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I. ABSTRACT

Many strong silicon physical unclonable functions (PUFs)

are known to be vulnerable to machine-learning attacks due to

linear separability of the output function. This significantly lim-

its their potential as reliable security primitives. We introduce

a novel strong silicon PUF based on the exponential current-

voltage behavior in subthreshold region of FET operation which

injects strong nonlinearity into the response of the PUF. The

PUF, which we term subthreshold current array (SCA) PUF,

is implemented as a pair of two-dimensional n × k transistor

arrays with all devices subject to stochastic variability operating

in subthreshold region. Our PUF is fundamentally different

from earlier attempts to inject nonlinearity via digital control

techniques, which could also be used with SCA-PUF. Voltages

produced by nominally identical arrays are compared to produce

a random binary response.

SCA-PUF shows excellent security properties. The average

inter-class Hamming distance, a measure of uniqueness, is

50.2%. The average intra-class Hamming distance, a measure of

response stability, is 4.17%. Crucially, we demonstrate that the

introduced PUF is much less vulnerable to modeling attacks.

Using machine-learning techniques of support-vector machine

with radial basis function kernel and logistic regression for best

nonlinear learnability, we observe that “information leakage”

(rate of error reduction with learning) is much lower than for

delay-based PUFs. Over a wide range of the number of observed

challenge-response pairs, the error rate is 3−35X higher than for

the delay-based PUF. We also demonstrate an enhanced SCA-

PUF design utilizing XOR scrambling and show that it has an

up to 30X higher error rate compared to the XOR delay-based

PUF.

II. INTRODUCTION

Many electronic systems require solutions for security,

unique identification, and authentication. As a low cost solution,

physical unclonable functions (PUFs) have been proposed [1],

[2]. PUFs are pseudo-random functions that exploit the ran-

domness inherent in the scaled CMOS technologies to generate

random output strings. In response to an input challenge a PUF

generates a binary response. Because of the randomness of the

input-to-output mapping, different PUFs generate a different

response for the same challenge. The set of challenge-response

pairs (CRPs) defines the behavior of a PUF and provides an

ability to uniquely identify it.

Multiple realizations of PUFs have been proposed [1], [3]–

[9]. The key distinction among different PUF constructions is

between strong and weak PUFs. The distinction is based on the

rate at which the number of CRPs grows with the size of the

physical realization of a PUF [10]. Weak PUFs are characterized

by a small number of CRPs [3], [6]. Strong PUFs are systems

with a large number of CRPs, and in an ideal case, the CRP

set size grows exponentially with the size of the PUF. The

exponential size of the CRP set makes it impossible to record

the responses for a PUF of a reasonable size.

Strong PUFs are essential for public authentication security

protocols in which the number of CRPs needs to be large such

that the adversary cannot record all CRPs even when in physical

possession of a PUF. However, for a strong PUF to be an

effective security primitive, the CRPs need to be unpredictable:

given a certain set of known challenge-response pairs, it should

not be possible to predict the unobserved CRPs with any

reasonable probability. If that is not the case, an adversary can

stage an attack based on building a model of the PUF. A number

of strong PUFs have been proposed in the literature over the

years. However, the unpredictability of responses in published

strong PUFs has been shown to be limited. The earliest example

of a strong silicon PUF is the arbiter-based PUF proposed in

[1]. It exploits variation in path delays between gate stages in

two parallel propagation paths to generate a binary response

by using an arbiter. The arbiter-based PUF has been shown

to be vulnerable to model-building attacks [11], [12]. In such

attacks, machine-learning techniques, such as regression, neural

networks and support vector machines, are used to construct

a model of the internal parameters of a PUF based on the

observed instances. Attempts to remediate this vulnerability

resulted in several variants of the arbiter-based PUF [4], [5].

