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Abstract

Purpose of Review—To provide a contemporary update of novel agents and targets under 

investigation in myelofibrosis in the JAK inhibitor era.

Recent findings—Myelofibrosis (MF) is a clonal stem cell disease characterized by marrow 

fibrosis and a heterogeneous disease phenotype with a variable degree of splenomegaly, 

cytopenias, and constitutional symptoms that significantly impact quality of life and survival. 

Overactive JAK/STAT signaling is a hallmark of MF. The only approved therapy for MF, JAK1/2 

inhibitor ruxolitinib, can ameliorate splenomegaly, improve symptoms, and prolong survival in 

some patients. Therapeutic challenges remain, however. Myelosuppression limits the use of 

ruxolitinib in some patients, eventual drug resistance is common, and the underlying malignant 

clone persists despite therapy. A deeper understanding of the pathogenesis of MF has informed the 

development of additional agents.

Summary—Promising targets under investigation include JAK1 and JAK2, downstream 

intermediates in related signaling pathways, epigenetic modifiers, pro-inflammatory cytokines, 

and immune regulators.
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Introduction

Myelofibrosis (MF) is a heterogeneous disease within the family of BCR-ABL negative 

myeloproliferative neoplasms (MPNs) characterized by dysregulated proliferation of 

myeloid cells, aberrant deposition of reticulin and collagen in the bone marrow, and excess 

production of pro-inflammatory cytokines. The resulting clinical manifestations vary 

between individuals and include progressive cytopenias, extramedullary hematopoiesis 

resulting in splenomegaly, constitutional symptoms (i.e. fatigue, pruritus, and night sweats), 

psychosocial symptoms, acute leukemic transformation, and shortened life expectancy (1-3). 
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Current MF therapies are often ineffective in controlling symptoms or altering the natural 

history of the disease.

Insights into molecular mechanisms of MPN pathogenesis have spurred drug development in 

the field. Dysregulation of the JAK/STAT pathway is central to MPN development, and 

driven by activating mutations in Janus kinase 2 (JAK2), calreticulin (CALR), or 

myeloproliferative leukemia virus (MPL) in over 90% of MF cases (4, 5). Alterations in 

additional cellular processes such as DNA methylation (i.e. TET2, DNMT3A mutations), 

histone modification (ASXL1, EZH2 mutations), RNA splicing (U2AF1, SF3B1, SRSF2 
mutations), and signaling through other pathways (RAS/RAF/MEK/ERK, PI3K/AKT/

mTOR, LNK) further contribute to MF initiation or progression and may explain some of 

the variability in the disease phenotype (6). This complexity and heterogeneity in disease 

biology provides both challenges and opportunities for drug development in MF.

Current Risk-Adapted Approach to Treatment

There are currently few standard treatment options for patients with MF. Allogeneic 

hematopoietic stem cell transplantation (alloHSCT) provides the only potentially curative 

treatment modality, however its use in the MF population is marred by potential toxicities 

due to advanced age (median age at diagnosis is 67 years), comorbidities, and poor 

functional status resulting from disease symptomatology (7). Other treatment modalities are 

aimed at reducing symptoms and improving blood counts, with little effect on the underlying 

malignant clone or on patient survival. Ruxolitinib is an oral inhibitor of JAK1/2 with the 

ability to reduce spleen size and improve symptoms in some patients, and has been 

associated with a modest survival advantage (8, 9). A number of other agents have been used 

to improve cytopenias or reduce splenomegaly with variable success, including 

erythropoietin stimulating agents, androgens (i.e. danazol), immunomodulators (i.e. 

thalidomide), and hydroxyurea.

Management decisions for patients with MF are dictated by individual patient symptoms and 

the risk of disease transformation or patient death. These risks are assessed using either the 

Dynamic International Prognostic Scoring System (DIPSS) which incorporates age, white 

blood cell count, hemoglobin level, circulating blast cells, and constitutional symptoms, or 

the newer DIPSS-Plus that adds karyotype, red blood cell transfusion requirement, and 

thrombocytopenia (10, 11). Using the DIPSS-Plus tool, patients are assigned low, 

intermediate-1, intermediate-2, or high risk scores corresponding to median overall survival 

times of 15.4 years, 6.5 years, 2.9 years, and 1.3 years, respectively. These disparate 

outcomes highlight the heterogeneity among patients with MF, and underscore the 

importance of risk-directed treatment algorithms (12). Presently, there is no evidence that 

early treatment of asymptomatic patients improves survival, and therefore management of 

asymptomatic low risk patients is generally supportive and expectant. Ruxolitinib is 

approved by the United States Food and Drug Administration (FDA) for intermediate or 

high risk MF, however it is often used in lower risk patients with significant disease-related 

symptoms and has been included in the 2017 inaugural National Comprehensive Cancer 

