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ABSTRACT Tone mapping(TM) aims to adapt high dynamic range (HDR) images to conventional displays

with visual information preserved. In this paper, a novel TM method based on macro-micro modeling is

proposed, which can address the common problems in existing TM methods, such as exposure imbalance

and halo artifact. From a microscopic perspective, multi-layer decomposition and reconstruction are applied

to model the properties of brightness, structure, and detail for HDR images, and then different strategies

are adopted for each layer by the human visual system (HVS) to reduce the overall brightness contrast and

retain as much scene information. From a macroscopic perspective, scene content-based global operator is

designed to adaptively adjust the scene brightness so that it is consistent with the subjective perception of

human eyes. Both the micro and macro models are processed in parallel, which can ensure the integrity and

subjective consistency of scene information. Experiments with numerous HDR images and TMmethods are

conducted and the results show that the proposed method achieves visually compelling results with little

exposure imbalance and halo artifact, and is superior to the current state-of-the-art TM methods in both

subjective and objective evaluations.

INDEX TERMS Tone mapping, macro-micro modeling, high dynamic range, human visual system.

I. INTRODUCTION

Dynamic range is the logarithm of the ratio of the maximum

to the minimum luminance for a digital image [1]. In reality,

the real scene with wide dynamic range can be effectively

perceived by human eyes [2]–[4]. However, existing low

dynamic range (LDR) images adopt 8 bits/color/pixel to

represent a limited range of luminance, and often include

overexposed or underexposed phenomena, resulting in some

loss of scene information. To address this deficiency, multi-

exposure image fusionmethods, which fusion of LDR images

that are taken from the same scene at different exposure

levels, are often applied to display more information in

a limited dynamic range [5]–[7]. However, multi-exposure

image fusion methods are still unable to retain the complete

The associate editor coordinating the review of this article and approving
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information. Therefore, high dynamic range (HDR) imaging

technology employs floating-point numbers to represent a

wide range of luminance, which can retain the fidelity of

real scene accurately. But unfortunately, these HDR display

devices are difficult to popularize because of their cost and

technical problems [8], [9]. Hence, how to visualize HDR

images effectively on existing display devices has become

a problem that must be solved in practical applications.

To tackle the problem, tone mapping(TM), which essentially

functions as intensities mapping of an HDR image to the

target display range, has been developed [10], [11].

Up to now, numerous tone mapping operators(TMOs)

have emerged and can be roughly classified into two cat-

egories: Global TMOs and Local TMOs. For the former,

all pixel values in the HDR image are mapped with the

same mapping function, so these are relatively simple, fast,

efficient and can maintain good overall masking effect [12].
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FIGURE 1. Examples of global TMO and local TMO, (a) (b) global TMO,
(c) local TMO.

Larson et al. employed a histogram adjustment technique

by incorporating human contrast sensitivity, spatial acuity,

and color sensitivity [13]. Drago et al. utilized a logarithmic

bias power function to adaptively compress luminance values

and preserve details and contrast [14]. Mantiuk et al. mini-

mized visible contrast distortions according to their visibility

predicted by the model of the HVS [15]. Jung et al. pro-

posed a limit curve based on perceptual quantization transfer

function to adjust the degree of contrast enhancement [16].

Khan et al. employed histogram of luminance to construct

a lookup table for TM [17]. Lee et al. introduced a new

asymmetric sigmoid curve based on the model of the retinal

response curve [12]. These global TMOs effectively reduce

the overall luminance contrast, but also are easy to result in

the loss of local information by a single function, especially

in the bright or dark regions as shown in Fig. 1(a) and (b).

