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Novel structural co-expression 

analysis linking the NPM1-

associated ribosomal biogenesis 

network to chronic myelogenous 

leukemia
Lawrence WC Chan1, Xihong Lin2, Godwin Yung2, Thomas Lui1, Ya Ming Chiu1, 

Fengfeng Wang1, Nancy BY Tsui1, William CS Cho3, SP Yip1, Parco M Siu1, SC Cesar Wong1 & 

Benjamin YM Yung1

Co-expression analysis reveals useful dysregulation patterns of gene cooperativeness for 

understanding cancer biology and identifying new targets for treatment. We developed a structural 

strategy to identify co-expressed gene networks that are important for chronic myelogenous 

leukemia (CML). This strategy compared the distributions of expressional correlations between 

CML and normal states, and it identified a data-driven threshold to classify strongly co-expressed 
networks that had the best coherence with CML. Using this strategy, we found a transcriptome-wide 

reduction of co-expression connectivity in CML, reflecting potentially loosened molecular regulation. 
Conversely, when we focused on nucleophosmin 1 (NPM1) associated networks, NPM1 established 

more co-expression linkages with BCR-ABL pathways and ribosomal protein networks in CML than 

normal. This finding implicates a new role of NPM1 in conveying tumorigenic signals from the BCR-

ABL oncoprotein to ribosome biogenesis, affecting cellular growth. Transcription factors may be 
regulators of the differential co-expression patterns between CML and normal.

Gene co-expression networks can be used to investigate the inter-gene associations in expression pro�les, 
re�ecting functional linkages and potential coordinate regulations. Studies in recent years have proposed 
pairwise and structural analysis of co-expression1–9. �e majority of these studies identify di�erential 
co-expression patterns between disease and healthy states based on the correlation coe�cients among 
genes4. For pairwise analysis, two genes are linked if their correlation exceeds a speci�c threshold. To 
date, the existing approaches for optimizing the threshold aim to control the false discovery rate (FDR) 
or minimize the network complexity1,5. An optimal coherence of co-expression patterns with disease has 
not been achieved.

�e co-expression structure is de�ned as the distribution of co-expression levels for a group of 
genes over a state. Structural analysis seeks to identify a group of genes whose co-expression structure 
in one state (e.g., neoplastic subjects) is signi�cantly di�erent from that in another state (e.g., normal 
subjects)8. For instance, gene set co-expression analysis (GSCA) was introduced to test for di�erential 
co-expression patterns between two states in a gene set based on gene ontology (GO) or a pathway using 
a dispersion index8. Signi�cant di�erential co-expression patterns were identi�ed by estimating the FDR 
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a�er evaluating the exhaustive permutations of the samples8. Such an approach can indicate whether 
the observed di�erential co-expression patterns in a set of genes are obtained by chance. However, the 
approach does not provide information about which individual gene pairs in the set are strongly or 
weakly co-expressed and which network connections are altered because of the disease.

Here, we propose a statistical and graphical strategy for analyzing and classifying all individual gene 
pairs in a set of genes based on the di�erences between the co-expression structures of neoplastic and 
normal states (Fig. 1). For validation, we consider chronic myelogenous leukemia (CML) as a paradigm 
for targeted therapy and analyze a publicly available gene expression data of bone marrow mononuclear 
cells that have been collected from nine newly diagnosed CML patients and eight healthy volunteers. 
Brie�y, CML is characterized by the Philadelphia (Ph) chromosome, which results from t(9;22)(q34;q11) 
balanced reciprocal translocation and leads to the formation of the BCR-ABL oncogene. �e signal-
ing pathways activated by BCR-ABL include the mitogen-activated protein kinase (MAPK) pathway, 
Janus-activated kinase (JAK)–STAT pathway and phosphoinositide 3-kinase (PI3K)/AKT pathway. All 
three activations lead to aberrant protein synthesis and deregulated cell growth10. Although conventional 
tyrosine kinase inhibitors (TKI) that target the TK activity of BCR-ABL oncoprotein are the �rst choice 
of treatment for CML, the drug responses are generally short-lived, and drug resistance remains a signi�-
cant clinical problem. Hence, our understanding of CML is still rudimentary, and a better understanding 
of various signaling pathways involved in its pathogenesis may encourage the discovery of potential 
targets for a more e�ective treatment strategy. Our proposed method enhances the existing approach 
of structural co-expression analysis by identifying potential drug targets whose cooperativities on the 
BCR-ABL pathway are potent.

