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Abstract

This study investigated the accuracy, drift, and clinical usefulness of a new optical transcutaneous oxygen tension (tcPO2)

measuring technique, combined with a conventional electrochemical transcutaneous carbon dioxide (tcPCO2) measurement

and reflectance pulse oximetry in the novel transcutaneous OxiVenT™ Sensor. In vitro gas studies were performed to measure

accuracy and drift of tcPO2 and tcPCO2. Clinical usefulness for tcPO2 and tcPCO2 monitoring was assessed in neonates. In

healthy adult volunteers, measured oxygen saturation values (SpO2) were compared with arterially sampled oxygen saturation

values (SaO2) during controlled hypoxemia. In vitro correlation and agreement with gas mixtures of tcPO2 (r = 0.999, bias

3.0 mmHg, limits of agreement − 6.6 to 4.9 mmHg) and tcPCO2 (r = 0.999, bias 0.8 mmHg, limits of agreement − 0.7 to 2.2 mm

Hg) were excellent. In vitro drift was negligible for tcPO2 (0.30 (0.63 SD)mmHg/24 h) and highly acceptable for tcPCO2 (− 2.53

(1.04 SD) mm Hg/12 h). Clinical use in neonates showed good usability and feasibility. SpO2-SaO2 correlation (r = 0.979) and

agreement (bias 0.13%, limits of agreement − 3.95 to 4.21%) in healthy adult volunteers were excellent. The investigated

combined tcPO2, tcPCO2, and SpO2 sensor with a new oxygen fluorescence quenching technique is clinically usable and

provides good overall accuracy and negligible tcPO2 drift. Accurate and low-drift tcPO2 monitoring offers improved measure-

ment validity for long-term monitoring of blood and tissue oxygenation.
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1 Introduction

Transcutaneous blood gas monitoring is based on the diffu-

sion of oxygen (O2) and carbon dioxide (CO2) from the blood

to the skin surface [1]. Transcutaneous blood gas sensors lo-

cally heat the skin to induce vasodilation, resulting in an in-

crease in supplied O2 and clearance of CO2 [2, 3]. The diffu-

sion capacity of the skin is however markedly lower for O2

than for CO2 [4], additionally influenced by the thickness [5,

6] and microcirculatory condition [7] of the skin. As a conse-

quence the measurement of transcutaneous oxygen (tcPO2)

[8] requires relatively high sensor temperatures of 43 to 44

°C [9] for tcPO2 to correlate with arterial oxygen tension

(PaO2), which due to skin thickness only results in tcPO2

values approaching PaO2 in infants and young children

[10–12].

Conventional transcutaneous blood gas sensors are based

on the electrochemical techniques introduced by Clark [13]

for tcPO2 and Stow-Severinghaus [14] for tcPCO2. For
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decades the Clark-type electrode has been the only clinically

available technique for tcPO2 measurements [15]. It measures

oxygen by reduction, lowering the actual and thereby mea-

sured oxygen level in the superficial skin [16, 17].

Additionally there is measurement drift over time with both

techniques [18], hindering usability due to reduced accuracy,

frequent calibrations and membrane changes. These limita-

tions in reliability and usability of tcPO2 measurements [19]

have held back a widespread clinical use similar to that of

tcPCO2 measurements. However, tcPO2 offers advantages

over SpO2 in infants in which blood gas sampling is indicated

for the measurement of PaO2, precise PaO2 targeting is re-

quired or the oxygen dissociation curve is markedly shifted

[20, 21]. In adults the use of tcPO2 is limited to oxygen trend

monitoring due to an insuperable underestimation of PaO2

[22]. In addition measurement drift hinders clinical usability.