In contrast, local TMOs also take local neighborhood features

into account, which are flexibly maintain more details and

contrast for each region. Reinhard et al. utilized the tech-

nique of photographic practice and central surround func-

tion to deal with the local visual information [18]. Li et al.

used a symmetrical analysis-synthesis filter bank for local

gain control and luminance compression [19]. Shan et al.

developed overlapping window-based linear functions and

constructed the guidance map via local statistical information

for TM [20]. Furthermore, Durand et al. presented a two-

scale decomposition method to model the Retinex theory

for better TM performance [21]. Farbam et al. proposed an

edge-preserving smoothing operator based on the weighted

least squares optimization framework for multi-scale decom-

positions [22]. Barai et al. proposed a salience guide edge-

preserving operator which uses saliency region information

of an HDR image as input to decompose the image [23].

For these local TMOs, the introduction of local information

enhances the scene details, but to a certain extent, it also

causes the imbalance of global scene brightness and halo

phenomenon as shown in Fig. 1(c).

Towards filling these gaps of details lost, unbalance light-

ing contrast and halo phenomenon, we propose a TMmethod

based on macro-micro model of human visual system(HVS).

Firstly, by expanding the human eyes perception, the pro-

posed method models the visual cognitive mechanism from

micro and macro perspectives respectively. And then, two

models are processed in parallel to obtain the desired LDR

image. In brief, this method has three major contributions as

follows.

(1) Both microscopic model and macroscopic model for

TM are designed. This is inspired by the evidence in visual

physiology, i.e., the HVS first rapidly and unconsciously pro-

duces a global perception, and then gradually focuses on spe-

cific local areas for the perception of image quality [24], [25].

Meanwhile, both the micro and macro models are processed

in parallel to ensure the integrity and subjective consistency

of scene information.

(2) From a microscopic perspective, multi-layer decompo-

sition and reconstruction are applied to model visual informa-

tion of brightness, structure, and detail for HDR images. This

is inspired by the discoveries in intrinsic decomposition, that

is hierarchical representation using a series of visual content

descriptions is coincident with the perceptual-cognitive pro-

cess of visual signals [26], [27]. And then different strategies

are adopted for each layer by the property of HVS, to reduce

the overall brightness contrast and retain as much scene

information.

(3) From a macroscopic perspective, scene content-based

global operator is designed to adaptively adjust the scene

brightness so that it is consistent with the subjective percep-

tion of human eyes. This is motivated by the fact that an

image with high quality must consider the interaction and

conversion between human subjective perception and device

objective display [28].

To validate the performance of the proposed method,

we compare results with both the classical and state of

the art TM methods. The results show that the proposed

method achieves visually compelling results with little expo-

sure imbalance and halo artifact, and is superior to the current

state-of-the-art TM methods in both subjective and objective

evaluations.

The rest of this paper is organized as follows. Section II

describes the motivation and methodology of the proposed

TM method in detail. And then, the relevant experimental

results and comparative analysis are presented in Section III.

Finally, Section IV concludes this paper.

II. MOTIVATION AND METHODOLOGY

As shown in Fig. 2, we design both micro model and macro

model and combine them in parallel to ensure the integrity

and subjective consistency of scene information for TM pro-

cess. On the one hand, the microscopic model is described

by multi-layer decomposition. Three layers are extracted to

portray visual information of HDR images, and then different

strategies are adopted for each layer by the property of HVS.

On the other hand, the macroscopic model is described by

a global operator, which is utilized to adaptively adjust the

brightness based on the scene content of HDR image. Finally,

two intermediate results are fused to obtain the desired LDR

image.

A. PREPROCESSING

Compared with LDR images, the biggest feature of HDR

images is the expansion of luminance dynamic range for

real scene, and the color information remains basically
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FIGURE 2. Flowchart of the proposed macro-micro tone mapping method.

unchanged.Meanwhile, relevant psychophysical studies have

shown that the HSV color space is more consistent with

the perception of human eyes than the RGB space [29].

Hence, the HDR image is firstly transformed into HSV color

space with three channel, and the Value channel is selected

for subsequent operations. The channels of RGB space are

normalized first with Eq. (1), and then each channel of HSV

space can be obtained with Eq. (2)-(4) as follows [30].

