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 
Abstract—Feature extraction is of high importance for effective data classification in hyperspectral imaging (HSI). Considering the 

high correlation among band images, spectral-domain feature extraction is widely employed. For effective spatial information extraction, 

a 2-D extension to singular spectrum analysis (SSA), a recent technique for generic data mining and temporal signal analysis, is proposed. 

With 2D-SSA applied to HSI, each band image is decomposed into varying trend, oscillations and noise. Using the trend and selected 

oscillations as features, the reconstructed signal, with noise highly suppressed, becomes more robust and effective for data classification. 

Three publicly available data sets for HSI remote sensing data classification are used in our experiments. Comprehensive results using a 

support vector machine (SVM) classifier have quantitatively evaluated the efficacy of the proposed approach. Benchmarked with several 

state-of-the-art methods including 2-D empirical mode decomposition (2D-EMD), it is found that our proposed 2D-SSA approach 

generates the best results in most cases. Unlike 2D-EMD which requires sequential transforms to obtain detailed decomposition, 2D-SSA 

extracts all components simultaneously. As a result, the executive time in feature extraction can also be dramatically reduced. The 

superiority in terms of enhanced discrimination ability from 2D-SSA is further validated when a relatively weak classifier, k-nearest 

neighbor (k-NN), is used for data classification. In addition, the combination of 2D-SSA with 1D-PCA (2D-SSA-PCA) has generated the 

best results among several other approaches, which has demonstrated the great potential in combining 2D-SSA with other approaches for 

effective spatial-spectral feature extraction and dimension reduction in HSI.  

Index Terms—Data classification, feature extraction, hyperspectral imaging (HSI), 2-D empirical mode decomposition (2D-EMD), 2-D 

singular spectrum analysis (2D-SSA). 

I. INTRODUCTION 

yperspectral imaging (HSI) provides data captured in a 3-D structure, namely a hypercube, which contains 1-D spectral 
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information along with a 2-D spatial scene. With spectral information continuously acquired over a long range from visible 

spectrum to (near) infrared, HSI is able to identify minor object difference in terms of moisture, temperature and chemical 

components. As a result, HSI has become a research hotspot in recent years and has been successfully applied in many applications. 

These include not only conventional remote sensing, military surveillance and mining but also new emerging lab-based data 

analytics tasks such as forensics, pharmaceutical, medical and food quality analysis [1-4]. 

Considering the fact that each pixel in HSI naturally forms a spectral vector, i.e. spectral profile, pixel-based data analysis is 

widely used for object detection and data classification. In HSI, pixels can be easily characterized by using the corresponding 

spectral profile, where support vector machine (SVM) has been widely adopted to identify their differences even unnoticeable to our 

naked eyes [5-7]. As HSI presents high correlation among spectral bands, this makes feasible the dimensionality reduction of 

features. To this end, feature extraction and feature selection in the spectral domain are also emphasized regarding both the curse of 

dimensionality, also known as Hughes effect [8] and the reduction in computational complexity.   

With the strong demands from remote sensing and other related applications, feature extraction and dimension reduction in HSI 

has been intensively investigated in the last decades. Some widely-used methods include principal component analysis (PCA) [9] 

and several variants [10-12], maximum noise fraction (MNF) [13-14], and independent component analysis (ICA) [15-16]. Other 

interesting approaches comprise band selection [17], steepest ascent [5, 18] and machine learning based approaches [6-7]. 

Furthermore, the extensive HSI literature offers more techniques such as Bhattacharyya and Jeffries-Matusita distances, spectral 

angle mapper, mutual information, vegetation index NVDI, linear discriminant analysis, decision boundary feature extraction, 

non-parametric weighted feature extraction, or even discrete wavelet transform [19]. A general overview of those methods and some 

comparisons can be found in [19-21]. 

However, in the recent years, the limited contribution of spectral-domain feature extraction in combination to the potential use of 

spatial information has been highlighted, where spatial processing techniques have been proposed for improved classification 

accuracy [22-23]. The first group of such spatial processing approaches is spatial filtering, including mathematical morphology 

processing and median filtering, where spatial-domain feature extraction is achieved by applying either opening/closing operators or 

median filtering to the images [22-24, 25]. In [22], morphological processing is applied to one PCA component of the HSI data, 

namely the morphological profile (MP) technique. In [23], MP approach is extended to include several few PCA components, 

leading to the extended morphological profile (EMP) method, whose performance is evaluated with a SVM classifier in [24]. 

Nevertheless, the performance of morphology processing is highly dependent on the size and shape of the associated structure 

element, regardless the variations in terms of the number of openings/closings (and PCA components) to be employed in EMP. In 

[25], an adaptive filter (AF) using median filtering and MNF is presented for feature extraction in HSI, in which a kernel size that is 
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inversely related to the signal-to-noise ratios (SNRs) of the MNF bands is used. Among several variants introduced, AF with 

derivate (AFD) seems to perform the best. However, its performance, depending on the MNF, suffers from significantly degraded 

signal quality and affects by the kernel size which is not clearly explained.  

Another interesting group of method is 2-D empirical mode decomposition (2D-EMD) [26] based approaches. As the key part of 

the Hilbert Huang transform (HHT), EMD has been used for the analysis of non-linear and non-stationary time series [27-28]. Being 

able to decompose a signal into several and usually a few components known as intrinsic mode functions (IMFs), EMD is originally 

applied for applications of 1-D signal, such as speech recognition [29]. To deal with 2-D images, its extension, 2D-EMD has been 

proposed [26, 30-31]. In 2D-EMD, each image or band image within a hypercube is reconstructed using the lower-order IMFs 

extracted components whilst discarding the remaining ones, simply because these lower order IMFs present the spatial structure of 

the scene while higher order IMFs lack this content [26]. Accordingly, using the reconstructed hypercube for data classification can 

significantly improve the efficacy and surpass many state-of-the-art approaches [26]. On the other hand, the whole process for 

2D-EMD implementation is based on iterations and becomes very computational expensive, resulting unfeasible in some cases. 

Also there are some other spatial-domain techniques proposed in the recent literature. In [32], unsharp filtering is applied to 

enhance the high frequency content in an image and boost edges of the different elements in the scene. In [33-34], wavelet 

decomposition of images is utilized for spatially-adaptive image denoising and results in an increment of accuracy in HSI 

classification. However, these techniques seem to provide limited improvement in classification accuracy as 2D-EMD does [26]. On 

the other hand, it is important to remark the potential applications where spatial information is employed for post-processing of 

already classified data. In [35], texture and morphological features are combined with the MNF technique to refine the data 

classified using SVM and a fuzzy neural network. The evaluation has shown that both texture and morphological features make 

limited contributions in the experiments, which indicates that spatial features should be more favourable introduced before the 

classification stage. 

In this paper, we focus on the singular spectrum analysis (SSA) [36], a promising data mining technique which has been applied 

in 1-D (1D-SSA) in the spectral domain and shown great potential for effective feature extraction in HSI [37-38]. With the profile of 

a given pixel vector being decomposed into several components, SSA can help easily remove the noisy components thus enhance the 

signal for improved data classification. Being based on the well-known singular value decomposition (SVD), 1D-SSA is able to beat 

other relevant techniques in terms of classification accuracy [37-38], becoming of great interest for feature extraction in the spectral 

domain. However, considering the fact that spatial features can also significantly improve the accuracy of classification [20, 26], we 

have naturally proposed the idea to extend 1D-SSA to 2-D analysis. In addition, existing techniques working in the spatial domain 

can only deal with spatial relationship within a small neighborhood (window), even in certain shapes subject to the defined structure 
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elements and filter templates in morphological processing and median filtering. For example, EMP simply applies opening and 

closing operators to the images, and the AFD uses a basic median filter, hence the improvement from these methods tend to be 

limited and sometimes even inconsistent. 

To address these drawbacks, we propose the extended 2-D version of SSA (2D-SSA) to fully explore the spatial correlation of 

HSI images. Based on the well-known SVD theory, the 2D-SSA aims to provide a systematic solution for spatial feature extraction 

in HSI. Actually, similar approaches in 1-D cases, including PCA (and 1D-SSA), have already been widely used in HSI feature 

extraction and data reduction though being applied in spectral domain. As components can be extracted from SVD in one transform, 

2D-SSA needs no iterative process as 2D-EMD does in signal decomposition and results in significantly reduced computational cost 

for improved efficiency. The proposed 2D-SSA method has been especially benchmarked with 2D-EMD [26], and also with a 

number of other state-of-the-art approaches, where excellent results in classification accuracy have been generated, surpassing the 

rest of techniques normally used in this context yet requiring much less execution time than 2D-EMD.  

The remaining part of this paper is organised as follows. Section II describes the original SSA algorithm, including the concept, 

mathematical background and a practical example. Section III focuses on the proposed 2D-SSA extension for feature extraction in 

HSI. Section IV discusses detail about experimental setup, including data sets and parameters settings.  Experimental results and 

quantitative analysis are presented in Section V, with some concluding remarks drawn in Section VI. 