These approaches attempt to improve unpredictability by using

digital techniques. In [8], an XOR gate is used to scramble

outputs of two parallel arbiter-based PUFs. In [5], a feed-

forward path is introduced within the arbiter-PUF circuit as

a way to inject nonlinearity. Unfortunately, recent work [11]

shows that the above-cited extensions of arbiter-based PUF

are also vulnerable to model-building attacks, even though the

improved versions require a larger number of observed CRPs

for building a model.

This paper introduces a novel strong silicon PUF based on

the essential nonlinearity of terminal current-voltage behavior

of field-effect transistors (FETs) at the nanometer scale. The
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fundamental principle is reliance on the subthreshold regime of

the FET operation, where current is an exponential function

of threshold voltage, which exhibits strong random intrinsic

variability. An additional nonlinearity is due to the exponential

dependence of threshold voltage (1) on drain-to-source voltage

due to drain-induced barrier (DIBL) effect, and (2) on body-

to-source voltage due to body effect. Both of these are used to

create coupling between FETs in the array, further improving

nonlinearity and unpredictability. The new PUF shows excellent

security properties.

Earlier attempts to use subthreshold operation in PUF design

have focused on power minimization and did not focus on its

potential to create strong nonlinearity and higher unpredictabil-

ity. In [13], variable current sources are arranged in parallel

combinations and selectively combined. The binary comparison

is current-based and since current summation is linear this PUF

also has the problem of linear separability. Single-transistor

leakage current [14], [15] and saturation current in [3] are used

to implement a weak PUF, thus avoiding the need to worry

about unpredictability.

III. NEW SOURCE OF NONLINEARITY: FET

SUBTHRESHOLD CURRENT

We develop a principled approach to significantly improve

PUF resilience against machine-learning attacks. It has been

recognized that the limitations of arbiter-based PUFs in terms

of unpredictability are due to their linear additive dependence

on partial delays in generating a response. Machine-learning

methods are particularly effective in constructing models of

such functions. Machine-learning algorithms for classification

are tasked with classifying an object given a set of its attributes.

In supervised learning setting, the algorithm is first given a set

of training examples in which both the attributes and the label

is available. If the space being learned is naturally linearly

separable, it is easy for the learning algorithm to derive a

classification rule with low prediction error.

Unfortunately, the known silicon realizations of PUFs have

utilized output functions that are linear, or nearly linear, in

the base random variables. In fact, delay-based functions are

intrinsically poorly suited for this task as (1) segment delay

is near-linear in threshold voltage, and (2) path delays are

naturally additive, and, thus, linear, in segment delays. Most

strong silicon PUFs known thus far have been derived from

the original work on arbiter PUFs for which the output can

be described as a linear function of the delays of individual

stages, as formalized in [16]. Attempts to introduce nonlinearity

in the arbiter-based PUF, such as using feed-forward paths

or XORing the outputs introduce nonlinearity through digital

means. Empirical results of model-building attacks show that

the added nonlinearity helps but is insufficient in that low

prediction errors can still be achieved. A distinct limitation of at

least some digital techniques, those based on XORing outputs,

is that PUF instability increases along with the improvement in

unpredictability [11].

In order to aid the discussion, we introduce a formal distinc-

tion between the ways of injecting nonlinearity. For most silicon

PUFs, a random bit is produced by evaluating sgn(f(x)−f(y)),

where x, y are vectors of realizations of a random physical

parameter. Function f(·) maps the underlying realizations of

physical parameters, e.g. threshold voltages, to a measurable

circuit-level quantity, e.g. delay or voltage. If function f(·) is

expressible entirely in terms of real-valued functions we call

it a fully continuous random function (FCRF), otherwise we

call it a mixed continuous-discrete random function (MCDRF).

With that distinction in place, we point out that the above digital

techniques of achieving nonlinearity still use delay races as a

building block for PUFs with the underlying mechanism of gen-

erating pseudo-random behavior remaining linear. Thus, both

the XOR PUF and the feed-forward PUF start with a “native”

FCRF-based PUF and ultimately use the mixed continuous-

discrete random function to achieve nonlinearity. Given that

the known digital techniques can be equally applied to other

underlying (“native”) FCRF-based PUFs, the question becomes:

can strong silicon PUFs utilizing fully continuous random

functions be constructed that are significantly more secure than

the FCRF-based delay PUF? We provide an affirmative answer

in this paper.

