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Abstract: - This paper provides a new statistical approach to blind recovery of both earth signal and source 

wavelet given only the seismic traces using independent component analysis (ICA) by explicitly exploiting the 

sparsity of both the reflectivity sequence and the mixing matrix. Our proposed blind seismic deconvolution 

algorithm consists of three steps. Firstly, a transformation method that maps the seismic trace convolution 

model into multiple inputs multiple output (MIMO) instantaneous ICA model using zero padding matrices has 

been proposed. As a result the nonzero elements of the sparse mixing matrix contain the source wavelet. 

Secondly, whitening the observed seismic trace by incorporating the zero padding matrixes is conducted as a 

pre-processing step to exploit the sparsity of the mixing matrix. Finally, a novel logistic function that matches 

the sparsity of reflectivity sequence distribution has been proposed and fitted into the information maximization 

algorithm to obtain the demixing matrix. Experimental simulations have been accomplished to verify the 

proposed algorithm performance over conventional ICA algorithms such as Fast ICA and JADE algorithm. The 

mean square error (MSE) of estimated wavelet and estimated reflectivity sequence shows the improvement of 

proposed algorithm  
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1 Introduction 
 

In seismic exploration, a seismic wavelet is sent 

to the earth layers and seismic trace is recorded by a 

geophone or hydrophone at the surface due to the 

impedance mismatches between different geological 

layers which are a great concern to the geophysicist. 

The geophysical structure of the earth can be 

explored through an analysis of the reflectivity from 

deep layers of the earth .The true reflectivity signal , 

however, is not easily reached; as an alternative, the 

recorded seismic trace is a smeared version of the 

reflectivity sequence, caused by the reverberations 

due to the surface layers [18]. One of the essential 

goals is to undo the effects of the degradation in 

order to recover the true earth signal [17]. This 

usually necessitates a certain deconvolution 

technique. The main aim of seismic deconvolution 

is to remove the characteristics of the source 

wavelet from the recorded seismic trace, so that one 

is perfectly left with only the reflectivity sequence 

(earth signal). The blind approaches of seismic 

deconvolution can be considered in situations where 

the reflectivity sequence and the source wavelet, are 

unknown from given seismic traces. In seismology, 

the recorded seismic trace  is defined to be the 

linear convolution of the source wavelet  with 

the earth’s reflection coefficients . Assuming no 

noise, the mathematically representation of this 

relationship is given in (1). 
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To precisely estimate both the earth signal and 

wavelet source, it is critical for the deconvolution 

algorithm to incorporate as much prior knowledge 

about the reflectivity sequence and the wavelet as 

possible. From geophysics point of view the earth 

layers are more or less homogenous and separated 

by interfaces. This prior knowledge allows us to 

statistically model the reflectivity sequence as a 

Bernoulli Gaussian process [15, 16]. Furthermore, 

the convolution process gives rise to a sparse mixing 

matrix which will be exploited to obtain an efficient 

ICA parameter estimation [4]. There are many 

methods of seismic deconvolution that can be 

accomplished so that an optimal estimate can be 

made of the earth model. A common of the seismic 

deconvolution methods utilize the steady state 

Wiener digital filter that assumes a minimum phase 

wavelet [3, 9]. In 1990 similar methods were 
)( itx
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2 Proposed MIMO-ICA Model developed by Weinstein and Shalvi [10]. Recently 

Bayesian statistic framework approaches [2, 8, 11, 

12] have been applied for blind seismic 

deconvolution. They explicitly modelled the 

sparseness of reflectivity sequence as Bernoulli 

Gaussian process where the location, amplitude and 

number of spikes are considered.  Also Kaplan and 

Ulrych [4] introduced banded ICA algorithm to 

solve blind seismic deconvolution by incorporating 

the banded property of mixing matrix into an ICA 

algorithm as prior information. Our novel technique 

which can be summarised in figure (1) presents a 

novel method to solve blind seismic deconvolution 

problem using independent component analysis by 

exploiting the sparsity of both the reflectivity 

sequence and the mixing matrix.  

 

Convolution model of discretely sampled seismic 

trace in equation (1) can be represented as ICA 

model using the zero padding matrices . iN

Asx =                                                            (2) 

The  matrices plays an important role in 

constructing the x ( ) sparse mixing matrix 

 by mapping the wavelet vector  into the  

row of mixing matrix as shown in equation (3) 

,where l  is the number of wavelet points.  
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A  (3) This paper is systematized as follows. In section 

2, the transformation method that maps the seismic 

trace convolution model into multiple inputs 

multiple output (MIMO) instantaneous ICA model 

will be explained in detail. Section (3) presents the 

mathematical analysis of blind seismic 

deconvolution algorithm. The experimental 

simulations that illustrate the improvement of 

estimated wavelet and earth signal using proposed 

techniques over Fast ICA algorithm [7] and JADE 

algorithm [14] will be presented in Section 4.  

