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ABSTRACT
Frequent patterns are an important class of regularities that
exist in a transaction database. Certain frequent patterns
with low minimum support (minsup) value can provide use-
ful information in many real-world applications. However,
extraction of these frequent patterns with single minsup-
based frequent pattern mining algorithms such as Apriori
and FP-growth leads to “rare item problem.” That is, at
high minsup value, the frequent patterns with low minsup
are missed, and at low minsup value, the number of frequent
patterns explodes. In the literature,“multiple minsups frame-
work” was proposed to discover frequent patterns. Further-
more, frequent pattern mining techniques such as Multiple
Support Apriori and Conditional Frequent Pattern-growth
(CFP-growth) algorithms have been proposed. As the fre-
quent patterns mined with this framework do not satisfy
downward closure property, the algorithms follow different
types of pruning techniques to reduce the search space. In
this paper, we propose an efficient CFP-growth algorithm
by proposing new pruning techniques. Experimental results
show that the proposed pruning techniques are effective.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications -
Data Mining

General Terms
Algorithms

Keywords
Data mining, knowledge discovery, frequent patterns and
multiple minimum supports.
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1. INTRODUCTION
Since the introduction of frequent patterns in [1], the

problem of mining frequent patterns from the transaction
databases has been actively studied in the literature [4].
Most of the frequent pattern mining algorithms (e.g., Apri-
ori [2] and FP-growth [5]) use “single minimum support
(minsup) framework” to discover complete set of frequent
patterns. Minsup controls the minimum number of trans-
actions a pattern must cover in a database. The frequent
patterns discovered with this framework satisfy downward
closure property. That is, “all non-empty subsets of a fre-
quent pattern must also be frequent.” This property holds
the key for minimizing the search space in all of the single
minsup-based frequent pattern mining algorithms [2, 4].

Most of the real-world databases are non-uniform in na-
ture containing both frequent and rare items. A rare item is
an item having low frequency. Frequent patterns containing
rare items can provide useful information to the users.

Example 1: In a supermarket, costly goods such as
Bed and Pillow are less frequently purchased than
the cheaper goods such as Bread and Jam. However,
the association between the former set of items can
be more interesting as it may generate relatively more
revenue.

However, mining frequent patterns containing both frequent
and rare items with “single minsup framework” leads to the
rare item problem which is as follows: At high minsup, the
frequent patterns containing rare items will be missed, and
at low minsup, combinatorial explosion can occur, producing
too many frequent patterns.

To confront rare item problem, an effort has been made in
[10] to find frequent patterns with“multiple minsups frame-
work.” In this framework, each pattern can satisfy a different
minsup depending upon the items within it. The frequent
patterns discovered through “multiple minsups framework”
do not satisfy downward closure property. As a result, this
property cannot be used for minimizing the search space
in multiple minsups-based frequent pattern mining algo-
rithms.

In the literature, an Apriori-like algorithm known as Mul-
tiple Support Apriori (MSApriori) was proposed to find fre-
quent patterns with“multiple minsups framework”[10]. Also,
an FP-growth-like algorithm known as Conditional Frequent
Pattern-growth (CFP-growth) has been proposed to mine
frequent patterns [6]. Since downward closure property no
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longer holds in “multiple minsups framework,” the CFP-
growth algorithm has to carry out exhaustive search in the
constructed Tree structure. In this paper we propose an im-
proved CFP-growth algorithm, called CFP-growth++, by
introducing four pruning techniques to reduce the search
space. Experimental results on various types of datasets
show that the proposed algorithm is efficient and scalable as
well.

1.1 Related Work
The occurrence of rare item problem with the usage of

traditional data mining techniques to discover knowledge
involving rare items was introduced in [13]. In [10], “mul-
tiple minsups framework” has been introduced to address
rare item problem, and MSApriori algorithm was proposed
for extracting frequent patterns. An FP-growth-like algo-
rithm [5], called CFP-growth [6], has been proposed to mine
frequent patterns. It was shown that the performance of
CFP-growth is better than the MSApriori algorithm. In
[14], a new interestingness measure, called relative support
has been introduced, and an Apriori-like algorithm has been
proposed for mining frequent patterns containing both fre-
quent and rare items. An Apriori-like approach which tries
to use a different minsup at each level of iteration has been
discussed in [11]. A stochastic mixture model based on neg-
ative binomial distribution has been discussed to mine rare
association rules [3]. An approach has been suggested to
mine the association rules by considering only infrequent
items i.e., items having support less than the minsup [16].

We have been investigating improved approaches to mine
frequent patterns containing both frequent and rare items.
In [8], an improved methodology has been proposed to spec-
ify items’ MIS values. In [9], a new interestingness measure,
called item-to-pattern difference, has been used along with
the “multiple minsups framework” to discover frequent pat-
terns in the databases, where frequencies of the items’ vary
widely. An effort has been made to extend the notion of mul-
tiple constraints to extract periodic-frequent patterns [12].
In [7], we have proposed a preliminary algorithm to improve
the performance of CFP-growth by suggesting two pruning
techniques for reducing the size of constructed tree struc-
ture. It is to be noted that the algorithm discussed in [7]
performs exhaustive search, like CFP-growth, to discover
complete set of frequent patterns as the frequent patterns
mined with “multiple minsups framework” do not satisfy
downward closure property.

In this paper, we investigated approaches to reduce the
search space while extracting frequent patterns and pro-
posed two additional pruning techniques which significantly
reduces the search space by avoiding exhaustive search while
extracting frequent patterns from a tree structure. Overall,
we have proposed a comprehensive algorithm by employing
four pruning techniques to efficiently mine frequent patterns.