Nucleophosmin 1 (NPM1), also known as nucleolar phosphoprotein B23, is an important protein in 
the nucleophosmin/nucleoplasmin family of nuclear chaperones because NPM1 has deregulated expres-
sion in solid tumors and mutation or translocation in hematological malignancies11. NPM1 is also a 

Figure 1. Overview of the proposed co-expression structural analysis strategy, experimental validation 

and functional annotation analysis. �e colours of the points in the co-expression galaxy correspond to 
those of the lines in the co-expression networks. Red and blue colours represent neoplasm-speci�c and 
normal-speci�c doublets respectively. �e red ellipse in functional annotation embraces a set of neoplasm-
speci�c doublets as its items.
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versatile protein that participates in numerous cellular processes critical to cell growth and proliferation, 
including ribosomal RNA (rRNA) processing, ribosome biogenesis, and nuclear export of ribosomal sub-
units12,13. As a mitogen-induced protein, it responds to signals from the MAPK and PI3K/AKT pathways 
that are initiated by oncogenic Ras, promoting ribosome biogenesis and protein translation. �is evi-
dence suggests that NPM1 is strongly associated with the MAPK and PI3K/AKT pathways for ribosome 
biogenesis, and it may play a critical role in 1) monitoring the stress experienced by the cell and 2) modu-
lating the molecular mechanisms related to cell growth, proliferation and survival. To test this hypothesis, 
we applied the proposed method to quantify and compare the state-speci�c associations of NPM1 gene 
expression with gene expressions from the combined BCR-ABL/MAPK/PI3K/AKT set of pathways. To 
further explore the role of NPM1 in ribosome biogenesis, we analyzed the co-expression network of 
93 NPM1-associated genes that were de�ned in the Molecular Signature Database (MSigDB) as a gene 
cluster covering most of the ribosomal proteins14. Cell line experiments were performed to validate 
the strong co-expressions with NPM1, termed NPM1-doublets. Using the Prediction of Transcriptional 
Regulatory Modules (PReMod) database15, we identi�ed transcription factors (TFs) that concurrently 
target the NPM1-doublets and elucidated their e�ect on co-expression patterns. Finally, we performed 
functional annotation analysis to decipher the underlying NPM1-associated mechanism in CML.

Results
Global co-expression structure of CML. We studied the co-expression structure of CML using a 
microarray dataset from Diaz-Blaco et al. (GEO accession number GSE5550)16. �e dataset consisted of 
a Caucasian cohort of nine untreated Ph+  CML patients and eight healthy controls. Total RNA extracted 
from CD34+  bone marrow mononuclear cells was analyzed by A�ymetrix HG-Focus GeneChips, which 
interrogated 8,537 well-characterized human genes. �e raw expression intensities were normalized using 
variance stabilizing transformation (VST), an algorithm supported by the a�y package of ‘R’ functions 
integrated into Bioconductor16,17.

We constructed the transcriptome-wide co-expression structure of CML using expression data from 
the CML patients. �e structure consists of Pearson correlation coe�cients (r) of all possible unique 
pair combinations of the 8,537 genes. �is resulted in a pro�le of the r values of 36,435,916 gene pairs 
(doublets).

We �rst investigated whether CML patients had a co-expression structure that was di�erent from 
healthy individuals. Hence, we constructed another co-expression structure using expression data from 
the healthy controls. A signi�cant di�erence in the empirical distributions of |r| was observed between 
the CML and normal co-expression structures (two-sample Kolmogorov-Smirnov test, D  D0.05, i.e., 
P <  0.05 where D0.05 is the empirical threshold). �e result suggests that there was a global disturbance 
of the co-expression connections in CML.

We then sought to classify the doublets into those that were strongly or weakly co-expressed. 
Conventionally, a �xed P-value cuto� was used to de�ne the presence or absence of co-expression 
between the two gene members of a doublet. However, such a method statistically controls the false 
co-expression discovery of individual doublets only, but it ignores the quantitative measure of the coher-
ence of the doublets to either disease or normal. Here, we used a data-driven approach to determine a 
dataset-speci�c threshold of the r value for classifying strongly or weakly co-expressed doublets that were 
relevant to the CML and normal samples in the dataset. As shown in Supplementary Fig. 1, the cumula-
tive distributions of |r| were maximally di�erent between CML and normal at a threshold (Ĉ) of 0.400. 
Using this threshold, a total of 12 million and 23 million strongly co-expressed doublets were identi�ed 
in CML and normal, respectively (Supplementary Table 1). As the prevalence of strongly co-expressed 
doublets was signi�cantly reduced in CML (log (OR) =  −0.566, P <  0.001), we suggested that CML 
might be related to a transcriptome-wide breakdown of co-expression regulation.

A co-expression galaxy was formed by sketching the scatter plot of the r values of the normal state 
against CML. By partitioning the co-expression galaxy with the threshold, we identi�ed two important 
sets of co-expressed doublets that had strong co-expression in CML but not normal (CML-speci�c dou-
blets) and vice versa (normal-speci�c doublets) (Supplementary Fig. 2). �ese doublets are potentially 
relevant to the disease, and they would be of biological and clinical value.

Over co-expression of NPM1 with BCR-ABL relevant pathways. To further determine the 
biological implication of the doublets identi�ed by global analysis, we examined the doublets formed 
between NPM1 and gene members of the MAPK and PI3K/AKT pathways, which are relevant to the 
oncogenic BCR-ABL fusion protein. We found that NPM1 had established ten CML-speci�c doublets, 
and there were only two normal-speci�c doublets, with the pathways (Fig. 2). Based on this observation, 
we speculated that BCR-ABL and its relevant pathways might be falsely over-connected with NPM1. 
Additional cellular growth and proliferation pathways may in turn be activated through the mediation 
of NPM1 in CML.