The zero padding matrices with dimension x 

(

l

13 −l ) can be represented as  
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As a result, the rows of matrix contain the 

delayed versions of the same wavelet vector as 

shown in fig (2).  

A

Whitening by 

incorporating 

sparsity of 

mixing matrix 

Demixing the mixing matrix by 

proposed a new logistic    

function for information 

maximization algorithm 

Formulate   

    ICA 
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i     

Recover both Wavelet 

and reflectivity signal 

Where and  are the reflectivity sequence vector 

and the seismic trace vector respectively. is the 

number of reflectivity sequence samples 

xs
n
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 Figure 2.  Delayed versions of the seismic wavelet 
that the mixing matrix contained  

Fig. 1. Block diagram of the proposed algorithm 
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From (3) and (7) the seismic trace vector can be 

rewritten as a matrix  with dimension x n so it 

can be shown from the figure (4) that the observed 

seismic trace matrix contains shifted versions of the 

same seismic trace vector. 

In other words, the single input single output (SISO) 

convolution model in equation (1) is transformed to 

(SISO) instantaneous ICA model (2). 
X l2

 

The ICA model in equation (2) provides only one 

realization of each of the reflectivity sequences and 

seismic wavelet. This is insufficient to characterize 

the corresponding statistics and hence it is 

inadequate for ICA. However, the available 

information can be rearranged such that organizing 

the reflectivity sequence vector of s as a matrix S  

with dimension x , as shown in figure (3) 

,where the first row contains all the values of the 

reflectivity vector and the second row contains the 

delayed version of the same reflectivity vector by 

the delay operator and so on until we reach to 

the delayed version by [4] 
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In other words the single input single output 

convolution model (SISO) in equation (1) can be 

represented as multiple input multiple output 

(MIMO) instantaneous mixing model  

)(z
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Consequently the blind seismic deconvolution 

problem of single channel is presented in a way that 

it can be solved using instantaneous ICA; so that the 

time delayed arrival of the captured signal at the 

geophones can be handled more efficiently. 

 

                                                                        (7) 

0 5 10 15 20 25 30

50

100

150

200

250

300

350

400

450

500

Trace number

S
a

m
p

le
s

 

0 5 10 15 20 25 30 35 40 45

50

100

150

200

250

300

350

400

450

500

Earth signal number

S
a

m
p

le
s

                                                                             
Figure 4. Shifted versions of the seismic trace that 

the observed seismic trace matrix contained 
 

Figure 3.  Shifted versions of the earth signal that the 
source matrix contained  
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3 Proposed Parameter Estimation  
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   Algorithm  

 
The proposed algorithm consists of two main steps. 

The first step is the preprocessing step. The Second 

step is the application of the information 

maximization algorithm to whitened seismic trace.  

 

 

3.1 Preprocessing step 
 

Whitening the observed seismic trace X using 

Eigen-value decomposition (EVD) of the covariance 

matrix by incorporating the zero padding 

matrixes  is proposed as a pre-processing 

strategy to exploit the sparsity of banded matrix A 

before applying the information maximization 

algorithm. a new observed seismic trace  can be 

obtained which is white, this means that its 

components are uncorrelated and their variances 

equal unity. In other words, the covariance matrix 

equals the identity matrix [13]. 

xxR
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    Figure  5. Whitened seismic trace 

 

3.2 Information maximization algorithm 
xxR I  
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Applying the information maximization algorithm 

[1] to the whitened mixture  will result in 

demixing matrix . This algorithm which is 

modified by Amari [5] using a natural gradient 

method to avoid matrix inversions during ICA 

training, does not assume any knowledge of input 

distribution. However, in our case it is well known 

that the distribution of input reflectivity sequence 

can be modelled as Bernoulli Gaussian distribution 

[2] as follows 

~

X
W

From [4] the whitened seismic mixture matrix 

can be written as  

                    (11)          
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Where  and =   are the 

eigenvectors and eigenvalues respectively of 

covariance matrix ,so the whitened mixture can 

be considered as a new set of seismic mixtures with  

x  dimension matrix also it can be seen from (12) 

that the zero padding matrix enforces the sparse 

property of the mixing matrix during the whiting 

pre-process step. In other words is prior 

information. As shown in figure (5) incorporating 

the zero padding matrices in the preprocessing step 

will result in reducing the dimension of the 

whitening seismic trace to l x . 

E D ].,,.........[ 1 ndddiag

In which is the probability that reflection occurs, 

if =0 it indicates the position of high reflector 

and small reflector position is given by =1. 

