2 Faculty of Education, Department of Mathematics, Harran 

University, Sanliurfa, Turkey

http://orcid.org/0000-0003-4085-3625
http://crossmark.crossref.org/dialog/?doi=10.1007/s40096-019-0276-6&domain=pdf


34 Mathematical Sciences (2019) 13:33–42

1 3

Preliminaries

Here, we recall some definitions and properties of frac-

tional calculus and Laplace transform, which are used in 

the sequel:

Definition 1 The fractional integral of a function 

f (t) ∈ C
�
(� ≥ −1) , of order � > 0 initially defined by Rie-

mann–Liouville is represented as [4] 

De�nition 2 The fractional derivative of f ∈ Cn
−1

 in the 

Caputo [2] sense is defined as

De�nition 3 The Laplace transform (LT) of a Caputo frac-

tional derivative D�

t
f (t) is represented as [2, 3] 

where F(s) represents the Laplace transform of the function 

f (t).

Fundamental idea of q-HATM

To present the fundamental idea of proposed method 

[24–26], we consider a general nonlinear non-homogeneous 

fractional partial differential equation of the form:

where D
�

t
 (x, t) represents the fractional derivative of 

 (x, t) in the Caputo’s sense, R and N specifies the linear 

and nonlinear differential operator, respectively, and f (x, t) 

represents the source term. Now, by employing the LT on 

Eq. (5), we get

(2)
J�f (t) =

1

Γ(�)

t

∫
0

(t − �)
�−1f (�)d�,

J0f (t) = f (t).

(3)

D�

t
f (t) =

⎧
⎪
⎨
⎪
⎩

dnf (t)

dtn
, � = n ∈ N,

1

Γ(n−�)

t

∫
0

(t − �)
n−�−1f (n)(�)d�, n − 1 < � < n, n ∈ ℕ.

(4)

L
[

D�

t
f (t)

]

= s�F(s) −

n−1
∑

r=0

s�−r−1f (r)
(

0
+
)

, (n − 1 < � ≤ n),

(5)

D�

t
 (x, t) + R (x, t) + N (x, t) = f (x, t), n − 1 < � ≤ n,

(6)
s�L[ (x, t)] −

n−1
∑

k=0

s�−k−1


(k)(x, 0)

+ L[R (x, t)] + L[N (x, t)] = L
[

f (x, t)
]

.

On simplifying Eq. (6), we have

According to homotopy analysis method [5], here we 

define nonlinear operator as

where q ∈

[

0,
1

n

]

 , and �(x, t;q) is real function of x, t and q.

We construct a homotopy for nonzero auxiliary function 

H(x, t) as follows:

where L be a symbol of the Laplace transform, 

q ∈

[

0,
1

n

]

(n ≥ 1) is the embedding parameter, ℏ ≠ 0 is an 

auxiliary parameter, �(x, t;q) is an unknown function, and 

0(x, t) is an initial guess of  (x, t) . The following results 

hold for q = 0 and q =
1

n
:

respectively. Thus, by amplifying q from 0 to 
1

n

 , the solu-

tion �(x, t;q) converge from 0(x, t) to the solution  (x, t) . 

Expanding the function �(x, t;q) in series form by employing 

Taylor theorem near to q , one can get

where

On choosing the auxiliary linear operator, the initial guess 

0(x, t), the auxiliary parameter n,ℏ and H(x, t) , the series 

(11) converges at q =
1

n
 ; then it gives one of the solutions of 

the original nonlinear equation of the form

Now, differentiating the zeroth order deformation Eq. (9) 

m-times with respect to q and then dividing by m! and finally 

taking q = 0 , which yields

(7)

L[ (x, t)] −
1

s�

n−1
∑

k=0

s�−k−1


k(x, 0)

+
1

s�

{

L[R (x, t)] + L[N (x, t)] − L
[

f (x, t)
]}

= 0.

(8)

N
[

�(x, t;q)
]

= L
[

�(x, t;q)
]

−
1

s�

n−1
∑

k=0

s�−k−1
�
(k)(x, t;q)

(

0
+
)

+
1

s�

{

L
[

R�(x, t;q)
]

+ L
[

N�(x, t;q)
]

− L
[

f (x, t)
]}

,

(9)

(1 − nq)L
[

�(x, t;q) −0(x, t)
]

= ℏqH(x, t)N
[

�(x, t;q)
]

,

(10)�(x, t;0) = 0(x, t),�

(

x, t;
1

n

)

=  (x, t),

(11)�(x, t;q) = 0(x, t) +

∞
∑

m=1

m(x, t)qm
,

(12)m(x, t) =
1

m!

�m�(x, t;q)

�qm
|q=0.