The key for engineering a secure silicon PUF is identifying an

output function that would be nonlinear in random variables. We

introduce a highly unpredictable PUF that uses the strongly non-

linear I-V terminal dependencies to generate PUF responses. Its

central feature is that it moves away from the delay/digital im-

plementation paradigm towards the current/analog one, thereby

realizing the necessary degree of nonlinearity over a space of

permutations. Because it doesn’t rely on digital techniques for

injecting the nonlinearity, it does not compromise the stability

in the output response to environmental variations.

The output function should ideally have two properties:

(1) be nonlinear in random parameters, and (2) introduce the

coupling effect in which two or more random variables interact

in producing the output. Both of these properties are enabled

if the binary output is produced by comparing two voltages

produced by a suitably arranged network of FETs operating in

subthreshold region. The key to our analysis is the equation

relating the subthreshold current to FET terminal voltages [17]:

Ids = IS10
Vgs−Vth(Vds,Vbs)

S (1− 10
−nVds

S )

= IS10
Vgs−Vth+λVds+γVbs

S (1− 10
−nVds

S ) (1)

where Ids is the drain-to-source subthreshold current, IS =

2nμCox
W
L

(

KT
q

)2

is the nominal current, Vgs is the gate-to-

source voltage, Vth is the transistor threshold voltage, Vds is the

drain-to-source voltage, Vbs is the body-to-source voltage, λ,

γ, and n are the coefficients of drain-induced barrier lowering

and body-bias, and the subthreshold coefficient respectively

and S = nkT
q
ln(10) is the subthreshold slope factor. Cru-

cially, the current is exponentially dependent on the threshold

voltage Vth. This is important because Vth exhibits large and

spatially-uncorrelated variability due to random dopant fluctu-

ation (RDF). In nanometer scale CMOS devices, RDF is very

significant and grows with transistor scaling [17], [18]. Equation

1 also captures the impact of physical mechanisms of drain-

induced barrier lowering and of body effect which lead to a
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dependence of Vth on Vds and Vbs. In the second part of the

equation, we use a linear expansion of Vth in terms of Vds and

Vbs to enable closed-form analysis.

IV. SUBTHRESHOLD CURRENT ARRAY PUF

A. Array PUF Architecture

We now present a transistor-level realization of a subthresh-

old current array PUF (SCA-PUF) that exploits the above

current behavior to construct a highly secure strong PUF. Figure

1 depicts the overall architecture of the SCA-PUF. The PUF is

implemented as a pair of two-dimensional transistor arrays with

all devices subject to stochastic variability operating in sub-

threshold region. The 2D organization allows to maximize the

reliability and security properties of the PUF, as demonstrated

by experiments.

Each PUF consists of two nominally identical arrays. The

array schematic is shown in Figure 2. The array is composed

of k columns and n rows of a unit cell. We use the term

“stochastic” transistor to refer to a device with high amount

of threshold voltage variability. The unit cell consists of a

stochastic subthreshold nFET, which is a transistor with a highly

variable threshold voltage that always operates in the subthresh-

old region. A non-stochastic switch transistor is arranged in

parallel to the stochastic FET. The non-stochastic transistor M0
acts as a load device and operates in the subthreshold region (its

gate terminal is tied to ground). At the bottom of each column

of cells is a footer transistor Miy controlled by Ci1Ci2 . . . Cin.

Its role is to ensure that there is never a low-impedance path to

ground from Vout.

Both array blocks are driven with the same set of control

inputs and thus in the absence of variability produce identical

voltages. The randomness of transistor threshold voltages leads

to the differences in two output voltages. The binary response

is generated by comparing the output voltages produced by the

two arrays via a comparator. The size of the CRP set is 2kn,

making it a strong PUF.