1.2 Paper Organization
The remaining part of the paper is organized as follows.

In Section 2, we explain the necessary background. In Sec-
tion 3, we discuss the CFP-growth algorithm and its perfor-
mance issues. In Section 4, we discuss the proposed pruning
techniques to reduce the search space and present the CFP-
growth++ algorithm. Experimental results are discussed in
Section 5. The last section contains conclusions and future
work.

2. BACKGROUND
In this section, we explain the basic model of frequent pat-

terns, rare item problem and the extended model of frequent
patterns based on multiple minsups.

2.1 Basic Model of Frequent Patterns
Frequent patterns were first introduced in [1]. The basic

model of frequent patterns is as follows:
Let I = {i1, i2, · · · , in} be a set of items, and a transac-

tion database DB = 〈T1, T2, · · · , Tn〉, where Ti (i ∈ [1..n])
is a transaction which contains a set of items in I. Each
transaction is associated with an identifier, called TID. The
support of a pattern (or an itemset) X, denoted as S(X),
is the number transactions containing X in DB. The pat-
tern X can be frequent if its support is no less than a user-
defined minimum support (minsup) threshold value, i.e.,
S(X) ≥ minsup. A pattern containing k number of items
is a k-pattern. The support of a pattern can also be rep-
resented in percentage of |DB|. In this paper, we use the
terms “itemset” and “pattern” interchangeably.

Example 2: Consider the transaction database of 20
transactions shown in Table 1. The set of items I =
{a, b, c, d, e, f, g, h}. The set of a and b, i.e., {a, b} is a
pattern. It is a 2-pattern. For simplicity, we write this
pattern as ‘ab’. It occurs in tids of 1, 4, 7, 10, 11, 13, 16
and 19. Therefore, the support of ab, S(ab) = 8. If
the user-specified minsup = 6, then ab is a frequent
pattern because S(ab) ≥ minsup.

Table 1: A transaction database.

TID Items TID Items
1 a, b 11 a, b
2 a, e, f 12 a, c
3 c, d 13 a, b
4 a, b, h 14 b, e, f, g
5 c, d 15 c, d
6 a, c 16 a, b, d
7 a, b 17 c, d
8 e, f 18 a, c
9 c, d, g 19 a, b, e
10 a, b 20 c, d

Apriori [1] and FP-growth [5] are the two popular algo-
rithms to mine frequent patterns. Apriori uses candidate-
generate-and-test-approach to discover the complete set of
frequent patterns. FP-growth employs pattern-growth tech-
nique to discover complete set of frequent patterns. In the
literature, it has been shown that FP-growth performs bet-
ter than Apriori [5].

2.2 Rare Item Problem
Real-world databases are mostly non-uniform in nature

containing both frequent and relatively infrequent (or rare)
items. If the items’ frequencies in a database vary widely,
we encounter the following issues while mining frequent pat-
terns under single minsup framework:

i. If minsup is set too high, we will miss the frequent
patterns containing rare items.

ii. To find frequent patterns that involve both frequent
and rare items, we have to set low minsup. However,
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this may cause combinatorial explosion, producing too
many frequent patterns, because those frequent items
will combine with one another in all possible ways and
many of them are meaningless.

This dilemma is called the rare item problem.

Example 3: Consider the database shown in Table
1. At high minsup, say minsup = 6, we will miss
the frequent patterns involving the rare items ‘e’ and
‘f ’. To mine the frequent patterns containing ‘e’ and
‘f ’, we have to specify low minsup value. Let the
minsup value be 3. The frequent patterns discovered
at minsup = 3 are shown in the fourth column of
the Table 2. Among the generated frequent patterns,
the pattern ‘ac’ can be considered uninteresting to the
user because it has low support and contains frequently
occurring items ‘a’ and ‘c’. This pattern can be con-
sidered interesting if it has satisfied high minsup, say
minsup = 6.

Table 2: Frequent patterns generated at minsup = 3.
The terms “S”, “MIS”, “SMF” and “MMF” are re-
spectively used as the acronyms to denote support,
minimum item support, “single minsup framework”
and “multiple minsups framework.” The terms “T”
and “F” respectively denote the frequent patterns
generated and have not generated in single and mul-
tiple minsups frameworks.

Patterns S MIS SMF MMF
a 12 10 T T
c 9 10 T F
b 9 8 T T
d 7 6 T T
e 4 3 T T
f 3 3 T T
ab 8 - T T
ac 3 - T F
cd 6 - T T
ef 3 - T T

2.3 Extended Model of Frequent Patterns
To confront the rare item problem, an effort has been made

in the literature to extend the basic model of frequent pat-
terns to multiple minsups [10]. In the extended model,
each item in the transaction database is specified with a
support constraint known as minimum item support (MIS)
and minsup of a pattern is represented with the minimal
MIS value among all its items (see Equation 1).

minsup(X) = minimum

„

MIS(i1), MIS(i2),
· · · , MIS(ik)

«

(1)

where, X = {i1, i2, · · · , ik}, 1 ≤ k ≤ n, is a pattern and
MIS(ij), 1 ≤ j ≤ k, represents the MIS of an item ij ∈ X.

The extended model enables the user to simultaneously
specify high minsup for a pattern containing only frequent
items and low minsup for a pattern containing rare items.
Thus, efficiently addressing the rare item problem. The sig-
nificance of this model is illustrated in Example 4.