 

 

II. PRINCIPLES OF SSA 

As a novel technique for time series analysis and forecasting, SSA has been successfully applied in climatic, meteorological, and 

geophysical applications as well as generic data mining in social science [36]. Based on some earlier work [39-40], SSA has 

attracted increasing attention with remarkably theoretical and practical progress reported in recent years [36, 41-42]. In one of our 

previous papers [38], applying SSA to the HSI pixels for effective feature extraction and data classification is evaluated, proving its 

efficacy and great potential in this context. In the following, detailed information about the SSA, its concept and the algorithm along 

with a practical example are presented. 

A. Concept 

Based on SVD, SSA is able to decompose an original series into several independent components or subseries, where every 

Eigenvalue extracted from the original series provides an individual component. Moreover, these individual components can be 

grouped to produce others that may be interpretable as varying trend, oscillations or noise. Accordingly, the main capabilities of 

SSA can be summarized as follows [41]: 

1)  extraction of trends and smoothing; 
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2)  extraction of periodic components; 

3)  complex trends and periodicities with varying amplitude; 

4)  finding structures in short time series; 

5)  envelopes of oscillating signals. 

How to handle specific components of the decomposed signal, especially those related to noise, has made SSA a promising 

technique still to be evaluated in many fields. 

B. Algorithm 

Assume that we have a HSI pixel, being a 1-D signal in a vector array p  defined as 
N

Nppp  ],,,[ 21 p ; the SSA 

algorithm can be applied in the following steps. 

1) Embedding 

Defining a window size ZL  satisfying ],1[ NL , the trajectory matrix X  of the vector p  can be constructed as 
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Each column of X , kc , is a lagged vector which can be represented as 
LT

Lkkkk ppp   ],,,[ 11c , where 

],1[ Kk  and 1 LNK . It is worth noting that the matrix X  has equal values along the anti-diagonals, thus it is actually 

a Hankel matrix by definition. 

In fact, based on a property of the matrix X  [41], the SSA algorithm can be implemented symmetrically in two intervals: 

)]2/(,1[ NroundL  and ]),2/)1(([ NNceilL  , where round  and ceil  operators represent the rounding and ceiling 

functions in computer science. For a given L , the equivalent implementation can be found for another KL ' , leading to the same 

results. In addition, just remark that both singular ends from the global interval, 1  and N , do not provide a SSA implementation. 

2) Singular Value Decomposition (SVD) 

First the matrix S  is obtained from the trajectory matrix X  as 
T

XXS  . The Eigenvalues of S  and their corresponding 

Eigenvectors are then denoted respectively as  L  21  and  Luuu ,,, 21  . 

For the trajectory matrix X , its SVD is then formulated as given below. Though the value of Ld   equals to the rank of X , 

from now on we consider Ld   for simplicity, i.e., 
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LXXXX  21 .                   (2) 

 

As can be seen, the trajectory matrix X  is actually built by the addition of several matrices. Each matrix ],1[| Lll X  is called 

elementary matrix, corresponding to its respective Eigenvalue as defined by 

 
T

llll vuX                        (3) 

where lv  is defined as  

 

l

l

T

l 
uX

v  .                      (4) 

 

Note that the collection  lll vu ,,  is normally called the lth eigentriple, and the matrices U  and V  below are denoted as 

the matrix of empirical orthogonal functions and the matrix of the principal components, respectively, i.e., 
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3) Grouping 

In this step, the total set of L  components is divided into M  disjoint sets Mttt ,,, 21  , where   Lm || t  and 

],1[ Mm . Let  qlll ,,, 21 t  denote one of the divided sets, the matrix tX  related to the group t  is defined as 

qlll XXXXt  
21

. Finally, the trajectory matrix X  is represented by 

 

Mttt XXXX  
21

.                  (6) 

 

For simplicity, a typical grouping is the one such as LM  , i.e., 1q , which refers to the case that each set is made of just one 

component. In general, the contribution of each matrix tX  to the trajectory matrix X  in the SVD is related to its Eigenvalues and 

therefore can be derived as 
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4) Diagonal Averaging 

The matrices ],1[, Mm
m

tX  obtained above by grouping are not necessarily the Hankel type as in the original trajectory 

matrix. However, in order to project each of these matrices into 1-D signal, they have to be hankelized. This step is done by 

obtaining the average in all the anti-diagonals of each 
mtX , simply because these values used for average contribute to the same 

element in the derived 1-D vector array. 

Let 
N

mmmm N
zzz  ],,,[

21
z  denote the 1-D signal projected from 

mtX , it can be obtained via diagonal averaging 

below, where 1, rnra  refers to the elements of 
mtX , i.e., 
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With the obtained mz  above, the original 1-D signal p  can be reconstructed by 





M

m

mM

1

21 zzzzp  .                 (9) 

As a result, the original signal can also be represented using one or more groups derived from its Eigenvalues, where those less 

significant components or highly noisy ones are discarded. 

C. Example of SSA Application in HSI 

In HSI, the original profile over the spectral domain of one pixel in the scene can be decomposed according to the Eigenvalues 

extracted in its SVD. Therefore, it is possible to substitute the original pixel by a more significant profile, reconstructed in such a 

way with the contribution of the smaller eigencomponents being ignored [38]. 

An effective replacement of the original profile is decided by two key parameters. The first one is the window size L, which 

determines the total number of Eigenvalues that can be extracted in the decomposition stage. A window size L=10 provides 10 

components, one per each Eigenvalue in its SVD. The addition or grouping of those components leads to a particular reconstruction, 

taking into account that the profile corresponding to the first Eigenvalue is much more significant than those corresponding to the 

following ones. 

The second parameter is what we call the Eigenvalue grouping (EVG), which describes how the extracted components are 

grouped in reconstructing the original signal. If the EVG includes all Eigenvalues, the reconstruction is equivalent to the original 
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profile. If the EVG excludes the components from the smallest Eigenvalues, the reconstructed profile is probably less noisy, as noise 

is usually contained in these small Eigenvalues. Finally, if the EVG leaves out the component from the first Eigenvalue, the 

reconstruction is not appropriate as it losses the main information provided by the original signal. 

An example of SSA application is given in Fig. 1, where the original profile and the reconstructed signal with the parameters L=5 

and EVG=1
st
 are plotted. As only the first Eigenvalue component is selected in reconstructing the signal, the resulting profile 

preserves the basic trend. In addition, avoiding less representative Eigenvalue components can potentially reduce noise content in 

the new profile, leading to a better feature extraction and classification results [38]. 
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Fig. 1.  Original and reconstructed (by SSA) profiles for one pixel in HSI. The reconstruction is derived from the first Eigenvalue component out of five. 

 

 

III. EXTENSION TO 2D-SSA FOR ANALYZING HSI 

Though the original 1D-SSA can be used for HSI analysis with improved classification accuracy reported [38], its pixel-level 

implementation results in negligence of spatial relationship among the pixels, where only spectral correlation is addressed. As 

spatial features can also lead to improved data classification [26], we propose the introduction of 2D-SSA for HSI spatial-domain 

feature extraction. Although some recent work has been reported using 2D-SSA in some applications [43-47], applying 2D-SSA for 

effective feature extraction and data classification in HSI has been seldom addressed. In this section, the concept of 2D-SSA, with 

mathematical description and examples of application are provided for an easy understanding. 

A. Concept 

In general, 2D-SSA is similar to 2D-EMD in HSI analysis. When the 2D-EMD is applied to each spectral band of a hypercube, it 

reconstructs the 2-D spatial scene with the low order IMFs. This is because low order IMFs reflect the spatial structural content 

while high order IMFs lack local spatial structure [26, 30]. Analogously to the 2D-EMD approach, 2D-SSA also aims to extract 

spatial information as reflected in the first Eigenvalue components. Based on the SVD, the reconstruction of each spectral band 
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image using its respective main components leads to spatial structural content extraction whilst noise, normally located in the small 

Eigenvalue components, can be removed or suppressed simultaneously. 

B. Algorithm 

When implementing SSA over a 2-D signal, basically the SVD and grouping steps are identical as in the 1-D case, and only the 

embedding and diagonal averaging stages have to be adapted. 

1) Embedding a 2-D Signal 

For an image 
D2

P  with a size yx NN  , its matrix representation is given as follows 
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Similar to the 1-D case, a window needs to be defined for the construction of the trajectory matrix. However, the difference here 

is that in 2D-SSA the window moves over an image rather than a 1-D vector. In other words, a 2D-window is needed in 2D-SSA, 

which is usually represented using the position of its top-left corner  ji,  as given below, where the size of the window is yx LL   

with ],1[ xx NL   and ],1[ yy NL   

 

yx

yxxx

y

y

LL

LjLijLijLi

Ljijiji

Ljijiji

ji

ppp

ppp

ppp

































1,11,1,1

1,11,1,1

1,1,,

,









W .         (11) 

 

In the same way as in the 1-D case, a symmetric and equivalent implementation can also be found in 2D-SSA delimited 

approximately by 2/xN  and 2/yN  for xL  and yL , respectively. Within the same dimensions in xL  and yL , the 2-D window 

can also be defined as 
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To construct the trajectory matrix, the window ji,W  has to be placed in all possible positions over the image 
D2

P . The path to 

follow by the window is raw-scanning from the top-left to the bottom-right of the image, given in relation to its reference point  ji,  

where ]1,1[  xx LNi  and ]1,1[  yy LNj . A total of   11  yyxx LNLN  possible positions of the window 

are located in the image. 