We now describe in greater detail the building block of the

array, the unit cell. In each cell, which we identify using a

column index i and a row index j, an NMOS transistor Mij
always operates in the subthreshold region: its gate terminal

is tied to ground. An NMOS transistor Mijx, in parallel with

Mij, acts as a switch transistor. Careful sizing of both devices

is essential for correct operation. Two requirements need to

be satisfied. First, only transistor Mij is subject to significant

variation of threshold voltage due to random dopant fluctuation.

This is achieved by sizing transistors Mij to their minimum

size to maximize their threshold voltage variability according

to Pelgrom’s model [19]. Second, the subthreshold current

through the switch transistor Mijx needs to be negligible

compared to the subthreshold current through Mij. At the

same time, Mijx needs to have small on-state resistance. These

requirements can be met, for example, with W = 10Wmin

and L = 10Lmin. Because the nominal current IS in the

subthreshold region is exponentially dependent on channel

length Ids(Mijx)/Ids(Mij) ≈ 0 when Cij = 0. The body

terminal of all the transistors is grounded.

0/1

Comparator

Fig. 1: PUF architecture.

Fig. 2: Circuit schematic of the 2D subthreshold current array.

The role of the switch transistor is to set Vds of the stochastic

transistor to zero. In this case, the impact of the stochastic

transistor is effectively “removed” in that its contribution to the

branch current is eliminated. At the same time, when the switch

transistor is off, because its subthreshold current is negligible

compared to the stochastic transistor, its contribution to the total

current can be ignored. Depending on the control input, the

stochastic transistor therefore is either part of the pull-down

network and contributes current that depends on its threshold

voltage, or does not impact total current flowing through a

branch. Thus, each branch can have 2n current values.

B. Analysis of Array Nonlinearity

The principle feature of the circuit we propose is that it has

a highly nonlinear boundary between the regions of PUF 1-

outputs and 0-outputs in the kn-dimensional space of Vth. In

this section, we more formally analyze the nonlinearity of the

SCA-PUF. To enable analytical treatment, we derive equations

for two special cases: (a) a single-column array, and (b) a single-

row array. We aim to bring out the form of the nonlinearity

involved in each of the two special cases (a) and (b). The

two special cases of the 2D array exhibit distinct forms of

nonlinearity which, when combined within a 2D array structure,

form a rich nonlinear space.

2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) 15
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Fig. 3: Response nonlinearity in the single-row array: nonlinearity of
additive subthreshold current behavior.

First, we consider the single-row (parallel-only) array with

two columns (n = 1, k = 2). To be able to derive a closed-form

equation relating Vout to threshold voltages of two “stochastic”

transistors, we assume that Vds >100 mV. For n = 1 we

can also ignore the impact of the body-bias effect. With that,

Equation 1 can be written as:

log

(

Ids
IS

)

=
Vgs − Vth + λVds

S
(2)

For convenience, we use a simplified notation where

Vth,M0 = V0 and similar for others. Solving for Vout,

Vout =

(

S

1 + λ

)

[log(IS) + λVdd − V0 − log(I0)] (3)

Applying Kirchhoff’s Current Law at node Vout, I0 = I11 +
I21, where I11, I21 are the currents through M11 and M21,

and describing these currents using Equation 1, we can write

an equation for the terminal voltage Vout:

Vout =

(

S

1 + λ

)[

λVdd

S
−

V0

S
−

log

(

10
−V11+λVout

S + 10
−V21+λVout

S

)]

(4)

Equation 4 is a transcendental equation. The key to our

construction is the nonlinearity of Vout in terms of values of

threshold voltages of transistors M11 and M21. The nonlin-

earity of Equation 4 is explored in Figure 3.