CML-specific co-expression of NPM1 with the ribosomal protein network. �e over co- 
expression relationship between NPM1 and the BCR-ABL pathways prompted us to systematically inves-
tigate the NPM1-focused co-expression structure. Ninety-three genes in the neighborhood of NPM1 were 
selected from the Molecular Signature Database (GCM_NPM1 gene set)14. CML and normal co-expression 
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structures were constructed as described above using these 93 genes, including NPM1, resulting in r 
values of 4,278 doublets for each of the structures (Supplementary Fig. 3). �e two co-expression struc-
tures were signi�cantly di�erent from one another (two-sample Kolmogorov-Smirnov test, D  D0.05, 
i.e., P <  0.05), with a data-driven threshold of Ĉ =  0.252. With reference to this threshold, the preva-
lence of strongly co-expressed doublets was signi�cantly increased in CML compared to normal (log 
(OR) =  0.227, P <  0.001) (Supplementary Table 2). It is worth noting that this trend of a CML-associated 
increase of NPM1 co-expression is the opposite of that found in the transcriptome-wide co-expression 
structure in which a general reduction of connectivity was observed in CML (Supplementary Table 1). 
�e �nding indicates that NPM1 may mediate various false connections of the originally discrete net-
works, which may be oncogenic if they are synergistically activated in CML.

In total, we identi�ed 11 normal- and 69 CML-speci�c doublets from the co-expression structures, 
which include 6 and 21 NPM1-doublets respectively (Fig. 3). All of the 21 CML-speci�c doublets were 
validated by real-time quantitative PCR with the use of the K562 CML cell line. Upon resveratrol treat-
ment, the level of NPM1 mRNA was signi�cantly decreased compared with those treated with the vehi-
cle control (DMSO) (t-test, P <  0.05) (Supplementary Fig. 4). Notably, signi�cant reductions were also 
observed in the expression levels of the 21 mRNAs that were co-expressed with NPM1 (t-test, P <  0.05 
for all genes) (Supplementary Fig. 4). According to the co-expression structure analysis, these 21 mRNAs 
were all positively correlated with NPM1 in CML (Fig. 3b). �e same trend of resveratrol-repression for 
NPM1 and its co-expressed mRNAs con�rmed the structural co-expression �nding shown in Fig. 3.

We inspected the biological function of the normal- and CML-speci�c NPM1-doublets (Fig. 3) and 
found that three RNAs coding for ribosomal protein (RP), i.e., ribosomal protein L10a (RPL10A), ribo-
somal protein L31 (RPL31) and ribosomal protein L36a (RPL36A), were only present in CML-speci�c 
doublets and were not present in normal-speci�c doublets. �is observation is interesting because NPM1 
protein is a well-recognized key player in ribosome biogenesis and transport11. �e whole NPM1-focused 
co-expression structure involved a total of 33 RP genes. We further retrieved the co-expression informa-
tion of these RP genes and found that RPL10A, RPL31 and RPL36A were co-expressed with a relatively 
large network of 23 RP mRNAs (Fig. 3b). Meanwhile, for normal-speci�c doublets, there was only a small 
network of 6 RP genes, and none of them were co-expressed with NPM1 (Fig. 3a). Our �nding suggests 
that a co-expression network of RP genes may be established during CML development, and the network 
may further connect to NPM1 through the hubs of RPL10A, RPL31 and RPL36A. �e aforementioned 

Figure 2. BCR-ABL related MAPK and PI3K/AKT pathways and their co-expression with NPM1. CML-
speci�c and normal-speci�c NPM1-doublets are represented by red solid lines on the right and green dashed 
lines on the le� respectively.
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CML-speci�c doublets were statistically examined using the one-sample t-test. All the discovered con-
nections were found to be reliable (FDR ≤  0.07, Supplementary Table 3). As this work focuses on explor-
ing the synergistic perturbation of the structural co-expression pro�le for CML, the paired t-test was 
performed, indicating a signi�cant di�erence in the Fisher-transformed r between the CML and normal 
states over all of these CML-speci�c doublets (t =  17.52, p =  6.49 ×  10−27, Supplementary Table 4). �ese 
�ndings imply that the connections between NPM1 and RP genes are synergistically promoted in CML 
states compared with normal states.

We mapped 25 of the 26 CML-speci�c RP genes (Fig.  3b) onto the KEGG “Ribosome” network of 
MSigDB14. Notably, the NPM1-coexpressed RPL10A, RPL31 and RPL36A were the 1st, 3rd and 4th top hub 
genes of the KEGG network (Supplementary Fig. 5). �is �nding further illustrates the controlling role of 
RPL10A, RPL31 and RPL36A in ribosome biogenesis. �eir co-expression with NPM1 possibly transfers 
the oncogenic signal from the BCR-ABL pathways (Fig.  2) to aberrant ribosome biogenesis, a�ecting 
protein synthesis and cell growth in CML.

