
The use of digitalis purpurea extracts containing cardiac 
glycosides for the treatment of heart disorders was first 
described by William Withering in 1785. The mechanism 
of cardiac glycoside action was delineated approximately 
50 years ago when Schatzmann and colleagues identified 
these compounds as specific inhibitors of Na+/K+-ATPase1 

(EC 3.6.3.9). Na+/K+-ATPase is a ubiquitous membrane 
protein that uses energy derived from ATP hydrolysis to 
drive the active transport of potassium ions into cells and 
sodium ions out of cells. Extensive studies of the mode of 
action of these compounds has yielded one of the best-
defined mechanisms attributed to a drug so far: inhibition 
of Na+/K+-ATPase1 raises the level of sodium ions in car-
diac myocytes, which leads to an increase in the level of 
calcium ions and an increase in cardiac contractile force. 
Further understanding of their positive inotropic effects 
established these molecules as effective drugs for heart 
failure, and members of this family (digoxin, digitoxin) 
are still in clinical use2.

Recent studies have highlighted a new aspect of the 
biology of Na+/K+-ATPase as a versatile signal trans-
ducer, as well as additional modes of action for cardiac 
steroids3–6. This emerging evidence suggests that binding 
of these compounds to Na+/K+-ATPase activates multiple 
downstream signal transduction pathways, and impli-
cates cardiac glycosides (endogenous and exogenous) 
in the regulation of many important physio logical and 
pathological states7–9. Furthermore, unexpected results 
from epidemiological studies describing significantly 
lower mortality rates of patients with cancer receiving 
cardiac glycosides sparked new interest in the anticancer 
properties of these drugs. Numerous subsequent in vitro  

and in vivo studies verified these initial observations10–12, 
and cardiac-glycoside-based drugs have now entered 
clinical trials for treating cancer13–15. In addition, the 
inclusion of several cardiac glycosides in large compound 
libraries for the increasing needs of hypothesis-neutral, 
high-throughput screening assays has uncovered further 
candidate therapeutic aspects of these drugs for a number 
of non-cancer pathologies. In this Review, we focus on 
these newer discoveries on the potential therapeutic 
roles of cardiac glycosides in various human diseases, in  
particular, cancer.

Characteristics of cardiac glycosides
Cardiac glycosides comprise a large family of naturally 
derived compounds. They show considerable structural 
diversity, but all members of this family share a common 
structural motif. The core structure consists of a steroi-
dal framework, which is considered the pharmaco phoric 
moiety responsible for the activity of these compounds16. 
This steroid core is double-substituted with an unsatu-
rated lactone ring at position 17 and a sugar portion at 
position 3 (FIG. 1). The nature of the lactone moiety char-
acterizes the subgroup of the glycosides. Cardenolides 
have a five-membered unsaturated butyrolactone 
ring, whereas bufadienolides contain a six-membered 
unsaturated pyrone ring (FIG. 1). Unlike sex hormones, 
mineralocorticoids and glycocorticoids, which are all 
trans-connected, cardiac glycosides show an A/B and 
C/D cis-conformation.

A wide variety of sugars are attached to natural car-
diac glycosides; the most common are glucose, galactose, 
mannose, rhamnose and digitalose. Although sugars  
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Abstract | Cardiac glycosides are a diverse family of naturally derived compounds that bind 
to and inhibit Na+/K+-ATPase. Members of this family have been in clinical use for many years 
for the treatment of heart failure and atrial arrhythmia, and the mechanism of their positive 
inotropic effect is well characterized. Exciting recent findings have suggested additional 
signalling modes of action of Na+/K+-ATPase, implicating cardiac glycosides in the regulation 
of several important cellular processes and highlighting potential new therapeutic roles for 
these compounds in various diseases. Perhaps most notably, the increased susceptibility of 
cancer cells to these compounds supports their potential use as cancer therapies, and the 
first generation of glycoside-based anticancer drugs are currently in clinical trials.
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themselves have no activity, the addition of sugars to the 
steroid affects the pharmacodynamic and pharmaco-
kinetic profile of each glycoside. For example, free 
aglycones are absorbed more rapidly and are metabo-
lized more easily than their glycosylated counterparts. 
moreover, the type of the attached sugar influences the 
potency of the compound. For instance, the addition of 
rhamnose was shown to increase potency several times 
(6–35 times), whereas the addition of mannose had no 
significant effects17. Based on this, langenhan and col-
leagues recently developed a powerful new tool, called 
neoglycorandomization, for the study of the relation-
ship between attached sugars and biological activity. 
This high-throughput method allows rapid conversion 
of a single aglycone molecule into a library of analogues 
with diverse sugar moieties18. Techniques such as this 
could facilitate the discovery of novel cardiac glycoside 
analogues with improved therapeutic properties. 

more than a hundred cardiac glycosides have been 
identified as secondary metabolites in plants, with most 
belonging to the angiosperms17. Recently, however, car-
diac glycosides of the bufadienolide class were identified  
in the skin and the carotid gland of animals, and mainly in  
the venom of several toad species19. TABLE 1 summarizes the  
most extensively studied glycosides of plant and animal 
origin.