Next we consider the single-column array (k = 1) with only

two rows (n = 2). It represents a subthreshold current array

with series-only “stochastic” transistors M11 and M12. Using

Equation 1 for transistors M0, M11 and M12 respectively, and

treating the source (drain) of M11 (M12) as an intermediate

node Vx, we get:

log

(

I0
IS

)

=
−Vout(1 + λ)− V0 + λVdd

S
+

log
(

1− 10
−nVdd+nVout

S

)

(5)

log

(

I11
IS

)

=
−Vx(1 + λ)− V11 + λVout

S
+

log
(

1− 10
−nVout+nVx

S

)

(6)
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Fig. 4: Response nonlinearity in the single-column array: nonlinearity
of series-connected subthreshold FETs.
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Fig. 5: Response nonlinearity in the 2× 2 SCA.

log

(

I12
IS

)

=
−V12 + λVx

S
+ log

(

1− 10
−nVx

S

)

(7)

We also know that I0 = I11 = I12. Unfortunately, expressing

Vout in closed form appears infeasible. By simultaneously solv-

ing the system of Equations 5, 6 and 7 numerically, we generate

Figure 4 and observe the nonlinearity of the single-column

(series-only) array topology. The nonlinearity is significant.

Notably, while the nonlinear separating surface of the parallel-

only array is convex, the surface separating 0- and 1-regions

in the series-only array is concave. Interestingly, when we

numerically solve the case of the 2×2 array, we find the overall

non-linearity is still convex, see Figure 5.

V. ANALYSIS OF PUF SECURITY PROPERTIES VIA

TRANSISTOR-LEVEL SIMULATIONS

The performance of the proposed SCA-PUF was simu-

lated using SPICE, the industry-standard transistor-level circuit

simulator, in a 45 nm technology node using the predictive

technology models [20]–[22]. The source of randomness is in

Vth variability assumed to be caused by random dopant fluctu-

ation and therefore to be spatially uncorrelated. The threshold

voltages are assumed to follow a normal distribution with a

standard deviation of 40 mV, a value consistent with ITRS [23].

There are several commonly used metrics that quantify the

goodness of a PUF [24]–[26]. The inter-class Hamming distance

(HD) is a measure of the ability to differentiate two different

PUFs under the same input. Ideally, each PUF produces an

16 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)
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(a) Inter-class HD
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(b) Intra-class HD

��� ��� ��� ��� ��� ���

����

����

����

����

����

�

�

�
��
�
�
�
�
�
�
	

�	


�
�
�
��
�
�
�
�

���������	

(c) Uniformity

Fig. 6: Inter-class, intra-class HD and distribution of uniformity metric for a 64-bit SCA-PUF.

entirely unique response, and thus the ideal inter-class HD

normalized to the total number of bits in the output is 0.5.

Intra-class HD is the measure of the reliability of a PUF and

quantifies how much response of a given PUF changes under a

different set of environmental conditions and noise. Ideally, the

intra-class HD is 0. Another useful measure of the goodness

of a PUF is the uniformity metric defined by [24]. In an ideal

PUF, the fraction of challenges that produces a response of

1 and of 0 should be equal. A useful, and closely, related

metric is randomness, as defined by [26], which also quantifies

uniformity but in a min-entropy sense. Reliability of the PUF

responses across different environmental conditions was studied

by carrying out transient noise simulations to account for

thermal noise under supply voltage variation of 10% from the

nominal value of 1.2V and temperature ranging from −55 ◦C
to 125 ◦C.

Figure 6 shows the histograms of the normalized intra-class,

inter-class HDs and uniformity extracted for a 64-bit (8 × 8
array) SCA-PUF from 10000 randomly chosen CRPs. The mean

and the standard deviation values are summarized in Table I.

We observe that the mean inter-class HD is excellent and is

practically indistinguishable from 0.5. The mean intra-class HD

is 4.17% which is excellent given that the circuit was simulated

under the “military” range of operating conditions.

TABLE I: Average inter-class and intra-class Hamming distance,
uniformity, and randomness for 3σVos = 1 mV for 64-control input
SCA-PUF (8× 8 array).