Removing measurement drift as an influence on the measure-

ment by implementing drift-free optical techniques could

therefore significantly improve usability of tcPO2 measure-

ments [23]. The recently introduced OxiVenT™ Sensor

(SenTec AG, Therwil, Switzerland) combines reflectance

pulse oximetry and a conventional electrochemical Stow-

Severinghaus-type tcPCO2 measurement with an optical oxy-

gen sensing technique for measuring tcPO2. Fluorescence

quenching [24] is the optical technique used for the measure-

ment of oxygen, making it potentially free of drift. The main

challenge in the development of this sensor was to combine

two optical techniques, fluorescence quenching and pulse ox-

imetry, without mutual interference into a single sensor which

also contains an electrochemical Stow-Severinghaus tcPCO2

measurement. In this article we will discuss the technical as-

pects of implementing fluorescence quenching in a combined

sensor, provide the first results on measurement accuracy and

evaluate its clinical implications.

2 Methods

2.1 A novel combined transcutaneous sensor

The OxiVenT™ Sensor is the first transcutaneous sensor in

which an optical tcPO2 measurement is combined with an

electrochemical Stow-Severinghaus-type tcPCO2 measure-

ment and reflective pulse oximetry (Fig. 1). The sensor weighs

2.7 g and has a diameter of 14 mm and a height of 9 mm. All

measurements are digitized within the sensor and

preprocessed. The principle of an electrolyte-filled diffusion

chamber is retained for the tcPCO2measurement. For measur-

ing oxygen, the sensor contains an oxygen fluorescence

quenching dye surface which is back-lit by an excitation

light-emitting diode. On the same side of the dye, the excita-

tion light is measured with a wavelength-filtered photodetec-

tor. In order to provide parallel optical measurements of tcPO2

and SpO2, the respective light sources emit in an alternating

intermittent fashion. The sensor contains dual temperature

sensing for accurate heating control. The sensor can be at-

tached to the skin using either an ear clip or adhesive rings,

minimizing pressure on the skin.

2.2 Measuring principles and technology

2.2.1 TcPO2 measurement and fluorescence quenching

The OxiVenT™ Sensor measures oxygen levels with an opti-

cal technique called oxygen fluorescence quenching [24].

This technique relies on the excitation of a dye molecule by

the absorption of a photon emitted by a light-emitting diode

with a peak wavelength of approximately 500 nm, moving the

molecule to a higher energy state. Without the presence of an

oxygen molecule, the dye molecule will emit a photon at a

lower specific emission wavelength (approximately 650 nm)

and return to its base energy state. In the presence of an oxy-

gen molecule, the oxygen will quench the dye and thereby

prevent photon emission. In the sensing dye surface of the

OxiVenT™ Sensor, fluorescence emission of each dye mole-

cule occurs non-synchronously during a certain time interval.

This results in a fluorescence intensity and decay time interval

that relates to the amount of oxygen that quenches dye fluo-

rescence. Selectively and intermittently the light intensity at

the 650-nm band is measured, out of which the decay curve is

reconstructed and the measured oxygen values are inferred.

The oxygen diffusion to the dye results in a typical 90% re-

sponse time of under 150 s. Contrary to a Clark-type electrode

which reduces oxygen, influencing the oxygen level measure-

ment itself, the fluorescence quenching technique does not

affect oxygen levels.

2.2.2 TcPCO2 measurement

In the OxiVenT™ Sensor, CO2 is measured with a Stow-

Severinghaus-type electrode. This technique is used in the

majority of currently commercially available transcutaneous

sensors and consists of a pH electrode in an electrolyte buffer

containing sodium bicarbonate, covered by a gas-permeable

membrane. Carbon dioxide diffuses from the skin through the

membrane, where it causes a carbonic acid dissociation reac-

tion. This in turn changes the pH of the solution, which is

detected by the pH electrode and causes a potential change

between the pH electrode and the reference silver/silver chlo-

ride electrode. In sensors with an electrochemical tcPO2

(Clark-type) and tcPCO2 measurement the Clark-type elec-

trode and its inherent oxygen consumption influence pHwith-

in the diffusion chamber. Without this influence on the

tcPCO2 measurement, there is potentially a reduction in mea-

surement drift. Multiple patient factors and sensor temperature

influence the speed at which CO2 diffuses from the skin, and
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thereby the delay in measuring the changes in arterial values

transcutaneously. In practice, this delay is usually 20–80 s

from changes in ventilation to their effect on transcutaneous

measurements [25, 26].