In addition to the ribosome, the normal- and CML-speci�c NPM1-doublets were in fact associ-
ated with a total of 20, 25 and 2 functional annotations of the GeneSetDB (GO)18,19, Reactome path-
way database20, and MSigDB (KEGG)14, respectively (Fisher’s exact test, Bonferroni adjusted P <  0.05) 
(Supplementary Tables 5-7). �eir association with CML would also be worth exploring in the future.

Transcription factors as regulators of co-expression. One of the biological mechanisms that coor-
dinate gene co-expression operates through TFs. Hence, for each strongly co-expressed NPM1-doublet 
(Fig.  3), we predicted the responsible TFs from the PReMod database15 (Supplementary Table 8). We 
found that the predicted TFs that regulate of the normal- and CML-speci�c doublets largely over-
lapped. �e common TFs include cyclic AMP-responsive element-binding protein 1 (CREB1), E2F 
transcription factor 1 (E2F1), E2F transcription factor 3 (E2F3), E2F transcription factor 4 (E2F4), 
nucleosome-remodeling factor subunit BPTF (FALZ), protein MAX (MAX), myc proto-oncogene pro-
tein (MYC), paired box protein (PAX2), signal transducer and activator of transcription 5A (STAT5A), 
transcription factor Dp-1 (TFDP1) and zinc �nger E-box-binding homeobox 1 (ZEB1) (Fig. 4). �ese 11 
TFs collectively controlled 50% and 52% of the normal- and CML-speci�c NPM1 doublets, respectively. 

Figure 3. Co-expression networks of NPM1-doublets and RPs that were speci�cally found in (a) normal 
and (b) CML co-expression structures. Red circles represent RNAs positively correlated with NPM1, and 
blue circles represent RNAs negatively correlated with NPM1. RP co-expression networks are shown in 
dashed boxes. RPL31, RPL10A and RPL36A were hubs that connected RP network to NPM1 in CML.
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Importantly, with the shared TFs, the direction of co-expression was reversed for the CML- and 
normal-speci�c NPM1-doublets. For CML, all of the 13 doublets that were the predicted targets of the 
TFs were positively co-expressed with NPM1, while for normal, three of the four doublets (75%) were 
negatively co-expressed with NPM1 (Fig.  4). �is �nding suggests that the same set of TFs may exert 
opposite e�ects of co-expression in normal versus CML states21.

Discussion
We introduced a structural approach to graphically compare the transcriptome-wide co-expression pat-
terns between CML and normal states as well as to determine a state-coherent threshold for identifying 
doublets that were alternatively co-expressed in CML.

�e transcriptome-wide analysis revealed a general reduction in the co-expressed doublets in 
CML, suggesting a possible loosening of the network regulation in cancer. On the other hand, the 
NPM1-associated co-expression network was enlarged in CML. Because NPM1 protein is an early 
sensor of oncogenic stress11, NPM1 possibly has a cooperative role in joining and activating multiple 
tumorigenic pathways via co-expression. In particular, when we focused on NPM1-doublets that were 
uniquely lost or invoked in CML, we found that NPM1 was exceedingly co-expressed with the mRNAs 
of BCR-ABL related pathways and ribosomal hub proteins (RPL10A, RPL31 and RPL36A). Hence, NPM1 
may be an important mediator, connecting the BCR-ABL network to ribosome biogenesis and, hence, 
protein synthesis and cell growth.

We used resveratrol as an external stress on K562 CML cell lines to investigate the 21 CML-speci�c 
NPM1-doublets identi�ed by the co-expression analysis (Fig.  3b). Resveratrol has been reported as a 
potent growth inhibitor in various human cell lines22. It represses mTOR, which is a downstream compo-
nent of the BCR-ABL associated MAPK and PI3K/AKT pathways, and inhibits global protein synthesis22. 
We demonstrated here that upon resveratrol treatment, down-regulated expression was found for NPM1 
and all of its 21 co-expressed mRNAs, including those encoding ribosomal hub proteins (RPL10A, RPL31 
and RPL36A). �is �nding provides insight into the mechanism of BCR-ABL-associated cell growth 
that NPM1 may be a regulator downstream of mTOR. In pharmaceutical development, the search of 
downstream targets of BCR-ABL that are essential for cell proliferation and survival is important in 

Figure 4. TFs concurrently targeted CML- and normal-speci�c NPM1-doublets. Green hexagons 
represent TFs. Red arrows represent the targeting of TFs to NPM1-doublets that were positively correlated 
(red circles), while blue arrows represent the targeting of TFs to NPM1-doublets that were negatively 
correlated (blue circles). E2F refers to E2F family members that included E2F1, E2F3 and E2F4.
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drug design23. A�er clarifying the pathogenic mechanism, NPM1 is a conceivable molecular target for 
CML treatment.

