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Abstract

Background: Gene expression profiles and protein dynamics in single cells have a large cell-to-cell variability due

to intracellular noise. Intracellular fluctuations originate from two sources: intrinsic noise due to the probabilistic

nature of biochemical reactions and extrinsic noise due to randomized interactions of the cell with other cellular

systems or its environment. Presently, there is no systematic parameterization and modeling scheme to simulate

cellular response at the single cell level in the presence of extrinsic noise.

Results: In this paper, we propose a novel statistical ensemble method to simulate the distribution of

heterogeneous cellular responses in single cells. We capture the effects of extrinsic noise by randomizing values of

the model parameters. In this context, a statistical ensemble is a large number of system replicates, each with

randomly sampled model parameters from biologically feasible intervals. We apply this statistical ensemble

approach to the well-studied NF-κB signaling system. We predict several characteristic dynamic features of NF-κB

response distributions; one of them is the dosage-dependent distribution of the first translocation time of NF-κB.

Conclusion: The distributions of heterogeneous cellular responses that our statistical ensemble formulation

generates reveal the effect of different cellular conditions, e.g., effects due to wild type versus mutant cells or

between different dosages of external stimulants. Distributions generated in the presence of extrinsic noise yield

valuable insight into underlying regulatory mechanisms, which are sometimes otherwise hidden.
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Background

Single cell imaging generated a surge of interest in the

intracellular dynamics of biochemical species, uncovering

significant cell-to-cell variations in gene expression [1-8]

and protein dynamics [9,10]. This variability originates from

intrinsic [1-8] and extrinsic noise [3,6,10] and critically

affects cellular decision-making processes [9-13]. Moreover,

cellular response averaged over a population of cells is

oftentimes noticeably different from the responses of single

cells. The variability in the latter contains rich information

regarding the regulatory mechanisms in operation. Here,

we present a novel computational method to predict the

distribution of extrinsic noise-driven heterogeneous cellular

responses and to unravel discrepancies between single-cell

versus population-averaged responses.

Both intrinsic and extrinsic noise are the source of the

large cell-to-cell variability in cellular responses [14].

Intrinsic noise refers to the pure probabilistic nature of

individual biochemical reactions occurring within a cell.

When the number of intracellular constituents is large,

the cell’s behavior is well approximated by its expectation

value according to the law of large numbers. But at the

single-cell level, the number of molecules of certain spe-

cies critical to a particular biochemical pathway can be

small, and the range of statistical variation in the system

needs to be considered [1-8]. Extrinsic noise refers to

random interactions of the cell with other cells or its en-

vironment. Extrinsic fluctuations can originate from cells

undergoing different stages of their cell cycle [15], fluctu-

ations in the number of transcriptional regulators up-

stream of the signaling pathway of interest [3,6,9,10],
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and cell-to-cell variability in the copy number of proteins

inherited from parent cells during cell division [10]. Ex-

trinsic noise can affect the dynamics of cellular constitu-

ents locally in a specific signaling pathway or globally

over the entire cell. In Figure 1, we summarize the effects

of intrinsic and extrinsic fluctuations in the NF-κB sig-

naling networks. The full effect of extrinsic noise should

include “all” external stochastic effects that influence the

cell, particularly the temporal fluctuations in the cellular

kinetic conditions. However, in Ref. [10], Spencer et al.

identified the most important source of extrinsic noise

as the protein copy number inherited from the parent

cell during cell division. Large cell-to-cell variations in

the copy number of enzyme and regulatory protein

could randomize the likelihood and the speed of any

intracellular biochemical reaction. This means we can

effectively “lump” all the effects of protein copy num-

ber variations into variations in kinetic rate constants.

This is an attractive approach, because rate constants

are an input into a variety of biochemical pathway

modeling techniques.

A pathway modeling framework that uses deterministic

or stochastic differential equation models requires a priori

knowledge of the structure of the biochemical reaction net-

work, mathematical functional forms for the biochemical

reactions, and associated reaction rate constants. Since li-

mited or incomplete information is often all that is available

to modelers, a computational model is often parameterized

by using a nonlinear fitting algorithm. A conventional

parameterization scheme identifies a single set of kinetic

parameter values by minimizing the χ2 distance between

experimental data and a prediction made by the model.

Sloppy Cell and other similar parameterization algorithms

include experimental errors in the parameterization by fit-

ting to a rather large experimental error bar [16]. But both

conventional and Sloppy Cell parameterization schemes

assume a deterministic and homogeneous biological re-

sponse to a stimulus and aren’t designed to handle the

heterogeneous, stochastic behavior of single cells and its

dependence on extrinsic noise.

In order to capture extrinsic noise and its effect on intra-

cellular response, we propose a novel parameterization

method, the “statistical ensemble” (SE) scheme, named after

a key concept in statistical physics [17]. A cell is regarded as

a complex system comprising a large number of compo-

nents and elementary interactions among them. A popula-

tion of cells consists of a large number of replicates,

each with different microscopic intracellular states. The

statistical ensemble average, or macroscopic observable, is

equated with the cellular response averaged over the popu-

lation of cells. The ensemble is generated by assigning ran-

domly sampled values of kinetic rate constants and copy

numbers of regulatory proteins to each cell in the ensemble.

All other external noisy systems that interact with the cell,

but which are not modeled explicitly, are treated as extrin-

sic noise. The effect of the noise is included in the sampling

that produces the randomized microscopic state of each

cell in the ensemble.

A key point is that the resulting dynamic response of the

ensemble of cells is no longer a single output but is a dis-

tribution of heterogeneous responses. Each response can be

computed independently, which allows for parallelism in

the computation. An equal weight is assigned to the re-

sponse from each replicate, to calculate the ensemble

averaged cellular response. The SE scheme thus enables

modeling of the irregular, dissimilar, and diverse individual

cellular behaviors while reproducing the macroscopically

observable population-level response.

In the most general sense, the success of the SE scheme

depends on identifying and characterizing the biologically
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Figure 1 Intrinsic and extrinsic noise as the source of the cell-to-cell variability in cellular responses in the NF-кB signaling networks.

Intrinsic noise refers to the pure probabilistic nature of individual biochemical reactions in the signaling networks. Extrinsic noise refers to random

interactions of the signaling networks with the external stochastic systems and originates from three sources: (i) fluctuating number of transcriptional

regulators upstream of the signaling networks, (ii) fluctuating number of proteins inherited from parent cells, and (iii) different stages of their cell cycle.
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correct distribution of extrinsic noise for the system of

interest, so that its effects can be encoded in the random

sampling of cellular microstates. In this work, we use ex-

perimental population-level data to parameterize the range

of feasible kinetic rate constants and copy numbers of spe-

cific molecules, and then sample uniformly around the

mid-point of the range to generate cellular microstates.