Network (NCCN) guidelines for MF for any symptomatic patient, provided that the platelet 

count is >50 109/L (12). AlloHSCT has been shown to improve long-term outcomes among 
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those with intermediate-2 or high-risk disease, and should therefore be offered to those 

deemed eligible (13). For those with low risk disease, alloHSCT is associated with inferior 

5-year survival rates when compared to those treated without transplant. For those with 

intermediate-1 risk disease, the risk-benefit ratio of alloHSCT remains unclear, and may be 

considered on a case-by-case basis. Despite improvements in risk stratification and their 

application to treatment algorithms for patients with MF, the current therapies prove 

inadequate for many. Development of novel agents and approaches for treatment of MF 

therefore remains a significant area of unmet need. In this review, we summarize the 

contemporary drug therapies for MF, with a focus on novel agents and approaches.

JAK Inhibitors

Ruxolitinib

JAK1/2 inhibitor ruxolitinib remains the only FDA approved agent for MF, and sets the 

standard against which novel agents are measured. The COMFORT-I and COMFORT-II 

trials demonstrated clinical benefit from ruxolitinib compared to placebo (COMFORT-I) or 

best available therapy (COMFORT-II), including spleen volume reduction (SVR), decrease 

in total symptom score (TSS), improvement in quality of life measures, and improvement or 

stabilization of bone marrow fibrosis (table 1) (14-16). Follow up at 5 years revealed 

sustained responses with median response duration among the ruxolitinib-randomized 

patients of 3.2 years in both studies (8, 9). Improvement in overall survival (OS) was also 

shown in the ruxolitinib groups even after crossover (not reached versus 3.8 years in 

COMFORT-I; not reached versus 4.1 years in COMFORT-II).

Despite meaningful clinical benefits conferred by ruxolitinb, challenges remain. First, the 

effects on the malignant clone appear to be minimal. Molecular responses as measured by 

JAK2 mutant allele burden are uncommon (17). Second, anemia and thrombocytopenia limit 

the use and dose of ruxolitinib in certain populations. Both thrombopoietin and 

erythropoietin signaling involve JAK2, and therefore thrombocytopenia and anemia are 

expected and dose-related (18). Despite this limitation, low-dose ruxolitinib has proven to be 

relatively safe in those with baseline platelet counts of 50–100 × 109/L, and the agent is still 

associated with a favorable response profile even at low doses in this population (18). Third, 

the eventual development of resistance to JAK inhibitors presents a therapeutic challenge. 

Long term follow up from the COMFORT-II trial showed that the probability of maintaining 

a response to ruxolitinib at 5 years was 0.48 (95% confidence interval 0.35-0.60), and the 

median response duration was 3.2 years (8). Multiple mechanisms of resistance to JAK 

inhibition have been described, including up-regulation of parallel pathways, 

heterodimerization of activated JAK2 with other JAK kinases including JAK1 and TYK2, 

and point mutations in the kinase domain of JAK2 that have been identified in cell lines but 

have not yet been seen in patients (19-23). Investigation of rationally designed combination 

therapies to prevent or overcome resistance is therefore warranted.

Other JAK Inhibitors

The number of other JAK inhibitors in development has unfortunately dwindled over time 

due to toxicity concerns and failure to meet efficacy endpoints in larger trials. However, 
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several investigational JAK inhibitors of interest persist. Table 1 describes features and key 

results of clinical trials with select JAK inhibitors.