The ability of some animal species to synthesize car-
diotonic steroids, together with the highly conserved 
nature of the digitalis binding site, has given rise to the 
speculation that humans can also produce these com-
pounds. Indeed, advances in mass spectrometry led to 
the identification of mammalian endogenous cardiac 
glycosides, collectively termed as digitalis-like com-
pounds20,21. Digitalis-like compounds are found in mam-
malian tissues (such as the brain and adrenals) and body 
fluids (such as plasma, urine and cerebrospinal fluid)22. 

The growing list of endogenous glycosides identified so 
far includes several members of both the cardenolide and 
the bufadienolide class such as ouabain (human plasma, 
adrenal cortex and hypothalamus)20,23–26; digoxin (human 
urine)21; 19-nor bufalin (cataractus human lenses)27; 
marinobufagenin (human urine after acute myocardial 
infraction)28; and proscillaridin A (human plasma)23,29,30. 
The biosynthesis of these steroid hormones utilizes chol-
esterol and progesterone and is under tight regulation by 
other hormones, such as renin–angiotensin, endothelin 
and adrenaline30.

The recent discovery of the signalling properties of 
Na+/K+-ATPase has helped in the assignment of new 
functional roles for cardiac glycosides (endogenous and 
exogenous) at both the molecular and cellular level. To 
better understand the physiological and pathological 
roles of cardiac glycosides and their extended therapeu-
tic impact, we will first review briefly the latest findings 
related to Na+/K+-ATPase.

Na+/K+-ATPase structure and function
Na+/K+-ATPase, which is the largest protein complex 
of the P-type family of cation pumps, uses the energy 
derived from the hydrolysis of ATP to drive the active 
transport of potassium ions inside and sodium ions 
outside cells in a 2:3 stoichiometry. Its main physio-
logical role is the establishment and maintenance of 
an electrochemical gradient across the plasma mem-
brane31, which is critical for physiological processes 
such as neuronal communication, osmotic regulation 
of cell volume and ion homeostasis. moreover, this 
gradient force is coupled to the secondary transport of 
many organic and inorganic substrates31. It is estimated 
that the pumping activity of this enzyme accounts for 
approximately 30% of a cell’s overall energy consumption  
at rest5.

The inotropic effects following the interaction of car-
diac glycosides with the sodium pump are well character-
ized32. In short, cardiac-glycoside-induced inhibition of 
Na+/K+-ATPase leads to an increase in intracellular levels 
of sodium ions. As a result, the activity of the Na+/Ca2+ 

exchanger is reduced and therefore intracellular concen-
trations of calcium ions are increased, which accounts 
for the positive inotropic effects (for more details see 
rEFS 31,33).

The X-ray crystal structure of Na+/K+-ATPase (at 
3.5 Å resolution) has been recently resolved34. It is an 
oligomer composed of at least two polypeptides: the 
α-subunit and the β-subunit. The α-subunit is the cata-
lytic moiety of the enzyme. Homologous to single-subunit 
P-type ATPases, it bears the binding sites for Na+, K+, 
mg2+, ATP and the highly conserved cardiac glycoside-
binding site. The binding site is formed by the extracell-
ular loops of the m1/m2, m3/m4 and m5/m6 moieties, 
as recently revealed by elegant functional studies35–37.  
Several additional regulatory sites are also found on 
the α-subunit, including phosphorylation sites for 
numerous signal transducing kinases (such as phospho-
inositide 3-kinase (PI3K), protein kinase C (PKC) and 
PKA), caveolins and ankyrins. These sites are important 
for the formation of the Na+/K+-ATPase signalosome  

Figure 1 | General structural characteristics of cardiac glycosides. Each molecule  
of this family consists of three distinct structural motifs: a steroid nucleus, a sugar 
moiety and a lactone moiety. The lactone moiety defines the functional class of each 
compound. Cardenolides contain a five-membered unsaturated butyrolactone ring, 
whereas bufadienolides contain a six-membered unsaturated pyrone ring.
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(described below). The regulatory β-subunit is a single-
span glycoprotein with a chaperone-like activity 
that is unique to the K+-counter-transporting P-type 
ATPases34. It is mainly important for the recruitment 
of the α-subunit to the plasma membrane and for the 
occlusion of potassium ions34. Finally, the FXYD pro-
teins are single-span, type I transmembrane proteins, 
which are often associated with the αβ-complex and 
seem to act as modulators of the kinetic properties of 
the pump38,39.