We illustrate the power of even this simplified SE ap-

proach for modeling the NF-кB signaling system.

NF-кB is a pleiotropic regulator of gene control and

plays significant roles in various cellular functions such as

differentiation of immune cells, development of lymphoid

organs, and immune activation [18-20]. NF-кB shuttling

between the nucleus and cytoplasm is auto-regulated

by the NF-кB signaling module, which consists of IкB

(inhibitor кB), IKK (IкB kinase), and NF-кB. In the ab-

sence of stimulus, IкB forms a hetero-dimeric complex

with NF-кB, preventing NF-кB from entering into the

nucleus. Upon stimulation, phosphorylated IKK catalyses

the degradation of IкB from the IкB-NF-кB complex and

frees up NF-кB whose nuclear localization initiates tran-

scription of NF-кB target genes such as inflammatory cyto-

kines (TNFα, IL-1, IL-6), chemotactic cytokines (MIP-1a),

Th1 and Th2 response activation (IFN and IL-10), and

lastly, but most importantly, negative regulators (IкBα,

IкBβ, IкBε, and A20) which terminate the NF-кB signaling.

Based on current knowledge of NF-кB signaling, Hoffmann

et al. constructed a complex biochemical reaction network

for the NF-кB signaling pathway consisting of IKK, NF-кB,

and three IкB isoforms and transformed it into a set of or-

dinary differential equations with dozens of unknown ki-

netic parameter values [21]. After identifying a single set of

parameter values yielding the best fit of the model to popu-

lation level experimental data, they used their model to elu-

cidate the role of each of three IкB isoforms: IкBα induces

oscillatory shuttling of NF-кB while IкBβ and IкBε damp

the oscillations [21]. Lipniacki et al. extended the model,

showing that an additional negative regulator A20 has a de-

finitive role as a NF-кB signal terminator, by deactivating

IKK phosphorylation [22-24]. Using fluorescence micros-

copy, Nelson et al. and several other groups showed a re-

markably heterogeneous intracellular response for this

signaling network at the single-cell level; some cells

exhibited sustained oscillatory shuttling of NF-кB while

others exhibited non-oscillatory behavior [25-33].

In this paper, we model extrinsic noise via randomization

of the kinetic parameters of the IKK-NF-кB-IкB-A20 sig-

naling system and predict several distributions of dynamical

NF-кB responses. The signaling network we model is

shown in Figure 2 and consists of IKK, cytoplasmic and nu-

clear NF-кB, and two groups of negative regulators (three

isoforms of IкB and A20). Using the statistical ensemble

(SE) scheme, we demonstrate that extrinsic noise, modeled

as fluctuations in kinetic parameter values, can generate the

observed experimental population-level response as the SE

average, as well as a heterogeneous distribution of indivi-

dual cellular responses. In section Results.A we show that

the SE average of key biochemical species concentrations in

the NF-кB signaling network can be accurately fit to experi-

mental population-level data for wild type and various mu-

tant cases. In section Results.B, we predict the distributions

of various dynamic characteristics of NF-кB cellular re-

sponses. In section Results.C, we make a prediction about

dosage-dependent NF-кB responses in single cells, i.e., the

dosage-dependent distribution of various NF-кB dynamic

characteristics in individual cells. Lastly, in section

Results.D, we predict that both dose-response curves from

individual cells and their SE average are sigmoidally shaped.

Results
Statistical ensemble average of key biochemical species

concentrations in the NF-кB signaling network is fit to

experimental population-level data

The wild type case

For this reaction pathway, the statistical ensemble (SE)

scheme generates significant cell-to-cell variability in

protein dynamics. Yet the SE averages agree well with

population-level experimental data (Electro Mobility

Shift Assay (EMSA) or western blot) for key biochemical

species concentrations as shown in Figure 3. For the nu-

clear NF-кB profiles in Figure 3(A), the first translocation

times (timing of the first peak) of the individual NF-кB

profiles (in blue) are almost identical, while the first ma-

xima (amplitude of the first peak) vary significantly with
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Figure 2 Biochemical network model for the IKK-IкB-NF-кB-A20

signaling module. Top panel: A schematic description of our

comprehensive model for NF-кB signaling. The arrows indicate

activation and the perpendicular lines denote inhibition. Bottom

panel: the model consists of IKK (IкB kinase), IкB isoforms (IкBi, i= α, β, ε),

and A20. NF-кBn and IкBin denote their nuclear components. Squares

are for proteins; hexagons are for mRNA. Black arrows indicate either

association or dissociation or degradation of proteins; red (blue) arrows

denote mRNA (protein) synthesis.
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a variance up to 100% of the SE average (in red). How-

ever, both the timings and amplitudes of subsequent peaks

exhibit significant cell-to-cell variability. Consequently the

SE average is a strongly damped oscillatory pattern with

rapid decay of subsequent peak amplitudes. Thus, the effect

of extrinsic noise on this observable is a “masking effect

of averaging over a population of asynchronous curves”,

just as for intrinsic noise [34]. The large variation in the

first-peak amplitude of nuclear NF-кB concentration in

Figure 3(A) originates from the IKK profile in Figure 4(C),

where the IKK concentration time courses from individual

cells also exhibit significant differences in their first max-

imum. This induces large variation in the first minimum of

IкB isoforms as shown in Figures 3(B)-(D). Thus, the cell-

to-cell variation in kinetic rate constants regulating the

levels of both pre-activated IKK (IKKn) and activated IKK

(IKKa) is the source of similar variation in the first maximum

of nuclear NF-кB concentration [35]. Likewise, the asyn-

chronous behavior of the individual nuclear NF-кB profiles

after two hours, as shown in Figure 3(A), originates from

the cell-to-cell variability in the second-peak amplitude of

the IкB isoforms in Figures 3(B)-(D).