Where both  and the variance can be 

estimated using maximum likelihood approach. 

ip
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Incorporating the prior information in (13) into 

information maximization algorithm [1] will result 

in a new blind seismic deconvolution algorithm. 

n
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When the whitened seismic mixture is to be passed 

through a logistic function, maximum information 

transmission can be achieved when the sloping part 

of the logistic is optimally lined up with the high 

density part of the input distribution.  

A new logistic  function is proposed to match the 

sparsity of the input signal. This function can be 

modelled as the integral of the input distribution. 
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Where the whitened seismic trace is multiplied 

by a weight matrix  and added to a bias 

weight , the above evaluate as 
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From integration table [6],It can be shown that  
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Fitting in the proposed logistic function  into 

Information maximization algorithm [5] will result 

in a new blind seismic deconvolution algorithm. So 

a weight matrix can be proposed as  

 

i

T
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 a bias vector can be written as  .Given 

only the recorded seismic trace, the proposed blind 

deconvolution algorithm produces the demixing 

matrix  which contains l  rows, each of them 

represent an estimated wavelet as shown in figure 

(6), in other words l  wavelets are recovered , 

.  
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The best estimated wavelet is extracted from the 

pool of   candidate solution according to the 

following criteria. 
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Y Figure 6.  The estimated wavelets that the demixing 

matrix contained  
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4 Simulation and results analysis  
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Consider the seismic trace signal in figure (15), 

which can be generated by convolving 16 points of 

seismic wavelet with the 500 points of reflectivity 

sequence, as input to our proposed algorithm 

without any knowledge of both seismic wavelet and 

reflectivity sequence except that the earth signal 

distribution can be modelled as Bernoulli Gaussian 

process. The proposed algorithm is successfully able 

to recover both the earth signal (reflectivity 

sequence) and the seismic wavelet. This ability of 

the recovering seismic wavelet can be confirmed by 

comparing the estimated seismic wavelet with 

original source wavelet in figure (7) where it can be 

noticed that the 16 samples of the wavelet have been 

recovered accurately. Comparing this with the Fast 

ICA algorithm result in figure (8) and with JADE 

algorithm result in figure (9), the proposed 

algorithm yields an improvement by 88.5% over 

Fast ICA algorithm and 93% over JADE algorithm 

in terms of accuracy, shaping and scaling of 

estimated seismic wavelet. This means that our 

novel methodology solves scaling problems can be 

found in most ICA algorithms. From figure (11) it 

can be seen that four tests have been conducted and 

the results prove that the minimum square error of 

the recovered wavelet using the proposed algorithm 

has been minimised compared with Fast ICA and 

JADE algorithm, by exploiting the sparsity of both 

mixing matrix and reflectivity sequence. It is worthy 

to know that the threshold of MSE for wavelet 

estimation is 0.01 and any values above this 

threshold are considered poor. The enhanced 

resolution of recovered earth signal can be clearly 

seen in figure (12), which presents the comparison 

between the estimated and original reflectivity 

sequence (earth signal) using our proposed 

technique where it can been seen that the earth 

signal has been accurately recovered and matches 

the scaling of the original earth signal. By 

comparing the results in figure (12), (13) and 

(14),Our proposed algorithm shows an increased 

performance of estimating earth signal by 73% over 

the Fast ICA and up to 86.5% over JADE algorithm 

in terms of mean square error ,scaling and shaping. 

Results from figure (10) prove that the minimum 

square error of estimated reflectivity sequence by 

proposed technique has been statistically minimised 

compared to the FastICA algorithm and JADE 

algorithm.  

Figure.7 original and estimated wavelet using 

proposed 
 

 

0 2 4 6 8 10 12 14 16
-15

-10

-5

0

5

10

15

20

25

30

35

original wavelet

estimated wavelet

Figure.8 original and estimated wavelet using Fast 

ICA algorithm 
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Figure. 9 Estimated wavelet using JADE algorithm                
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Figure. 10 MSE of estimated reflectivity sequence 
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Figure. 11 MSE of estimated wavelet 
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Figure. 12 Original and recovered earth signal using new algorithm 

Figure. 13 original and recovered earth signal using FastICA
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Figure.14 estimated earth signal using JADE 
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5 Conclusion 
 

A new technique for blind deconvolution of seismic 

signal has been proposed and developed. 

Simulations results of the blind estimation of the 

source wavelet and earth signal given only by the 

seismic trace signal as input has expressed the 

effectiveness of the new algorithm over the FastICA 

algorithm. The technique differs from many blind 

deconvolution algorithms as it uses independent 

component analysis to solve blind deconvolution 

problem by exploiting the sparsity of both the 

reflectivity sequence and the mixing matrix. 

Although it is computationally intensive our novel 

algorithm gives significant performance efficiency 

over FastICA in terms of shape and scaling. As a 

result the proposed technique has the ability to be 

used as a post stack improvement process to offer 

datasets for use in combination with the typically 

processed reflectivity data. 
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