Notably, both the β-subunit and the FXYD subunit 
are found to affect the binding affinity of cardiac steroids 
to Na+/K+-ATPase. It is postulated that the tissue-specific 
expression of these subunits might account for the differ-
ential physiological responses of tissues to the effects of 
cardiac glycosides40–44.

In addition to pumping ions, it is now established that 
Na+/K+-ATPase acts as a scaffold for the assembly of a 
multiple-protein signalling domain that transmits signals 
to various intracellular compartments45–47. Several mem-
bers of this complex have now been identified, including 
SRC kinase, epidermal growth-factor receptor (EGFR), 
inositol 1,4,5-triphosphate (IP3) receptor and caveolins. 
These are all engaged in the formation of this signal-
ling domain, which is localized in the coated pits of the 
plasma membrane. Conformational changes on binding 
of cardiac glycosides trigger a downstream protein inter-
play that ultimately results in the activation of intracellular 
signal transduction cascades.

Interestingly, the signal transduction activity of this 
enzyme occurs through properties that are independent 
of its function as an ion pump48. Indeed, doses of cardiac 

Table 1 | Selected cardiac glycosides (part 1) 
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*Data retrieved from ChemBank database (see Further information).
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steroids — at concentrations that result in only subtle 
changes to the pumping activity of Na+/K+-ATPase — 
activate downstream signal transduction cascades and 
regulate many cellular processes including cell growth49, 
cell motility50 and apoptosis51. The elucidation of the pre-
cise downstream signalling networks is still a subject of 
ongoing research; two of the most established signalling 
avenues are described below.

Signalling through alterations in intracellular calcium 
oscillations. In 2001, a new signalling mechanism for 
cardiac glycosides was revealed by the exciting finding 
from Aizman and colleagues that ouabain at concentra-
tions that confer only partial or no inhibition of Na+/
K+-ATPase can trigger intracellular calcium oscillations 
in renal proximal tubule cells52. more recently, similar 
oscillations were reported in human endothelial cells53 
and in CoS-7 cells54.

It is now established that the binding of nanomolar 
concentrations of ouabain to Na+/K+-ATPase triggers 
an allosteric conformational change at the N-terminal 
tail of the catalytic α-subunit, which activates the neigh-
bouring SRC protein. In parallel, in a way that is not 
yet fully defined, phospholipase C (PlC) and IP3 are 
also recruited, resulting in the formation of a functional 
microdomain54 that brings the cytosolic part of the 
sodium pump in direct contact with the IP3 receptor 
of the endoplasmic reticulum47,55. At this point, single 
or repeated transient increases in levels of intracellular 

calcium are produced.
Calcium oscillations are a universal mode of signal-

ling that mediate a diverse range of cellular functions 
such as cell proliferation, differentiation and apoptosis56. 
The ultimate response of the cell is dependent on the 
periodicity of the calcium oscillations; depending on 
the stimulus they can vary from seconds to hours54. It 
is established that low concentrations of ouabain trig-
ger low-frequency calcium oscillations (~4–6 min). In 
this range, the calcium-dependent transcription factor 
nuclear factor-κB (NF-κB) is activated and mediates 
transcription of several anti-apoptotic and proliferation-
inducing genes. Indeed, ouabain (0.1–10 nm) was 
reported to induce the proliferation of and protected 
kidney cells from serum deprivation-induced apoptosis 
in an NF-κB-dependent manner57.

Abnormal calcium homeostasis is linked to the 
pathogenesis of many diseases, and a plethora of thera-
peutic approaches aim to re-establish normal calcium 
homeostasis. G-protein-coupled receptors (GPCRs) are 
common drug targets owing to their ability to activate 
intracellular calcium release through the activation of IP3 
receptors. The new findings on the signalling properties 
of Na+/K+-ATPase qualify this molecule as an alternative 
mediator of IP3-receptor-mediated calcium release and 
a potential new therapeutic target for calcium-related 
pathologies5.

Signalling through Ras activation. Na+/K+-ATPase can 
also relay signals through activation of other multiple 
protein–protein interactions. The initial event, follow-
ing binding of cardiac glycosides, is the release of the 
cytoplasmic tyrosine kinase SRC from the complex 
signalosome45. SRC kinase is activated upon phosphory-
lation at Tyr418 and, in turn, activates the proximal 
EGFR. Activated EGFR sequentially recruits the adaptor 
proteins SHC, growth factor receptor-bound protein 2 
(GRB2) and SoS until eventually the signal activates the 
Ras–RAF–mAPK (mitogen-activated protein kinase) 
cascade3,58.