The mutant case - double knocked-out IкB isoforms and

knocked-out A20

To simulate the dynamics of mutants, we set the mRNA

synthesis rates for two of the three IкB isoforms and A20

to zero. For the IкBβ and IкBε knocked-out mutant shown

in Figure 5(A), the peaks of the SE average correspond

closely to the peaks of population-level experimental data

(EMSA) at 15 min, 2.5 hours, 4 hours, and 5.5 hours. The

individual profiles of nuclear NF-кB concentration are

Figure 3 Individual time-series curves (blue lines) and the ensemble average (red line) of key protein concentration for an ensemble

of 1000 replicates of the wild type NF-кB signaling system. Computational results are compared side-by-side with population-level

experimental data from Ref. [20]. Panel (A): nuclear concentration of NF-кB. Panels (B), (C), (D) are respectively cytoplasmic concentrations of

IкBα, IкBβ, and IкBε proteins.
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much more oscillatory (about half the curves exhibit

sustained oscillations as shown in Figure 6) than for the

wild type data (only 10% are sustained oscillations in

Figure 6). But, the SE average of this mutant is a damped

oscillatory pattern, with a bit more dynamic variation than

that of the wild type. This is again mainly due to “the

masking effect of averaging over a population of asynchron-

ous curves”. For the IкBα and IкBε knocked-out and the

IкBα and IкBβ knocked-out mutants shown in Figure 5(B)

and 5(C), the SE averages of nuclear NF-кB show a “single-

peaked” pattern similar to the population-level EMSA data,

though the timings of the peaks differ by 1 hour. The

single-peak amplitudes vary significantly with a variance as

large as 100% of the SE average. For the A20 knocked-out mu-

tant in Figure 4(B) and 4(D), both the SE averages of nuclear

NF-кB and IKK profiles exhibit single-peaked patterns in good

agreement with the population-level experimental data. Again,

the individual nuclear NF-кB profiles differ significantly. For all

the mutants, though their SE averages for nuclear NF-кB

profiles exhibit simple dynamic patterns, the cell-to-cell vari-

ability is large due when extrinsic noise is included in the

model.

Dependence of SE average on heterogeneity

In Figure 7 we show how to use population-level experi-

mental data as a constraint when choosing a heteroge-

neity factor χ, defined as the interval size of the uniform

distribution from which kinetic rate constants are sampled,

as inputs to the pathway model. Centering the kinetic rate

constants at their reference values, we vary χ and observe

how heterogeneous the individual cell profiles of nuclear

NF-кB become. Note that the SE average of nuclear NF-кB

becomes less oscillatory for higher values of χ in Figure 7.

For a small χ = 10% in Figure 7(A), all individual curves re-

main in phase with each other, making the SE average also

highly oscillatory. For higher values of χ = 50% and χ = 70%

in Figures 7(C) (χ = 50%) and 7(d) (χ = 70%), a large fraction

of individual curves are sustained oscillations, but quickly

Figure 4 Individual time-series curves (blue lines) and the ensemble average (red line) of key protein concentrations are obtained for

an ensemble of 1000 replicates of a wild type (A, C) and an A20 knocked-out mutant (B, D). Computational results are compared with

population-level experimental data from Ref. [36]. Top panels: nuclear concentration of NF-кB. Bottom panel: IKK concentration.
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become out of phase, resulting in an SE average that is

strongly under-damped. Because higher χ values cover a

larger sampling space, individual nuclear NF-кB curves

bifurcate into different classes of patterns: some are

sustained oscillatory while others are single-peaked.

Thus, if the population-level experimental data exhibit

sustained oscillations versus damped oscillations versus

single-peak profiles, the variation in single-cell profiles

induced by χ can be used to guide sampling from an ap-

propriate range of heterogeneity when generating input

rate constants.

In this subsection, we showed how the SE method with its

many replicates is a model for a population of cells in a he-

terogeneous set of intracellular states. By varying the

heterogeneity factor χ for sampling kinetic parameters used

as inputs to the pathway model, fits to experimental data

can be produced even when population-averaged data and

single-cell data exhibit different characteristics, as in the NF-

кB signaling system. In the next subsection, we discuss the

distribution of single-cell NF-кB responses in more detail.

Prediction of distributions of individual cellular responses

for the wild type and mutants

Distributions of dynamic features

In Figure 8, we summarize the output of our SE compu-

tational model for distributions of single-cell responses

for the wild type and the mutants discussed in the previ-

ous sub-section. Six dynamic features are shown: the

Figure 5 Individual time-series curves (blue lines) and the ensemble average (red line) of key protein concentrations for an ensemble

of 1000 replicates of a IкB double gene knocked-out mutant. Computational results (left column) are compared with population-level

experimental data (right column) from Ref. [20]. Panel (A): IкBβ and IкBε knocked-out mutant. Panel (B): IкBα and IкBβ knocked-out mutant. Panel

(C): IкBα and IкBε knocked-out mutant.
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amplitude of the first peak (First Maximum), the timing

of the first peak (First Translocation Time), the time

between the first and the second peaks (First Period), the

level of the first minimum (First Minimum), the amplitude

of the second peak (Second Maximum), and the asymptotic

Steady State value. Surprisingly, for each dynamic feature,

there is a significant amount of overlap between the distri-

butions for the wild type and those of the mutants. This

implies that if we used a conventional modeling scheme

which fits a single set of parameter values and outputs a

single representative time-series of intracellular response,

we could draw incorrect conclusions as to the effect of a

knocked-out gene on cellular response. To avoid this, we

compute the entire distribution of responses and look

for significant changes when genes are knocked out. In

Figure 8(A), the distributions of the First Maximum are

the same for both the mutants and the wild type. This dy-

namic feature is thus not an indicator of the physiological

defects caused by the knock-out genes. In Figure 8(B), the

distribution of the First Translocation is shifted to the

right for the A20 knocked-out mutant and to the left for

IкBβ and IкBε double knocked-out mutant, whereas the

wild type and two other mutants have similar distribu-

tion. In Figure 8(C), only the wild type and the IкBβ

Figure 6 Distributions of four dynamic patterns of the individual time-series curves of nuclear NF-кB profiles for an ensemble of 1,000

replicates of the wild type, A20 knocked-out mutant, and three IкB genes double knocked-out mutants. A few examples of four dynamic

patterns are plotted in the top panel: (A) single-peaked pattern (blue), (B) under-damped oscillation (red), (C) hyperbolic pattern (black), and (D)

sustained oscillation (yellow) where color within a parenthesis denotes color in the bottom panel. Individual time-series curves are classified as

one of the four dynamic patterns.
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and IкBε double knocked-out mutant have well-defined

periods of roughly 2 hours; the First period of other

mutants is too broadly distributed to define an average.

In Figure 8(D), the ratio of the First Minimum to the

First Maximum indirectly measures the spikiness of the

oscillations; the smaller the ratio, the spikier the tem-

poral profile becomes. Only the wild type and the IкBβ

and IкBε double knocked-out mutant exhibit a spiky re-

sponse. In Figure 6(F), the ratio of the Steady State to the

First Maximum provides useful information about the

relative magnitude and strength of the negative regulators

of IкB isoforms and A20. Since the distributions of the

First Maximum are the same for the wild type and mutants,

we conclude that the smaller steady-state level of nuclear

NF-кB concentration infers stronger negative feedback.