(13) (x, t) = 0(x, t) +

∝
∑

m=1


m
(x, t)

(

1

n

)m

.
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where the vectors are defined as

By virtue of inverse Laplace transform on Eq. (14), we 

obtain the recursive equation as

where

and

Finally, on solving Eq. (16) we obtain the components of 

the q-HATM series solution.

q-HATM solution for fractional Fisher’s 
equations

To demonstrate the efficiency and applicability of the 

proposed algorithm, we consider two examples as an 

illustration.

Example 4.1 Consider the nonlinear time-fractional Fisher’s 

equation [16, 20]:

(14)L
[


m
(x, t) − k

m


m−1(x, t)
]

= �H(x, t)ℜ
m

(

⃗
m−1

)

,

(15)⃗
m
=
{

0(x, t),1(x, t),… ,
m
(x, t)

}

.

(16)
m
(x, t) = k

m


m−1(x, t) + �L
−1

[

H(x, t)ℜ
m

(

⃗
m−1

)]

,

(17)ℜm

(
⃗m−1

)
=

1

(m − 1)!

�m−1N
[
�(x, t;q)

]

�qm−1
|q=0

(18)k
m
=

{

0, m ≤ 1,

n, m > 1.

(19)

D
�

t
u(x, t) = u

xx
(x, t) + 6u(x, t)(1 − u(x, t)), 0 < � ≤ 1,

with initial condition

Taking LT on Eq. (19) and then employing the condition 

given in Eq. (20), we have

Using the proposed algorithm, the nonlinear operator N 

to be define as

By adopting the foregoing procedure of q-HATM, the 

deformation equation of m th order at H(x, t) = 1 is given as

where

By plugging inverse Laplace transform on both sides of 

Eq. (23), we get

On solving the forgoing equations systematically, we 

arrive at

(20)u(x, 0) =
1

(1 + ex)
2

.

(21)

L[u(x, t)] −
1

s

{

1

(1 + ex)
2

}

−
1

s�
L

{

�
2
u

�x2
+ 6u − 6u

2

}

= 0.

(22)

N
[

�(x, t;q)
]

= L
[

�(x, t;q)
]

−
1

s

{

1

(1 + ex)
2

}

−
1

s�
L

{

��(x, t;q)

�x
+ 6�(x, t;q) − 6�2(x, t;q)

}

.

(23)L
[

u
m(x, t) − k

m
u

m−1(x, t)
]

= hℜ
m

[

u⃗
m−1

]

,

(24)

ℜ
m

[

u⃗
m−1

]

= L
[

u
m−1(x, t)

]

−

(

1 −
k

m

n

)

1

s

[

1

(1 + ex)
2

]

−
1

s�
L

{

�2
u

m−1

�x2
+ 6u

m−1 −

m−1
∑

i=0

u
i
u

m−1−i

}

.

(25)u
m(x, t) = k

m
u

m−1(x, t) + �L
−1
{

ℜ
m

[

u⃗
m−1

]}

.

u0(x, t) =
1

(1 + ex)
2

,

u1(x, t) =
−10ℏex

t
�

(1 + ex)
3Γ[� + 1]

,

u2(x, t) =
−10(n + ℏ)hex

t
�

(1 + ex)
3Γ[� + 1]

+
50ℏ2ex(−1 + 2ex)t2�

(1 + ex)
4Γ[2� + 1]

,

u3(x, t) =
−10(n + ℏ)

2
hex

t
�

(1 + ex)
3Γ[� + 1]

+
100(n + ℏ)ℏ2ex(−1 + 2ex)t2�

(1 + ex)
4Γ[2� + 1]

−
50ℏ3ex

((

20e3x − 15e2x − 6ex + 5
)

Γ[� + 1]2 − 12exΓ[2� + 1]
)

t
3�

(1 + ex)
6Γ[� + 1]2Γ[3� + 1]

,

⋮ .
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In this manner, the rest of the iterative components can 

be obtained. Then, the family of q-HATM series solution of 

Eq. (19) is given by

If we set � = 1, ℏ = −1 and n = 1 , then the obtained solu-

tion 
∑N

m=1
um(x, y, t)

�

1

n

�m

 converges to the exact solution 

u(x, t) =
1

(1+ex−5t)
2 of the classical order Fisher’s equation as 

N → ∞.

Example 4.2 Consider the one-dimensional generalized frac-

tional order Burgers–Fisher equation [17] at � = 1, � = 1 

and � = 0.01:

with initial conditions

By performing LT on both sides of Eq. (27) and then 

make use of conditions provided in Eq. (28), we have

The nonlinear operator N to be define as

By exercising with this numerical procedure, one can get 

the deformation equation of the m th order for H(x, t) = 1 , as

where

(26)u(x, t) = u0(x, t) +

∞
∑

m=1

u
m
(x, t)

(

1

n

)m

.