At a given reference point  ji, , the corresponding 2-D window is rearranged into a column vector as 
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And the trajectory matrix 
D2

X  can be derived by 
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The obtained trajectory matrix 
D2

X  has a structure called Hankel-block-Hankel (HbH), which is not exactly the same as but 

related to a basic Hankel matrix. In fact, the HbH matrix 
D2

X  can be represented as 
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where each submatrix rH  is a strict Hankel type defined by 
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Note that an HbH matrix (
D2

X ) is Hankel in block terms, being each one of the blocks ( rH ) Hankel by itself. These 

considerations have to be taken into account especially at the last stage of 2D-SSA algorithm. 

2) Singular Value Decomposition (SVD) and Grouping 

These two central stages are exactly the same as those in original SSA algorithm. However, the respective dimensions need to be 

changed when the algorithm is adapted to 2-D cases. Specifically, we have   112  yyxx

D LNLNK  and 

yx

D LLL 2
. In addition, the problem derived from what grouping is appropriate is discussed in Section IV.C. 

3) Diagonal Averaging 

Similar to the 1-D case, the matrices 
D

m

2

tX  obtained by grouping in 2D-SSA are also not necessarily HbH type. As a result, they 

need be transformed to HbH matrices, and this can be done by means of a two-step hankelization process as given below. 

For the averaging procedure, two sequential hankelizations are needed, firstly applied within each block (16), and then applied 

between blocks (15). Again, an average among the values contributing to the same element in the image is carried out, so now 
D

m

2
Z  

is the 2-D signal projected from group 
D

m

2

tX  
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Note that the original 2-D image in (10) can be represented as 
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Accordingly, this enables to decompose an image into several components extracted 
D

m

2
Z  based on SVD. Each component is 

related to each Eigenvalue in the SVD, and therefore the appropriate grouping of components leads to a reconstruction of the 

original image, where spatial structural content is extracted while noise, usually located in small Eigenvalues, is avoided. 
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C. Example of 2D-SSA Application in HSI 

In HSI, each spectral band of the hypercube forms a 2-D image, where the information contained in the spatial domain provides 

useful clues for data classification. For a randomly selected spectral band, at 667 nm, the original band image and the extracted 

scenes derived from the Eigenvalues content in 2D-SSA are shown in Fig. 2. As can be seen, detailed spatial features can be 

observed in the extracted 2D-SSA components with local structure preserved. On the other hand, noise can be removed by excluding 

components from small Eigenvalues. Therefore, an original band image can be decomposed and then reconstructed by few main 

components. Applying this process to all the spectral bands, the original hypercube can be represented by a combination of the 

2D-SSA components rather than the original band images, where the preserved local structure and removed noise can potentially 

lead to better classification of pixels inside the images. 

 

(a) (b) (c)

(d) (e) (f)  
 

Fig. 2.  Application of 2D-SSA to a scene in HSI. (a) Original scene at 667 nm (b) First  (c) Second (d) Third (e) Fourth individual components and (f) Grouping by 

the rest of components from 5-25th, where Lx=5, Ly=5 (L2D=25). 

 

 

In 2D-SSA, same as in the 1-D case, the effectiveness of the approach is also affected by two key parameters, i.e., the dimension 

of the window in data embedding, and the number of components used in representing the original image. In fact, the total number 

of Eigenvalues (components) available is determined by the dimension of the window implemented in the embedding stage. For 

example, in a case with Lx=5 and Ly=5, L
2D

 equals to 25, which is the total number of components available from the decomposition 

of the original scene that can be used in reconstructing the scene. 

In Fig. 3, examples in reconstructing one band scene of a hypercube using various numbers of components are compared.  With 

more components used, the reconstructed scene becomes more similar to the original one. Obviously, the grouping made from 

1-L
2Dth

 components, where L
2D

=Lx×Ly, gives as a result the same original scene. However, a smaller grouping from 1-10
th

 

components already makes the resulting image unnoticeably different from the original one. 
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(a) (b)

(c) (d)  
 

Fig. 3.  Application of 2D-SSA to a scene in HSI. (a) Original scene at 667 nm (b) First component grouping (c) From first to fifth component grouping (d) From 

first to tenth component grouping , where Lx=5, Ly=5 (L2D=25). 

 

 

One of the main differences of 2D-SSA in relation to original SSA is, from our point of view, the extraction of main trend and 

local structure over the spatial domain, which increases the discrimination ability for data classification. To this end, not only the 

noise removal by discarding the contribution of small Eigenvalues increases the potential of higher classification accuracy, but 

moreover, the spatial structures in an image are taken into account as an improvement to the extracted features. 

Initially, the 2D-SSA method is thought, for simplicity, to compute in the same way all the images along the spectral domain in a 

hypercube, that is, the different stages are implemented for the different spectral scenes using the same parameters value. Further 

research is ongoing to evaluate a different parameters value implementation based on the spectral content of the scene found in a 

hypercube. 

D. Applying 2D-SSA to non-HSI images 

Although 2D-SSA is proposed here for feature extraction in HSI, it can also be applied to non-HSI images for denoising and 

feature extraction. First, a spectral band of the image ‘memorial stadium’ (high resolution of 0.15 meter-pixel) [48] is used for 

denoising test, where the top-left 600x600 portion of the image is shown in Fig. 4 for easy visualization. Salt-and-pepper noise is 

randomly added to 10% of the pixels. Then, the noisy image is treated with the 2D-SSA technique (Lx=Ly=10, selecting from 1
st
 to 

10
th 

components). Simply by comparing the SNR, it is proved that the noisy image treated by 2D-SSA is enhanced (34.3 dB) in 

relation to the original noisy image (21.2 dB). 
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Fig. 4.  One original image (left), its noisy version with salt-and-pepper noise (middle), and 2D-SSA treated image (right) with parameters (Lx=Ly=10, selecting 

from 1st to 10th components). 

 

Second, an example in feature extraction is also tested and shown in Fig. 5. On one hand, we extract the main trend of the image, 

i.e. the 1
st
 component where again we use Lx=Ly=10. As can be seen, 2D-SSA homogenizes different elements in the scene, making 

it more uniform in shape and content. On the other hand, using a different configuration for 2D-SSA (Lx=Ly=10 and the remaining 

9 components for reconstruction), the structural shape delimiting different elements can be extracted with great detail, which also 

proves the capability of 2D-SSA for detecting small targets in an image. 

 

Fig. 5.  One original image (left), main spatial trend extracted by 2D-SSA (middle) with parameters (Lx=Ly=10, 1st component), and detailed structure extracted 

by 2D-SSA (right) with (Lx=Ly=10, 2nd to 10th components). 

 

IV. EXPERIMENTAL SETUP 

Experimental settings are organized in four stages including data description, data conditioning, feature extraction, and data 

classification. All the algorithms are implemented in Matlab environment. Detailed descriptions of the data and relevant algorithms 

for benchmarking are presented below. 

A. Data Description 

Three remote sensing data sets with available ground truth are employed in our experiments to quantitatively evaluate the 

effectiveness of the extracted features in data classification. These data sets are subscenes extracted from their original scenes 

[49-50], collected using different instruments which are well-known in the remote sensing field. 

The first data set is 92AV3C, also known as Indian Pine, collected by using the Airborne Visible/InfraRed Imaging Spectrometer 

(AVIRIS) [51] over an agricultural study site in Northwest Indiana, USA. This data set is widely used in remote sensing 
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applications, which contains 224 contiguous bands with a spectral range from 400 to 2500 nm. As shown in Fig. 6, it has 145×145 

pixels in 220 spectral bands for land usage purpose, after removing 4 invalid bands degraded by severe noise. It contains 16 labeled 

land cover classes, mostly related to agriculture, forest and perennial vegetation. However, for consistency with related research 

[5-7, 26], in total 7 classes were discarded due to the small number of samples available for experiments, resulting in only 9 classes 

used for quantitative assessment. 

The second data set is the Pavia University A (Pavia UA), taken in North Italy using the Reflective Optics System Imaging 

Spectrometer (ROSIS) [52]. The sensor provides in this case 114 bands with a spectral range between 430 to 860 nm. This is a 

subscene made of 150×150 pixels, as shown in Fig. 7, providing a spatial resolution of 1.3 m. In total 8 classes such as meadows, 

asphalt, trees, and others are contained in its ground truth map. 

Finally, the third data set, Salinas C, is also acquired using the AVIRIS spectrometer [51]. As shown in Fig. 8, this data set is a 

subscene taken over the Salinas Valley in California, USA, which has 150×150 pixels in 224 spectral bands, presenting a spatial 

resolution of 3.7 m. The ground truth map contains 9 classes corresponding mainly to broccoli, fallow, and grapes among others. 

 

 
 

Fig. 6.  One band image at the wavelength of 667 nm (left) and the ground truth map for the 92AV3C data set (right). 