The mutants ordered by steady-state level are as follows:

A20 knocked-out mutant < IкBα and IкBε knocked-out

mutant < IкBα and IкBβ knocked-out mutant < IкBβ

and IкBε knocked-out mutant < wild type. The relative

strength of the negative regulators can then be inferred:

A20 > IкBα > IкBε > IкBβ. Of course, this ordering is con-

sistent with the choice of nominal values for the respective

kinetic rate constants, as listed in Table 1.

Distribution of dynamic patterns

The individual time-series of the nuclear NF-кB concentra-

tions can be classified into one of four dynamic patterns

(damped oscillation, sustained oscillation, single peaked,

and monotonic-increasing patterns) as shown in Figure 6.

The underlying mechanism for each dynamic pattern is

rather simple. The monotonic-increasing (or over-damped)

pattern originates from strong negative feedback loops,

while the single-peaked pattern results from weak negative

feedback loops. The oscillatory patterns arise from

intermediate-strength negative feedback loops. But it re-

mains an open question to correlate each dynamic pattern

with a specific cellular physiology [37-39]. To elucidate this

connection, we stimulate the ensemble of NF-кB signaling

networks with the same signal strength (TR = 1), for both

the wild type and mutants. We then classify a thousand in-

dividual temporal profiles into one of the four dynamic pat-

terns. The distributions of the patterns are represented by

bar graphs in Figure 6 which shows that both the wild type

and mutants exhibit at least two different patterns of re-

sponse under the same strength of stimulation. For the wild

type, most of the nuclear NF-кB profiles have a damped-

oscillatory pattern, with less than 10% of the profiles as

sustained-oscillatory. This indicates a damped-oscillatory

response is the most probable, and it is robust against per-

turbation of the network parameter values. For the mutant

with a knocked-out A20 gene, both single-peaked and

damped-oscillatory patterns are nearly equally probable.

But the damped oscillatory profiles are very similar to a

single-peaked pattern. Thus for this mutant, a damped-

Figure 7 Dependence of the individual time-series curves (blue lines) and the statistical ensemble average (red line) of nuclear NF-кB

profiles for a mutant with IкBβ and IкBε genes double knocked-out, on the heterogeneity factor χ (the interval size of the uniform

distribution or kinetic rate parameters). (A) χ = 10% ; (B) χ = 30% ; (C) χ = 50% ; (D) χ = 70%.
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oscillatory response occurs in a region of the parameter

space where the negative regulators are not strong enough

to induce the oscillatory pattern. For the mutant with IкBβ

and IкBε genes double knocked-out, sustained-oscillatory

and damped-oscillatory patterns are equally probable re-

sponses. The damped-oscillatory responses in this mutant

are very different from those in the mutant with a knocked-

out A20 gene, and are more similar to a sustained oscilla-

tion. The fraction of sustained-oscillatory responses (about

50%) dramatically increases in comparison to the wild type

case (less than 10%). For mutants with IкBα and IкBβ genes

double knocked-out and with IкBα and IкBε genes double

knocked-out, their respective distributions are similar to

that of the mutant with the A20 gene knocked-out. As

shown in Figures 5(B) and 5(C) and Figure 4(B), both the

individual profiles and the statistical ensemble average of

the nuclear NF-кB concentrations for all these mutants

(A20 gene knocked-out, IкBα and IкBβ genes double

knocked-out, IкBα and IкBε genes double knocked-out)

exhibit similar single-peaked patterns. In summary, there

are two distinctive groups exhibiting two respective pat-

terns of nuclear NF-кB profile response: the first group,

consisting of the wild type and the IкBβ and IкBε double

knocked-out mutant, is dominated by highly oscillatory re-

sponses. The second group, consisting of the A20

knocked-out, the IкBα and IкBβ double knocked-out, and

the IкBα and IкBε double knocked-out mutants, shows

mostly single-peaked (non-oscillatory) responses.

In this subsection, we used the SE method to generate

distributions of various dynamical responses from a large

Figure 8 Distributions of six dynamic features of nuclear NF-кB profiles, for an ensemble of 1,000 replicates of the wild type

(black lines), A20 knocked-out mutant (red lines), IкBα and IкBβ genes double knocked-out mutant (blue lines), IкBα and IкBε genes

double knocked-out mutant (yellow lines), and IкBβ and IкBε genes double knocked-out mutants (green lines). The six dynamic features

are First Maximum (the amplitude of the first peak) in panel (A), First Translocation Time (the timing of the first peak) in panel (B), First Period

(the time between the first and the second peaks) in panel (C), Ratio of First Minimum to First Maximum (ratio of the first minimum value to the

first maximum value) in panel (D), Ratio of Second Maximum to First Maximum (ratio of the second peak amplitude to the first maximum value)

in panel (E), and Ratio of Steady State to First Maximum (ratio of the steady state level to the first maximum value) in panel (F).
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Table 1 Biochemical reactions and their associated reaction rate constants in the computational model of the NF-κB