Pacritinib, a JAK2/FLT3 inhibitor, garnered interest due to its lack of myelosuppression 

noted in early clinical trials (24). Two phase 3 trials, PERSIST-1 and PERSIST-2, have been 

performed. In PERSIST-1, patients with higher-risk MF were randomized to pacritinib 

versus best available therapy (BAT) (25). The primary endpoint of ≥35% reduction in SVR 

was met by 19% in the pacritinib arm versus 5% in the BAT arm, with minimal 

myelosuppression (Table 1) even among patients with baseline cytopenias. PERSIST-2 

focused exclusively on patients with platelets <100 × 109/L, and randomized patients to two 

doses of pacritinib (200 mg BID or 400 mg once daily) or BAT, which could include 

ruxolitinib (26). Prior treatment with ruxolitinib was allowed as well. Patients in the 

pacritinib arm achieved greater reductions in spleen volume, TSS, and transfusion 

requirements at 24 weeks (Table 1). The FDA imposed a full clinical hold on pacritinib in 

February 2016 due to concerns regarding excess fatalities, cardiac events, and hemorrhagic 

events. The clinical hold was lifted in January 2017. Pacritinib remains an attractive agent 

due to potential for use in thrombocytopenic patients, however further studies to clarify the 

safe and effective dose and schedule are warranted.

Momelotinib is a JAK1/2 inhibitor with the attractive feature of improving anemia, likely 

due to reduction in hepcidin production by the liver (27). SIMPLIFY-1, a phase 3 head-to-

head trial of momelotinib versus ruxolitinib in JAK inhibitor-naïve patients with MF met its 

primary endpoint in demonstrating noninferiority in SVR responses at 24 weeks, however 

failed to meet its secondary endpoint of TSS reduction (28). In a second phase 3 study, 

SIMPLIFY-2, patients previously exposed to ruxolitinib were randomized to momelotinib 

versus BAT, which included ruxolitinib in most (29). This trial failed to meet its primary 

endpoint of superiority of momelotinib in terms of SVR responses, however did show a 

reduction in TSS and improvement in anemia. As a result of these somewhat disappointing 

phase 3 results, momelotinib is no longer in development and the therapeutic void for 

patients with MF and anemia remains unfilled.

Several additional JAK inhibitors are under investigation in earlier clinical phases. NS018 is 

a selective inhibitor of JAK2 and Src that showed a favorable toxicity profile and promising 

efficacy signals in phase 1; the phase 2 portion of this study is ongoing (30). A phase 2 study 

of JAK1 inhibitor itacitinib demonstrated the ability of selective JAK1 inhibition to improve 

splenomegaly and symptoms related to MF while preserving hemoglobin levels (31). A 

multicenter phase 2 study evaluating itacitibine alone or in combination with low-dose 

ruxolitinib after ruxolitinib failure is planned (NCT03144687).

Beyond JAK Inhibitors

DNA Hypomethylating Agents

Epigenetic alterations, such as CpG island hypermethylation causing inactivation of tumor 

suppressor genes, have been implicated in the pathogenesis of many malignancies including 

MF (32-34). DNA hypomethylating agents (HMAs) such as azacitidine and decitabine are 

postulated to exert their effects, in part, through reactivation of hypomethylated genes. Both 
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are FDA approved for the treatment of myelodysplastic syndrome (MDS), and are also 

frequently used for the treatment of acute myeloid leukemia (AML). Modest clinical 

responses have been reported with HMAs in patients with MF. A phase 2 study evaluated the 

effects of azacitidine in 34 patients with MF; 76% had received previous treatment (35). 

Clinical improvement (CI) was seen in 21%, and a partial response (PR) was achieved in 1 

patient (3%). No complete responses (CR) were seen, and no improvement in bone marrow 

fibrosis was identified. Myelosuppression was common with this standard, 7-day azacitidine 

regimen. Another study administered azacitidine on a shortened 5-day schedule to 10 

patients with MF, and no improvement was reported (36).

Low-dose subcutaneous decitabine (0.3 mg/kg/day on days 1-5 and days 8-12) has shown 

some evidence of efficacy. In this Phase II trial in MF, of 19 evaluable patients, a 37% 

overall response rate was reported (37). Myelosuppression was significant, though 

reversible. In a retrospective report, standard dose decitabine (20 mg/m2 intravenously daily 

on days 1-5) resulted in clinical benefit in 9 (82%) of patients with high risk MF, but no 

partial or complete responses, and benefits were maintained for a median of 9 months (38). 

Other case reports have described efficacious use of decitabine in controlling symptoms, 

improving splenomegaly, and decreasing transfusion requirements. (39).

Combination studies of JAK inhibitors and HMAs for chronic phase MF are underway. 

Clinical responses have been reported with either azacitidine or decitabine in combination 

with ruxolitinib in intermediate-2 or high risk MF (40, 41). A phase II study combining low-

dose azacitidine with ruxolitinib for patients with chronic phase MF or myelodysplastic 

syndrome/myeloproliferative neoplasms (MDS/MPN) is ongoing (NCT01787487).