R′ = R/sum(R,G,B)

G′ = G/sum(R,G,B)

B′ = B/sum(R,G,B) (1)

H =























































G′ − B′

max(R′,G′,B′) − min(R′,G′,B′)
· 60◦,

R′ = max(R′,G′,B′)
(

2 + B′−R′

max(R′,G′,B′)−min(R′,G′,B′)

)

· 60◦,

G′ = max(R′,G′,B′)
(

4 +
B′ − R′

max(R′,G′,B′) − min(R′,G′,B′)

)

· 60◦

B′ = max(R′,G′,B′)

(2)

S =
max(R′,G′,B′) − min(R′,G′,B′)

max(R′,G′,B′)
(3)

V = max(R′,G′,B′) (4)

where R, G, B are the values of each channel in RGB space,

respectively. Similarly,H , S, V are the values of each channel

in HSV space, respectively.

B. MICRO MODEL

Due to the limitation of dynamic range, the LDR images

after TM cannot preserve all the visual information and local

structure of the original HDR images. Hence, the micro

model is performed to extract useful features to describe

visual information and local structure. Here, we resort to

multi-layer decomposition and reconstruction as the basis

FIGURE 3. Threshold versus intensity curve giving sensitivity of the HVS
for each dynamic range of luminance.

for local feature extraction, which is known as an effective

technique to describe signals by decomposing into some lay-

ers with different visual perception characteristics. Previous

studies have shown strong evidence that the receptive fields

of photoreceptor cells can be characterized as being spatially,

brightly and structurally sensitive, which closely correspond

to the characteristic of each layer used in multi-layer decom-

position [31].

Here, the original HDR image is decomposed into three

layers, that is brightness layer, structure layer, and detail layer.

And then different strategies are adopted for each layer by the

property of HVS. For the brightness layer, we reduce the over-

all brightness contrast to match the display luminance range

by the recent study in [32] and [33]. Kim et al. modeled the

impact of ambient conditions on the perceived luminance and

chrominance, and used it to improve visibility of display of

mobile devices in outdoor [32]. And Kundu et al. developed

similar psychophysical studies to determine just noticeable

difference(JND) perceived by human eyes at a given adapta-

tion level as shown in Fig. 3 [33]. Note that if luminance is in

night vision range, the rods in the eye play a more important

role, whereas in light vision range, cones mechanism comes

into play. In the intermediate vision conditions, both cones
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and rods work together. For the structure layer, we keep it

unchanged to retain the integrity of the scene, as human vision

is very sensitive to structure information [31], which has been

demonstrated in recent subjective and objective studies [34].

For the detail layer, we enhance it to enrich the visual effect

of LDR images after TM. These three layers are interrelated,

restricted and promoted mutually, and together constitute the

validation of micro model. And the specific procedure is

described as follows.

As a non-iterative filtering based on local nonlinearity,

bilateral filter is an effectivemethod formulti-layer decompo-

sition and is utilized in this paper [21], [35]. And the bilateral

filter can be defined as:

BF(I ) =

∑

p∈�

f (p− b)g(Ip − Ib)Ip

∑

p∈�

f (p− b)g(Ip − Ib)
(5)

where I is the input image, BF(I) denotes the output image

for I , � neighbors domain window, f is a Gaussian function

in the spatial domain, g is a Gaussian function in the intensity

domain, Ip and Ib are values of pixel p and b, respectively.

For different scenes, the dynamic range fluctuates signifi-

cantly. To avoid its influence, a logarithm transform is used

to non-linearly normalize the luminance channel as:

Vnor =
log(VHDR + δ) − log(Vmin + δ)

log(Vmax + δ) − log(Vmin + δ)
(6)

where VHDR is luminance value of HDR images, δ is minimal

value to avoid zero value. Here, we set δ = 0.00001. This

step simulates the response of human eyes to luminance, and

initially reduces the dynamic range.