In addition to mRNAs of ribosomal proteins, we also identi�ed the co-expression association of 
NPM1 with transcripts of other functions (Fig. 3b). One of them is the mRNA of heterogeneous nuclear 
ribonucleoprotein hnRNPM. Dery et al. reported that hnRNPM, together with hnRNPA1 and huRNPL, 
controls the alternative splicing of pre-mRNA of carcinoembryonic antigen related cell adhesion mole-
cule 1 (CEACAM1), which is aberrantly expressed during carcinogenesis24. �e co-expression of NPM1 
and hnRNPM is a novel observation because NPM1 has only previously been reported to interact with 
hnRNPU and hnRNPA1 in mRNA processing12. Our �ndings implicate another connection of BCR-ABL 
to hnRNP control and, hence, splicing through NPM1 co-expression. Maggi et al. reported that the 
NPM1 complex formed with RPs and hnRNPs might be involved in the nuclear export of 40S and 60S 
ribosomal subunits25.

Eleven TFs concurrently targeting both normal- and CML-speci�c networks of NPM1-doubles were 
identi�ed. �e dysregulation of these TFs may be a driver of the co-expression alternation in CML. 
Among these TFs, the E2F family members of E2F1, E2F3 and E2F4 targeted the largest number of the 
NPM1-doublets (Fig. 4). �erefore, it is valuable to further investigate their role in CML. In addition, the 
regulation cascade of the 11 identi�ed TFs would also be worthwhile to elucidate.

In summary, this study demonstrates a novel structural co-expression network analysis platform, 
which allows for the establishment of a cooperativity model for exploring cancer pathogenesis and its 
potential NPM1-oriented treatment exploration (Fig.  5). �e platform can readily be applied to other 
diseases for diagnostic, prognostic and therapeutic investigation.

Methods
Study design overview. We de�ned and validated a strategy for (1) structural co-expression analysis, 
(2) doublet classi�cation and (3) network analysis of the doublets that is based on the gene expression 
data collected from subjects in neoplastic and normal states. CML was considered the neoplasm of 
interest, and the strategy was applied to analyze a microarray dataset on the genomic scale and for 
the NPM1-related gene set. Among the networks identi�ed with respect to various characteristics, the 
CML-speci�c network infers the mechanism of the disease and treatment response. �erefore, the real 
time PCR experiment on the CML cell line with resveratrol treatment was performed to further vali-
date the CML-speci�c network. To decipher the underlying NPM1-oriented mechanism of disease and 
treatment in CML, the functional annotation analysis was performed on the identi�ed network con-
nections (or gene pairs) using the pathway/GO sets. Figure  1 illustrates the overview of the proposed 
strategy, experimental validation and functional annotation analysis. �e TFs that concurrently target 
the NPM1-doublets were identi�ed and their cooperative e�ects on NPM1-related co-expression were 
compared between the normal and CML groups.

Expression and co-expression measures. �e proposed strategy is applicable to the expression 
matrices derived from RNA-Seq or the microarray dataset. For RNA-Seq data, the expression of a gene 
is quanti�ed by “reads per kilobase of exon model per million mapped reads” (RPKM), which normalizes 

Figure 5. Proposed TF-driven cooperativity of NPM1-doublets in connection of BCR-ABL oncogenic 

signals to growth related activities in CML. 
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the read measurement by the RNA length and total read number to ensure a fair comparison across 
samples26. For microarray data, the raw expression intensities are normalized using VST across the sam-
ples to ensure normality of the data and that the up and down regulations are equally treated17. Because 
the expression level of a gene is measured using one or multiple probes, the average intensity value is 
collected to further summarize and represent the expression level for each gene. �erefore, letting xij 
denote the expression level of the ith gene and jth sample of a state, an M× N expression matrix is formed 
for each state, where M is the number of genes, N is the number of samples of the same state, and each 
row in the matrix represents the expression pro�le of a gene across all N samples:
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x x

x x 1

11 1N

M1 MN

=














 ( )

⋯

⋮ ⋱ ⋮
⋯

Assuming the expression intensities are normally distributed, the Pearson correlation coe�cient rij 
measuring the co-expression between genes i and j is written as follows:
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jk= ∑ /=  are the mean expression levels of genes i and j, respectively. 
Given M genes, there are M× (M-1)/2 unique pairs of genes and correlation coe�cients can be calcu-
lated.

Structural co-expression analysis. Our classi�cation of gene pairs into strongly or weakly 
co-expressed relies on the structural comparison of the distributions of co-expression levels or 
co-expression structures. �e magnitudes of co-expressions are calculated by taking the absolute values 
of the Pearson correlation coe�cients. �at is, C(i,j) =  | rij |. �e co-expression level is denoted by Cd(i,j) 
if the expression pro�les of the ith and jth genes are extracted from the neoplastic state samples and Cn(i,j) 
if the pro�les are extracted from the normal state samples. To determine a co-expression threshold asso-
ciated with the states, the approach implicitly tests the research hypothesis that the gene co-expression 
patterns of the neoplastic and normal states come from two di�erent distributions. �is hypothesis test 
uses structural analysis to determine whether the gene pairs in a state are more likely to exhibit a stronger 
co-expression structure than that in the other state. �e two-sample Kolmogorov-Smirnov (KS) test 
was applied to examine the structural di�erence because it is sensitive to the deviation between the 
co-expression distribution pro�les over a set of genes rather than that between individual gene pairs. 
Superior to other non-parametric tests, the two-sample KS test yields a threshold value at which the 
deviation between the cumulative distribution functions of Cd and Cn is maximal. More speci�cally, if 
we let Fd, Fn and D denote the cumulative distribution functions (CDF) of Cd and Cn and the maximum 
deviation, respectively, D is given by:

D F C F Cmax 3C
d n= ( ) − ( ) ( )

Note that the inequalities considered in the CDFs are reversed because our interest focuses on the 
strong co-expression.