HMAs may be particularly useful in cases of accelerated or blast phase disease, where ORR 

as high as 52% has been reported with azacitidine (42) and encouraging activity has been 

reported in retrospective series with decitabine (38, 43). Two phase 1 studies of decitabine 

plus ruxolitinib in accelerated or blast phase MF demonstrated that the combination was 

tolerable and promising (44, 45), and a phase 2 portion through the Myeloproliferative 

Disorders Research Consortium is ongoing (NCT02076191).

Histone Deacetylace Inhibitors

Histone deacetylace inhibitors (HDACi) represent another epigenetic-targeted therapy under 

investigation for MF. As single agents, vorinostat, panobinostat, givinostat, and pracinostat 

have all demonstrated modest clinical activity (46-51). The most common class toxicities of 

HDACi include cytopenias, fatigue, and diarrhea. Two clinical trials investigating the 

combination of HDACi and JAK inhibitors are ongoing (NCT01693601 and 

NCT01433445). Preliminary results of the Phase 1b trial of the combination of panobinostat 

and ruxolitinib have been reported (52). Among 61 patients with MF, 57% and 39% 

achieved SVRs ≥35% at 24 weeks and 48 weeks, respectively. Improvement in bone marrow 

fibrosis occurred in 4 of 12 evaluable patients, and ≥20% decrease in JAK2 mutant allele 

burden was seen in 5 out of 17 tested patients.
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PI3K/AKT/mTOR Pathway Inhibitors

The PI3K/AKT/mTOR signaling pathway and the JAK/STAT signaling pathways are 

intricately connected, and both are both aberrantly activated in MPN (53). Small molecule 

inhibitors of PI3K, AKT, and mTOR have all been subjects of preclinical investigation in 

MF, with encouraging results (54-56). In a phase I/II clinical trial, mTOR inhibitor 

everolimus induced responses in 23% (1 PR, 6 CI) (57). Pre-clinical synergy has been 

demonstrated with combinations of PI3K/AKT/mTOR inhibitors and JAK inhibitors, 

prompting several ongoing combination studies including PI3K inhibitor buparlisib with 

ruxolitinib (NCT01730248), PI3K inhibitor INCB050465 and ruxolitinib (NCT02718300), 

and selective PI3Kδ inhibitor TGR-1202 and ruxolitinib (NCT02493530). Early results from 

the buparlisib and ruxolitinib phase 1b study have been reported, and the combination was 

reasonably well tolerated (58). Clinical responses were noted, with palpable spleen length 

reduction of ≥50% in 82% of JAK inhibitor naïve and 55% of JAK inhibitor pre-treated 

patients.

RAF/MEK/ERK Pathway Inhibitors

In parallel to the PI3K/AKT/mTOR pathway, the RAF/MEK/ERK signaling pathway is also 

activated by increased JAK/STAT signaling and contributes to impaired cellular 

differentiation and increased proliferation (59-61). In a CALR deleted murine model with a 

MPN phenotype, treatment with the MEK inhibitor trametinib alone significantly reduced 

bone marrow fibrosis (62). Combining MEK inhibitor selumetinib with ruxolitinib has been 

shown to significantly inhibit malignant cell growth and rescue hematopoietic stem cell 

function, as well as prolong survival in a NRAS mutant murine model with a MDS/MPN 

phenotype (63). While clinical experience with MEK inhibitors in MF is limited, modest 

single-agent activity in AML has been demonstrated (64, 65). Further investigation of 

RAF/MEK/ERK pathway inhibitors in MF, in rationally designed combinations, is 

warranted and a trial combining the MEK inhibitor selumetinib (table 2) with the DNA 

hypomethylating agent azacitidine will soon be underway.

Hedgehog Inhibitors

The hedgehog signaling pathway contributes to normal hematopoiesis, and overactive 

hedgehog signaling has been implicated in the pathogenesis of both malignant and fibrotic 

diseases (66, 67). Small molecule inhibitors of several hedgehog signaling proteins have 

shown clinical activity in MF. Early results of a phase 1/2 study of glasdegib as a single 

agent in patients with MF after JAK inhibitor therapy showed a favorable toxicity profile of 

the drug, with modest single-agent responses (68). The main toxicities noted were 

dysguesia, muscle spasms, alopecia, decreased appetite, and fatigue. No patient achieved 