 

 

 
 

Fig. 7.  One band image at the wavelength of 521 nm (left) and the ground truth map for the Pavia UA data set (right). 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

16 

 
 

Fig. 8.  One band image at the wavelength of 667 nm (left) and the ground truth map for the Salinas C data set (right). 

 

B. Data Conditioning 

HSI data acquisition is usually affected to some degree by different sources of noise. To this end, the starting hypercubes [49-50] 

are subject of a conditioning process where some data is removed before any analytical tasks. In the spectral domain, depending on 

the corresponding wavelength, some bands can be severely affected by water absorption, noise or other effects. Accordingly, certain 

bands are usually discarded by visual inspection as recommended by others [7, 50], reducing the available number of bands from 

220 to 200, 114 to 103 and 224 to 204 for the 92AV3C, Pavia UA and Salinas C data sets, respectively. 

In relation to the spatial domain of the hypercubes, as already mentioned in the data description, for the well-known 92AV3C data 

set several authors suggest to remove those classes presenting a small number of pixels in the ground truth [5-7, 26], claiming a 

higher statistical significance in the results. Although we achieve similar results using all 16 classes, 92AV3C is evaluated only for 

9 classes in order to guarantee a consistent comparison with others. Pavia UA and Salinas C data sets maintain all ground truth 

classes in their analysis. 

C. Feature Extraction 

As feature extraction can significantly affect the accuracy of data classification, this stage is very important in the signal 

processing chain. In [26], 2D-EMD technique was introduced, where its classification accuracy surpassed all other relevant methods 

in this context, giving an excellent efficacy. However, the main drawback of 2D-EMD is its extremely high computational 

complexity [26]. 

As a result, 2D-EMD [26] is used as main benchmarking approach in our paper, along with the conventional 1D-SSA technique 

[38] from which 2D-SSA is extended. Also the use of original spectral values from the pixels as features (or absence of feature 

extraction method) is taken as a Baseline for performance assessment. The efficacy and efficiency of these approaches are compared 

with our proposed 2D-SSA method. As shown in the next section, 2D-SSA is able to provide similar efficacy as 2D-EMD but 

requiring a much reduced time for implementation. 
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These methods and parameters used are summarized in Table I, where the Baseline case is straight as it requires no parameters, 

while for the 1D-SSA method we use the same configuration implemented for the main results in [38]. For the 2D-EMD 

implementation in Matlab, initially we evaluated the publicly available code in [53]. However, this Matlab implementation in 

practical terms is infeasible as it takes a really amount of time in the code execution, especially for large data sets in HSI. As a result, 

a more suitable version of 2D-EMD code from [54] is used in our study, as it is found that this code is appropriate for an evaluation 

of 2D-EMD and subsequent comparison with the 2D-SSA algorithm. The selected code uses a stop criterion based on the 

normalized mean square error, with a recommended threshold value of τ=0.2, which is experimentally proved to guarantee an 

effective capture of the 2-D IMF signals. Finally, a total of four different combinations made by the first, the first to the second, the 

first to the third, and the first to the fourth IMFs groupings are evaluated as in [26]. 

 

TABLE I 

MAIN EVALUATED IMPLEMENTATIONS FOR FEATURE EXTRACTION 

Method Parameters Values adopted 

Baseline N/A N/A 

1D-SSA [38] 
Window L 5, 10 

EV Grouping (EVG) 1st, 1-2nd 

2D-EMD 

[26] 

Stop threshold τ 0.2 

IMF Grouping (IMFG) 1st, 1-2nd, 1-3rd and 1-4th 

2D-SSA 
Window L2D (Lx×Ly) 

5×5, 10×10, 20×20, 

40×40, and 60×60 

EV Grouping (EVG) 1st, 1-2nd, 1-5th, and 1-10th  

 

 

For the 2D-SSA method, implementation of the algorithm described in Section III is easily carried out also in Matlab 

environment. This method depends on two parameters, the window size L
2D

=Lx×Ly and the EV grouping used for the reconstruction. 

According to Golyandina et al [36], these parameters values must be selected based on the properties of the original data set and the 

purpose of the analysis. 

Normally, the parameters value selection is similar to that in 1-D cases [36, 38, 47], though the extraction of structures in the 

spatial domain needs be considered. In general, for a fixed EV grouping, the implementation with a small window leads to good 

reconstructions of the image, as a larger window may produce too smoothed results and cause a mixing problem [47]. Also, 

symmetry property [41] of the trajectory matrices fixes the available implementation range in [2, Nx/2] and [2, Ny/2] for Lx and Ly, 

respectively, and the selection of values Lx≠Ly derives in a non-symmetric smoothing of the image [46]. With respect to the EV 

grouping, depending on the Eigenvalues selected, the reconstruction of the image discards different components that relate to the 

main trends, oscillations and noise, among others.  

From our point of view, as the parameter selection has to exclude noise whilst retaining the information from spatial structure, 

both aims can be generally achieved by selecting few main Eigenvalue components. As a result, just the few first components: the 
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first, the first to the second, the first to the fifth, and the first to the tenth groupings are selected out of square windows in different 

sizes, including 5×5, 10×10, 20×20, 40×40, and 60×60. 

Finally, to further assess and validate the efficacy of the proposed 2D-SSA approach, additional results are included in Section 

V.D for comparison with other relevant methods. We divide these methods into two groups, the ones maintaining the original 

dimensionality of features, and the methods performing data reduction. Considering the difference in terms of parameter 

configurations, the best results obtained from median filtering, AFD, morphological opening and closing, and EMP are given. 

Classical techniques such as PCA, ICA, and MNF are also included along with a fusion of our spatial-domain 2D-SSA with spectral 

domain 1D-PCA (2D-SSA-PCA) for exploiting spatial-spectral feature extraction in the hypercube. 

D. Data Classification 

Exploiting a margin-based criterion, SVM appears to be very robust to potential problems such as the Hughes phenomenon [8]. 

With better results produced over other classifiers, SVM has been widely used in HSI field [5-7, 26]. In addition, there are several 

available libraries supporting multiple functions of SVM, which makes it easy to implement even in embedded systems [55-56]. 

According to all this, SVM is selected as a classifier. For multi-class classification, LibSVM library [57] is used in our experiments 

for supervised learning, allowing fast and accurate data modeling. 

SVM supports different types of kernel functions including linear, polynomial and Gaussian radial basis function. Each kernel 

offers a proper performance depending on the data to evaluate. From our own experience but also suggested by others [5-7, 26], the 

Gaussian kernel usually performs well in HSI classification. Consequently, Gaussian kernel is used in our experiments, where the 

penalty c and the gamma γ parameters are tuned every time through a grid search procedure. 

Additionally, to further validate the efficacy of our proposed approach, a classical k-nearest neighbor (k-NN) classifier [58], using 

parameter k=3, is implemented for the 92AV3C data set. As k-NN is a weaker classifier than SVM, a potential improvement in 

classification accuracy will show the effectiveness of 2D-SSA features, regardless the classifiers employed. 

In order to provide statistical significance and avoid systematic errors, each experiment is repeated ten times with different 

training and testing subsets. In each of the ten repetitions, which are common for all the methods evaluated, training and testing 

partitions are randomly obtained, with no sample overlap allowed. Through stratified sampling an equal sample rate of 10% was 

used for each class in the training process. Same experiments with a rate of 5% for training are also reported for comparison. 

Results from the testing samples classification are provided by the mean value and standard deviation over the ten repetitions, 

expressed in terms of overall accuracy, although extra evaluations based on average accuracy and class-by-class accuracy are also 

provided for some experiments. In addition, McNemar’s test [59] is used as a complementary measurement of classification 

accuracy performance. This test is based on the standardized normal test statistic, and having the Baseline approach as a reference, 
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the sign of the parameter Z denotes if the method evaluated outperforms the reference (positive Z), expressing proper statistical 

significance at a confidence level of 95% when │Z│> 1.96. Comprehensive results with analysis are presented and evaluated in the 

next section. 

 

V. RESULTS AND EVALUATIONS 

Using the three data sets and the experimental setup discussed in the previous section, comprehensive experiments have been 

carried out for performance evaluation. At this aim, the present section is divided in five parts described as follows. 

First, according to the experimental settings in Table I, results from 2D-SSA method are compared with Baseline reference, 

1D-SSA and 2D-EMD. The comparisons are made on the basis of the overall accuracy classification with McNemar’s test [59], 

where for each experiment the mean value and the standard deviation along ten repetitions are used to show statistical significance. 

In addition, the class-by-class and average accuracies are also shown in some cases providing further assessment.  

Second, the execution time required in 2D-EMD and 2D-SSA for feature extraction under different parameter values is 

confronted to clearly show the advantge of our proposal with respect to 2D-EMD. 

Then, the effect of parameter selection in the 2D-SSA method is evaluated to address the appropriate parameter tuning in the 

implementation and also to justify the general behavior of the proposed 2D-SSA approach for feature extraction.  

Afterwards, the 2D-SSA method is further compared to several other state-of-the-art techniques, including its extended version 

2D-SSA-PCA. These experiments are implemented under the same experimental settings used previously, where the best 

performance for each method is reported for comparison. 