A piecewise invariant detail layer and a piecewise smooth

base layer can be obtained by applying the bilateral filter to

Vnor. First scale decomposition:

Vb = BF(Vnor ) (7)

VD = Vnor − Vb (8)

where VD is the detail layer. After the first-level decompo-

sition, the detail information is retained in the detail layer

(VD), and the main structure information is transferred to the

bottom layer (Vb). Second-level decomposition, the bilateral

filter is applied to Vb

VB = BF(Vb) (9)

VS = Vb − VB (10)

whereVS is the structure layer which saves the structure infor-

mation of the image,VB is the brightness layer which included

local mean luminance. To sum up, two-level decomposition

schemes produces VD, VS ,VB. The relationship between them

is given as:

V =
∑

(VD,VS ,VB) (11)

We can get three layers, including detail layer (VD), struc-

ture layer (VS ) and brightness layer (VB). And then different

strategies are adopted for each layer by the property of HVS.

Finally, the three decomposed layers are fused to obtain the

luminance layer:

Vmicro = VS + αB · (VB)
γ + βD

·

[

signVD

(

|VD|

max (|VD|)

)θ

· max (|VD|)

]

(12)

where αB and βD are weight coefficients for brightness layer

(VB) and detail layer (VD). Through a large number of exper-

iments, we get the right value of αB and βD. The value of αB
is not too high or too low to ensure the image brightness in

the appropriate range. Similarly, images with high values of

βD will be distorted, and images with too low values of βD
will lose detail. Obviously, for the VB, the gamma function

is used to compress dynamic range. For the VS , we keep it

unchanged to retain the integrity of the scene. For the VD,

we use a nonlinear stretch function to enhance its details.

C. MACRO MODEL

For the visual cognitive mechanism, the HVS first rapidly

and unconsciously produces a global perception of the

entire image, and then gradually focuses on specific local

areas [24], [25]. From a macroscopic perspective, a common

sense is that high-quality images should consider the inter-

action and conversion between human subjective perception

and device objective display. Although it is difficult to give a

precise and rigorous definition of the interaction and conver-

sion, we can exploit the existing theoretical analysis and the

relevant results of subjective experiments to characterize and

optimize them.

Intensity masking relates to the lower sensitivity exhib-

ited by the HVS in darker and brighter areas. For LDR

images, Weber-Fechner’s law, which states that the minimum

perceivable visual stimulus difference increases with back-

ground luminance, describes this masking phenomenon. Sub-

sequently, relevant scholars have conducted in-depth research

on this issue and point out that the overall effect of intensity

masking on the distortion sensitivity of theHVS is aU-shaped

curve that defines the maximum amount of distortion toler-

ated for a given average intensity value for HDR images [36].

Corresponding intensity-dependent quantization(IDQ) pro-

file for HDR image and LDR image is shown in Fig. 4.

Obviously, a higher visibility threshold occurs in either very

dark or very bright regions in an image, and a lower occurs in

regions with medium luminance (Weber-Fechner’s) regions,

which is consistent with the human subjective perception.

Besides this luminance sensitivity of human eyes, the prop-

erty of device objective display also must be taken into

account. Studies have shown that the corresponding rela-

tionship has the Gamma curve correlation between objective

display brightness and subjective perception brightness as

shown in Fig. 5 [28]. The horizontal direction shows a lin-

ear increase in natural brightness. And the vertical direction

shows psychological perceived of luminance. Psychological

perceived of luminance are not exactly the same as the linear

increase in natural brightness. As we can see from the Fig. 5,
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FIGURE 4. Intensity-dependent quantization profile for HDR image and
LDR image [36].

FIGURE 5. Gamma curve correlation between objective display brightness
and subjective perception brightness.

the objective display brightness is closer to subjective percep-

tion brightness after gamma correction.