(27)D
�

t
u =

�2
u

�x2
− �

(

u
�u

�x
+ u(u − 1)

)

, 0 < � ≤ 1,

(28)u(x, 0) =
1

2
+

1

2
tanh

(

−�x

4

)

.

(29)

L[u(x, t)] −
1

s

(

1

2
+

1

2
tanh

(

−�x

4

))

−
1

s�
L

{

�2
u

�x2
− �

(

u
�u

�x
+ u(u − 1)

)

}

= 0.

(30)

N
[

�(x, t;q)
]

= L
[

�(x, t;q)
]

−
1

s

(

1

2
+

1

2
tanh

(

−�x

4

))

+
1

s�
L

{

�2�(x, t;q)

�x2
− �

(

�(x, t;q)
��(x, t;q)

�x
+ �(x, t;q)(�(x, t;q) − 1)

)}

.

(31)L
[

u
m(x, t) − k

m
u

m−1(x, t)
]

= hℜ
m

[

u⃗
m−1

]

,

(32)

ℜ
m

[

u⃗
m−1

]

= L
[

u
m−1(x, t)

]

−

(

1 −
k

m

n

)

1

s

(

1

2
+

1

2
tan h

(

−�x

4

))

+
1

s�
L

{

�2
u

m−1

�x2
− �

(

m−1
∑

i=0

u
i

�u
m−1−i

�x
+

m−1
∑

i=0

u
i
u

m−1−i
− 1

)}

By applying inverse Laplace transform on Eq. (31), we 

get

On solving above equation, we have

In this pattern, remaining iterative components can be 

derived. Finally, the group of q-HATM series solution of 

Eq. (27) is given by

(33)u
m(x, t) = k

m
u

m−1(x, t) + �L
−1
{

ℜ
m

[

u⃗
m−1

]}

.

u0(x, t) =
1

2
+

1

2
tanh

(

−�x

4

)

,

u1(x, t) = −

h�(4 + �)sech
2
(

−�x

4

)

t
�

16Γ[� + 1]
,

u2(x, t) = −

(n + h)(4 + �)h�sech
2
(

−�x

4

)

t
�

16Γ[� + 1]

−

(4 + �)
2
h

2�2 sec h
2

(

−�x

4

)

tanh

(

−�x

4

)

t
2�

64Γ[2� + 1]
,

u3(x, t) = −

(n + h)
2
(4 + �)h�sech

2
(

−�x

4

)

t
�

16Γ[� + 1]

−

(n + h)(4 + �)
2
h

2�2sech
2
(

−�x

4

)

tanh

(

−�x

4

)

t
2�

32Γ[2� + 1]
,

−

(4 + �)
2
h

3�3sech
4
(

−�x

4

)

t
3�

512Γ[1 + �]2Γ[1 + 3�]

×

(

Γ[1 + 2�]

(

−2 + � tanh

(

�x

4

))

+ Γ[1 + �]2
(

(4 + �)cosh

(

−�x

4

)

−2

(

2 + � + � tanh

(

�x

4

))))

,

⋮ .
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Fig. 1  a Surface of approximate solution. b Surface of exact solution. c Surface of absolute error =
|
|
|
u

exa.
− u

app.

|
|
|
 at ℏ = −1 , n = 1 and � = 1 for 

Example 4.1

Fig. 2  Plot of q-HATM solution u(x, t) with respect to t  when 

n = 1, ℏ = −1 and x = 0.5 with various values of � for Example 4.1

Fig. 3  Plot of q-HATM solution u(x, t) at x = 1, n = 1 and � = 1 with 

diverse values of ℏ for Example 4.1
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Exact solution of Eq. (27) at � = 1 is given by [17] 

Numerical results and discussion

In order to verify whether the proposed algorithm leads to 

greater accuracy, the numerical solutions have been evalu-

ated. From results, we can certainly conclude that the pro-

posed technique provides remarkable exactness in compari-

son with the method available in the literature [16, 17].

Figure 1 explores the comparison of q-HATM solution 

with exact solution and absolute error for Example 4.1. Fig-

ure 2 cites the action of solution obtained for Eq. (19) with 

distinct Brownian motion. Figure 3 depicts the q-HATM 

solution for different values of auxiliary parameter ℏ which 

helps us to control and adjust the convergence region. Fig-

ures 4, 5 and 6 explore the role of n with respect to ℏ in q

(34)u(x, t) = u0(x, t) +

∞
∑

m=1

u
m
(x, t)

(

1

n

)m

.

u(x, t) =
1

2
+

1

2
tanh

[

−�

4

(

x −

(

�

2
+

2�

�

)

t

)]

.