Example 4: Continuing with Example 3, let the user-
specified MIS values for the items ‘a’, ‘b’, ‘c’, ‘d’, ‘e’,
‘f ’, ‘g’ and ‘h’ be 10, 8, 10, 6, 3, 3, 3 and 2, respectively.
The items’ MIS values are specified with respect to
their support values. The frequent patterns discovered
with the extended model are shown in the fifth column
of Table 2. It can be observed that the uninteresting
frequent pattern ‘ac’ that was generated at low minsup
(i.e., at minsup = 3) in Example 3 has failed to be a
frequent pattern in this model. It is because S(ac) <
minsup (= minimum(MIS(a), MIS(c)).

3. CFP-GROWTH AND PERFORMANCE IS-
SUES

In [10], an Apriori-like algorithm known as Multiple Sup-
port Apriori (MSApriori) has been discussed to mine fre-
quent patterns. An FP-growth-like algorithm known as Con-
ditional Frequent Pattern-growth (CFP-growth) has been
discussed to efficiently mine frequent patterns [6]. Among
the two algorithms, it has been shown that CFP-growth al-
gorithm performs better than MSApriori algorithm. In this
section we discuss CFP-growth and its performance issues.

3.1 CFP-growth
The CFP-growth algorithm is developed based on the FP-

growth algorithm [6]. Even though it is an FP-growth-like
algorithm, the structure, construction and mining proce-
dures of CFP-growth are different from FP-growth. The
CFP-growth algorithm accepts transaction database and MIS
values of items as an input. Using the items’ MIS val-
ues as prior knowledge, it discovers complete set of frequent
patterns with a single scan on the transaction database.
Briefly, the working of CFP-growth is as follows.

i. Items are sorted in descending order of their MIS val-
ues. Using the sorted list of items, an FP-tree-like
structure known as MIS-tree is constructed with a sin-
gle scan on the transaction database. Simultaneously,
the support of each item in the MIS-tree is measured.

ii. To reduce the search space, tree-pruning operation is
performed to prune the items that cannot generate any
frequent pattern. The criterion used is prune the
items that have support less than the lowest
MIS value among all items.

Table 3: MIS and support values of items.

Items a b c d e f g h
MIS 10 8 10 6 3 3 3 2
Support 12 9 9 7 4 3 2 1

Example 5: Table 3 provides information about
the MIS and support values of items present in
the database of Table 1. The lowest MIS value
among all items is 2. Therefore, it is clear that no
pattern will have minsup less than 2. Based on
apriori property [2], it turns out that ‘h’ and its
supersets cannot generate any frequent pattern as
their supports will be no more than 1. So, CFP-
growth prunes ‘h’ from the MIS-tree.
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iii. After tree-pruning operation, tree-merging operation
is performed on the MIS-tree to merge the child nodes
of a parent node that share same item. The resultant
MIS-tree is called compact MIS-tree.

iv. Finally, choosing each item in the compact MIS-tree
as the suffix item (or pattern), its conditional pattern
base (i.e., prefix sub-paths) is build to discover com-
plete set of frequent patterns. Since frequent patterns
do not satisfy downward closure property, CFP-growth
tries to discover complete set of frequent patterns by
building suffix patterns until its respective conditional
pattern base is empty.

Example 6: Consider the compact MIS-tree sho-
wn in Figure 2(b). For the (suffix) item ‘f ’, the
conditional prefix paths are 〈a, e : 1〉, 〈e : 1〉 and
〈b, e : 1〉. The CFP-growth algorithm builds the
suffix patterns 〈f〉, 〈f, e〉, 〈f, b〉, 〈f, a〉, 〈f, e, b〉
and 〈f, e, a〉 to discover the complete set of fre-
quent patterns.

3.2 Performance Issues
The performance issues of CFP-growth algorithm are as

follows.
First, the criterion used by CFP-growth to construct com-

pact MIS-tree still considers some items which cannot gen-
erate any frequent pattern at higher-order.

Example 7: Continuing with Example 5, CFP-growth
constructs compact MIS-tree with the items ‘a’, ‘b’, ‘c’,
‘d’, ‘e’, ‘f ’ and ‘g’. However, item ‘g’ cannot generate
any frequent pattern at higher-order because its sup-
port (i.e., 2) is less than the lowest MIS value (i.e., 3)
among all the items ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f ’ and ‘g’.

Second, as CFP-growth continues to build suffix patterns
until its respective conditional pattern base is empty, CFP-
growth searches in some of those (infrequent) suffix patterns
which will never generate any higher-order frequent pattern.

Example 8: Continuing with Example 6, the low-
est MIS value among the items ‘a’, ‘b’, ‘e’ and ‘f ’
is 3 (=MIS(f)). Since the support of ‘a’ and ‘b’ in
the conditional pattern base of ‘f ’ is less than 3, it is
straight forward to prove that {f, a} and {f, b} can-
not be frequent patterns. In addition, their supersets
also cannot be frequent patterns. Thus, CFP-growth
spends additional resources (i.e., runtime) to discover
the complete set of frequent patterns.

4. PROPOSED APPROACH
In this section, we first introduce the properties and theo-

rems that have been identified for reducing the search space.
Next, we explain the pruning techniques to reduce the search
space and present the algorithm.

4.1 Theorems
The pruning techniques that are proposed for reducing the

search space in the “multiple minsups framework”are based
on apriori property (see Property 1) and Theorems 4.1 and
4.2.

Property 1. (Apriori property.) In a database DB, if
X and Y are two patterns such that X ⊆ Y , then S(X) ≥
S(Y ).

Theorem 4.1. In every frequent pattern, the item having
lowest MIS value is a frequent item.