SVR ≥35%, but 5 (24%) did have some degree of improvement in splenomegaly. Favorable 

symptom responses were seen, as 8 (38%) had ≥20% decrease in TSS. This study is ongoing 

(NCT02226172). Combinations of hedgehog pathway inhibitors and JAK inhibitors are also 

underway. Preliminary results from a phase 1b/2 study of sonidegib in combination with 

ruxolitinib in 27 patients with MF showed that 56% of patients achieved a SVR of ≥35% at 

any time during treatment (NCT01787552)(69).
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Telomerase Inhibitors

Telomeres are repetitive DNA sequences that cap chromosomes, protect coding DNA, and 

shorten with each cycle of cell division (70). Many malignant cells express telomerase, a 

holoenzyme responsible for maintaining telomere length. Imetelstat is an oligonucleotide 

that binds the RNA template of telomerase and competitively inhibits enzymatic activity 

telomerase activity (71, 72). Imetelstat was investigated in a pilot study of 33 patients with 

intermediate-2 or high-risk MF, about half of whom were previously treated with ruxolitinib 

(73). Complete or partial remissions were seen in 7 patients (21%), with median response 

durations of 18 months and 10 months for those who achieved complete and partial 

remissions, respectively. Among the 4 patients who achieved a CR, bone marrow fibrosis 

was reversed in all 4 and molecular responses occurred in 3. Imetelstat was relatively well 

tolerated in this population, with the most common toxicities being cytopenias and 

transaminitis. A phase II study of 2 doses of imetelstat in patients with intermediate-2 or 

high-risk MF previously treated with a JAK inhibitor is ongoing (NCT02426086). Favorable 

responses to imetelstat have also noted in patients with essential thrombocythemia, however 

this indication has not been pursued further, likely due to the relatively indolent course 

associated with ET (74).

Anti-Fibrosing Agents

Targeting the complex pathogenic mechanisms that result in bone marrow fibrosis remains 

challenging. One novel therapeutic target is pentraxin 2, an endogenous protein that 

regulates differentiation of monocytes into fibrocytes and pro-fibrotic macrophages at sites 

of tissue damage (75-77). PRM-151 is a recombinant form of pentraxin 2 that was initially 

developed as an agent for pulmonary fibrosis, but has since been studied in MF. In a phase 2 

study of PRM-151 in combination with ruxolitinib in patients with intermediate-1 or higher 

risk disease, 35% experienced an objective response, defined as CI (15%) and/or reduction 

in bone marrow fibrosis (23%) (78). Improvements in anemia (40%), spleen size (26%), and 

symptoms (38%) were also noted. A second stage of this study evaluating 3 dose levels is 

ongoing (NCT01981850).

Several other potential targets involved in fibrotic processes have been identified, however 

clinical results have been somewhat disappointing to date. Lysyl oxidase like (LOXL) is an 

amine oxidase enzyme that catalyzes a key step in the formation of crosslinks between 

collagen and elastin. In preclinical models, LOXL levels were found to be elevated, and 

inhibition of LOXL led to improvement in marrow fibrosis (79, 80). In a phase II study, a 

humanized antibody against LOXL2, simtuzumab, was well tolerated but failed to reduce 

marrow fibrosis or achieve clinical improvement (81).

Cytokine transforming growth factor-β (TGF-β) has been implicated in both the fibrotic and 

proliferative aspects of myelofibrosis (82). Sotatercept, a first-in-class activin receptor type 

IIA (ActRIIA) ligand trap, causes sequestration of TGF-β ligands and improvement in 

erythroid differentiation. A phase 2 study is ongoing in patients with MF-associated anemia, 

and interim results showed an anemia response in 5/14 (36%) evaluable patients, but effects 

on bone marrow fibrosis are not yet known (NCT01712308) (83). A phase I study of 

fresolimumab, a TGF-β-neutralizing monoclonal antibody, was initiated but the drug was 
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withdrawn after 3 subjects were treated at the lowest planned dose level due to management 

decisions on the part of the pharmaceutical company. At that low dose, the agent was well 

tolerated and one patient experienced hematologic improvement, achieving transfusion 

independence (84). While the clinical experience with TGF-β targeted agents is limited, this 

remains an interesting avenue for future investigation, particularly in anemic patients.