signaling network

Reactions I II III IV V

IKKa + IкBα→ IKKa:IкBα Aα [a] 0.2 [1] 0.1813

IKKa + IкBβ→ IKKa:IкBβ Aβ [a] 0.05 [3] 0.02997

IKKa + IкBε→ IKKa:IкBε Aε [a] 0.05 [3] 0.04244

IKKa + IkBα:NF-кB→ IKKa:IкBα:NF-кB Bα [a] 1 [1] 1.024

IKKa + IkBβ:NF-кB→ IKKa:IкBβ:NF-кB Bβ [a] 0.25 [3] 0.3683

IKKa + IkBε:NF-кB→ IKKa:IкBε:NF-кB Bε [a] 0.25 [3] 0.42

NF-кBn→ NF-кBn + A20t C1 [b] 0.0000005 [1] 0.000000506

0→ A20t C2 [c] 0 [1] 0

A20t→ 0 C3 [b] 0.0004 [1] 0.0002438

A20t→ A20t + A20 C4 [b] 0.5 [1] 0.5807

A20→ 0 C5 [b] 0.0003 [1] 0.0003769

IKKa:IкBα→ IKKa + IкBα Dα [b] 0.00125 [2] 0.002046

IKKa:IкBβ→ IKKa + IкBβ Dβ [b] 0.00175 [2] 0.0005609

IKKa:IкBε→ IKKa + IкBε Dε [b] 0.00175 [2] 0.002142

IKKa:IкBα:NF-кB→ IKKa + IккBα:NF-кB Dα [b] 0.00125 [2] 0.002046

IKKa:IkBβ:NF-кB→ IKKa + IкBβ:NF-кB Dβ [b] 0.00175 [2] 0.000561

IKKa:IкBε:NF-кB→ IKKa + IкBε:NF-кB Dε [b] 0.00175 [2] 0.002142

IKKa:IкBα:NF-кB→ IKKa:IкBα + NF-кB Eα [b] 0.000001 [2] 0.00000144

IKKa:IкBβ:NF-кB→ IKKa:IкBβ + NF-кB Eβ [b] 0.000001 [2] 0.00000124

IKKa:IкBε:NF-кB→ IKKa:IкBε + NF-кB Eε [b] 0.000001 [2] 0.00000064

IKKa:IкBα + NF-кB→ IKKa:IкBα:NF-кB Fα [a] 0.5 [2] 0.3789

IKKa:IкBβ + NF-кB→ IKKa:IкBβ:NF-кB Fβ [a] 0.5 [2] 0.2135

IKKa:IкBε + NF-кB→ IKKa:IкBε:NF-кB Fε [a] 0.5 [2] 0.3528

IкBα:NF-кB→ NF-кB + IкBα Gα [b] 0.000001 [2] 0.00000064

IкBβ:NF-кB→ NF-кB + IкBβ Gβ [b] 0.000001 [2] 0.00000044

IкBε:NF-кB→ NF-кB + IкBε Gε [b] 0.000001 [2] 0.00000069

IкBαn:NF-кBn→ NF-кBn + IкBαn Gα [b] 0.000001 [2] 0.00000064

IкBβn:NF-кBn→ NF-кBn + IкBβn Gβ [b] 0.000001 [2] 0.00000044

IкBεn:NF-кBn→ NF-кBn + IкBεn Gε [b] 0.000001 [2] 0.00000069

IкBα + NF-кB→ IкBα:NF-кB Hα [a] 0.5 [2] 0.4593

IкBβ + NF-кB→ IкBβ:NF-кB Hβ [a] 0.5 [2] 0.7753

IкBε + NF-кB→ IкBε:NF-кB Hε [a] 0.5 [2] 0.2895

IкBαn + NF-кBn→ IкBαn:NF-кBn Hα [a] 0.5 [2] 0.4593

IкBβn + NF-кBn→ IкBβn:NF-кBn Hβ [a] 0.5 [2] 0.7753

IкBεn + NF-кBn→ IкBεn:NF-кBn Hε [a] 0.5 [2] 0.2895

NF-кB→ NF-кBn I1 [b] 0.0025 [1] 0.003037

NF-кBn→ NF-кB K01 [b] 0.00005 [3] 0.00005537

IKKn→ IKKa K1 [b] 0.0025 [1] 0.003273

A20 + IKKa→ A20 + IKKi K2 [a] 0.1 [1] 0.07075

IKKa→ IKKi K3 [b] 0.0015 [1] 0.00202

0→ IKKn Kprod [c] 0.000025 [1] 0.000009752

IKKn, IKKa, or IKKi→ 0 Kdeg [b] 0.000125 [1] 0.0001561

Volume ratio of cytoplasm to nucleus Kv 1 5 [1] 5

IкBαn:NF-кBn→ IкBα:NF-кB Lα [b] 0.01 [1] 0.013979

IкBβn:NF-кBn→ IкBβ:NF-кB Lβ [b] 0.005 [3] 0.001567

IкBεn:NF-кBn→ IкBε:NF-кB Lε [b] 0.005 [3] 0.006583
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ensemble of single-cell simulations, and compared those

distributions for the wild type and various mutants. We

made two key findings. First, there is significant overlap

between the distributions of the wild type and mutants.

This indicates that two individual cells, even if they are

genetically different, can respond to the same stimulus in

a similar manner. A better way to characterize the differ-

ences induced by the differing genetic conditions is to

model a large ensemble of cells and compare the full

distributions of single-cell responses. Second, for this

biochemical pathway, we observed that distributions of

the first Maximum response were the same for any gen-

etic conditions. Similarly, the distributions of the first

translocation time responses were the same for the wild

type and two of the genetic mutants. This means that

some dynamic features are not good indicators of

changes in the NF-кB signaling system for genetic com-

parative studies. The SE approach can be used to screen

out bad indicators among the many possible candidates.

In the next subsection, we investigate the distributions

of dynamic responses for the NF-кB signaling system

under two different dosage conditions.

Table 1 Biochemical reactions and their associated reaction rate constants in the computational model of the NF-κB

signaling network (Continued)