2.2.3 Reflective two-wavelength pulse oximetry

In pulse oximetry, the optically measured ratio between

oxygenated and deoxygenated hemoglobin is used to

measure oxygen saturation. By sending two light frequen-

cies (660-nm and 880–890-nm wavelengths) through tis-

sue, the light intensity that results after absorption of light

by the two forms of hemoglobin can be used to calculate a

ratio between the two. Only the pulsatile part of the signal

is analyzed as it ideally represents the arterial component

of the signal. Using a calibration model, based on mea-

surements in healthy volunteers, for each ratio, this results

in a specific oxygen saturation. Although a shift in the

oxygen dissociation curve can influence the interpretation

of SpO2 values in relation to the actual PaO2, this tech-

nique is one of the most used oxygen monitoring tech-

niques. Two variants of the technique are often used;

transmission and reflectance pulse oximetry. In transmis-

sion pulse oximetry the light emitter and detector are

placed opposite to each other on both sides of tissue

(e.g. a finger), while in reflectance pulse oximetry the

emitter and detector are placed next to each other. This

means that in transmission pulse oximetry the light path is

linear and a relatively large part of the emitted light

reaches the detector. In reflectance pulse oximetry the

detected light is the part that is scattered and reflected

back from the tissue, resulting in a weaker signal when

compared with transmission pulse oximetry. In transcuta-

neous sensors the arterialization caused by locally heating

the skin markedly improves the reflective signal-to-noise

ratio [27].

2.3 Sensor validation methods

2.3.1 Hardware and software

All studies were performed using OxiVenT™ sensors with

software versions 01.09-01.58, connected to a SenTec

Digital Monitor (SDM) with software versions 08.00.0-

08.01.1 (SenTec Monitoring Board) and 06.00.01-06.01.00

(Multi Parameter Board).

2.3.2 In vitro gas studies for the validation of tcPO2

and tcPCO2

An in vitro validation of the transcutaneous (O2 and CO2)

measurements of the OxiVenT™ Sensor was performed with

10 sensors for each parameter in order to determine the accu-

racy and drift of these measurements. Prior to the protocol, the

sensors were allowed to stabilize. Testing methods were in

concordance with the FDA Guidance on cutaneous carbon

dioxide and oxygen monitors (clause 6.2), as well as IEC

60601-2-23 [28]. Accuracy was tested by cycling through

different combinations of gas concentrations of O2 and CO2.

Each gas mixture was allowed to stabilize for 10 min, after

which a data point was collected for each step. In the tcPCO2

accuracy test, a total of 4 data points for both 3% CO2 and 5%

CO2 as well as 8 data points for 10% CO2 were collected.

After 4 cycles, an additional measurement of nitrogen with

0% CO2 was performed. A comparable method was used for

the tcPO2 accuracy test. This results in 4 data points for both

2%O2 and 10% O2 as well as 8 data points for 20% O2 after 4

cycles. Following these 4 cycles, additional measurements

with nitrogen (0% O2) and with 100% O2 were performed.

For the drift test, the sensors were exposed to humidified test

gas (20% O2/10% CO2) for the duration of the calibration

interval (24 h for tcPO2 and 12 h for tcPCO2). The total drift

over the calibration interval is given as a percentage of the

d
a c b

e

Fig. 1 Inside view of the fully

digital OxiVenT™ Sensor,

showing (a) tcPO2 optical

module, (b) tcPCO2

electrochemical module, (c) pulse

oximetry light-emitting diode, (d)

pulse oximetry photodiode, and

(e) flexible circuit board

containing the temperature

sensors and all electronic

components and microprocessor
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initial reading. In addition, the drift is given as %/h for the first

hour (0–1 h) and last hour (11–12 h/23–24 h) of the calibration

interval.