Proof. Consider a transaction database DB containing
the set of items, I = {i1, i2, · · · , in}, such that MIS(i1) ≥
MIS(i2) ≥ · · · ≥ MIS(in). Let X = {ij , · · · , ik} ⊆ I,
where 1 ≤ j ≤ k ≤ n, be a pattern. If X is frequent,
then S(X) ≥ minimum(MIS(ij), · · · , MIS(ik)). That is,
S(X) ≥ MIS(ik). From Property 1, it turns out that
S(ik) ≥ S(X) ≥ MIS(ik). Thus, if X is frequent, then
ik is a frequent item.

Theorem 4.2. In every frequent pattern, all non-empty
subsets containing the item having lowest MIS value will be
frequent.

Proof. Consider a transaction database DB containing
the set of items, I = {i1, i2, · · · , in}. Let MIS(ij), where
ij ∈ I, be the user-specified MIS values such that MIS(i1) ≥
MIS(i2) ≥ · · · ≥ MIS(in). Let X = {ij , · · · , ik} ⊆ I,
where 1 ≤ j ≤ k ≤ n, be a frequent pattern. That is,
S(X) ≥ MIS(ik) (= minimum(MIS(ij), · · · , MIS(ik))).
Let A ⊂ X be a pattern such that ik ∈ A. Since ik has the
lowest MIS value among all items in X, it turns out that
minsup(A) = MIS(ik). From Property 1, it can be de-
rived that S(A) ≥ S(X) ≥ MIS(ik). Thus, A is a frequent
pattern.

4.2 Techniques to Reduce the Search Space
We propose four techniques to reduce the search space.

4.2.1 Least minimum support
In the multiple minsups framework, each pattern can sat-

isfy a different minsup depending upon the items within
it. The term least minimum support (LMS) refers to the
lowest minsup of all frequent patterns. Since frequent item
is a frequent 1-pattern, it is straight forward to prove from
Theorem 4.1 that LMS is always equal to the lowest MIS
value among all frequent items. LMS has the following two
properties.

Property 2. If X = {i1, i2, · · · , ik} ⊆ I, where 1 ≤
k ≤ n, is a pattern such that S(X) < LMS, then S(X) <
minimum(MIS(i1), MIS(i2), · · · , MIS(ik)).

Property 3. If X and Y are two patterns such that X ⊂
Y and S(X) < LMS, then S(Y ) < LMS.

These two properties facilitate to use LMS as a constraint
to reduce the search space. In particular, LMS can be used
to prune the items (or patterns) that cannot generate any
frequent pattern at higher-order. The significance of LMS
is illustrated in Example 9.

Example 9: Continuing with Example 5, the frequent
items in the transaction database of Table 1 are ‘a’,
‘b’, ‘d’, ‘e’ and ‘f ’. Based on Theorem 4.1, it can be
said that any frequent pattern that is mined from this
database will have one of the above items as the item
having lowest MIS value. Thus, lowest minsup that
can be satisfied by a frequent pattern is lowest MIS
value among all these frequent items i.e., 3. Since, the
items ‘g’ and ‘h’ have support less than 3, their super-
sets also cannot have support greater than 3 (Property
1). Thus, it is guaranteed that ‘g’ and ‘h’ cannot gen-
erate any frequent pattern at higher-order.
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4.2.2 Conditional Minimum Support
Let Tree be the FP-tree-like structure constructed after

scanning a database in MIS descending order of items. If we
consider an item ij that exists in Tree as a suffix item (or 1-
pattern) and construct its prefix sub-paths (i.e., conditional
pattern base), then MIS of ij will be the lowest MIS value
among all the items in the conditional pattern base. From the
definition of minsup in multiple minsups framework, it turns
out that any frequent pattern that is going to be generated
from the conditional pattern base of ij should satisfy MIS
value of ij . Thus, we call the MIS value of the suffix item
ij as the conditional minsup. The correctness of this idea
is shown in Lemma 4.3.

Lemma 4.3. Let α be a pattern in MIS-tree and Sα be the
support of α. Also, let minsupα be the minsup that α has to
satisfy, B be α’s conditional pattern base, and β be an item
in B. The support of β in B be SB(β) and MISβ be the β’s
MIS value. The minsup of pattern 〈α, β〉 is minsupα.

Proof. According to the definition of MIS-tree, MISB(β)
will always be greater than or equal to the minsupα. There-
fore, minsup of 〈α, β〉 is minsupα.

Example 10: Consider the compact MIS-tree shown
in Figure 2(b). For the (suffix) item f , the condi-
tional prefix paths are 〈a, e: 1〉, 〈e: 1〉 and 〈b, e:
1〉. The item having lowest MIS value among all the
items ‘a’, ‘b’, ‘e’ and ‘f ’ is ‘f ’ which is the suffix item.
As a result, every frequent pattern that gets gener-
ated from the conditional pattern base of ‘f ’ will have
minsup = MIS(f). Thus, MIS(f) is considered as
conditional minsup for mining frequent patterns from
the conditional pattern base of the suffix item ‘f ’.

4.2.3 Conditional Closure Property

Property 4. (Conditional Closure property.) If a suffix
pattern is infrequent, then all its super-suffix patterns (i.e.,
suffix pattern along with other item(s) in its conditional pat-
tern base) will also be infrequent.

The correctness of this property is shown in Lemma 4.4.

Lemma 4.4. Let α be a pattern in MIS-tree and Sα be the
support of α. Also, let minsupα be the minsup that α has to
satisfy, B be α’s conditional pattern base, and β be an item
in B. The support of β in B be SB(β) and MISβ be the
β’s MIS value. If α is infrequent, then the pattern 〈α, β〉 is
also infrequent.