Finally, the proposed 2D-SSA method working with a relative weak classifier (k-NN) rather than SVM is further evaluated. This 

is to prove the added value of our proposal in feature extraction terms, as it can effectively work with different classifiers. Relevant 

results and analysis are reported in detail below. 

A. Classification Accuracy Comparison 

For the three data sets 92AV3C, Pavia UA and Salinas C, results under various experimental conditions with different parameters 

values are given in Table II, Table III, and Table IV, respectively, including McNemar’s test of significance. 

With 2D-SSA, consistently significant improvements are achieved for all the three data sets compared to the Baseline approach 

and the 1D-SSA method, due to the spatial structures preserved and noise removed. In the first data set (Table II), the classification 

accuracy has increased from 81.3% and 85.6% to over 95.7% and 97.6%, under a training ratio of 5% and 10%, respectively. In the 

other two data sets, the best accuracy achieved by 2D-SSA is near 100%. In comparison to 2D-EMD, 2D-SSA yields comparable or 

slightly better results, achieving impressive results in relation to the Baseline case and the 1D-SSA approach. 
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It is worth noting that the 2D-EMD method is highly dependent on the number of IMFs used for the reconstruction of signal. 

Indeed, using the first IMF for reconstruction usually leads to deterioration in the accuracy compared to the Baseline, whilst 

2D-SSA always shows a much more reliable and consistent behavior under different implementation conditions. 

 

TABLE II 

MEAN OVERALL ACCURACY (%) OVER TEN REPETITIONS WITH STANDARD DEVIATION AND MEAN MCNEMAR’S TEST [Z] FOR THE 92AV3C DATA SET BY 

DIFFERENT METHODS AND PARAMETERS FOR FEATURE EXTRACTION 

Parameters 
Overall Accuracy (%) [Z] 

Training=5% Training=10% 

N/A 
Baseline 

81.26 ± 0.94 [-00.0] 85.59 ± 0.63 [-00.0] 

L EVG 1D-SSA 

5 1st  85.43 ± 0.95 [+11.0] 88.78 ± 0.52 [+9.24] 

5 1-2nd  83.42 ± 1.14 [+6.37] 88.02 ± 0.33 [+7.47] 

10 1st  85.32 ± 0.74 [+10.9] 88.68 ± 0.69 [+8.87] 

10 1-2nd  85.50 ± 0.93 [+11.4] 88.49 ± 0.57 [+8.57] 

IMFG 2D-EMD 

1st 43.41 ± 1.20 [-50.4] 55.12 ± 1.10 [-42.3] 

1-2nd 89.80 ± 1.42 [+17.6] 95.62 ± 0.51 [+23.8] 

1-3rd 95.28 ± 0.45 [+31.7] 97.45 ± 0.34 [+29.5] 

1-4th 94.02 ± 0.60 [+29.4] 96.11 ± 0.35 [+26.8] 

L2D EVG 2D-SSA 

5×5 1st 95.00 ± 1.07 [+30.3] 97.50 ± 0.58 [+29.1] 

5×5 1-2nd 93.23 ± 0.99 [+26.9] 96.03 ± 0.36 [+26.0] 

5×5 1-5th 89.07 ± 1.03 [+18.7] 92.99 ± 0.40 [+19.2] 

5×5 1-10th 84.85 ± 1.15 [+9.51] 89.49 ± 0.74 [+10.9] 

10×10 1st 95.71 ± 0.83 [+31.4] 97.59 ± 0.63 [+28.7] 

10×10 1-2nd 94.96 ± 0.80 [+29.9] 97.26 ± 0.55 [+28.3] 

10×10 1-5th 93.04 ± 0.93 [+26.0] 96.28 ± 0.53 [+26.3] 

10×10 1-10th 91.42 ± 0.92 [+23.2] 94.90 ± 0.46 [+23.3] 

20×20 1st 94.47 ± 0.67 [+27.9] 97.23 ± 0.61 [+27.5] 

20×20 1-2nd 94.43 ± 0.91 [+27.9] 97.36 ± 0.56 [+27.9] 

20×20 1-5th 94.90 ± 0.66 [+29.5] 97.43 ± 0.51 [+28.5] 

20×20 1-10th 93.70 ± 0.75 [+27.3] 96.91 ± 0.53 [+27.4] 

40×40 1st 94.43 ± 0.73 [+28.0] 97.14 ± 0.67 [+27.3] 

40×40 1-2nd 93.35 ± 0.94 [+25.3] 96.58 ± 0.45 [+25.8] 

40×40 1-5th 93.47 ± 1.36 [+25.8] 97.15 ± 0.56 [+27.4] 

40×40 1-10th 93.68 ± 0.82 [+26.6] 97.04 ± 0.60 [+27.1] 

60×60 1st 94.05 ± 0.77 [+26.5] 97.29 ± 0.47 [+27.4] 

60×60 1-2nd 92.94 ± 0.69 [+24.2] 96.55 ± 0.56 [+25.6] 

60×60 1-5th 94.13 ± 0.92 [+27.2] 97.29 ± 0.50 [+27.6] 

60×60 1-10th 93.02 ± 1.03 [+25.0] 96.72 ± 0.80 [+26.2] 

 
 

TABLE III 

MEAN OVERALL ACCURACY (%) OVER TEN REPETITIONS WITH STANDARD DEVIATION AND MEAN MCNEMAR’S TEST [Z] FOR THE PAVIA UA DATA SET BY 

DIFFERENT METHODS AND PARAMETERS FOR FEATURE EXTRACTION 

Parameters 
Overall Accuracy (%) [Z] 

Training=5% Training=10% 

N/A 
Baseline 

95.83 ± 0.79 [-00.0] 96.67 ± 0.32 [-00.0] 

L EVG 1D-SSA 

5 1st  95.37 ± 0.86 [-2.44] 96.50 ± 0.31 [-0.88] 

5 1-2nd  95.53 ± 0.72 [-1.88] 96.60 ± 0.36 [-0.69] 

10 1st  95.21 ± 0.55 [-3.12] 96.15 ± 0.35 [-2.47] 

10 1-2nd  95.00 ± 0.84 [-4.14] 96.30 ± 0.52 [-2.12] 
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IMFG 2D-EMD 

1st 69.50 ± 1.75 [-38.1] 77.72 ± 1.63 [-30.8] 

1-2nd 94.36 ± 0.73 [-4.16] 97.52 ± 0.34 [+2.92] 

1-3rd 98.92 ± 0.34 [+11.6] 99.67 ± 0.11 [+12.5] 

1-4th 99.53 ± 0.31 [+14.6] 99.80 ± 0.08 [+13.5] 

L2D EVG 2D-SSA 

5×5 1st 97.97 ± 0.38 [+7.31] 99.18 ± 0.28 [+9.92] 

5×5 1-2nd 98.21 ± 0.35 [+8.55] 98.99 ± 0.31 [+9.44] 

5×5 1-5th 97.57 ± 0.59 [+6.63] 98.90 ± 0.26 [+9.58] 

5×5 1-10th 97.21 ± 0.66 [+5.85] 98.18 ± 0.34 [+6.84] 

10×10 1st 97.77 ± 0.45 [+6.23] 98.92 ± 0.28 [+8.54] 

10×10 1-2nd 96.96 ± 0.64 [+3.56] 98.36 ± 0.39 [+6.20] 

10×10 1-5th 97.38 ± 0.64 [+5.19] 98.89 ± 0.44 [+8.76] 

10×10 1-10th 97.94 ± 0.44 [+7.59] 98.86 ± 0.29 [+9.02] 

20×20 1st 96.03 ± 0.75 [+0.56] 97.47 ± 0.47 [+2.64] 

20×20 1-2nd 97.07 ± 0.65 [+3.78] 98.43 ± 0.37 [+6.24] 

20×20 1-5th 97.20 ± 0.23 [+4.27] 98.51 ± 0.39 [+6.79] 

20×20 1-10th 96.67 ± 1.27 [+2.86] 98.76 ± 0.30 [+8.03] 

40×40 1st 95.91 ± 0.89 [+0.24] 97.64 ± 0.35 [+3.16] 

40×40 1-2nd 96.38 ± 1.04 [+1.68] 98.32 ± 0.53 [+5.87] 

40×40 1-5th 96.99 ± 0.40 [+3.54] 98.06 ± 0.42 [+4.92] 

40×40 1-10th 96.42 ± 0.65 [+1.74] 97.80 ± 0.45 [+3.94] 

60×60 1st 96.69 ± 0.42 [+2.46] 97.86 ± 0.45 [+4.02] 

60×60 1-2nd 96.38 ± 0.44 [+1.60] 98.23 ± 0.33 [+5.48] 

60×60 1-5th 96.35 ± 0.89 [+1.64] 97.98 ± 0.35 [+4.55] 

60×60 1-10th 96.78 ± 0.70 [+2.96] 98.08 ± 0.55 [+5.09] 

 
 

TABLE IV 

MEAN OVERALL ACCURACY (%) OVER TEN REPETITIONS WITH STANDARD DEVIATION AND MEAN MCNEMAR’S TEST [Z] FOR THE SALINAS C DATA SET BY 

DIFFERENT METHODS AND PARAMETERS FOR FEATURE EXTRACTION 

Parameters 
Overall Accuracy (%) [Z] 