IкBα:NF-кB→ NF-кB Mα [b] 0.000025 [1] 0.00002837

IкBβ:NF-кB→ NF-кB Mβ [b] 0.000025 [3] 0.00003609

IкBε:NF-кB→ NF-кB Mε [b] 0.000025 [3] 0.00000866

Total NF-кB concentration NF-кB [d] 0.06 [1] 0.06

IKKa:IкBα:NF-кB→ IKKa + NF-кB Pα [b] 0.1 [1] 0.12928

IKKa:IкBβ:NF-кB→ IKKa + NF-кB Pβ [b] 0.05 [3] 0.06454

IKKa:IкBε:NF-кB→ IKKa + NF-кB Pε [b] 0.05 [3] 0.08434

IкBαn→ IкBα Qα [b] 0.0005 [1] 0.0005123

IкBβn→ IкBβ Qβ [b] 0.0005 [3] 0.0007398

IkBεn→ IkBε Qε [b] 0.0005 [3] 0.0002184

IKKa:IкBα→ IKKa Rα [b] 0.1 [1] 0.123

IKKa:IкBβ→ IKKa Rβ [b] 0.1 [3] 0.03837

IKKa:IкBε→ IKKa Rε [b] 0.1 [3] 0.1571

IкBαn:NF-кBn→ NF-кBn Sα [b] 0.000001 [2] 0.00000037

IкBβn:NF-кBn→ NF-кBn Sβ [b] 0.000001 [2] 0.000001131

IкBεn:NF-кBn→ NF-кBn Sε [b] 0.000001 [2] 0.000001037

NF-кBn→ NF-кBn + IкBαt Uα [b] 0.0000005 [1] 0.000000279

NF-кBn→ NF-кBn + IкBβt Uβ [b] 0 [2] 0

NF-кBn→ NF-кBn + IкBεt Uε [b] 0.00000005 [3] 0.000000059

IкBα→ IкBαn Vα [b] 0.001 [1] 0.0009786

IкBβ→ IкBβn Vβ [b] 0.001 [3] 0.0004871

IkBε→ IkBεn Vε [b] 0.001 [3] 0.00147

IкBα, IкBαn→ 0 Wα [b] 0.0001 [1] 0.000132

IкBβ, IкBβn→ 0 Wβ [b] 0.0001 [3] 0.000133

IкBε, IкBεn→ 0 Wε [b] 0.0001 [3] 0.000042

IкBαt→ IkBαt + IkBα Xα [b] 0.5 [1] 0.4552

IкBβt→ IкBαt + IкBβ Xβ [b] 0.5 [3] 0.3828

IкBεt→ IкBαt + IкBε Xε [b] 0.5 [3] 0.3304

0→ IкBαt Yα [c] 0.00000005 [3] 0.000000084

0→ IкBβt Yβ [c] 0.000000005 [3] 0.00000000414

0→ IкBεt Yε [c] 0.000000005 [3] 0.00000000508

IкBαt→ 0 Zα [b] 0.0004 [1] 0.0003375

IкBβt→ 0 Zβ [b] 0.0004 [3] 0.0002031

IкBεt→ 0 Zε [b] 0.0004 [3] 0.0004742

The far left column denotes biochemical reactions. The symbols for reaction rate constants are in the column I. Their units and their published nominal values are

in columns II and III respectively. Column IV denotes the reference: [1] for Ref. [21], [2] for Ref. [20], and [3] for the average of values from Refs. [20,21]. Column V

lists values used in this paper. The units for [a] are μM-1 s-1, for [b] are s-1, for [c] are μM s-1, and for [d] are μM.
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Figure 9 Individual time-series curves (blue lines) and the ensemble average (red) of the key protein concentrations for an ensemble

of 1000 replicates of the wild type, stimulated by small dosage (A, C, E, G, and I) or large dosage (B, D, F, H, and J).
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Statistical ensemble analysis of dosage-dependent NF-кB

dynamical behavior

Dosage-dependent dynamical behaviors of individual and

ensemble-averaged temporal profiles

We numerically investigated the NF-кB signaling network in

response to two different stimulation dosages. As shown in

Figure 9, even though a small dosage (TR= 0.01) is 100

times smaller than a large dosage (TR= 1), the small dosage

still triggers a substantial amount of NF-кB response from

about half the replicates. The other half do not respond at all

to the small dosage. In contrast, the large dosage induces

strong NF-кB response from all the replicates homoge-

neously. For example, in Figure 9(A) where the ensemble re-

ceives a small dosage, half the temporal profiles of nuclear

NF-кB have a single peak and the other half do not. For the

half with a peak, the peaks occur after hours of time-delay

and there is a large variation in the delays. The steady-

state level of nuclear NF-кB concentration is broadly

distributed between zero and 100 nM. In Figure 9(B), the

large dosage induces a synchronized appearance of the

first peak in all the temporal profiles after a time delay of

half an hour. However, even with a large dosage, there is

a large cell-to-cell variation both in the amplitude of

the first peak and in the timing of successive peaks. In

Figures 9(C) and (D), IKK responses to the small dosage

stimulation are sharply different from those with large

dosage stimulation, i.e., very low levels of IKK versus

single-peaked responses with a large amplitude. These

IKK profiles are inversely correlated with the profiles of

cytoplasmic IкBα. The steady state levels of A20 are 2-3

times higher.

Dosage-dependent distribution of the dynamic features

The distributions of responses for a thousand-replicate

ensemble to large (TR = 1) and small (TR = 0.01) dosage

are shown in Figure 10. In Figure 10(A) and (C), both

Figure 10 Distributions of six dynamic features of nuclear NF-κB profiles for an ensemble of 1,000 replicates of the wild type NF-κB

signaling system undergoing small (TR = 0.01; red line) or large (TR = 1; black line) dosage stimulations. The six dynamic features are

First Maximum in panel (A), First Translocation Time in panel (B), First Period in panel (C), Ratio of First Minimum to First Maximum in panel (D),

Ratio of Second Maximum to First Maximum in panel (E), and Ratio of Steady State to First Maximum in panel (F).
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the First Maximum and the First Period share similar

dosage-dependent behavior: the strength and duration of

the response increase with dosage. But, for the First

Translocation Time and the Ratio of the First Minimum

to the First Maximum metrics in Figure 10(B) and (D),

the dosage-dependent behavior is inverted: the larger

dosage induces a peak at an earlier time with a smaller

First Minimum level. Moreover, the larger dosage makes

the distribution more narrowly-distributed. This indicates

the larger dosage induces an earlier and spikier response,

while the smaller dosage induces more heterogeneous First

Maximum and First Minimum levels of nuclear NF-кB

concentration. Lastly, both the ratios of the Second Ma-

ximum to the First Maximum and of the Steady State to

the First Maximum share similar dosage-dependent be-

havior in Figures 10(E) and 10(F): the smaller dosage

induces a distribution at larger values, i.e., closer to one.

In other words, when stimulated by the smaller dosage,

the levels of the First Maximum, of the subsequent ma-

xima, and of the Steady State are the same, i.e., NF-кB

profiles exhibit either a monotonically-increasing pattern

or single-peaked pattern with low peak amplitude. In

addition, the full half-maximum width of the distribution

is unaffected by the dosage amount.

Dosage-dependent distribution of the dynamic patterns

As shown in Figure 11, when stimulated by a small

(TR = 0.01) dosage, 80% of the nuclear NF-кB profiles are

damped-oscillatory whereas only 20% of are single-peaked.

But, those damped oscillatory responses are similar to a

single-peaked response. The distribution induced by the

large dosage (TR = 1) corresponds to that of the wild type

case in Figure 6. We note that for small dosage stimulation

the distribution of the dynamic patterns, the SE average,

and the individual profiles of nuclear NF-кB concen-

tration, as shown in Figures 9 and 11, are very similar

to those for the mutants responding to large dosage

stimulation with IкBi and IкBε genes double knocked-out,

as shown in Figures 5 and 6. We also observed that when

the heterogeneity factor χ is increased from χ = 30% to χ =

70%, small dosage stimulation generates more heteroge-

neous dynamic patterns, i.e. nuclear NF-кB profiles in all

the pattern categories.

In this subsection, we analyzed the dynamical response of

the cellular replicates under two different stimulant dosage

conditions. This yielded distributions of six dynamic fea-

tures and associated dynamic patterns that are descriptive

characterizations of the NF-кB signaling system. Unlike the

earlier analysis of differential genetic conditions, the diffe-

ring stimulus dosages generate non-overlapping distribu-

tions and clearly distinctive dynamical behaviors. Some of

our predictions, e.g., the distribution of first translocation

time in Figure 10(B) and dynamic patterns in Figure 11,

are experimentally validated [36].