Immunotherapy

Immune dysregulation is a central feature of MPNs, and immune based approaches to 

treatment are therefore appealing. Allogeneic stem cell transplantation (alloHSCT) remains 

the only potentially curative therapy for MF, and the only immunotherapeutic strategy 

known to be effective for MPN. However, only a minority of MF patients will be eligible 

due to older age at diagnosis, comorbid disease burden, or poor functional status (often 

caused by underlying MPN). Even among those well enough to undergo alloHSCT, the long-

term outlook remains disappointing due to toxicity and refractory/relapsed disease, with 

expected 5 year OS of less than 50% in most studies (85-89).

Enhancement of anti-tumor immunity represents one of the most exciting recent advances in 

oncology. Many solid tumor and hematologic malignancies have evolved mechanisms by 

which they avoid immune recognition. Under normal circumstances, T cell surface receptors 

such as cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and programmed cell death 

protein 1 (PD-1) interact with their associated ligands (i.e. PD-L1) and act as checkpoints to 

recognize “self” and prevent activation of effector T cells (90). Malignant cells often 

aberrantly express these ligands, thereby selectively evading immune recognition.

Clinical experience with immune checkpoint inhibitors in several solid tumor malignancies 

and Hodgkin lymphoma has been encouraging and has led to FDA approval of several 

agents. In AML and MDS, modest clinical responses have been reported with anti-CTLA4 

and anti-PD-L1/anti-PD-1 agents alone and in combination with hypomethylating agents 

(91, 92). The role of immune checkpoint inhibitors in MF remains unproven, however 

several clinical studies are ongoing. These include a single-center phase 1 study of anti-PD-

L1 monoclonal antibody durvalumab (NCT02871323), which is now closed to accrual and a 

phase 2 study of anti-PD-1 antibody nivolumab (NCT02421354), both in patients with MF 

after JAK inhibitor failure, intolerance, or ineligibility. A phase 2, multi-center study of anti-

PD-1 agent pembrolizumab in advanced MF is also planned (NCT03065400).

Immune checkpoint inhibition may hold some promise in the post-transplant relapse setting. 

A phase 1 study of anti-CTLA4 agent ipilimumab in patients with a variety of hematologic 

malignancies who experienced disease relapse after alloHSCT reported several complete 

responses (5/22 treated at the effective dose level), in addition to several partial responses 

(2/22) and several decreases in tumor burden in patients who did not qualify as responders 

(6/22) (93). Of note, only one patient with an MPN was included in this study, and that 

patient did not experience an objective response. A phase 1 study of either ipilimumab or 

nivolumab in patients with relapse of a hematologic malignancy (including MPN) after 

alloHSCT is ongoing (NCT01822509).
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Outside of immune checkpoint inhibitors, other antigen-specific immunotherapies including 

monoclonal antibodies, antibody-drug conjugates, cancer vaccines, and chimeric antigen 

receptor T-cell (CAR-T) therapies have proven effective for various solid tumor and 

lymphoid malignancies. However, such strategies have been problematic in myeloid 

malignancies. The antigenic heterogeneity and antigen shift over time that is characteristic 

of myeloid disorders presents a significant challenge to the development of antigen-targeted 

therapies (94). In addition, immune-mediated toxicities may be particularly limiting in 

patients with myeloid malignancies who are often older and less fit at diagnosis. Despite 

these limitations, several antibody-drug conjugates have shown promise in AML, and 

Natural Killer Group 2D (NKG2D) CAR-T cell therapy is under investigation for AML and 

MDS (NCT02203825) (95). It has yet to be seen whether similar therapies may have a role 

in the treatment of MF.

Other Novel Agents

Proviral integrations of Moloney virus (PIM) kinases are a family of serine/threonine 

kinases that regulate JAK/STAT signaling (96). In addition to affecting the JAK/STAT 

pathway, the PIM kinases also contribute to oncogenesis through phosphorylation of cell 

cycle regulators, activation of anti-apoptotic proteins, and enhancement of MYC expression 

(97-99). PIM kinases appear to be important in MPN pathogenesis, and may represent a 

therapeutic target. Two family members, PIM1 and PIM2, have been found to be 

upregulated in MPN (100). PIM inhibitors have shown preclinical synergy with JAK 

inhibitors, as well as the ability to overcome JAK inhibitor resistance in MPN cell lines 

(101, 102). A phase 1b study of ruxolitinib plus PIM inhibitor PIM447, or ruxolitinib plus 

CDK4/6 inhibitor ribocicilib (LEE011), or the combination of all three is underway in 

several non-U.S. countries (NCT02370706). Other kinase inhibitors under investigation in 

MF include the aurora kinase inhibitor-alisertib (Table2), based on its potential role in 

megakaryocytic differentiation in MF.