Parameter Mean Standard deviation

Inter-class HD 0.502 0.119

Intra-class HD 0.041 0.122

Uniformity 0.510 0.224

Randomness 0.556 0.248

Model-building attacks are the tool with which an adversary

may attempt to overcome the authentication guarantees offered

by PUFs. Therefore, the ability of a PUF to withstand model-

building attacks has been suggested as the ultimate measure of

their security [11]. These attacks rely on the power of machine-

learning algorithms to model the inner parameters of PUFs

through observation of a small set of CRPs. In this paper,

the effectiveness of machine-learning attacks was investigated

using a support vector machines (SVM) and logistic regression

algorithm. Open-source LIBSVM and LIBLINEAR packages

were used [27], [28]. A set of challenge inputs, along with

their output responses, is used as a training set to estimate
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Fig. 7: Classification error from modeling a 16-bit PUF via machine
learning attacks.

the PUF model parameters. The estimated model is used to

compute the predicted output response for the non-training

challenge inputs and the prediction error rate ǫ is measured

for SVM and logistic regression and then the one with least ǫ
is chosen. The arbiter PUFs is modeled using the additive linear

delay model [4], [16]. The procedure is carried out for several

training sample sets of different size across 100 PUF instances.

Figure 7 shows the comparison of prediction error vs. training

set size for the plain and 2-XOR versions of 16-bit arbiter

and SCA PUFs. To maximize the learning ability of the SVM

algorithm, we employed a nonlinear radial basis function (RBF)

kernel. Using a nonlinear kernel makes SVM more effective

in nonlinear classification problems. We further used a 5-fold

cross-validation scheme to select the best kernel parameters.

The results indicate that the plain SCA-PUF is significantly

more secure than the delay-based PUF. The prediction error is

more than an order of magnitude higher than for the arbiter

PUF.

As we argued earlier, the digital techniques of injecting

nonlinearity can be thought of as qualitatively distinct from

the behavior of the “native” PUF. Figure 7 illustrates that the

digital techniques can also be applied to SCA-PUF to further

enhance its native nonlinearity and security. The 2-XOR version

of the SCA-PUF shows higher prediction error compared to its

delay-based counterpart especially for larger training set sizes.

Another practical aspect that we investigate is the influence of

comparator characteristics on the overall PUF behavior. Offset

voltage effectively determines the resolution of the comparator

and it may also impact the security properties of the SCA-PUF.

2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) 17



� �� �� �� ��

���

���

���

���

���

���

���

���������	�
���
���

�����

��
��������

���������

�����
���

Fig. 8: Dependence of randomness, inter HD, and intra HD on offset
voltage spread.

We studied the impact of offset voltage on PUFs properties by

assuming it follows a normal distribution with a mean of 0
mV and a standard deviation σV os of several mVs. Figure 8

shows the effect of offset voltage on the mean randomness,

mean inter HD and mean intra HD metrics. The inter-class

Hamming distance was found to remain nearly-constant around

0.5. Based on this exploration, we find that a comparator

that has an offset voltage of up to σV os = 8 mV would be

acceptable but a wider offset distribution would significantly

deteriorate randomness and intra class HD. Achieving this

using conventional strong-arm sense amplifier topology, e.g.,

[29], would require exceedingly high area. For that reason, we

designed a comparator using an offset cancellation strategy [30],

which allows a very small, and entirely sufficient, offset spread

of 3σV os = 1 mV. At this low offset spread, the metrics of PUF

security performance are not affected. The power consumption

of a 64-bit SCA-PUF, estimated through simulation, is 108μW.

The area is estimated to be 0.016 mm2. The circuit is capable

of operating at a frequency of 100 MHz.

VI. CONCLUSION

We introduced a novel strong silicon PUF based on the

essential nonlinearity of responses produced by the physics

of field-effect transistors (FETs) at the nanometer scale. The

PUF shows excellent security properties which are superior to

those reported for other strong PUFs. We demonstrate that the

introduced PUF is less vulnerable to modeling attacks and that

its “information leakage” is significantly lower than for delay-

based strong PUFs.
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