Training=5% Training=10% 

N/A 
Baseline 

98.30 ± 0.20 [-00.0] 98.61 ± 0.12 [-00.0] 

L EVG 1D-SSA 

5 1st  98.46 ± 0.22 [+2.47] 98.76 ± 0.12 [+2.03] 

5 1-2nd  98.52 ± 0.15 [+3.41] 98.69 ± 0.09 [+1.21] 

10 1st  98.39 ± 0.28 [+1.66] 98.68 ± 0.09 [+0.78] 

10 1-2nd  98.42 ± 0.22 [+1.33] 98.76 ± 0.14 [+2.00] 

IMFG 2D-EMD 

1st 68.58 ± 0.85 [-65.3] 76.42 ± 0.64 [-54.3] 

1-2nd 94.56 ± 0.55 [-18.5] 97.56 ± 0.27 [-6.92] 

1-3rd 99.54 ± 0.17 [+12.2] 99.78 ± 0.05 [+12.2] 

1-4th 99.71 ± 0.14 [+13.8] 99.83 ± 0.04 [+12.7] 

L2D EVG 2D-SSA 

5×5 1st 99.51 ± 0.17 [+10.6] 99.77 ± 0.06 [+11.1] 

5×5 1-2nd 99.32 ± 0.13 [+9.45] 99.68 ± 0.07 [+10.3] 

5×5 1-5th 98.94 ± 0.19 [+6.33] 99.31 ± 0.18 [+7.35] 

5×5 1-10th 98.63 ± 0.12 [+4.01] 98.93 ± 0.18 [+3.64] 

10×10 1st 99.58 ± 0.26 [+11.2] 99.74 ± 0.12 [+10.8] 

10×10 1-2nd 99.34 ± 0.23 [+8.79] 99.69 ± 0.13 [+10.2] 

10×10 1-5th 99.44 ± 0.19 [+10.3] 99.77 ± 0.06 [+11.4] 

10×10 1-10th 99.06 ± 0.17 [+7.35] 99.47 ± 0.23 [+8.85] 

20×20 1st 99.62 ± 0.12 [+11.3] 99.81 ± 0.12 [+11.3] 

20×20 1-2nd 99.34 ± 0.15 [+8.55] 99.77 ± 0.12 [+11.0] 

20×20 1-5th 99.50 ± 0.24 [+10.5] 99.79 ± 0.08 [+11.3] 

20×20 1-10th 99.35 ± 0.13 [+9.17] 99.75 ± 0.05 [+10.9] 

40×40 1st 99.67 ± 0.17 [+12.0] 99.85 ± 0.08 [+12.1] 

40×40 1-2nd 99.81 ± 0.09 [+13.6] 99.93 ± 0.05 [+13.1] 
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40×40 1-5th 99.46 ± 0.24 [+9.88] 99.81 ± 0.08 [+11.6] 

40×40 1-10th 99.56 ± 0.13 [+11.0] 99.77 ± 0.09 [+11.1] 

60×60 1st 99.63 ± 0.15 [+11.9] 99.90 ± 0.11 [+12.8] 

60×60 1-2nd 99.75 ± 0.15 [+13.0] 99.95 ± 0.05 [+13.5] 

60×60 1-5th 99.65 ± 0.20 [+12.1] 99.92 ± 0.05 [+13.0] 

60×60 1-10th 99.58 ± 0.17 [+11.1] 99.77 ± 0.07 [+11.1] 

 

 
TABLE V 

MEAN OVERALL, AVERAGE AND CLASS-BY-CLASS ACCURACY VALUES (%) OVER TEN REPETITIONS FOR THE 92AV3C DATA SET WITH BASELINE, 1D-SSA (L=5, 

EVG=1ST), 2D-EMD (IMFG=1-3RD), AND 2D-SSA (L=10, EVG=1ST) METHODS USING TRAINING=10%, INCLUDING NUMBER OF SAMPLES (NOS)  

 NoS Baseline 1D-SSA 2D-EMD 2D-SSA 

Class 1  1434 80.71 84.81 95.53 96.35 

Class 2  834 72.03 80.99 95.96 97.72 

Class 3  497 89.98 92.73 96.38 96.76 

Class 4  747 97.23 97.77 99.36 97.92 

Class 5  489 99.00 99.11 99.45 99.18 

Class 6  968 76.83 83.54 94.73 95.74 

Class 7  2468 83.99 86.11 98.48 98.27 

Class 8  614 80.45 84.91 95.89 95.94 

Class 9  1294 98.27 98.41 99.90 99.27 

Average Accuracy 86.50 89.82 97.30 97.46 

Overall Accuracy 85.59 88.78 97.45 97.59 

 

 
TABLE VI 

MEAN OVERALL, AVERAGE AND CLASS-BY-CLASS ACCURACY VALUES (%) OVER TEN REPETITIONS FOR THE PAVIA UA DATA SET WITH BASELINE, 1D-SSA (L=5, 

EVG=1-2ND), 2D-EMD (IMFG=1-4TH), AND 2D-SSA (L=5, EVG=1ST) METHODS USING TRAINING=10% AND INCLUDING NUMBER OF SAMPLES (NOS) 

 NoS Baseline 1D-SSA 2D-EMD 2D-SSA 

Class 1  310 81.94 81.72 99.86 96.70 

Class 2  957 97.21 97.07 100 100 

Class 3  154 96.23 96.30 99.28 94.49 

Class 4  698 99.67 99.71 99.62 100 

Class 5  2559 97.57 97.42 99.89 99.79 

Class 6  860 95.27 95.44 99.85 98.46 

Class 7  854 96.63 96.51 99.48 98.54 

Class 8  293 100 100 99.77 98.17 

Average Accuracy 95.56 95.52 99.72 98.27 

Overall Accuracy 96.67 96.60 99.80 99.18 

 
 

TABLE VII 

MEAN OVERALL, AVERAGE AND CLASS-BY-CLASS ACCURACY VALUES (%) OVER TEN REPETITIONS FOR THE SALINAS C DATA SET WITH BASELINE, 1D-SSA (L=5, 

EVG=1ST), 2D-EMD (IMFG=1-4TH), AND 2D-SSA (L=60, EVG=1-2ND) METHODS, USING TRAINING=10% AND INCLUDING NUMBER OF SAMPLES (NOS) 

 NoS Baseline 1D-SSA 2D-EMD 2D-SSA 

Class 1  240 95.32 95.56 100 100 

Class 2  3400 99.93 99.92 99.96 100 

Class 3  1957 99.71 99.80 99.88 99.96 

Class 4  599 99.13 98.42 99.09 99.70 

Class 5  1155 97.77 98.40 98.78 99.95 

Class 6  1414 99.99 99.99 99.98 100 

Class 7  848 99.62 99.65 99.93 99.99 

Class 8  5890 99.23 99.35 99.99 99.98 

Class 9  159 25.52 32.59 98.81 97.97 

Average Accuracy 90.69 91.52 99.60 99.73 

Overall Accuracy 98.61 98.76 99.83 99.95 
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Not only the overall accuracy but also complementary class-by-class and average accuracies are employed to assess the 

classification results, as shown in Table V-VII. For the three data sets, the best results achieved in each method under a training rate 

of 10% are compared. As can be seen, similar to the 2D-EMD case, the increment in classification accuracy for 2D-SSA is generally 

achieved in every labeled class, independently from the corresponding number of samples. This has clearly proved that 2D-SSA 

method can achieve similar (or even better) performance as 2D-EMD in terms of classification accuracy. 

B. Running Time Comparison between 2D-EMD and 2D-SSA 

Although the results from 2D-EMD are similar to those from 2D-SSA, the execution times required for feature extraction, as 

compared in Table VIII, are much different. For 2D-EMD, feature extraction using the parameters with good classification accuracy 

needs 936, 688 and even 1506 seconds for the 92AV3C, Pavia UA, and Salinas C data sets, respectively. 2D-SSA, for similar 

results, can reduce massively this timing to only few seconds, one and even two orders of magnitude less. The reason behind is that 

2D-SSA has a straight implementation based on the well-known SVD (or equivalent EVD), which avoids empirical iterations as 

used in the 2D-EMD implementation. As a result, 2D-SSA allows faster data processing and makes the proposed approach more 

suitable for real-time applications.   

TABLE VIII 

APPROXIMATED EXECUTION TIME REQUIRED FOR 2D-EMD AND 2D-SSA FEATURE EXTRACTION INDICATING THE BEST CASE (*) IN TERMS OF MEAN OVERALL 

ACCURACY CLASSIFICATION 

Method Parameters 
Time (s) 

92AV3C Pavia UA Salinas C 

2D-EMD IMFG 

1st 322 196 394 

1-2nd 635 365 765 

1-3rd * 936 529 1148 

1-4th 1324 * 688 * 1506 

2D-SSA L2D 

5×5 20 * 11 21 

10×10 * 34 19 36 

20×20 81 42 84 

40×40 262 146 * 290 

60×60 535 308 * 590 

 

C. Evaluation on 2D-SSA Parameters Selection 

Though it is clear that 2D-SSA is useful in improving the classification accuracy by effective feature extraction in the spatial 

domain whilst suppressing the effect of noise, its performance is parameter dependent. As stated in Golyandina et al [36], the 

properties of the data set affect the results and behavior and this explains why the parameters need to be properly tuned. 