2.3.3 Clinical use of tcPO2 and tcPCO2

At the Neonatal Intensive Care Unit at Erasmus MC – Sophia

Children’s Hospital (Rotterdam, the Netherlands), transcuta-

neous blood gas monitoring in preterm (24–32 weeks GA)

and term neonates is performed as standard care. Existing,

local, age-specific protocols for sensor temperatures and site

times were applied for extreme preterm neonates (< 26 weeks

GA: 42 °C, 2 h) and less preterm and term neonates (≥ 26

week GA: 43 °C, 3 h). TcPCO2 was calibrated initially, and

when the site time elapsed, tcPO2 was calibrated initially and

daily for verification during a tcPCO2 calibration. Several

clinical examples were selected to demonstrate the usability

and feasibility of transcutaneous blood gas monitoring of

tcPO2 and tcPCO2with the OxiVenT™ Sensor during various

clinical events. SpO2 measurements (Masimo SET®,

Masimo, Irvine, CA, USA) were recorded simultaneously

with averaging over 12 s.

2.3.4 Validation of SpO2 in healthy volunteers

Validation of the OxiVent™ Sensor SpO2 measurements was

performed with a clinical study in healthy volunteers at the

University of California (San Francisco, USA). Approval

from the institutional IRB was obtained for the study protocol.

The study was carried out according to the FDA Guidance on

the validation of SpO2 accuracy [29] and ISO 80601-2-61

[30]. The healthy volunteers underwent a desaturation proto-

col consisting of stepwise adjustments of the fraction of in-

spired oxygen (FiO2), targeting specific arterial oxygen satu-

ration (SaO2) level plateaus. A total of two “runs” per volun-

teer were performed. Every SpO2 plateau was held for about

30–60 s. Two blood samples were collected during the satu-

ration plateaus. Each run was then ended by several breaths of

100% O2 followed by room air while taking another sample

pair of blood samples. The number of plateaus per “run” was

adapted to the tolerance of the subjects to the desaturation

protocol. SpO2 was measured with several sensors on 5 dif-

ferent application sites; earlobe, forehead, cheek, upper arm,

and shoulder blade. SpO2 averaging time was set to 6 s. The

sensor temperature was set to 44 °C for most sensors. For

increasing statistical variety, several measurements were done

at 37 °C and 41 °C.

2.4 Statistical analysis

Descriptive statistics (mean/standard deviation or median/

range, depending on the distribution of the data) are given

for demographic data (age, gender, and BMI). Correlation

and Bland-Altman analyses were performed in order to deter-

mine Pearson’s correlation coefficient (r), bias (d), and stan-

dard deviation (SD). In concordance with the uniformity

of data presentation that follows from guideline ISO

80601-2-61:2011, the accuracy root mean square error

(Arms) was calculated with limits of agreement that did

no t take repea ted measurements in to account

( Arms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1

ŷi−yið Þ2

n

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ SD2
p

Arms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1

ŷi−yið Þ2

n

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ SD2
p

). In this formula, ŷi is the SpO2 value for iter-

ation number i, yi is the measured SaO2 value for the iteration

number i, n is the number of samples, and d is the bias. The

presented limits of agreement and the between-subject vari-

ance were calculated according to the methods of repeated

measurements as described by Bland and Altman [31].

3 Results

3.1 In vitro accuracy and drift of tcPO2 and tcPCO2

A total of 17 tcPCO2 and 18 tcPO2 data points were collected

with each of the 10 sensors. The number of available data

points and the correlation and Bland-Altman analyses of the

tcPO2 and tcPCO2 data compared with the gas O2 and CO2

partial pressures are shown in Fig. 2 and summarized in

Table 1. At oxygen tensions of over 700 mm Hg, agreement

of tcPO2 with the reference gas has decreased,

underestimating the pO2. Measurement drift over different

intervals shows a very small overall O2 drift (Table 2). Drift

of tcPCO2 is notably highest during the first hour, tcPO2 drift

is not equally affected.

3.2 Clinical use of tcPO2 and tcPCO2

Four examples of clinical events were selected from patient

files, are shown in Fig. 3, and include tcPO2 and tcPCO2 data,

as well as the SpO2 data obtained from standard of care pulse

oximetry. These examples contain both cardiorespiratory pa-

tient events and related clinical interventions. A tcPO2 re-

sponse time of approximately 2 min longer when compared

with SpO2 and a consequential dampening effect can be

observed.