Activation of Ras stimulates several downstream 
signalling cascades. In cardiac myocytes, ouabain-
induced activation of Ras triggers the opening of the 
ATP-sensitive mitochondrial potassium channels, 
resulting in a concomitant production of mitochondrial 
reactive oxygen species (RoS)59. RoS, in turn, activate 
NF-κB, which stimulates the transcription of several 
cell-growth-related and differentiation genes, in parallel 
with the calcium-induced NF-κB activation. RoS pro-
duction is also the result of a third described pathway, 

Table 1 | Selected cardiac glycosides (part 2) 
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(functional class)
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*Data retrieved from ChemBank database (see Further information).
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which is based on PI3K–Akt activation. PI3K is another 
part of the signalosome and is bound to a proline-rich 
region of the catalytic α-subunit of Na+/K+-ATPase60. 
In a similar way, stimulated PI3K mediates prolifera-
tion signals through nitric oxide-induced production 
of RoS61. FIGUrE 2 summarizes some of the signalling 
cascades that are activated in myocytes, endothelial cells 
and epithelial cells when cardiac glycosides bind to Na+/
K+-ATPase. mitochondrial RoS and calcium ions seem 
to be the crucial downstream secondary messengers that 
mediate signals to the nucleus62.

Collectively, these new findings indicate that cardiac 
glycosides can regulate several cellular processes, which 
are beyond their well-established role in ion homeostasis. 
Indeed, a growing body of recent publications describe 
the effects of these compounds on the regulation of gene 
expression63, cell attachment64, orientation of polarity65, 
protein trafficking66 and induction of proliferation3,53,67,68. 

overall, it is now clear that the ultimate response to car-
diac glycoside treatment is dependent on the tissue, 
exposure time and dose10. Notably, responses of cancer 
cells to cardiac glycoside treatment seem to be different, 
which has stimulated interest in their potential as anti-
cancer drugs, as described in the following section.

Cardiac glycosides and cancer therapy
In the 1980s, Stenkvist and colleagues reported that breast 
cancer cells obtained from women on digitalis therapy 
were characterized by a series of more benign features 
compared with cancer cells from control patients69–71. 
moreover, 5 years after mastectomy, the recurrence rate 
of breast cancer among patients on digitalis treatment 
was 9.6-times lower compared with patients not on 
digitalis71. Around the same time, a second confirma-
tion came from Goldin and colleagues, who studied the 
effects of digitalis treatment in 127 patients with cancer. 
Among the 21 deaths attributed to cancer, only one 
patient belonged to the digitalis group72. However, these 
encouraging results did not trigger much attention at the 
time. more recently, Stenkvist reported on 20 years of 
follow-up data and demonstrated that patients receiving 
digitalis had a significantly reduced mortality rate (6%, 
2/32) compared with the control group (34%, 48/143)73. 
However, the small number of patients in this study did 
not allow strong conclusions to be made regarding the 
anticancer effects of these drugs. In response to this 
need, Haux and colleagues conducted an internal dose–
response analysis of 9,271 patients on digitoxin treat-
ment and investigated the potential anticancer effects 
of this compound. Although no significant anticancer 
effects were reported, a link between high plasma con-
centration of digitoxin and reduced risk for leukaemia 
and for cancers of the urinary tract were proposed74,75.

These data paved the way for numerous follow-up 
studies that established the anticancer properties of car-
diac glycosides. more than a thousand papers are now 
published, with most describing the anticancer properties 
of these compounds in vitro.

In vitro evidence for the anticancer properties of cardiac 
glycosides. The first in vitro evidence for the inhibition 
of malignant cell proliferation by cardiac glycosides 
dates back to 1967 (rEF. 76). Since then, numerous other 
reports have confirmed the antiproliferative and apop-
totic effects of these compounds in several cancer cell 
lines, including breast6,77,78, prostate79–81, melanoma82, 
pancreatic83, lung84,85, leukaemia86–91, neuroblastoma92 and 
renal adenocarcinoma78 (TABLE 2). The exact mechanisms 
underlying these effects of cardiac glycosides are not yet 
fully elucidated; a summary of possible mechanisms is 
provided in BOX 1.