Hence, we utilize these two characteristics to adjust the

global luminance for better visual fidelity as follows.

Vmacro = λ · V
γ

HDR (13)

where VHDR is the luminance value of the HDR image, Vmacro
is the luminance value after compression with the macro

model. The setting of parameter λ and γ directly affects

the actual performance, and will be discussed subsequently.

To improve the generalization ability for the dynamic range of

brightness, we combine parameter setting with image content

information. Here, parameter λ is used to control the overall

luminance of the image. Through a large number of experi-

mental data analysis, we get the empirical formula as follows:

λ = α1 · V β1
mean (14)

where Vmean is average luminance of HDR image. α1 and β1

are empirical coefficients.

Parameter γ is important for image adjustment. Due to the

variation of brightness intensity, it is necessary to select an

appropriate γ value according to the actual scene. we set

the value of parameter γ by analyzing the proportion of

low-value pixels.

γ = α2 ·

∑

pi
∑

p
+ β2 (15)

where p is the number of image pixel, pi is the number of pixel

which below the average luminance. α2 and β2 are empirical

coefficient. Through data analysis and fitting, we set α1 =

0.5414, β1 = −0.142 and α2 = −0.5, β2 = 0.59 in our

method.

D. FUSION AND RECONSTRUCTION

After parallel processing of the two models, we can obtain

corresponding intermediate results with different characteris-

tics. For micro model, it enriches the local visual information

but maybe result in halo artifact. In contrast, it avoids halo

artifact but losses a part of detail information for macro

model. Therefore, we fuse these results to achieve the expect-

ing effect as follows.

VLDR = ω1 · Vmacro + ω2 · Vmicro (16)

where VLDR represents the luminance channel, ω1 and ω2

represents the fusion coefficient. Here, we set ω1 = 0.5

and ω2 = 0.5 based on experience. Through a large number

of experiments, such settings of ω can be better compatible

with the advantages of the macro and micro models. It not

only preserves the details of the image, but also maintains

the global brightness balance, and can effectively remove the

halo.

In order to prevent over-saturation and make the image

more natural, we have adjusted the saturation of the appro-

priate.

SLDR = ρ · SHDR (17)

where SLDR denotes the Saturation channel of final TM LDR

image. SHDR denotes the Saturation channel of HDR image.

Parameter ρ is used to control the saturation and is set in the

range of 0.8 and 1 with experience. In our method, we set

ρ = 0.9, it will ensure that the output image is more natural.

With the Hue channel of HDR image, SLDR, and VLDR,

the TM LDR image can be obtained in HSV space. Finally,

the output LDR image is obtained by color space conversion.

III. EXPERIMENT RESULTS AND ANALYSIS

To verify the effectiveness of the proposed TM method,

an extensive set of experiments were carried out on the

MATLAB R2016a platform and Win7 operating system.

Firstly, the performance with respect to subjective and

objective effects are validated by numerical HDR images

as shown in table 1 [37], [38]. And then, the compari-

son with the state-of-the-art TM methods is presented in

detail, including ‘‘Khan et al.’’ [17], ‘‘Reinhard et al.’’ [18],

‘‘Durand et al.’’ [21], ‘‘Li et al.’’ [39], ‘‘Liang et al.’’ [40],

‘‘Bansal et al.’’ [41]. The source codes of these comparison

methods are publicly available in the ‘‘HDR-Toolbox’’ [42]

or provided in the authors’ homepages, and we use the default
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FIGURE 6. Local comparison results with different TM methods for image ‘‘Design Center ’’.

TABLE 1. List of the test HDR images.

parameters of those codes which were optimized by the

authors.

A. SUBJECTIVE ASSESSMENT

An important task of TM is to preserve all the visual infor-

mation and local structure of the original HDR images.