In our group of experiments, the window size varies from 5×5, 10×10, 20×20, 40×40 to 60×60 and the number of Eigenvalue 

components used for grouping changes among the first, the first two, the first five, and the first ten. Most combinations of window 

size L
2D

=Lx×Ly and EV groupings generates great performance in classification accuracy terms, all of them clearly improving the 

efficacy achieved by the Baseline and 1D-SSA methods. Though many different values are used for the parameters, similar results 

are always obtained to show the reliability and constant behavior of 2D-SSA. According to the results shown in Tables II-IV, in 
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general only combinations of small L
2D

 with large EVG may lead to less increment in the accuracy, although always above the 

Baseline reference. This is because as long as more of the extracted components are included in the grouping, the reconstruction is 

closer to the original image, being finally equivalent to it if all components are selected. Therefore, the main point is to avoid the 

combination of large EVG covering much of the Eigenvalue range offered by a given window L
2D

. 

Regarding the performance in execution time terms, the use of large windows introduces more complexity in the 2D-SSA 

implementation, due to the matrix S in the SVD, sized L
2D

×L
2D

, that is much larger and leads to increased execution times. As can be 

seen, time needed in the 2D-SSA feature extraction increases exponentially along with the window size. Nevertheless, slowest time 

in these cases is still about half the time needed by 2D-EMD feature extraction, for respective data sets. This fact makes definitely 

preferable the use of small windows, which confirms the general recommendation of going for small windows and small EVG 

selection in the implementation of 2D-SSA, at least when SVM is used as the classifier. 

D. Comparison with other state-of-the-art techniques 

To further validate the efficacy of the proposed 2D-SSA approach, several other state-of-the-art approaches, divided in two 

groups, are used for performance assessment. In the first group of approaches, the dimension of the feature remains the same, where 

2D-SSA is compared with median filtering, AFD, morphological opening and closing as well as 1D-SSA, 2D-EMD and the 

Baseline. In the second group, dimension reduction is comprised after feature extraction. These include classical approaches such as 

PCA, ICA and MNF as well as EMP and 2D-SSA-PCA. Relevant results are reported in Tables IX-XI for detailed comparison. 

Actually, the excellent performance from 2D-SSA-PCA has demonstrated the great potential to combine 2D-SSA with other 

techniques in the process flow of HSI for future investigations. 

In Tables IX-XI, for each method its best result achieved from several different parameter configurations are given for 

comparison. For the Baseline, 1D-SSA [38], 2D-EMD [26] and 2D-SSA, the complete configurations and results can also be found 

in Section V. The size of the median filter varies from 3x3, 5x5, 7x7, 9x9 to 11x11 [25]. For the AFD method, we implement it with 

different number of bins (from 2 to 6), where the corresponding sizes are 1x1, 3x3, 5x5, 7x7, 9x9, and 11x11 [25]. The 

morphological openings and closings use a disk as a structural element, with a radio size of 2, 4, 6, 8, and 10 [22-24]. For the 

classical PCA, ICA and MNF, the number of resulting features within 5 to 50 is tested [20]. For the EMP approach we use 1-3 

components with openings/closings and radius increments as suggested in [22-24]. Finally, for 2D-SSA-PCA, same configurations 

for 2D-SSA as in Section V.A are used and followed by a spectral-domain PCA to reduce features to 5, 10, 15 and 20 components. 

With such different configurations, we ensure a proper performance of every technique, making the comparison significant. 

For the 92AV3C data set (Table IX), 2D-SSA method outperforms all the rest, including not only the 2D-EMD but also the AFD 

and EMP. Moreover, the extended 2D-SSA-PCA leads to remarkable further improvement, from 95.71% to 97.61% and from 
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97.59% to 99.01%, which shows the potential of exploiting both spatial and spectral domains. In the Pavia UA case (Table X), 

although 2D-SSA yields slightly worse results than 2D-EMD, AFD and EMP, its extended version, 2D-SSA-PCA still generates the 

best results in comparison with all others. However, the number of features required by the 2D-SSA-PCA (20) is slightly smaller 

than the ones required in EMP (34). Finally, for the Salinas C data set (Table XI), the best results are achieved again by both 

2D-SSA and 2D-SSA-PCA, very close to 100% of accuracy.  

 

TABLE IX 

MEAN OVERALL ACCURACY (%) OVER TEN REPETITIONS WITH STANDARD DEVIATION AND MEAN MCNEMAR’S TEST [Z] FOR THE 92AV3C DATA SET AND 

SEVERAL FEATURE EXTRACTION METHODS (BEST CASES) INCLUDING DATA REDUCTION 

Methods 
Overall Accuracy (%) [Z] 

Training=5% Training=10% 

ORIGINAL DIMENSION OF FEATURES (200) 

Baseline 81.26 ± 0.94 [-00.0] 85.59 ± 0.63 [-00.0] 

1D-SSA [38] 85.50 ± 0.93 [+11.4] 88.78 ± 0.52 [+9.24] 

2D-EMD [26] 95.28 ± 0.45 [+31.7] 97.45 ± 0.34 [+29.5] 

2D-SSA 95.71 ± 0.83 [+31.4] 97.59 ± 0.63 [+28.7] 

Median Filter 92.88 ± 0.29 [+25.4] 95.24 ± 0.46 [+23.4] 

AFD [25] 95.11 ± 0.72 [+30.9] 96.66 ± 0.47 [+27.2] 

M. Opening 94.07 ± 0.75 [+28.1] 96.40 ± 0.32 [+25.9] 

M. Closing 92.51 ± 0.87 [+23.9] 95.41 ± 0.65 [+22.9] 

DATA REDUCTION (dimension of features) 

PCA 80.57 ± 0.85 [-1.59] (20) 84.19 ± 0.95 [-3.35] (20) 

ICA 80.07 ± 1.21 [-2.69] (20) 83.72 ± 0.87 [-4.45] (20) 

MNF 81.73 ± 1.04 [+1.13] (40) 85.94 ± 0.76 [+0.90] (10) 

EMP [22-24] 94.83 ± 0.78 [+29.3] (34) 97.28 ± 0.34 [+28.0] (34) 

2D-SSA-PCA 97.61 ± 0.69 [+35.5] (15) 99.01 ± 0.10 [+32.3] (20) 

 

 

TABLE X 

MEAN OVERALL ACCURACY (%) OVER TEN REPETITIONS WITH STANDARD DEVIATION AND MEAN MCNEMAR’S TEST [Z] FOR THE PAVIA UA DATA SET AND 

SEVERAL FEATURE EXTRACTION METHODS (BEST CASES) INCLUDING DATA REDUCTION 

Methods 
Overall Accuracy (%) [Z] 

Training=5% Training=10% 

ORIGINAL DIMENSION OF FEATURES (103) 

Baseline 95.83 ± 0.79 [-00.0] 96.67 ± 0.32 [-00.0] 

1D-SSA [38] 95.53 ± 0.72 [-1.88] 96.60 ± 0.36 [-0.69] 

2D-EMD [26] 99.53 ± 0.31 [+14.6] 99.80 ± 0.08 [+13.5] 

2D-SSA 98.21 ± 0.35 [+8.55] 99.18 ± 0.28 [+9.92] 

Median Filter 98.77 ± 0.20 [+11.4] 99.25 ± 0.17 [+10.5] 

AFD [25] 99.32 ± 0.28 [+13.0] 99.61 ± 0.23 [+12.2] 

M. Opening 97.57 ± 0.35 [+6.72] 98.47 ± 0.31 [+6.97] 

M. Closing 97.19 ± 0.45 [+5.11] 97.93 ± 0.35 [+5.08] 

DATA REDUCTION (dimension of features) 

PCA 94.29 ± 0.68 [-4.74] (15) 95.44 ± 0.34 [-4.46] (15) 

ICA 94.59 ± 0.64 [-3.96] (15) 95.48 ± 0.41 [-4.30] (15) 

MNF 94.54 ± 0.65 [-5.31] (15) 95.59 ± 0.32 [-4.72] (20) 

EMP [22-24] 99.56 ± 0.68 [+14.1] (34) 99.88 ± 0.07 [+13.4] (34) 

2D-SSA-PCA 99.58 ± 0.14 [+14.1] (20) 99.85 ± 0.07 [+13.4] (20) 
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TABLE XI 

MEAN OVERALL ACCURACY (%) OVER TEN REPETITIONS WITH STANDARD DEVIATION AND MEAN MCNEMAR’S TEST [Z] FOR THE SALINAS C DATA SET AND 

SEVERAL FEATURE EXTRACTION METHODS (BEST CASES) INCLUDING DATA REDUCTION 

Methods 
Overall Accuracy (%) [Z] 

Training=5% Training=10% 

ORIGINAL DIMENSION OF FEATURES (204) 

Baseline 98.30 ± 0.20 [-00.0] 98.61 ± 0.12 [-00.0] 

1D-SSA [38] 98.52 ± 0.15 [+3.41] 98.76 ± 0.12 [+2.03] 