Interestingly, marked differences characterize the 
potencies of these structurally similar compounds. For 
instance, Johansson and colleagues evaluated the cyto-
toxic profile (IC50) of seven cardiac glycosides in primary 
cultures of tumour cells from patients and in a panel of 
human cell lines93. They found that proscillaridin A was 
the most potent, followed by digitoxin, ouabain, digoxin, 
lanatoside C, digitoxigenin and digitonin93. Furthermore, 

Figure 2 | Na+/K+-ATPase as a versatile signal transducer. Binding of cardiac glycosides 
to the preassembled Na+/K+-ATPase (NKA) signalosome activates multiple signal 
transduction cascades that inhibit cell death and trigger proliferation in myocytes, 
endothelial cells and epithelial cells. To summarize briefly, following cardiac glycoside 
binding to NKA, the tyrosine kinase SRC is activated and in turn activates the proximal 
epidermal growth-factor receptor (EGFR). Activated EGFR sequentially recruits  
the adaptors SHC, growth factor receptor-bound protein 2 (GRB2) and SOS, which 
ultimately leads to activation of the mitogen-activated protein kinase (MAPK) cascade.  
In parallel, phospholipase C (PLC) and inositol 1,4,5-triphosphate (IP3) also participate in 
the formation of a functional microdomain that brings NKA into direct contact with the 
IP3 receptor (IP3R) of the endoplasmic reticulum. At this point, single or repeated 
transient increases in intracellular Ca2+ are produced. Ca2+ oscillations are a universal 
mode of signalling that mediate a diverse range of cell functions including cell 
proliferation, differentiation and apoptosis. AP1, activating protein 1; CS, cardiac 
steroids; MEK, MAPK kinase; NF-κB, nuclear factor-κB; PKC, protein kinase C; ROS, 
reactive oxygen species. Adapted from rEF. 58.
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van Quaquebeke et al.94 semi-synthesized a library of 27 
novel cardenolides and studied their structure–activity 
profile against a panel of 57 cancer cell lines. one of 
these compounds, UNBS1450, displayed better anti-
tumour properties in vitro compared with commonly 
used chemotherapeutic drugs, and was best tolerated 
in vivo by mice compared with digitoxin and ouabain94. 
Such structure–activity relationship analyses highlight 
the structural characteristics that are important for the 
activity of these compounds, and lay the foundations 
for the development of novel, more active compounds 
with higher in vivo tolerance and improved therapeutic 
potential as anticancer agents.

In parallel, several recent publications highlight the 
effects of these compounds in the regulation of the gene-
expression profiles of many cancer cells. Johnson et al.95 
screened 9,000 compounds for their ability to simul-
taneously inhibit expression of six commonly over-
expressed genes in prostate cancer cells. Interestingly, 
digitoxin and ouabain were the only compounds that 
could confer significant inhibition in the expression of 
four of the target genes, including transcription factors 
HOXB13, PDEF (also known as SPDEF), hepatocyte 
nuclear factor 3α (HNF3A; also known as FOXOA1) 
and the apoptosis inhibitor survivin95. moreover, olean-
drin was shown to inhibit export of fibroblast growth 
factor 2 (FGF2) from PC-3 and DU145 prostate cancer 
cells in a concentration-dependent and time-dependent 
manner96. manna et al.97 found that oleandrin inhibits 
interleukin 8 (Il8)-mediated biological responses by 
altering the plasma-membrane fluidity. Il8 is highly 
expressed in many cancers, where it acts as a chemo-
attractant and is a principal angiogenic stimulus for 
neovascularization.

Finally, cardiac steroids can also be used to improve 
the therapeutic index of radiation therapy. It was shown 
that when human lung adenocarcinoma cells were 
treated with low concentrations of ouabain, they become 

radiosensitized, unlike normal human lung fibroblasts98. 
In support of this, verheye-Dua et al.99 showed that 
ouabain enhances irradiation damage in a panel of 
cancer cells. It is suggested that cells treated with these 
compounds accumulate in the G2m phase, in which 
they are more sensitive to radiation. Another glycoside, 
oleandrin, has been found to enhance the sensitivity of 
PC-3 human prostate cells to radiation. Susceptibility 
of PC-3 cells to oleandrin and radiation-induced 
apoptosis was dependent on activation of caspase 3  
(CASP3)100.

Ex vivo and in vivo data on the anticancer effects of  
cardiac glycosides. more than a decade ago, Inada 
et al.101 first reported the ability of digitoxin to inhibit  
tumour formation in a two-stage carcinogenesis model 
of mouse skin papillomas induced by 7,12-dimethyl-
benz[a]anthracene (DmBA) and 12-O-tetra decanoyl-
phorbol-13-acetate (TPA), and in a mouse pulmonary 
tumour model induced by 4-nitroquinoline-N-oxide 
(4NQo) and glycerol. In agreement with this, a study by 
Afaq et al.102 investigating the tumour growth-inhibitory  
effects of oleandrin after TPA induction of skin car-
cinogenesis found that topical application of oleandrin 
(2 mg per mouse) half an hour before TPA induction 
(3.2 nmol per mouse) significantly inhibited skin car-
cinogenesis in a time-dependent manner. Furthermore, 
significant anticarcinogenic effects of cardiac glyco-
sides were evident in human neuroblastoma tumours. 
Svensson et al.103 demonstrated that digoxin is a specific 
neuroblastoma growth inhibitor in mice grafted with 
the neuroblastoma cell lines SH-SY5Y and Neuro-2a. 
moreover, Han et al.104 investigated the antitumour 
activities of bufalin in an orthotropic transplantation 
tumour model of human hepatocellular carcinoma in 
nude mice and found that non-toxic concentrations of 
bufalin can induce specific apoptosis of transplanted 
tumour cells.