Proof. According to the definition of conditional pattern
base and MIS-tree, each subset in B occurs under the con-
dition of the occurrence of α in the transaction database.
If an item β appears in B for n times, it appears with α
in n times. From the definition of frequent pattern used
in the minimum constraint model, the minsup of 〈α, β〉 is
minimum(minsupα, MISβ) = minsupα. As Sα < minsupα,
the S〈α,β〉 < minsupα (apriori property [1]). Therefore,
〈α, β〉 is also infrequent.

4.2.4 Infrequent leaf node pruning
The leaf nodes of a Tree that belong to infrequent items

can be pruned without missing any frequent pattern or chang-
ing the support of a frequent pattern. We call this pruning

technique as “infrequent leaf node pruning.” It is straight
forward to prove from the “conditional minsup” and condi-
tional closure property that the conditional pattern base of a
suffix item that is infrequent will not result in any frequent
pattern.

4.3 CFP-growth++
The proposed CFP-growth++ algorithm is an improve-

ment over CFP-growth algorithm. It successfully addresses
the above two issues of CFP-growth. The differences be-
tween CFP-growth and CFP-growth++ are as follows:

i. The CFP-growth++ employs a better criterion to iden-
tify the items that cannot generate any frequent pat-
tern. This criterion enables CFP-growth++ to con-
struct compact MIS-tree with only those items that
can generate frequent patterns.

ii. The proposed algorithm will not search for frequent
patterns until the conditional pattern base of a suffix
pattern is empty. Instead, it tries to identify which
suffix patterns can generate frequent patterns at higher
order and perform search only in them.

The CFP-growth++ algorithm accepts transaction data-
base DB, set of items I and items’ MIS values as the
input parameters. Using the items’ MIS values as the
prior knowledge, CFP-growth++ discovers the complete set
of frequent patterns with a single scan on the transaction
database. The steps involved in CFP-growth++ are as fol-
lows: (i) construction of MIS-tree (ii) generating compact
MIS-tree and (iii) mining frequent patterns from the com-
pact MIS-tree.

Item S MIS

a 0 10

c 0 10

b 0 8

d 0 6

e 0 3

f 0 3

g 0 3

h 0 2

Item S MIS

a 1 10

c 0 10

b 1 8

d 0 6

e 0 3

f 0 3

g 0 3

h 0 2

{}null

a:1

b:1

Item S MIS

a 2 10

c 0 10

b 1 8

d 0 6

e 1 3

f 1 3

g 0 3

h 0 2

{}null

a:1

b:1 e:1

f:1

Item S MIS

a 12 10

c 9 10

b 9 8

d 7 6

e 4 3

f 3 3

g 2 3

h 1 2

{}null

a:12

c:3 b:8

e:1h:1 d:1

e:1

f:1

c:6

d:6

g:1

e:1

f:1

b:1

e:1

f:1

g:1

(a) (b) (c)

(d)

Figure 1: Construction of MIS-tree. (a) Initial MIS-
list (b) After scanning first transaction (c) After
scanning second transaction and (d) After scanning
every transaction.

4.3.1 Construction of MIS-tree
The MIS-tree consists of two components: MIS-list and

prefix-tree. The MIS-list is a list having three fields -
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Algorithm 1 MIS-tree (DB: transaction database, I: item-
set containing n items, MIS: minimum item support values
for n items)

1: Let L represent the set of items sorted in decreasing
order of their MIS values.

2: In L order, insert items into the MIS-list with S = 0 and
mis equivalent to the respective MIS value.

3: Create the root of a MIS-tree, T , and label it as “null”.
4: for each transaction t ∈ DB do
5: Sort all the items in t in L order.
6: Count the support values of any item i, denoted as

S(i) in t.
7: Let the sorted items in t be [p|P ], where p is the

first element and P is the remaining list. Call
InsertTree([p|P ], T ).

8: end for
9: Let j = n − 1.

10: for (; j ≥ 0; j = j − 1) do
11: if (S[ij ] < MIS[ij ]) then
12: Delete the item ij in header table.
13: Call MisPruning(Tree, ij).
14: else
15: LMS = MIS[ij ].
16: break.
17: end if
18: end for
19: for (; j ≥ 0; j = j − 1) do
20: if (S[ij ] < LMS) then
21: Delete the item ij in header table.
22: Call MisPruning(Tree, ij).
23: end if
24: end for
25: Name the resulting table as MinFrequentItemHead-

erTable.
26: Call MisMerge(Tree).
27: Call InfrequentLeafNodePruning(Tree).

item name (item), support (S) and minimum item support
(MIS). The structure of the prefix-tree in MIS-tree is same
as that in FP-tree [5]. However, the difference is that items
in the prefix-tree of FP-tree are arranged in descending order
of their support values, whereas items in the prefix-tree of
MIS-tree are arranged in descending order of their MIS val-
ues. To facilitate tree-traversal, node-links are maintained
in the MIS-tree as in FP-tree.

The construction of MIS-tree in CFP-growth++ algorithm
is shown in Algorithm 1. We illustrate this algorithm by
using the transaction database shown in Table 1. Let the
user-specified MIS values for the items ‘a’, ‘b’, ‘c’, ‘d’, ‘e’,
‘f ’, ‘g’ and ‘h’ be 10, 8, 10, 7, 3, 3, 3 and 2, respectively.

The items are sorted in descending order of their MIS
values. Let this sorted list of items be L. Thus, L =
{a, c, b, d, e, f, g, h} (Step 1 of Algorithm 1). In L order, in-
sert each item into the MIS-list with support equal to zero
and MIS equivalent to their respective MIS value (Step 2
of Algorithm 1). The resultant MIS-list is shown in Figure
1(a).