3.3 Validation of SpO2 in healthy volunteers

A total of 12 healthy volunteers participated in the study. The

study demographics are shown in Table 3. At each step of the

test protocol, two blood samples were drawn, of which a

single-patient example is shown in Fig. 4(a). This resulted in

a total of 2244 SaO2-SpO2 data pairs. The median of all mea-

sured SaO2 values is 84.8% (IQR 76.1–93.4%, range 68.0–
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100.6%). The correlation plot of the SaO2 values with the

corresponding SpO2 measurements obtained with the

OxiVenT™ Sensor at all five measurement sites is shown in

Fig. 4(b). The accuracy and agreement analyses for the sepa-

rate measuring sites show the narrowest limits of agreement

when measuring at the forehead and cheek, with the highest

accuracy when measured at the forehead (Table 4).

4 Discussion

With these studies, we present data on the OxiVenT™

Sensor, the first combined tcPO2, tcPCO2, and SpO2

transcutaneous sensor incorporating an optical tcPO2 mea-

surement that is designed to eliminate measurement drift.

The in vitro results confirm a good tcPO2 accuracy and

negligible overall measurement drift. Decreased tcPO2 ac-

curacy and precision can be observed at very high oxygen

tensions, together with underestimation of PaO2. This is

most likely a consequence of the abundance of oxygen,

leading to a short fluorescence decay time in combination

with a high intensity. However, these supraphysiological

levels are not likely to be clinically relevant. TcPCO2

accuracy and drift are on par with previous sensor gener-

ations [32]. TcPCO2 drift is highest during the first hour

of measurement, possibly due to equilibration effects.

TcPO2 drift does not seem to be equally affected, provid-

ing a more consistently accurate measurement from onset.

Furthermore, SpO2 shows excellent correlation and agree-

ment with SaO2 values in adult volunteers, particularly

when measuring at the forehead or cheek. Although trans-

cutaneous blood gas measurements have retained their

place in the clinic after the introduction of pulse oximetry,

the technique has remained laborious [33–35]. When

measurements are considered to be in disagreement with

arterial values, they require training to be able to distin-

guish technical failure or measurement drift from patient

factors influencing the measurement. As a consequence,

transcutaneous monitoring is most often used when the

required dedicated attention is outweighed by the advan-

tages, such as in neonatal intensive care units or sleep

laboratories. The logical innovation in transcutaneous

blood gas monitoring is consequently the introduction of

drift-free measurement techniques, making transcutaneous

monitoring more accurate and easy to use. In the investi-

gated OxiVenT™ Sensor, an optical tcPO2 measurement

has been implemented for this purpose. The main patient-

related limitation of transcutaneous tcPO2 and tcPCO2

measurements is inaccuracy due to the influence of skin

thickness and microcirculatory impairment on the
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Fig. 2 Bland-Altman plots of the agreement of in vitro tcPO2 (a) and tcPCO2 (b) measurements with calibration gas mixtures. The accuracy, bias, and

limits of agreement (LoA) for each measurement are shown in Table 1.

Table 1 In vitro accuracy of

tcPO2 (0–100%) and tcPCO2 (0–

10%) measurements

Measurement Data points (n) Accuracy (mm Hg) Bias (mm Hg) Limits of agreement

(mm Hg)

r

Arms Lower Upper

tcPO2 180 3.0 (2.9) − 0.8 − 6.6 4.9 0.999

tcPCO2 170 1.1 (0.7) 0.8 − 0.7 2.2 0.999

Values measured with the OxiVenT™ Sensor and compared with calibration gas mixtures
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diffusion of blood gases [2, 18, 36]. TcPO2 accuracy is

known to suffer more from these influences than tcPCO2

accuracy due to the higher skin diffusion resistance to

oxygen [4], leading to wide limits of agreement in clinical

studies on tcPO2 [11, 37]. In addition, the traditional elec-

trochemical tcPO2 sensors contained Clark-type elec-

trodes, which consume oxygen as part of the measurement

[2, 6]. The implementation of an optical measurement

technique for tcPO2 therefore potentially has a greater

measurement technique–related impact on accuracy for

than it would have for tcPCO2. Clinical measurements

of tcPO2 and tcPCO2 in the Neonatal Intensive Care

Unit suggest good usability and response to clinical

events. The relatively long tcPO2 response time makes it

unsuitable for detecting apneic episodes and oxygenation

dips. In adults, the inability to measure tcPO2 values that

mirror PaO2 values limits the use in the adult population

to oxygen trend monitoring. However, the improved reli-

ability of the tcPO2 trend could clinically have a greater

impact than improved agreement with blood gas samples.