Table 2 | In vitro antiproliferative and/or apoptotic effects of cardiac glycosides in cancer cells

cancer type compounds tested cancer cell lines refs

Breast Digitoxin, digoxin, proscillaridin A,  
ouabain, digoxigenin, gitoxin, gitoxigenin

MCF-7, MDA-MD-435 77,78

Prostate Oleandrin, ouabain, digoxin, bufalin, 
cinobufagenin

PC-3, LNCaP, DU145 79–81

Melanoma Digoxin, oleandrin, digitoxin,  
proscillaridin A, ouabain, digitonin

UACC-62, BRO 78,82

Lung Digitoxin, digoxin,  ouabain,  
UNBS1450, oleandrin 

A549, NCI-H-358, Calu1, Sklu1, 
NCI-H6, H69AR

15,84, 
85,93

Leukaemia Bufalin, oleandrin, digitoxin,  
proscillaridin A, ouabain

HL60, U-937, CCRF-CEM,  
CEM-VM-1

78,87, 
89–91,93

Neuroblastoma Digoxin, ouabain SH-SY5Y, Neuro-2a 92

Renal Digitoxin, digoxin, digitoxigenin,  
proscillaridin A, ouabain

TK-10, ACHN 78,93

Myeloma Digitoxin, digoxin, proscillaridin A, 
digitoxigenin, ouabain, digitonin,  
lanatocide C

8226-S, 8226-LR5, 8226-DOX-40 86,93

Pancreatic Oleandrin PANC-1 83
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Alterations in 
the homeostasis of K+, 
Na+ and Ca2+ (REF. 2)

Inhibition of
topoisomerase II
(REFS 77,124)

Increased
production
of ROS3,4

Inhibition 
of glycolysis12

Upregulation 
of DR4 and 
DR5 (REF. 85)

Inhibition 
of TNF/NF-κB
pathway85

Alterations
in membrane
fluidity97Alterations in 

N-linked glycan 
expression132

Alteration in
gene-expression 
profiles95

Increased 
levels of p21CIP1 

(REFS 45,90)

Increased
expression
of FasL86

Cardiac
glycosides

Glycoside-based anticancer drugs in the clinic. The 
already well-established pharmacodynamics and phar-
macokinetics of these compounds provide a shorter 
pathway to clinical trials. In April 2000, the US Food 
and Drug Administration (FDA) approved a Phase I 
study of Anvirzel in patients with advanced solid 
tumours. Anvirzel is an aqueous extract of the plant 
Nerium oleander. It contains a variety of compounds 
including polysaccharides, proteins, sugars and cardiac 
glycosides — mainly oleandrin and its aglycone oleand-
rigenin. It has been demonstrated that Anvirzel inhibits 
the export of FGF2 from prostate cancer cells through 
sodium-pump inhibition by oleandrin96. Furthermore, 
Pathak et al.105 investigated the mechanisms of Anvirzel-
induced cancer cell death in various cancer cell lines of 
human, murine and canine origin and found that human 
cells are more susceptible to the effects of this drug. The 
results of Phase I trials show that Anvirzel can be safely 
administered to patients with solid tumours. overall, 
this agent appears to be well tolerated as patients in the 
trial experienced only mild-to-moderate side effects. No 
evidence of significant antitumour activity was detected, 
but this might be due to the fact that the patient group 
consisted exclusively of individuals who had refractory 
cancers. To our knowledge, no Phase II clinical trials 
of Anvirzel have been conducted; however, another 
supercritical Co2 extract of N. oleander recently entered 
Phase I clinical trials at the University of Texas, m.D. 
Anderson Cancer Center.

In parallel, UNBS1450, a semi-synthetic derivative 
of the novel cardenolide 2′′-oxovoruscharin, entered 
Phase I clinical trials in Belgium in 2006. This prom-
ising novel cardenolide has been shown to deactivate 
NF-κB-mediated cytoprotective effects in human non-
small-cell lung cancer (NSClC) cells15,84. The modifica-
tions induced by UNBS1450 led to a decrease in both 
the DNA-binding capacity of the p65 subunit and the 
NF-κB transcriptional activity15,84. UNBS1450 was 
as potent as taxol and SN38 (the active metabolite of 
irino tecan) in reducing the overall growth levels of the 
human A549 NSClC cell line, and was more efficient 
than platin derivatives, including cisplatin, carboplatin 
and oxaliplatin15,84.