A MIS-tree is then created as follows. First, a root node
is created with label “null.” The database DB is scanned.
The items in each transaction are processed in L order, and
a branch is created for each transaction as in FP-growth [5].
Simultaneously, we increment the support values of the re-

Procedure 2 InsertTree ([p|P ], T )

1: if T has a child node N such that p.item-name=N.item-
name then

2: Increment N ’s count by 1.
3: else
4: Create a new node N , and let its count be 1.
5: Let its parent link be linked to T .
6: Let its node-link be linked to the nodes with the same

item-name via the node-link structure.
7: end if
8: if P is nonempty then
9: Call InsertTree(P, N).

10: end if

Procedure 3 MisPruning (Tree, ij)

1: for each node in the node-link of ij in Tree do
2: if the node is a leaf then
3: Remove the node directly.
4: else
5: Remove the node and then its parent node will be

linked to its child node(s).
6: end if
7: end for

spective items in the MIS-list by 1 (Lines 4 to 8 in Algorithm
1 and Procedure 2). For example, the scan of the first trans-
action, “1: a,b” which contains two items 〈a, b in L order〉,
leads to the construction of the first branch of the tree with
two nodes 〈a: 1〉 and 〈b: 1〉, where ‘a’ is linked as a child of
the root and ‘b’ is linked as the child node of ‘a’. Next, we
increment support values of ‘a’ and ‘b’ in the MIS-list by 1.
The MIS-tree generated after scanning the first transaction
is shown in Figure 1(b). The second transaction containing
the items ‘a’, ‘e’ and ‘f ’ in L order will result in a branch
where ‘a’ is linked to root, ‘e’ is linked to ‘a’ and ‘f ’ is linked
to ‘e’. However, this branch would share a common prefix,
‘a’, with the existing path for 1. Therefore, we instead in-
crement the count of ‘a’ node by 1, and create new nodes,
〈e: 1〉 and 〈f: 1〉, where ‘e’ is linked to ‘a’ and ‘f ’ is linked
to ‘e’. In the MIS-list, the support of the items ‘a’, ‘e’ and
‘f ’ are incremented by 1. The resultant MIS-tree is shown
in Figure 1(c). Similar process is repeated for the remain-
ing transactions and MIS-tree is updated accordingly. The
resultant MIS-tree after scanning every transaction in the
transaction database is shown in Figure 1(d). For the sim-
plicity of figures, we do not show the node traversal pointers
in trees, however, they are maintained as in the construction
process of FP-tree.

4.3.2 Construction of compact MIS-tree
The compact MIS-tree is generated by pruning those items

from the MIS-tree that cannot generate any frequent pat-
tern. The pruning techniques, LMS and infrequent leaf node
pruning, are used in this process. The procedure used for
constructing compact MIS-tree is as follows.

The MIS-tree is constructed with every item in the trans-
action database. To decrease the search space, we use LMS
as a constraint to prune the items that cannot generate any
frequent pattern. A method to prune such items from the
MIS-tree is as follows.

i. Starting from the last item of the MIS-list, the items
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Procedure 4 MisMerge (Tree)

1: for each item ij in the MinFrequentItemHeaderTable
do

2: if there are child nodes with the same item-name then
then

3: Merge the nodes and set the count as the summa-
tion of these nodes’ counts.

4: end if
5: end for

Procedure 5 InfrequentLeafNodePruning(Tree)

1: Choose the last but one item ij in MinFrequentItem-
HeaderTable. That is, item having second lowest MIS
value.

2: repeat
3: if ij item is infrequent then
4: Using node-links parse all nodes of ij in Tree.
5: repeat
6: if ij node is the leaf of a branch then
7: Drop the node-link connecting through the

child branch.
8: Create a new node-link from the node in the

previous branch to node in the coming branch.
9: Drop the leaf node in the branch.

10: end if
11: until all the nodes of ij in Tree are parsed
12: end if
13: Choose item ij which is next in the order.
14: until all items in MinFrequentItemHeaderTable are

completed

that have support less than their respective MIS value
are pruned (Lines 9 to 13 in Algorithm 1 and Proce-
dure 3).

ii. Once the frequent item is found, its MIS value is cho-
sen as the LMS value (Lines 14 to 18 in Algorithm
1). Next, support of the remaining items in the MIS-
list are compared with LMS value, and those items
that have support less than LMS are pruned from the
MIS-tree (Lines 19 to 24 in Algorithm 1 and Procedure
3).

We explain the construction of compact MIS-tree by con-
sidering the MIS-tree shown in Figure 1(d). The process
starts from ‘h’ as it is the last item in the MIS-list of MIS-
tree. This item is an infrequent item, therefore, it is pruned
from the MIS-tree. Among the remaining items in the MIS-
list, ‘g’ is the last item in the MIS-list. It is also an infrequent
item, therefore, it is pruned from the MIS-tree. Now, the
last item in the MIS-list is ‘f ’. It is a frequent item. Hence,
no tree-pruning operation is carried for the item ‘f .’ Next,
using the MIS of the item ‘f ’ as the LMS value, the sup-
ports of the remaining items in the MIS-tree are compared.
As these items have support greater than or equal to LMS
value, the tree-pruning operation ends.