Data on the user preference of using either absolute values
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Fig. 3 Clinical examples of tcPO2 and tcPCO2 measured in preterm

neonates with the OxiVenT™ Sensor during relevant events,

supplemented with standard of care peripherally measured transmission

pulse oximetry. These examples show the following events: (a) Very

preterm neonate, born at a gestational age (GA) of 28 weeks and with a

birth weight (BW) of 1200 g. Drop in oxygen saturation to 56% SpO2 due

to retention of sputum, following by suctioning, accompanied by a

transient rise of tcPCO2 and decrease of tcPO2 down to 35 mm Hg. (b)

Extreme preterm neonate, GA 27 weeks, BW 800 g. Capillary blood

sampling at an extremity, leading to agitation and crying with a

consequential drop in oxygen saturation to 55% and tcPO2 to 16 mm

Hg. Noteworthy is the temporary drop in tcPCO2 due to crying,

followed by a rise due to a decline in respiratory effort. The patient’s

lungs were recruited due to clinical indications of bronchospasms. The

FiO2was increased from 0.21 to 0.40 during this process. (c) Late preterm

neonate, GA 36 weeks, BW 2500 g. Short period of bradycardia which

was followed by a drop in oxygen saturation. As a clinical intervention,

the FiO2was increased from 0.21 to 0.39 for 4 min, leading to a period of

hyperoxia up to 109 mm Hg that was undetected by pulse oximetry. (d)

Extreme preterm neonate, GA 24 weeks, BW 700 g. During nursing with

patient repositioning multiple episodes of bradycardia down to 50 heart

beats per minute, with drops in SpO2 down to 40% and slow recovery.

The decline in respiratory effort and slow recovery are reflected by the

clear and persistent elevation of CO2 levels

Table 3 Volunteers

characteristics No. of volunteers 12

Age (years) 25 (23–34)

Male/female 7/5

Skin type

- Dark 2

- Medium 5

- Light 5

Values are listed as median (range), where

applicable

Table 2 Data on drift of tcPO2 (24-h calibration interval) and tcPCO2

(12-h calibration interval)

Total drift during

calibration interval

(12 h/24 h) (%)

Drift during first

hour of calibration

interval (%/h)

Drift during last

hour of calibration

interval (%/h)

tcPO2 0.30 (0.63) 0.14 (0.28) 0.03 (0.21)

tcPCO2 − 2.53 (1.04) 0.49 (0.28) 0.18 (0.09)

Data is shown as mean (SD)
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or trends is however limited and specific for patient pop-

ulations. With the new OxiVenT™ Sensor, the potential of

optical techniques has been demonstrated. In clinical use,

this combined sensor will however still require frequent

calibration of the electrochemical tcPCO2 measurement,

negating the potential benefit on calibration strain for both

patients and personnel. Although this study provides use-

ful information on the technical performance of this new

combined sensor, clinical validation is needed to evaluate

its impact and limitations.

5 Conclusion

Our results show the successful integration of a new optical

oxygen measuring technique in a non-invasive, combined

tcPO2, tcPCO2, and SpO2 sensor. In vitro tcPCO2 measure-

ment performance is unchanged when compared with litera-

ture on previous sensor generations. Reflectance pulse oxim-

etry correlates well in a study on healthy volunteers. The new

optical tcPO2 measurement is virtually drift-free in vitro.

Despite showing good usability in clinical examples, the
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clinical benefit needs to be proven. Additionally, clinical data

is needed to validate this sensor to arterial blood samples in

specific patient populations.
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