Cardiac glycosides and other diseases
Cardiac glycosides, in particular digoxin and digitoxin, 
have been a cornerstone of the treatment of heart dis-
eases for more than two centuries. However, the identi-
fication of angiotensin-converting enzyme inhibitors, 
β-adrenergic blockers and angiotensin-receptor blockers 
has significantly reduced their clinical use. Nevertheless, 
recent analysis of the large-scale randomized Digitalis 
Investigation Group trial reported that digoxin at low-
serum concentrations significantly reduced mortality 
and hospitalizations in ambulatory patients with chronic 
systolic and diastolic heart failure106. However, whether 
digoxin should be considered a drug of the past for 
the treatment of heart diseases is still a controversial 
issue107–109. moreover, recent findings regarding the sig-
nalling properties of Na+/K+-ATPase suggest improved 
therapeutic aspects of these compounds for the treatment  

Box 1 | Potential mechanisms for the anticancer effects of cardiac glycosides 

The molecular mechanisms underlying the increased susceptibility of cancer cells to 
cardiac glycosides are not yet fully elucidated; possible mechanisms are summarized 
in the figure below.

Interestingly, despite the fact that the same, or closely related signalling cascades, 
seem to be implicated, the final responses of cancer cells and normal cells to cardiac 
glycosides differ. It is postulated that the differential expression and activity of the Na+/
K+-ATPase subunits in tumour tissues compared with their normal counterparts might 
play a major role in this difference in response. Indeed, it is established that malignant 
transformation is characterized by a significant increase in the activity of Na+/K+-ATPase 
(leakage theory)118. Moreover, alterations in the expression profile of the Na+/K+-ATPase 
subunits were evident in various cancers, including bladder119, gastric120, colorectal121 

and non-small-cell lung cancer122. More details on the role of Na+/K+-ATPase in cancer 
can be found in recent reviews10,123.

Unlike in normal cells, it has been demonstrated that activation of the SRC–epidermal 
growth-factor receptor (EGFR)–mitogen-activated protein kinase (MAPK) pathway  
in cancer cells by cardiac glycosides results in growth arrest through an increased 
expression of the cyclin-dependent kinase inhibitor 1A (p21CIP1)6. Moreover, inhibition 
of DNA topoisomerase activity might largely explain the apoptotic effects of these 
compounds124. In fact, it was reported that digitoxin, at concentrations found in  
patients with cardiac conditions, induces levels of DNA topoisomerase II cleavable 
complexes similar to etoposide (a topoisomerase poison currently used clinically)78. 
Increased expression of  prostate apoptosis response 4 (PAR4)80, T-cell lymphoma 
invasion and metastasis 1 (TIAM1)90 and death receptors 4 and 5 (DR4 and DR5;  
also known as TNFRSF10A and TNFRSF10B, respectively)85 have also been shown  
to be involved in the apoptotic effects of these drugs.

Providing a different perspective, Lopez-Lazaro recently raised the interesting 
hypothesis that inhibition of Na+/K+-ATPase and concomitant inhibition of glycolysis 
might explain the anticancer effects of these compounds12. It is known that cancer cells 
are characterized by increased rates of aerobic glycolysis (Warburg effect), and that  
the constitutive activation of glycolysis is essential for cancer progression125–128. 
Additionally, it is recognized that cancer cells cannot generate enough ATP via 
oxidative phosphorylation (due to alterations in proteins required for this process)  
and therefore inhibition of glycolysis may result in ATP depletion and cell death129.  
In addition to this, inhibition of glycolysis reduces the capacity of cancer cells to 
eliminate H

2
O

2
 and therefore cell death mechanisms are activated (unlike cancer cells, 

normal cells do not produce high levels of H
2
O

2
)130. Given that cardiac glycosides  

have long been known to be able to inhibit aerobic glycolysis131, it is suggested that 
attenuation of aerobic glycolysis following interaction of cardiac glycosides with cancer 
cells might account for their ability to selectively kill them12. Finally, in a recent study, 
prevention of distant tumour formation by digoxin in two mouse models of metastatic 
prostate cancer was attributed to the impairment of N-linked glycan expression and 
function of cancer cells132. 