F C C CProb 4d d( ) = ( ≥ ) ( )

F C C CProb 5n n( ) = ( ≥ ) ( )

�e optimal threshold, Ĉ, represents a co-expression magnitude at which Fd and Fn are extremely 
deviated. In a two-sample KS test, the test statistic D follows a chi-square distribution under the null 
hypothesis of no di�erence between the two cumulative distribution functions; therefore, the statistical 
signi�cance can be tested by either comparing the calculated p-value with the desired alpha-level α  or 
comparing D to a critical value Dα27,

γ γ= (α)
+

= (α)
( − ) ( )

α
D

n n

n n M M

4

1 6

1 2

1 2

where n1 and n2 both equal to M ×  (M-1)/2, the number of gene pairs in neoplastic and normal states, 
and γ (α ) is a function of α . According to Pearson and Hartley (1972)27, the value of γ 0 05( . ) is 1.36. 
However, this value is appropriate when assuming that observations within each group are independent. 
Such an assumption does not hold when the observations of interest are measures of correlation; indeed, 
if genes A and B are highly correlated, and genes B and C are highly correlated, then genes A and C are 
also likely to be highly correlated. �erefore, to control the type I error rate, we performed simulations 
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under the null hypothesis and with varying the parameter, γ . Our results suggest that the γ  required to 
keep the type I error rate at 0.05 increases as a function of M and plateaus approximately 3.1 
(Supplementary Methods and Data). For this reason, we decided to adopt D0.05 with γ(0.05) =  3.1 as the 
critical value of D in this work.

�e optimal threshold dichotomizes the gene pairs into strong and weak co-expression classes for 
both states. �e numbers of strongly and weakly co-expressed gene pairs in the neoplastic state are 
denoted by Qs,d and Qw,d, respectively, while those in normal state are Qs,n and Qw,n. �e association 
between the co-expression classes and the states is quanti�ed by the log odds ratio:

OR lo g
Q Q

Q Q
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7

s d w d

s n w n
10

( ) =






/

/
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�e value of log(OR) follows a normal distribution with a standard error (SE) given by the following 
formula28:

SE
Q Q Q Q

1 1 1 1

8s d w d s n w n

= + + +
( ), , , ,

To examine whether the population mean of log(OR) is zero, the value of z-score is obtained by 
log(OR)/SE, and the p-value is obtained from the area under the two tails of the normal curve delimited 
by the z-score. When the strong co-expression is associated with a state, it is important to identify the 
neoplasm-speci�c, normal-speci�c, opposing and conforming doublets. We describe the classi�cation in 
greater detail below.

Doublet classification. �e co-expression galaxy is a scatter plot of the correlation coe�cient rij in 
the normal state vs. that in the neoplastic state (Supplementary Fig. 2). �e optimal threshold, Ĉ, par-
titions the co-expression galaxy into nine regions. Normal-speci�c, neoplasm-speci�c, conforming and 
opposing doublets reside in the bordering regions, while weakly co-expressed pairs (WCPs), pairs of 
genes that exhibit co-expression levels below the threshold in both states, reside in the central region. �e 
gene expression levels of a conforming doublet are either positively or negatively correlated in both states. 
�e sign of the correlation of an opposing doublet in one state is the opposite of that in the other state. 
Genes of a normal-speci�c doublet are strongly co-expressed in the normal state, but they are weakly 
co-expressed in the neoplastic state. �e genes of a neoplasm-speci�c doublet are strongly co-expressed 
in the neoplastic state, but they are weakly co-expressed in the normal state.

To verify the connection of NPM1 with the known MAPK and PI3K/AKT pathways in CML, the 
normal- and CML-speci�c doublets between NPM1 and the pathway members (NPM1-doublets) were 
extracted from the corresponding regions of the co-expression galaxy. �e normal- and CML-speci�c 
NPM1-doublets were compared to explore the role of NPM1 in the pathways in CML.