In order to make the results more convincing, different sce-

narios and different dynamic ranges are selected to verify

our method, including indoor light scene (as shown

in Fig. 6 with dynamic range is 5.9), indoor dark scene (as

shown in Fig. 7 with dynamic range is 4.4), outdoor light

scene (as shown in Fig. 8 with dynamic range is 5.2) and

outdoor dark scene(as shows in Fig. 9 with dynamic range

is 3.6). These scenes typically contain a lot of details and

bright/dark areas, which can well verify the effectiveness of

our method.

It can be seen from Fig. 6 and 7, the whole structure and

a lot of details of the image are preserved through micro

model of our method. In terms of structural retention, our

method could retain structure more complete. Other meth-

ods exist problems of losing structure information (e. g.

Fig. 6 (b), (c), (e), (f) and Fig. 7 (b), (c), (g)). In terms

of detail retention, our method retains more details which

shows in the zoom-in of Fig. 6 and Fig. 7. In Fig. 6(e) and

6(g), the details of windows are lost in the result of Li and

Khan. In Fig. 7(d), a distinct halo phenomenon around the

pen is appeared in Li’s result and we avoided this prob-

lem. In Fig. 7(e), Liang’s result lost details. In Fig. 7(f),

the luminance of Bansal’s result is too high to conform to

the actual situation, for example, the drawer region should be

darker.

118364 VOLUME 7, 2019



D. Miao et al.: Novel TM Method via Macro-Micro Modeling of HVS

FIGURE 7. Local comparison results with different TM methods for image ‘‘Desk’’.

In addition to maintaining structure and detail, the overall

effect of the TM should be consistent with the perception of

the human eyes. Through the macro model of our method,

the luminance of TM result will be in a suitable range which

not too bright or too dark. Fig. 8 and 9 show the comparison of

TM results on two outdoor scenes. The results of we proposed

are close to real perception. For example, the white clouds

are grayish(in Fig. 8) and sky is dim(in Fig. 9) in our result,

and it is more consistent with reality scene and the human

perception.

To sum up, our method mimics the area where normal

human eyes see images after natural adaptation, achieving the

purpose of TM.

B. OBJECTIVE ASSESSMENT

In order to avoid the influence of subjective preferences

and environment, we also used information entropy, variance

and tone mapping quality index (TMQI) [43] to objectively

evaluate images. The computation of image variance is given

as follows:

V =

M−1
∑

i=0

N−1
∑

j=0



f (i, j) −
1

M · N

M−1
∑

i=0

N−1
∑

j=0

f (i, j)





2

(18)

where f(i,j) is the matrix corresponding to image pixel. M

and N are the length and width of image. Variance represents

the contrast of an image. The greater variance, the greater

contrast of an image. The computation of information entropy

is given as follows:

H = −

255
∑

i=0

pi · log2(pi) (19)

where pi refers to the proportion of pixels in the image with

gray value i. Information entropy is used to describe how

much information an image contains. The bigger information

entropy, the more information the image contains and the

richer the details of the image.

TMQI is a widely accepted method of tone mapping eval-

uation. This method first evaluates the structural fidelity

and naturalness of tone mapping images. The naturalness

index provides useful information regarding the correlations

between image naturalness and different image attributes, and

can be computed as [43]:

N = Pm · Pd
/

K (20)

where K is a normalization factor, and Pm and Pd are Gaus-

sian and Beta probability density functions respectively.

For structural similarity, TMQI first calculates the local

similarities between corresponding patches x and y of HDR

and LDR image pairs as [43]:

S =
2σx · σy + C1

σ 2
x + σ 2

y + C1
·

σxy + C2

σx · σy + C2
(21)

where σx, σy and σx,y are the local standard deviations and

cross correlation between the corresponding HDR and LDR

patches, and C1 and C2 are positive stabilizing constants.
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FIGURE 8. Global comparison results with different TM methods for image ‘‘Bar Harbor Sunrise’’.

FIGURE 9. Global comparison results with different TM methods for image ‘‘River’’.