Anti-apoptotic proteins represent another potential target for MF therapy. Members of the B-

cell lymphoma 2 (BCL-2) family of proteins inhibit the mitochondrial apoptosis pathway 

and promote erythropoietin-independent erythropoiesis in MPN (103). Activation of the 

JAK/STAT pathway mediates the transcription of BCL-2 family proteins and therefore 

contributes to anti-apoptotic signaling (104). The BCL-2 inhibitor venetoclax has shown 

activity in AML as a single agent and in combinations, and has received an FDA 

breakthrough therapy designation for this indication (105). Obatoclax, a pan-BCL-2 

inhibitor, was studied in 22 patients with MF (106). Clinical activity was minimal, with no 

complete or partial responses though 1 patient (4%) experienced hematologic improvement. 

In mouse models of JAK2 mutant MPNs, combined targeting of JAK and BCL-2 family 

proteins led to disease regression, and was able to overcome resistance to single-agent JAK 

inhibition (107). Combination studies with JAK inhibitors or HMAs may be useful for the 

future and are in development, however the myelosuppressive potential of BCL-2 inhibitors 

may be limiting in patients with MF.
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Novel Nonpharmacologic Approaches

Adjuvant nonpharmacologic psychosocial and lifestyle interventions have anecdotally 

shown promise in decreasing symptom burden in patients with MPNs, including MF. 

Interest in formally studying these interventions has piqued in recent years.

Physical activity during cancer treatment has been shown to improve various quality of life 

measures (108, 109). These benefits are likely generalizable to hematologic malignancies 

including MPNs (110). In a feasibility study of an online-streaming yoga program, 244 

patients with MPNs were asked to perform 60 minutes of yoga per week over 12 weeks, 

following instructional yoga videos designed either specifically for MPN patients or with 

splenomegaly in mind (111). Actual yoga participation averaged about 51 minutes per week, 

and was associated with significant improvements in total symptom burden, fatigue, 

depression, anxiety, and sleep. A subsequent randomized study utilizing an at-home yoga 

program is planned, with endpoints including symptom measures, activity levels as 

measured by Fitbit tracking, and cytokine assessments.

The role of diet in MPNs remains largely unexplored. Certain dietary patterns have been 

associated with lower levels of proinflammatory cytokines, however it remains unclear 

whether these findings can be exploited for clinical benefit (112-114).

Mood disturbances such as anxiety and depression are common among patients with MPNs 

(115). No prospective studies have evaluated pharmacologic or non-pharmacologic methods 

of addressing mood disturbances in this population. Acceptance and commitment therapy 

(ACT), a multi-pronged psychosocial intervention, has demonstrated utility in several 

cancers and chronic medical and psychiatric conditions (116-118). A feasibility and health-

related quality of life study of ACT in patients with MPNs is planned.

Conclusion

Discoveries of molecular mechanisms of MPN pathogenesis have led to the development of 

the first targeted therapy for MF, ruxolitinib. While ruxolitinib improves symptoms and 

splenomegaly with modest effects on survival, significant areas of unmet therapeutic need 

remain within this heterogeneous disease and future research should be aimed at filling these 

gaps. First, JAK pathway inhibitors should be developed and utilized to maximize clinical 

benefit. Cytopenias prevent many patients from receiving ruxolitinib, and therefore a second 

generation of JAK pathway inhibitors with less myelosuppressive potential is needed. Even 

in those who do receive ruxolitinib and achieve clinical benefit, the MF clone persists in 

nearly all and drug resistance eventually develops in most. Prevention and management of 

this resistance with novel agents or combinations is needed. Efforts to develop more potent 

and specific inhibitors of mutant JAK2 are ongoing, however promising clinical candidates 

have yet to emerge (119).

Second, methods to selectively target and eradicate the underlying malignant clone in MF 

must be prioritized. Select molecular, epigenetic, and immunologic targets under clinical 

investigation and their associated pharmacotherapies are depicted in figure 1, but thus far all 

of these approaches fall short of inducing deep molecular responses across subgroups of 
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patients. A better understanding of the roles of immune dysregulation and the stem cell 

microenvironment in MF is needed to guide further therapeutic development. Gene editing 

may be a future direction for MPN research, however biological, technical, and ethical 

issues limit clinical applications at the present time (120, 121).