NPM1-related co-expression networks. In addition to the genome-wide analysis of structural dif-
ference in co-expression, another important research question is whether the normal and neoplastic 
states exhibit di�erent co-expression patterns over a set of genes closely related to a particular physio-
logical function or pathological feature. Following the same structural analysis and doublet classi�cation 
approach mentioned above, the gene pairs were classi�ed into two co-expression classes, and their asso-
ciations with normal and neoplastic states were quanti�ed by the value of log(OR). �e doublets specif-
ically found in the normal state represent the gene-gene associations, e.g., protein-protein interactions, 
which maintain the physiological function or inhibit the pathological features in the normal state, but 
they are lost, impaired or bypassed in the neoplastic state. �e pathologically altered gene-gene associ-
ations represented by the neoplasm-speci�c doublets indicate the plasticity of the cellular responses to 
genetic variations or external stress.

According to the gene list curated by Brentani et al29, NPM1 is one of 380 cancer-associated genes. In 
a multiclass cancer study, the global cancer map compendium was derived by the multiclass clustering 
of the tumor gene expression data, and a set of NPM1-associated genes was identi�ed with the criteria 
that genes with a Pearson correlation no less than 0.8 be included and that the set contains no fewer 
than 25 genes14. We did not apply the same pre-de�ned threshold in our structural analysis. With 116 
total genes, including NPM1, the NPM1-associated gene set (GCM_NPM1) is stored in the Molecular 
Signature Database (MSigDB)14. Ninety-three of the 116 genes can be found in our microarray dataset. 
�erefore, the expression pro�les of these 93 genes were extracted from the expression matrices for the 
co-expression analysis of the NPM1-associated gene set. �e reduced expression matrices have dimen-
sion 93 ×  8 and 93 ×  9, where each row represents the relative expression intensities of a gene across the 
samples of the same state. �e co-expression levels of all 4278 possible gene pairs were computed for 
each of the normal and CML states.

Using the same approach as the genome-wide analysis, the co-expression galaxy of the NPM1-associated 
gene set was also partitioned into normal-speci�c, neoplasm-speci�c, conforming and opposing dou-
blets and WCPs. �e gene networks of normal-speci�c and CML-speci�c doublets were constructed 
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to help visualize and elucidate the mechanisms underlying the neoplastic pathology and normal phys-
iology related to NPM1. From there, we chose to focus on the connections between NPM1 and its 
strongly co-expressed genes, termed NPM1-doublets, as well as connections among the RP genes, termed 
RP-doublets, to elucidate the altered association of NPM1 with ribosome biogenesis in CML.

To visualize the gene networks, we used nodes to represent the individual genes and connections 
between nodes to indicate that the gene pairs are strongly correlated. �e statistical signi�cance of an 
individual connection was examined using the one-sample t-test based on the following Fisher transfor-
mation of r to Student’s t-distribution30.

N

r
t r

1

1 92
=

−

− ( )

where N is the number of samples for a state and r is the correlation coe�cient. To control the expected 
proportion of false positives, the FDRs of connections were calculated using the Benjamini-Hochberg 
algorithm based on the t-test p-value31. However, this work aimed to discover a set of connections whose 
synergistic perturbation signi�es their structural cooperativity in the disease state compared with the 
normal state. �e paired t-test is reliable for examining such structural perturbations in the gene pair 
correlations32. Before the paired t-test, we obtained the connections’ z-scores for the disease and normal 
states, respectively, based on the following Fisher transformation of r to a normal distribution.
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�e paired di�erences are given by,
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where zd,i and zn,i are the Fisher-transforms of r of the ith connection in CML and normal states, respec-
tively, and k is the total number of connections in the network.

�e t statistic is given by,

d

k
t

12dσ

=
/ ( )

where d and dσ  are, respectively, the mean and standard deviation of d over all of the connections in the 
network. A p-value was obtained to indicate the overall signi�cance of the identi�ed network.

Furthermore, the identi�ed connections were validated by cell line experiments and their underlying 
mechanisms were elucidated using functional annotation analysis.

Cell line experiment. Based on the co-expression analysis, gene pairs were classi�ed into 
normal-speci�c, CML-speci�c, opposing and conforming doublets. We focused on CML-speci�c 
NPM1-doublets and investigated their expression levels in CML cells under resveratrol treatment, which 
is a known potent anti-in�ammatory agent that is o�en applied in anti-cancer treatment with other 
therapeutic anti-cancer drugs33,34. K562 cells, a human CML cell line, were grown in RPMI1640 medium 
supplemented with 10% fetal bovine serum. Cultures were incubated at 37 °C in a humidi�ed 5% CO2 
incubator. To validate the co-expression network, K562 cells were treated for 24 hours with 30 µ M 
Resveratrol (Res) (Sigma-Aldrich, MO, USA) or with DMSO (Sigma-Aldrich, MO, USA) as a vehicle 
control. �en, the K562 cells were collected and harvested for total RNA extraction.

Total RNA was isolated from control- or Res-treated K562 cells using the Trizol Reagent (Life 
Technologies, �ermo Fisher Scienti�c, MA, USA) according to manufacturer’s protocol. Following RNA 
extraction, 2 µ g of total RNA was reverse-transcribed cDNA with oligo (dT) 15 using M-MLV reverse 
transcriptase (Life Technologies, �ermo Fisher Scienti�c, MA, USA) in a total volume of 20 µ L of reac-
tive volume. A�er reverse transcription reaction, each cDNA sample was diluted by DEPC-treated H2O 
in a �nal volume of 40 µ L/sample and stored at −20 °C or immediately used for real-time PCR.