Fig. 4  ℏ-curve drown for the q-HATM solution u(x, t) at 

x = 0.1, t = 0.01 and n = 1 with various values of � for Example 4.1

Fig. 5  ℏ-curve drown for the q-HATM solution u(x, t) at 

x = 0.1, t = 0.01 and n = 2 with diverse values of � for Example 4.1

Fig. 6  ℏ-curve drown for the q-HATM solution u(x, t) at 

x = 0.1, t = 0.01 and n = 3 with various values of � for Example 4.1

Table 1  Description of numerical solutions derived from ADM 

[15], HPSTM [16] and present method with classical solution at 

� = 1, h = −1, n = 1 and t = 0.001 with diverse values of x for 

Example 4.1

x u
ADM

 [16] u
HPSTM

 [17] u
q-HATM

Exact solution

0.01 0.250231638 0.248753418 0.248751565 0.248757565

0.02 0.247698311 0.246265957 0.246264132 0.246264132

0.03 0.245184736 0.243791181 0.243789384 0.243789383

0.04 0.242689044 0.241329210 0.241327440 0.241327439

0.05 0.240210009 0.238880160 0.238878418 0.238878417

Table 2  Error analysis for Example 4.1 at � = 1, h = −1, n = 1 and 

t = 0.001

x u
ADM

 [16] u
HPSTM

 [17] u
q-HATM

0.01 1.480 × 10−3 − 1.453 × 10−6 6.568 × 10−12

0.02 1.434 × 10−3 − 1.825 × 10−6 6.629 × 10−12

0.03 1.395 × 10−3 − 1.789 × 10−6 6.687 × 10−12

0.04 1.361 × 10−3 − 1.771 × 10−6 6.743 × 10−12

0.05 1.331 × 10−3 − 1.743 × 10−6 6.796 × 10−12
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-HATM solution. In Table 1, we present the comparison 

between the results obtained by the ADM [15], HPSTM [16] 

and proposed method with exact solution. Further, it can be 

observed from Table 2, the absolute error is very tiny.

Moreover, Fig. 7 cites the nature of q-HATM solution 

in comparison with exact solution for Example 4.2; in par-

ticular Fig. 7c revels the efficiency of proposed technique 

in terms of absolute error. Figure 8 explores the validity of 

Brownian motion, i.e. � = 0.90, 0.75, 0.50 . Figure 9 depicts 

the q-HATM solution for different values of auxiliary param-

eter ℏ which helps us to control and adjust the convergence 

region. Lastly, Figs. 10, 11 and 12 represent ℏ-curves and 

the horizontal line illustrates the range of convergence for 

Eq.  (27). Further, the efficiency of proposed scheme is 

Fig. 7  a Surface of approximate solution. b Surface of exact solution. c Surface of absolute error =

|
|
|
u

exa.
− u

app.

|
|
|
 at 

� = 1, � = 1, � = 0.01, � = 0.01, n = 1, ℏ = −1 and � = 1 for Example 4.2



40 Mathematical Sciences (2019) 13:33–42

1 3

drowned in terms of numerical simulations for Example 4.2 

which is shown in Table 3 and it clear that the proposed 

method is very accurate.

Conclusion

In this study, the q-homotopy analysis transform method 

is employed profitably to find the solution for nonlinear 

time-fractional Fisher’s equation. Two examples are car-

ried out in order to validate and illustrate the efficiency of 

the method. The results reveal the complete reliability and 

wide applicability of the proposed technique. Compared to 

other numerical techniques, the proposed technique requires 

less amount of computational overhead. Moreover, the 

method manipulates and controls the series solution, which 

Fig. 8  Plot of q-HATM solution u(x, t) with respect to t  when 

� = 1,� = 1, � = 0.01, � = 0.01, n = 1,ℏ = −1 and x = 0.5 with 

diverse values of � for Example 4.2

Fig. 9  Plot of q-HATM solution u(x, t) at 

� = 1, � = 1, � = 0.01, � = 0.01, x = 1, � = 1 and n = 5 with 

diverse values of ℏ for Example 4.2

Fig. 10  ℏ-curve drown for the q-HATM solution u(x, t) at 

� = 1, � = 1, � = 0.01, � = 0.01, n = 1, t = 0.01 and x = 0.5 with 

diverse values of � for Example 4.2 .

Fig. 11  ℏ-curve drown for the q-HATM solution u(x, t) at 

� = 1, � = 1, � = 0.01, � = 0.01, x = 0.5, t = 0.01 and n = 2 with 

diverse values of � for Example 4.2

Fig. 12  ℏ-curve drown for the q-HATM solution u(x, t) at 

� = 1, � = 1, � = 0.01, � = 0.01, x = 0.5, t = 0.01 and n = 3 with 

diverse values of � for Example 4.2
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rapidly converges to the exact solution very efficiently in a 

short admissible domain. The results obtained, using the q

-HATM, were in good record with results already available 

in the literature [15–17, 27–56].
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