Then the power function is used to adjust the two indica-

tors, and the average value is taken to get the final score [43].

Q = a · Sα + (1 − a) · Nβ (22)

where a adjusts the relative importance of the two compo-

nents, and α and β determine their respective sensitivities.

The higher of TMQI value, the better the quality of tone

mapping image, and vice versa.

For the images shown in the paper, we compare our method

with the six above-mentioned algorithms using TMQI natu-

ralness, structured similarity, and final score, in Tables 2, 3,

and 4 respectively. In each table, the winner algorithms score

is shown in bold font. In terms of naturalness score (Table 2),

our method can rank the top two in three images. In terms

of structured similarity score (Table 3), our method produces

best results for all images. In terms of final score (Table 4),

our method is also excellent. There are two images ranked

first and others ranked second.

In order to make sure that our method works effective,

twenty HDR images in a high dynamic database are randomly

selected for testing. The HDR image information is shown

in Table 1. In order to show the comparison results of twenty

TABLE 2. Naturalness score of TMQI for the test images.

images more intuitively, we use the scatter plot to show the

naturalness score, structural similarity score and final score

of TMQI, which shows in Fig. 10, 11 and 12. Obviously,

the method we proposed get the highest score in most images.

Fig. 13 shows the average score of TMQI including nat-

uralness, structural similarity and final score. More specifi-

cally, the average score of test images is shown in Table 5.

In the table, the two highest scorers are shown with bold font.

We can see that our method rank first from Fig.13 and

Table 5. And the score of our method has improved in natural-
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TABLE 3. Structural similarity score of TMQI for the test images.

TABLE 4. Final score of TMQI for the test images.

FIGURE 10. Naturalness score of TMQI for the test images.

FIGURE 11. Structural similarity score of TMQI for the test images.

ness, structural similarity and final score. The improvement

of structural similarity indicates that ourmicromodel is effec-

tive. Meanwhile, the role of macro model is reflected in the

improvement of naturalness. Furthermore, both the micro and

TABLE 5. Average score of different objective evaluation for test images.

FIGURE 12. Final score of TMQI for test images.

FIGURE 13. Average score of TMQI for test images, S is structural
similarity score, N is Naturalness score, Q is final score.

macro models are processed in parallel to ensure the integrity

and subjective consistency of scene information, so that final

score of our method could be improved. Moreover, in the

evaluation of information entropy and variance, the score of

we proposed method also ranks high.

Furthermore, different scenarios and dynamic ranges

images have been selected in the test to verify our method,

including indoor light scene (as shown in Fig. 6 with dynamic

range is 5.9), indoor dark scene (as shown in Fig. 7 with

dynamic range is 4.4), outdoor light scene (as shown

in Fig. 8 with dynamic range is 5.2) and outdoor dark scene(as

shown in Fig. 9 with dynamic range is 3.6). Due to space

limitations, other test images only show objective evaluation

scores. As we can see from the results, our method performs
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excellent in different scenarios and dynamic ranges. Besides,

the size of the image does not affect the mapping effect, but

only the operating efficiency, the bigger the image, the longer

it takes.

IV. CONCLUSION

In this paper, a novel tone mapping(TM) method based

on macro-micro modeling is proposed, to visualize high

dynamic range(HDR) images effectively on existing display

devices. On the one hand, the micro model is designed

with multi-layer decomposition technology to characterize

the properties of brightness, structure, and detail for HDR

images. And then different strategies are adopted for each

layer by the human visual system(HVS) to reduce the overall

brightness contrast and retain as much scene information.

On the other hand, the macro model is designed with a scene

content-based global operator to adaptively adjust the scene

brightness. Finally, the desired TM image are fused with the

results of the two models. Experiments results show that the

proposed method achieves visually compelling results with

little exposure imbalance and halo artifact, and is superior

to the current state-of-the-art TM methods in both subjective

and objective evaluations.
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