After tree-pruning, tree-merging process is carried out to
merge the child nodes of a parent node that share a common
item (line 26 in Algorithm 1 and Procedure 4). The resultant
MIS-tree is called compact MIS-tree. The compact MIS-tree
generated after tree-pruning and tree-merging operations is
shown in Figure 2(a). The process of infrequent leaf node

Item S MIS

a 12 10

c 9 10

b 9 8

d 7 6

e 4 3

f 3 3

{}null

a:12

c:3 b:8

e:1 d:1

e:1

f:1

c:6

d:6

e:1

f:1

b:1

e:1

f:1

(a)
Item S MIS

a 12 10

c 9 10

b 9 8

d 7 6

e 4 3

f 3 3
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a:12

b:8

e:1 d:1

e:1

f:1

c:6

d:6

e:1

f:1

b:1

e:1

f:1

(b)

Figure 2: Compact MIS-tree. (a)After pruning
items g and h and (b) After infrequent item leaf
node pruning.

pruning (line 27 in Algorithm 1 and Procedure 5) is carried
on the compact MIS-tree to decrease its size. The process
is as follows. Among the remaining items in the MIS-list
of MIS-tree, ‘c’ is an infrequent item (i.e., its support is
less than the required minsup value). Therefore, using the
node-links of ‘c’, we collect all the branches containing ‘c’.
The branches containing c are {{a, c: 3}, {c, d: 6}}. In the
branch 〈a, c: 3〉, c is the leaf node, therefore, we prune the
node ‘c’ in this branch. The resultant MIS-tree is shown in
Figure 2(b). Note that the node of ‘c’ in the branch {{c, d:
6}} it not pruned as it is not a leaf node. (Pruning ‘c’ in
this branch will result in missing the frequent pattern ‘cd’
because S(cd) ≥ minimum(MIS(c), MIS(d)).

Algorithm 6 CFP-growth++ (Tree: compact MIS-tree)

1: for each item i in the header of the Tree do
2: Set conditional minsup, Cminsupi = MIS(i).
3: if i is a frequent item then
4: Generate pattern β = i ∪ α with support =

i.support.
5: Construct β’s conditional pattern base and β’s con-

ditional MIS-tree Treeβ .
6: if Treeβ 6= ∅ then
7: Call CFPGrowth + +(Treeβ , β, Cminsupi).
8: end if
9: end if

10: end for

4.3.3 Mining frequent patterns from compact MIS-tree

The procedure for mining frequent patterns from compact
MIS-tree is shown in Algorithm 6. The pruning techniques
conditional minsup and conditional closure property are for
mining frequent patterns.

The process of mining frequent patterns from the compact
MIS-tree of Figure 2(b) is shown in Table 4 and is described
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Procedure 7 CFPGrowth++(Tree, α, Cminsupi)

1: for each i in the header of Tree do
2: Generate pattern β = i∪α with support = i.support.
3: Construct β’s conditional pattern base and then β’s

conditional MIS-tree Treeβ .
4: if Treeβ 6= ∅ then
5: if Treeβ contains a single path P then
6: for each combination (denoted as γ) of the nodes

in the path P do
7: Generate pattern γ ∪ β with support = mini-

mum support count of nodes in γ.
8: end for
9: else

10: Call CFPGrowth + +(Treeβ , β, Cminsupi).
11: end if
12: end if
13: end for

as follows. Consider the item ‘f ’ that has lowest MIS among
all items in the compact MIS-tree. It occurs in 3 branches
of compact MIS-tree. The branches are 〈a, e, f: 1〉, 〈e, f:
1〉 and 〈b, e, f: 1〉. Considering ‘f ’ as a suffix pattern (or
item), its conditional prefix paths are 〈a, e: 1〉, 〈e: 1〉 and
〈b, e: 1〉, which form its conditional pattern base. As the
compact MIS-tree is constructed in MIS descending order
of items, ‘f ’ (suffix item) will have lowest MIS value among
all the items in its conditional pattern base. Therefore, us-
ing MIS value of the item ‘f ’ (i.e., 3) as the conditional
minsup, conditional MIS-tree is generated with 〈e: 3〉; the
items a and b are not included because the support counts
are less than the specified conditional minsup value (i.e.,
conditional closure property). The single path generates the
frequent pattern {e, f: 3}. Similar process is repeated for
other remaining items in the compact MIS-tree to discover
the complete set of frequent patterns.

Table 4: Mining compact MIS-tree by using multiple
minsups and conditional pattern bases. The terms
‘SI’, ‘MS’ and ‘Cond.’ respectively denote ‘suffix
item’, ‘conditional minsup’ and ‘Conditional’.

SI MS Cond. Cond. frequent
pattern bases MIS-tree patterns

f 3 〈a, e: 1〉 〈e: 1〉 〈e: 3〉 {{e, f : 3}}
〈b, e: 1〉

e 3 〈a, b: 1〉 〈a: 1〉
〈b: 1〉 - -

d 6 〈a, b: 1〉 〈c: 6〉 〈c: 6〉 {{c, d: 6}}
b 8 〈a: 8〉 〈a: 8〉 {{a, b: 8}}
c 10 - - -

5. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of FP-growth,

CFP-growth and CFP-growth++ algorithms. We are not
considering Apriori and MSApriori algorithms for compar-
ison because it has been shown that FP-growth and CFP-
growth algorithms are better than the corresponding Apriori
and MSApriori algorithms, respectively [5, 6].

The algorithms are written in GNU C++ and run with
Ubuntu 10.04 operating system on a 2.66 GHz machine with

1GB memory. The experiments are pursued on synthetic
(T10I4D100K ) and real-world datasets (BMS-WebView-1
[15], Mushroom and Kosarak). T10I4D100K, BMS-WebView-
1 and Kosarak are sparse datasets and Mushroom is a dense
dataset. These datasets are widely used in the literature for
evaluating the performance of data mining algorithms. The
datasets are available at Frequent Itemset Mining repository
(http://fimi.cs.helsinki.fi/data/). The details of the datasets
are shown in Table 5.

Table 5: Dataset characteristics. The terms “max,”
“avg,” and “trans” respectively denote maximum,
average and transactions.