Sigmoidally shaped SE average of the dose-response curves

We numerically investigated the distribution of dose-

response curves from the SE of the NF-кB system. In

this analysis we used only 50 replicates of the NF-кB sys-

tem because of the high computational cost of calculating

a single dose-response curve. Each replicate of the NF-кB

signaling system is stimulated with a persistent signal for

30 hours, and the average (quasi-steady-state) level of

nuclear NF-кB concentration is measured between 20 and

30 hours after stimulation. To check for hysteresis effects,

we computed the dose response curve twice, first by in-

creasing the signal strength from TR = 0 to TR = 0.1 in a

step-like manner and then by decreasing it from TR = 0.1

to TR = 0. If the forward and backward dose-response

curves were significantly different, it could be regarded as

a sign of hysteresis. In Figure 12, both forward and back-

ward dose-response curves for each replicate look the

Figure 11 Distribution of the dynamic patterns of nuclear

NF-кB concentration profiles for an ensemble of 1,000 replicates of

the wild type NF-кB signaling system undergoing small (TR = 0.01)

or large (TR = 1) dosage stimulations. The same four dynamic

patterns and coloring scheme are used as in Figure 6.

Figure 12 The individual dose-response curves (blue lines) and

the statistical ensemble average (red line) for an ensemble of

50 replicates of the wild type NF-кB signaling system.
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same, i.e. no hysteresis effects were seen. Figure 12 also

shows both the individual dose-response curves and the

SE average have a sigmoidal shape, which indicates a

switching behavior between on and off states. For a signal

strength greater than the inflection point of a dose-

response curve, the stationary level quickly reaches a pla-

teau whose value is three orders of magnitude higher than

its low stationary level at a signal smaller than the inflec-

tion point. Lastly, the cell-to-cell variability in the statio-

nary nuclear NF-кB level is dramatically larger with a

weak signal than with a strong signal, i.e., the variation is

two orders of magnitude at TR = 10-4 and one order of

magnitude at TR = 0.1. The variability is a maximum at

the inflection point of the SE dose-response curve, where

it is roughly four orders of magnitude. The cell-to-cell

variability in the location of the inflection point (along

the x-axis) is about one order of magnitude.

Discussion and conclusion
In this paper, we have used a novel statistical ensemble

(SE) method to mimic protein dynamics in a population

of cells influenced by extrinsic noise. For our model of the

NF-кB signaling system, we showed that the SE averages

match population-averaged experimental data. The added

value of the SE method is that it can also produce entire

distributions of response, which can potentially be com-

pared to experimental observations at the single-cell level.

The main predictions enabled by the SE method were as

follows: (a) nuclear NF-кB concentration profiles for single

cells are expected to fall into one of several distinct hetero-

geneous dynamic patterns, (b) larger dosages should induce

more oscillatory dynamic patterns of nuclear NF-кB

response, while smaller dosages should primarily induce

single-peaked patterns, (c) larger (smaller) dosages should

make First translocation times more narrowly-distributed

(broadly-distributed) and shift the peak of its distribution to

earlier (later) times, and (d) the shape of dose-response

curves, both at the single-cell and population level, should

be sigmoidal. After making these predictions computa-

tionally, our experimental colleagues used single-cell

fluorescence imaging to monitor NF-кB nucleo-cytoplasmic

translocation dynamics in lipopolysaccharide-insulted

murine macrophage cells, and found that nuclear GFP-RelA

(a subunit of NF-кB dimers) profiles are very heterogeneous.

They also found NF-кB dynamic responses to be much

more heterogeneous and less oscillatory when the stimulant

dosage was smaller. They also stimulated the murine mac-

rophages with two different dosages (1 nM and 1 μM) of E.

Coli lipopolysaccharide and found two distinctly different

distributions of NF-кB translocation time [36]. Thus two

of our predictions have been verified by our collaborators

who are planning to publish the results elsewhere. We

hope our computational analyses will elicit more single-

cell experimental measurement to verify the predicted

dynamic behaviors.

We wish to emphasize that the novelty of our analysis

is not due to its methodology, but rather the viewpoint

we adopt with regard to computational modeling of cellular

response. Most previous modeling efforts have focused on

bifurcation analysis of the response of a dynamical system

as its input kinetic rate constants are varied. This approach

makes a one-to-one correspondence between a form of

dynamic response and a single set of parameter values.

By contrast, the assumption in the SE approach is that

the dynamics of protein response in individual cells is

intrinsically heterogeneous. We assume a population of

cells (the replicates of the SE) does not occupy a single

point, but rather a volume of points in high-dimensional

parameter space. We choose a hybercube sub-volume of

this space (a midpoint and interval size for each dimension)

and sample from it efficiently to assign kinetic parameters

to each replicate in the SE. In this regard, our SE ap-

proach looks similar to sensitivity analysis by using

Latin Hypercube Sampling method. But, our analysis is

not for sensitivity analysis of cell signaling systems to

perturbation of model parameter values, but for gener-

ation of the heterogeneous responses in single cells. As

explained below, we choose the bounds of this sub-

volume by fitting the resulting SE averages to experi-

mentally observed population-level averages. Once this

is done and the averages match, our assumption is that

we can understand the heterogeneous behavior of the

biochemical network at the single-cell level by analyzing

the wealth of distribution data provided by the SE compu-

tations across its set of replicates.

The sigmoidal shape of the dose-response curve reveals

two important properties of NF-кB signaling: its switching

behavior and its monostability (i.e., no hysteresis). The inflec-

tion points of individual sigmoidal curves can be viewed as

activation thresholds for the NF-кB signaling pathway. As

shown in Figure 12, the NF-кB response is quite small for

signal strength below the threshold, while the response in-

creases dramatically (log scale on y-axis) for signal strengths

just above the threshold. Knowing that some NF-кB target

genes are inflammatory cytokines and that over-expressed

inflammatory response is harmful to the host, we can specu-

late that the NF-кB signaling network employs this sigmoidal

dose-response curve to down-regulate excessive inflamma-

tory responses, i.e., to only turn on if the danger level is sig-

nificantly high, otherwise to shut down. We also note that

the amplitude and timing of the first response peak for in-

flammatory cytokines (such as TNFα) are known to be cri-

tical in mediating timely and effective immune response.

This is motivation for measuring the dosage-dependent tran-

sient dynamic response of NF-κB target genes to investigate

the shape of the dose-response. Lastly, TNFα autocrine sig-

naling forms a positive feedback loop in the NF-кB signaling
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network and can induce bistability, which could modify our

results indicating monostability.