Despite these challenges, the current pace of drug development for MF provides cause for 

excitement. A search of open, interventional studies for MF returned a list of 131 current 

ongoing clinical trials (122). Table 2 illustrates the breadth of ongoing trials of novel agents 

for MF therapy. In addition to pharmacotherapy, psychosocial and lifestyle interventions will 

likely prove integral to MF management. The phenotypic heterogeneity of MF necessitates a 

heterogeneous set of treatment options, and a deeper understanding of disease biology will 

be key to individualizing these treatment plans and improving outcomes for patients with 

MF.
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Figure 1. 
Molecular targets for myelofibrosis and their associated agents that have shown promise or 

are under investigation. Multiple signaling cascades have been implicated in the 

pathogenesis of MF, including JAK/STAT, PI3K/AKT/mTOR, RAF/MEK/ERK, and 

Hedgehog (through smoothened receptor SMO). Small molecule inhibitors of various steps 

in these pathways have either shown a signal of clinical efficacy for MF, or are in clinical 

development. Targets include JAK (ruxolitinib, pacritinib, momelotinib, NS-018, itacitinib), 

PI3K (buparlisib, INCB050465, TGR-1202), mTOR (everolimus), or SMO (vismodegib, 

sonidegib, glasdegib). Epigenetic modulators such as hypomethylating agents (HMAs; 

azacitidine, decitabine, SGI-110) and histone deacetylase inhibitors (HDAC-i; panobinostat, 

pracinostat, vorinostat, givinostat) have shown activity in MF, and research continues into 

optimal dose and combinations of these agents with JAK inhibitors. Inhibitors of immune 

checkpoint receptors CTLA4 (ipilimumab) and PD-1 (pembrolizumab and nivolumab) or 

ligand PD-L1 (durvalumab) are also under investigation in various myeloid malignancies 

including MF. Other ongoing combination studies include small molecule cell cycle 

inhibitors of PIM1/2 (PIM447) and CDK4/6 (ribocicilib) with JAK inhibitors. Other novel 
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targets in MF include telomerase (imetelstat), pentraxin-2 (PTX; PRM-151), and TGFβ 
(sotatercept).
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Table 2

Novel Agents for Myelofibrosis in Clinical Development

Class Agent Target Phase NCT identifier

JAK inhibitors

Itacitinib, alone or with ruxolitinib (+RUX) JAK1 2 NCT03144687

Pacritinib JAK2/FLT3 2 NCT03165734

NS-018 JAK2/Src 2 NCT01423851

Epigenetic Agents

Pracinostat (+RUX) HDAC 2 NCT02267278

Panobinostat HDAC 1/2 NCT01693601

IMG-7289 LSD-1 1 NCT03136185

Azacitidine (+RUX) DNA methylation 2 NCT01787487

SGI-110 DNA methylation 2 NCT03075826

PI3K/AKT/mTOR
Pathway
Inhibitors

INCB050465 (+RUX) PI3K 2 NCT02718300

Buparlisib (+RUX) PI3K 1 NCT01730248

TGR-1202 (+RUX) PI3Kδ 1 NCT02493530

Hedgehog
Pathway
Inhibitors

Vismodegib (+ RUX) SMO 1/2 NCT02593760

Sonidegib (+ RUX) SMO 1/2 NCT01787552

Glasdegib SMO 2 NCT02226172

Other Small
Molecule
Inhibitors

CPI-0610 BET 1 NCT02158858

PIM447 (+ RUX) pan-PIM kinases 1b NCT02370706

Ribocicilib (+ RUX) CDK4/6 1b NCT02370706

Alisertib Aurora kinase A 1 NCT02530619

Selumetinib MEK kinase 1 *pending

Checkpoint
Inhibitors

Durvalumab PD-L1 1 NCT02871323

Pembrolizumab PD-1 2 NCT03065400

Nivolumab PD-1 2 NCT02421354

Nivolumab PD-1 1/1b NCT01822509

Ipilimumab CTLA4 1/1b NCT01822509

Other Agents

Imetelstat Telomerase 2 NCT02426086

PRM-151 Pentraxin 2 2 NCT01981850

Sotatercept TGFβ 2 NCT01712308

SL-401 IL3 receptor (CD123) 1/2 NCT02268253

P1101 Peg-Interferon α 2 NCT02370329

LCL-161 SMAC mimetic 2 NCT02098161

*
Clinical trials.gov listing is pending at time of manuscript submission
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