2D-EMD [26] 99.71 ± 0.14 [+13.8] 99.83 ± 0.04 [+12.7] 

2D-SSA 99.81 ± 0.09 [+13.6] 99.95 ± 0.05 [+13.5] 

Median Filter 99.57 ± 0.09 [+11.8] 99.76 ± 0.04 [+11.4] 

AFD [25] 99.70 ± 0.08 [+12.8] 99.79 ± 0.06 [+11.7] 

M. Opening 99.50 ± 0.11 [+10.8] 99.74 ± 0.12 [+11.1] 

M. Closing 99.24 ± 0.15 [+9.42] 99.47 ± 0.10 [+9.04] 

DATA REDUCTION (dimension of features) 

PCA 98.60 ± 0.16 [+3.81] (25) 98.82 ± 0.09 [+2.37] (25) 

ICA 98.57 ± 0.18 [+3.41] (25) 98.81 ± 0.07 [+2.38] (25) 

MNF 98.08 ± 0.29 [-2.67] (20) 98.40 ± 0.08 [-2.89] (45) 

EMP [22-24] 99.49 ± 0.16 [+10.5] (19) 99.72 ± 0.10 [+10.8] (19) 

2D-SSA-PCA 99.83 ± 0.16 [+14.0] (20) 99.92 ± 0.06 [+12.9] (10) 

 

 

As seen in Tables IX-XI, spectral domain feature extraction methods, including 1D-SSA, PCA, ICA, MNF, present a limited 

performance in comparison with those exploiting the spatial domain information. Conventional spatial domain methods, such as 

median filter and morphological operators, usually have worse results than AFD and EMP techniques. However, 2D-SSA and 

2D-EMD produce the best results in most cases. In addition, 2D-SSA-PCA leads to further classification accuracy with less number 

of features. This on one hand has validated the efficacy of the proposed 2D-SSA approach in HSI feature extraction. On the other 

hand, the combination with PCA for spatial-spectral feature extraction has been proved to be more effective in this context for 

successful feature extraction and dimension reduction in HSI. 

E. Evaluation under a Weak Classifier 

Although we have utilized SVM as a classifier in our experiments, the features extracted from the proposed 2D-SSA approach 

can be also combined with other classifiers. Due to the enhanced discrimination ability from the extracted features, improved 

classification accuracy is still expected. To this end, a relative weak classifier is adopted, which can verify the efficacy of the 

extracted features as hidden in the results when a more powerful classifier, such as SVM, is used.  

In this group of experiments, a k-NN classifier (k=3) is employed, again using three main approaches for benchmarking, including 

the Baseline, 1D-SSA, and 2D-EMD techniques. For the 92AV3C dataset, the classification results under the same parameter 

settings as those in Table II are given in Table XII. Not surprisingly, the results from k-NN are much inferior to those from SVM, 

which simply proves the strong capacity of SVM in data modeling. However, it is worth noting that with the k-NN as classifier the 

improvement in terms of classification accuracy from 2D-EMD to 2D-SSA is much enhanced. In Table II, the improvement is only 
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0.5-0.1%, yet in Table XII, this becomes 1-1.4%. Considering the limited generalization capacity of the k-NN classifier, such 

increased improvement can be only attributed to the enhanced discrimination ability of the extracted features. In other words, using 

a relative weak classifier has highlighted the effectiveness of the features extracted from our proposed 2D-SSA approach. 

 

TABLE XII 

MEAN OVERALL ACCURACY (%) OVER TEN REPETITIONS WITH STANDARD DEVIATION AND MEAN MCNEMAR’S TEST [Z] FOR THE 92AV3C DATA SET BY 

DIFFERENT METHODS AND PARAMETERS USING KNN AS CLASSIFIER 

Parameters 
Overall Accuracy (%) [Z] 

Training=5% Training=10% 

N/A 
Baseline 

71.95 ± 1.02 [-0.00] 75.97 ± 0.59 [-0.00] 

L EVG 1D-SSA 

5 1st  74.84 ± 0.88 [+8.28] 78.74 ± 0.59 [+7.69] 

5 1-2nd  73.26 ± 1.20 [+4.11] 77.23 ± 0.38 [+3.77] 

10 1st  74.66 ± 0.95 [+7.56] 78.32 ± 0.57 [+6.35] 

10 1-2nd  74.66 ± 0.96 [+7.90] 78.62 ± 0.59 [+7.47] 

IMFG 2D-EMD 

1st 32.32 ± 1.16 [-51.4] 37.02 ± 1.05 [-49.5] 

1-2nd 63.66 ± 1.80 [-13.2] 76.29 ± 0.76 [+0.57] 

1-3rd 85.62 ± 0.90 [+25.9] 91.62 ± 0.44 [+31.0] 

1-4th 88.60 ± 0.69 [+33.2] 92.12 ± 0.46 [+33.0] 

L2D EVG 2D-SSA 

5×5 1st 78.03 ± 1.15 [+11.5] 83.80 ± 0.53 [+15.2] 

5×5 1-2nd 77.46 ± 1.20 [+11.0] 82.74 ± 0.50 [+13.6] 

5×5 1-5th 76.21 ± 0.78 [+9.36] 81.31 ± 0.58 [+11.6] 

5×5 1-10th 73.83 ± 1.18 [+4.74] 78.63 ± 0.47 [+6.67] 

10×10 1st 77.94 ± 1.00 [+10.7] 84.98 ± 0.56 [+16.6] 

10×10 1-2nd 76.44 ± 1.15 [+8.26] 83.27 ± 0.55 [+13.7] 

10×10 1-5th 76.37 ± 1.15 [+8.68] 81.58 ± 0.65 [+11.2] 

10×10 1-10th 75.93 ± 1.29 [+8.23] 81.16 ± 0.73 [+10.7] 

20×20 1st 84.46 ± 0.74 [+21.3] 90.95 ± 0.55 [+26.8] 

20×20 1-2nd 79.50 ± 1.37 [+13.2] 86.14 ± 0.36 [+18.4] 

20×20 1-5th 73.97 ± 1.40 [+3.62] 81.38 ± 0.86 [+9.95] 

20×20 1-10th 73.89 ± 1.14 [+3.60] 79.98 ± 0.92 [+7.65] 

40×40 1st 87.36 ± 1.31 [+26.3] 92.51 ± 0.74 [+29.9] 

40×40 1-2nd 88.97 ± 0.44 [+29.4] 93.14 ± 0.82 [+31.4] 

40×40 1-5th 81.45 ± 1.26 [+16.4] 88.48 ± 0.74 [+22.8] 

40×40 1-10th 72.64 ± 0.74 [+1.21] 79.52 ± 0.64 [+6.45] 

60×60 1st 89.57 ± 0.91 [+30.2] 93.58 ± 0.80 [+31.9] 

60×60 1-2nd 88.80 ± 0.86 [+28.9] 92.61 ± 0.86 [+30.1] 

60×60 1-5th 88.11 ± 0.47 [+27.8] 93.01 ± 0.71 [+31.2] 

60×60 1-10th 74.83 ± 0.80 [+4.89] 82.91 ± 0.68 [+12.4] 

 

 

VI. CONCLUSIONS 

Feature extraction, as an essential stage in the signal processing chain, is vital for providing appropriate features to the classifier 

for data matching, classification and recognition. Through the years, a number of techniques have been proposed for this purpose. 

The 2D-EMD approach introduced recently outperforms many relevant techniques. However, the execution of 2D-EMD is really 

time-consuming. In this paper, we present a novel 2D-SSA approach as a more efficient alternative to 2D-EMD. 

SSA is a recent technique with interesting possibilities in many applications. Based on the well-known SVD, it is able to extract 
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trends, oscillatory components or noise, among others, from an original 1-D signal. Moreover, the extension of the SSA algorithm to 

the 2-D case makes possible the processing of images, being really useful for extracting spatial information from original data scenes 

allowing better discrimination ability. This has been clearly shown when a relative weak classifier, k-NN is used for data 

classification. 

In HSI remote sensing, the introduction of 2D-SSA applied to every spectral band or 2-D image in the hypercube, in a similar way 

by which 2D-EMD was introduced, has been proved highly effective and leads to similar impressive results of about 99-100% while 

the consumption time in its execution is dramatically reduced, one and even two orders of magnitude less. Therefore, feature 

extraction by 2D-SSA instead of 2D-EMD allows the achievement of similar accuracies but only requiring few seconds for 

extracting the features, which even allows the potential usage in embedded and real-time applications.  Moreover, 2D-SSA 

approach using the first component for reconstruction already provides a good performance, while in the 2D-EMD case the first 

component usually leads to degraded results, requiring further and undetermined iterations.  

In addition, the combination of 2D-SSA with PCA has demonstrated great potential in spatial-spectral feature extraction in HSI, 

as it generates the best results over several state-of-the-art techniques yet only needs a small number of features. Further and future 

investigations will be explored, where the components from some recent approaches [60-63] can be combined with 2D-SSA for 

more effective spectral-spatial feature extraction and dimension reduction in HSI. Moreover, fast implementation of 2D-SSA will 

also be explored as we did for 1D-SSA [64]. 
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