Dataset Transa- Distinct Max. Avg.
ctions Items Trans. Trans.

Size Size
T10I4D100k 100000 870 29 10.102
BMS-WebView-1 59602 497 267 2.5
Mushroom 8124 119 23 23
Kosarak 990002 41270 2498 8.1

In the experiment, we used the methodology discussed in
[10] to assign items’ MIS values. The methodology is as
follows:

MIS(ij) = maximum(β × f(ij), LS) (2)

The f(ij) and MIS(ij) variables respectively denote the
frequency (or support) and minimum item support for an
item ij ∈ I. The variable LS represents the user-specified
least minimum item support allowed. In this, β ∈ [0, 1] is
a parameter that controls how the MIS values for items
should be related to their frequencies. If β = 0, we have
only one minimum support, LS, which is the same as the
minsup in traditional frequent pattern mining. If β = 1 and
f(ij) ≥ LS, then MIS(ij) = f(ij).

5.1 Experiment 1
In this experiment, both LS and minsup values are set at

0.1% for T10I4D100K and BMS-WebView-1 datasets. For
the Mushroom dataset, both LS and minsup values are set
at 10% as it is a dense dataset. To show how β affects the
number of frequent patterns found and the performance of
the algorithms, we fixed β = 1

α
and varied α. In the sparse

datasets (T10I4D100k and BMS-WebView-1 ), α is varied
from 1 to 20. In the dense dataset (Mushroom), α is varied
from 1 to 5.

The experimental results regarding how the number of
frequent patterns vary with the MIS values in different
datasets are shown in the Figures 3(a), 3(b) and 3(c). When
α becomes larger, the number of frequent patterns found by
the method gets closer to the number of frequent patterns
found with the single minsup framework. The reason is
as follows. At higher values of α, the items’ MIS values
become equals to LS. As a result, the performance of the
“multiple minsups framework”is same as the“single minsup
framework”with minsup = LS. It can also be observed that
the above phenomenon happens at higher values of α in the
sparse datasets (Figure 3(a) and 3(b)) and at lower values
of α in the dense dataset (Figure 3(c)).

The experimental results about the runtime performance
of FP-growth, CFP-growth and CFP-growth++ algorithms
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Figure 3: Frequent patterns generated at different MIS values of items.
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Figure 4: Runtime taken for generating frequent patterns.

on different datasets are shown in the Figures 4(a), 4(b) and
4(c). For CFP-growth and CFP-growth++ algorithms, run-
time includes the construction of MIS-tree, construction of
compact MIS-tree and mining frequent patterns from com-
pact MIS-tree. For FP-growth algorithm, runtime includes
the construction of FP-tree and mining frequent patterns
from the FP-tree.

It can be observed that the runtime performance of the
FP-growth is significantly better than the CFP-growth for
all datasets independent of the α value. It is due to the
fact that CFP-growth carries out exhaustive search as “mul-
tiple minsups framework” does not satisfy downward clo-
sure property, whereas FP-growth exploits downward closure
property to reduce the search space. It can be observed that
at all α values, the CFP-growth++ performance is signifi-
cantly better than the CFP-growth. The performance gap
is much higher at lower α values. It is due to the effect of
pruning techniques employed by CFP-growth++ to reduce
the search space.

It can also be observed that at higher values of α, the
runtime consumed by the CFP-growth++ is more than the
FP-growth. The difference is more clear in Figures 4(b)
and 4(c). The reason is as follows. The CFP-growth++
algorithm has to consider MIS value of the suffix item to
specify conditional minsup value for its conditional pattern
base. Whereas, the FP-growth algorithm simply specifies a
constant minsup for a conditional pattern base independent
of the suffix item.

In [10], it was mentioned that in many real-world appli-
cations, the frequent patterns generated when α = 4 were

interesting to the users. It can be observed that, at α = 4,
the proposed CFP-growth++ improves the runtime perfor-
mance significantly over CFP-growth.

5.2 Experiment 2
In this experiment, we evaluate the scalability performance

of CFP-growth and CFP-growth++ algorithms on execution
time by varying the number of transactions in a database.
We use real-world kosarak dataset for the scalability ex-
periment, since it is a huge sparse dataset. We divided the
dataset into five portions of 0.2 million transactions in each
part and investigated runtime taken by CFP-growth and
CFP-growth++ algorithms after accumulating each portion
with previous parts. For each experiment, we have fixed
β = 0.25% and LS = 1%. The experimental result is shown
in Figure 5. It can be observed from the graph that as the
database size increases, the runtime of both CFP-growth
and CFP-growth++ algorithms increases. However, it can
be noted that CFP-growth++ is more scalable than the
CFP-growth algorithm. Overall, CFP-growth++ is about
an order of magnitude faster than the CFP-growth in large
databases, and this gap grows wider with the increase in
dataset size.

6. CONCLUSIONS
To mine frequent patterns containing both frequent and

rare items, “multiple minsups framework” was proposed in
the literature. By considering “multiple minsups frame-
work,” CFP-growth algorithm has been proposed to extract
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frequent patterns. In this paper, we have proposed an im-
proved CFP-growth algorithm, called CFP-growth++, by
introducing the following pruning techniques: least mini-
mum support, conditional minsup, conditional closure prop-
erty and infrequent leaf node pruning. By conducting ex-
periments on both synthetic and real-world datasets, we
have shown that the proposed algorithm improves the per-
formance significantly over the exciting approaches.

As a part of future work, we are planning to conduct ex-
tensive experiments by considering different types of datasets.
It is interesting to investigate how the proposed pruning
techniques can be extended to improve the performance of
generalized multiple-level frequent patterns.
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