FasL, Fas ligand; NF-κB, nuclear factor-κB; ROS, reactive oxygen species; TNF, tumour-necrosis 
factor.
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N-linked glycan
Sugars attached to the r-group 
nitrogen (N) of asparagine  
in the sequence Asn-X-Ser  
or Asn-X-Thr (X = all amino 
acids except for proline).

of heart diseases. As described above, these drugs trigger 
cardiac contraction through calcium oscillations at con-
centrations that do not interfere with the pumping activity  
of Na+/K+-ATPase. So, novel cardiac-glycoside-based 
drugs that can preferentially activate the signalling prop-
erties of Na+/K+-ATPase (improved inotropy-to-toxicity 
ratio) might represent better drugs for the treatment of 
cardiac pathologies.

Primary data also reveal potential applications of car-
diac glycosides for the treatment of cystic fibrosis. The 
profound lung inflammation that characterizes cystic 
fibrosis is mainly attributed to an overproduction of Il8 
in the lung. Interestingly, oleandrin has been shown to 
inhibit Il8-mediated biological responses in diverse 
cell types by modulating Il8 receptors through altering 
membrane fluidity and microviscosity97. In agreement 
with this, therapeutic concentrations of digitoxin were 
enough to not only suppress hypersecretion of Il8 from 
cystic fibrosis lung cells in vitro, but to potentially mimic 
gene therapy with wild-type CFTR. Indeed, compara-
tive gene-expression analysis showed that the majority 
(62%) of the ‘informative’ genes affected by CFTR gene 
therapy were similarly affected upon treatment with 
non-toxic doses of digitoxin110.

As already noted above, low concentrations of cardiac 
glycosides trigger downstream signalling cascades that 
can serve to prevent cell death and induce proliferation57. 
These effects underlie possible therapeutic uses of cardiac 
glycosides in the context of ischaemic stroke. Indeed, in 
a recent chemical genetic screen, Wang et al.111 identi-
fied cardiac glycosides  — neriifolin, digoxin, digitoxin 
and ouabain — as the molecules with the most potent 
neuro protective effects in two ex vivo brain explant-
based experimental models of ischaemic stroke, as well 
as in two independent animal models for clinical stroke. 
At the same time, studies by Pierre et al.112 investigating 
the cardioprotective effects of diaxozide reported that 
certain compounds, including cardiac glycosides, that 
can cause opening of the mitochondrial ATP-sensitive 
potassium channels (KATP) might have therapeutic 
potential for the protection of ischaemic heart tissue. 
Indeed, ouabain was shown to protect rat hearts against 
ischaemia–reperfusion injury112. Taken together, these 
new findings suggest that cardiac-glycoside-based agents 
might have potential as novel therapies for stroke and 
heart ischaemia.

Finally, Piccioni et al.113 recently suggested a new 
link between cardiac glycosides and neurodegenerative 
diseases. They screened 1,040 FDA-approved drugs for 
their ability to inhibit polyglutamine-dependent CASP3 
activation. Interestingly, three of the four hits identified 
belong to the cardiac glycoside family  — digitoxin, neri-
ifolin and peruvoside — which suggests new therapeutic 
roles of these drugs for spinobulbar muscular atrophy 
and other polyglutamine-related diseases113.

Collectively, these data highlight a potential multi-
therapeutic character for these compounds. However, it 
should also be noted that increased levels of endogenous 
cardiac glycosides are implicated in numerous patho-
logical states. For instance, high levels of endogenous 
glycosides are associated with high blood pressure and 
hypertension114–117. Indeed, rostafuroxin, an endogenous 
ouabain antagonist, is undergoing Phase II clinical trials 
for the treatment of essential (primary) hypertension. 

Conclusions
Cardiac glycosides have a long history of therapeutic 
application. The early understanding of their positive 
inotropic effects facilitated their use as effective drugs for 
the treatment of heart-related pathologies. more recently, 
considerable in vitro, in vivo and epidemiological data 
support novel roles for such drugs for the treatment of 
several diseases.

most notably, it is now established that cardiac glyco-
sides can induce apoptosis and inhibit the growth of 
cancer cell lines at concentrations close to those found 
in the plasma of patients with cardiac conditions. 
Furthermore, on the basis of the increased susceptibility  
of cancer cells to cardiac glycosides, the potential use of 
cardiac glycosides as anticancer agents might be associ-
ated with fewer side effects than traditional cytotoxic 
therapies. Studies in animal models have validated the anti-
cancer effects of these compounds and the first cardiac- 
glycoside-based anticancer drugs are now undergoing 
clinical trials.

In addition, in contrast to the apoptotic effects of these 
drugs on cancer cells, low concentrations of cardiac gly-
cosides have been shown to stimulate proliferation and 
inhibit cell death in normal cells. These cytoprotective 
effects might form the basis for novel cardiac-glycoside-
based future therapies for the treatment of ischaemic 
stroke and neurodegenerative diseases.
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