Our statistical analysis of protein dynamics depends on

how accurately the computationally generated ensemble of

the NF-кB signaling system represents a true biological

population of individual cells. This question is equivalent to

what is the true distribution of extrinsic noise? I.e., what is

the distribution from which the kinetic input parameters

should be sampled? In this paper, we have chosen a simple

answer to this question by assuming the distribution is uni-

form and bounded. We devised a heuristic fitting algorithm

to find the bounding limits of the uniform distribution for

each kinetic parameter by minimizing the discrepancy be-

tween the SE averages and the population-level experimen-

tal data. This heuristic scheme could be converted to a

more rigorous optimization problem: to find the distribu-

tion of kinetic parameters for a network model which

minimizes the difference between the SE average and the

population-level experimental measurements, while sim-

ultaneously reproducing the range of experimentally-

observed heterogeneous protein dynamics in single cells.

Additional improvements could also be made to the

procedure for sampling from the parameter space. For

example, the sampling could become more biologically

relevant, by accounting for changes in the distribution

of extrinsic noise over time as cells traverse their cell

cycle. We have also assumed no correlation between

pairs of kinetic parameters. In fact some parameters may

be co-dependent because cellular energy resources are

limited: e.g., as one kinetic process is accelerated, others

may be inhibited to balance cellular energy consumption.

All of these computational tasks would be made easier

with additional single-cell experimental data from which

the true distribution of extrinsic noise could be inferred.

Finally, we note that our analysis in this paper was sim-

plified by categorizing the nuclear NF-кB response profiles

into four dynamic patterns. This simplified various statis-

tical analyses and made it easier to characterize changes in

the distribution when genes were knocked-out. Our choice

was based on mathematical characterization of the dy-

namic protein profiles. However, it is possible this neglects

other biologically important details of the nuclear NF-кB

response, e.g. classification by time periodicity or by

steady-state level. Since the choice of categories can affect

subsequent analysis, this is an important factor to consider

when using the SE methodology.

Methods

Six dynamic features of nuclear NF-кB profiles

We define six dynamic features to represent the

distinguishing characteristics of temporal profiles of nuclear

NF-кB concentration. The first translocation time is the

time when the first peak occurs; the first period measures

the time between the first two peaks; the first and second

maxima are the amplitudes of the first and second peaks;

the first minimum is the amplitude of the “valley” between

the first two peaks; steady state refers to the asymptotic

amplitude at sufficiently long time. Using the first max-

imum as a reference level, we use scaled ratios, i.e., the first

minimum, the second maximum, and the steady state are

normalized by the first maximum. The distributions of

these dynamical features are presented in Figures 8 and 10.

Generation of the SE of NF-кB signaling network

Each kinetic rate constant listed in Table 1 is randomly

sampled from an interval (x0(1-χ), x0(1 + χ)) where χ0

is the reference value and χ is a heterogeneity factor.

To sample efficiently in the high dimensional space of

dozens of parameters, we use the Latin Hypercube

Sampling methodology discussed below. For this paper,

we used χ = 0.3. To generate a statistical ensemble (SE)

of N replicates, we simply generate N sets of randomly

sampled kinetic parameters.

Algorithm to fit the SE average to population-level

experimental data

The goal of our fitting algorithm is to determine kinetic

parameters that provide the best match for features of the

SE average to the experimental time-series data. We do not

attempt to fit all of the eighty kinetic parameters. This can

result in “over-fitting”, with too many parameters fit to too

little data. Also, by sensitivity analysis, others and we have

found there are only a handful of kinetic parameters in the

NF-кB signaling network whose variation significantly af-

fects the temporal profile of the nuclear NF-кB concentra-

tion [23,35,40]. Based on our previous studies [35,40], we

choose the two kinetic parameters most highly correlated

with each dynamic feature and varied that set of parameters

in the fitting procedure. The heuristic steps are as follows.

(1) Use an educated guess for initial kinetic parameters and

set the heterogeneity factor to χ = 039. (2) Generate the SE

and resulting protein profiles and calculate the deviation of

the six dynamic features of the SE average from the target

(experimental) dynamic features. (3) Identify the dynamic

feature with largest deviation and modify the two kinetic

parameters associated with it. (4) Repeat steps 1-3 until

the dynamic features are close to the target values. (5)

When a good fit is not achievable decrease χ in a step-like

manner. All of the data in Figures 3, 5, 4, 7 were obtained

through this process.

Numerical simulation of the NF-кB signaling network

A coupled system of ordinary differential equations

(ODEs) is derived from the NF-кB signaling network

in Figure 2. Using a 4th order Runge-Kutta scheme, we

numerically integrate the ODEs, using initial conditions

(i.e., the cytoplasmic NF-кB concentration being equal

to the total NF-кB concentration and zero concentrations
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of all other biochemical species) and kinetic parameters

shown in Table 1 and sampled as described below. Before

stimulation, the system runs for 33 hours until its constit-

uents reach equilibrium values. Then, we simulate persist-

ent stimulation by turning on the reaction, IKKn→ IKKa

with a rate TR*K1 and a non-zero constant value of TR.

The ChemCell software package is used to carry out part

of numerical simulation [41].

Latin hypercube sampling (LHS)

LHS is a constrained Monte Carlo sampling scheme.

Monte Carlo sampling is a commonly-used approach for

assessing the uncertainty of a computational model. By

sampling repeatedly from the assumed joint probability

function of the input variables, and evaluating the response

for each sample, the distribution of responses of the model

can be estimated. This approach yields reasonable estimates

for the distribution of responses, but a large number of

samples is needed if there are many input variables, i.e. a

high-dimensional input space. A large sample size can be

computationally expensive, which motivates an alternative

approach, namely LHS. LHS yields more precise estimates

of the response distribution with a smaller number of sam-

ples from high-dimensional input spaces [42]. Suppose that

the model has K kinetic rate variables and we want N sam-

ples, where a sample is a set of K values, one per variable.

LHS first selects N different values for each of the K vari-

ables, by dividing the range of each variable into N non-

overlapping intervals on the basis of equal probability. One

value from each interval is selected randomly, in accord

with the assumed probability density within the interval.

The N values for the first kinetic rate variable are then paired

in a random manner (equally likely combinations) with the

N values of the second variable. These N pairs are combined

in a random manner with the N values of the third variable

to form N triplets, and so on, until N K-tuples are formed.

Each K-tuple becomes a set of kinetic rate parameters for

one replicate within the statistical ensemble of N replicates.
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