Twenty-one genes, which were found by our structural analysis to be strongly co-expressed with 
NPM1 in CML-speci�c networks, were selected for validation. Real-time PCR was performed using 
MaximaTM SYBR Green/ROX qPCR Master Mix (Fermantas, �ermo Fisher Scienti�c, MA, USA) and 
ABI Prism 7500 system (Applied Biosystems, �ermo Fisher Scienti�c, MA, USA). �e primer sequences 
used in real-time PCR are listed in Supplementary Table 9. Triplicate PCR experiments were performed. 
All data were analyzed a�er normalizing to the β -actin expression values of the respective sample, and 
the expression levels are presented by the mean ± SD of at least three independent experiments.

Functional annotation analysis. �e co-expression network analysis of NPM1-related genes identi-
�ed �ve mutually exclusive networks, including the CML-speci�c, opposing, normal-speci�c, conform-
ing, and weak co-expression networks. To elucidate the biological roles and pathways of these networks, 
functional annotation analysis was performed on these networks using three collections of prede�ned 
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functional gene set databases. �e three collections are the GeneSetDB18, Reactome pathway database20, 
and Molecular Signatures Database (MSigDB, v3.0)14. Together, they provide 2,431 GO sets, 1,345 
Reactome pathways (as of Oct 12, 2012) and 186 KEGG pathways.

Conventional gene set analysis uses single genes as basic items for mapping between the experimen-
tally identi�ed genes and a functional gene set14. However, the basic items of co-expression network 
are gene pairs so that the conventional approach cannot address the connectivity of genes through the 
mapping of individual genes. We developed a pair-based mapping approach for the functional anno-
tation of the identi�ed networks. A gene pair in the identi�ed network was mapped onto a functional 
gene set if both of the genes of the pair were found in the gene set. A�er the pair-based mapping, 
two-by-two contingency tables were formed for which gene pairs were classi�ed according to two criteria 
(Supplementary Table 10). �e �rst criterion was whether both genes in a pair were found in the gene 
set. �e second criterion was whether the gene pairs were from a particular network (e.g., CML-speci�c) 
or whether they were from one of the other four networks (e.g., opposing, normal-speci�c, conforming, 
or weak). In each, H denotes the total number of all possible gene pairs, h the number of gene pairs in 
a particular network, K the number of gene pairs found in the functional gene set, and k the number of 
gene pairs that are in both the network and functional gene set.

Finally, a two-tailed Fisher’s exact test was performed to determine whether the gene pairs of a net-
work are signi�cantly associated with a gene set35. Under the null hypothesis, the network and functional 
gene set are independent. �erefore, based on the hyper-geometric distribution, the probability pk of 
observing a particular 2 ×  2 table under the null hypothesis is calculated as follows:
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�e totals along the rows and columns, i.e., K, H-K, h and H-h in Supplementary Table 10, are known 
as the marginal totals. With the same marginal totals, there may be some other possible combinations of 
the four entries in the contingency table, and each combination is accompanied with a probability pi. By 
�xing the marginal totals as those of the observed outcomes, the p-value for testing the null hypothesis 
was calculated by summing the probabilities of combinations, pi’s, that are less than or equal to the prob-
ability pk of the observed outcomes36,37. �e formula for the p-value is then de�ned as follows:
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�e p-values were computed for all possible mappings between the �ve identi�ed networks and func-
tional gene sets. Functional gene sets without any gene pair found in the identi�ed networks (i.e., k =  0) 
were excluded from the test because of the lack of information for evaluating their associations with 
the networks. �e computed p-values were then adjusted for multiple testing using the Benjamini and 
Hochberg’s method6 and Bonferroni correction38. �e adjustment was performed independently for dif-
ferent networks and di�erent gene set collections.

�e Fisher’s exact test examines the signi�cance of the association between a network and functional 
gene set. To determine whether the network is over-represented or under-represented in the functional 
gene set, we compared the observed number of gene pairs of the network found in the functional gene 
set, k, with its expected value, ke. Under the null hypothesis, ke can be estimated using the marginal totals 
of the contingency table as follows:

k
hK

H 15e = ( )

�erefore, if k is greater than ke, the network is over-represented in the gene set. On the other hand, if 
k is less than ke, the network is under-represented.

Cooperativities of transcription factors. Two genes tend to be co-expressed when they are reg-
ulated by the same TFs39. We compared the CML-speci�c and normal-speci�c NPM1-doublets with 
respect to the TFs that concurrently target them. We hypothesized that the TFs may drive the neoplastic 
alteration of the co-expression patterns. �e potential TFs of the doublets were identi�ed by searching 
the prediction of the transcriptional regulatory modules (PReMod) database15. �e roles of the TFs on 
the NPM1-doublets were investigated to gain insight into the role of transcriptional regulation in the 
NPM1-oriented molecular mechanism of CML.
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