
Novel Wire Density Driven Full-Chip Routing for

CMP Variation Control

Huang-Yu Chen†, Szu-Jui Chou†, Sheng-Lung Wang§, and Yao-Wen Chang†‡

†Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan
‡Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

§Synopsys, Inc, Taipei, Taiwan

Abstract— As nanometer technology advances, the post-CMP
dielectric thickness variation control becomes crucial for man-
ufacturing closure. To improve CMP quality, dummy feature
filling is typically performed by foundries after the routing
stage. However, filling dummy features may greatly degrade
the interconnect performance and lead to explosion of mask
data. It is thus desirable to consider wire-density uniformity
during routing to minimize the side effects from aggressive post-
layout dummy filling. In this paper, we present a new full-chip
grid-based routing system considering wire density for reticle
planarization enhancement. To fully consider wire distribution,
the router applies a novel two-pass, top-down planarity-driven
routing framework, which employs a new density critical area
analysis based on Voronoi diagrams and incorporates an inter-
mediate stage of density-driven layer/track assignment based on
incremental Delaunay triangulation. Experimental results show
that our methods can achieve more balanced wire distribution
than state-of-the-art works.

I. INTRODUCTION

As IC process geometries shrink to 65nm and below, one important

yield loss of interconnects comes from the chemical-mechanical pol-

ishing (CMP) step in the copper metallization (Damascene) process.

Because of the difference in hardness between copper and dielectric

materials, the CMP planarizing process might generate topography

irregularities. A non-uniform feature density distribution on each

layer causes CMP to over polish or under polish, generating metal

dishing and dielectric erosion [22]. These thickness variations have to

be carefully controlled, since the variation in one interconnect level is

progressively transferred to subsequent levels during manufacturing,

and finally the compounding variation can be significant on an upper

level, which is often called the multi-layer accumulative effect [23].

Two key problems arise from the post-CMP thickness variation:

(1) the layout surface fluctuates inside or outside the depth of

focus (DOF) of the photolithography system, such that the exposed

patterns do not appear acceptably sharp and open/short defects may

even occur, and (2) these irregular variations greatly change the

electrical characteristics of interconnects, especially for resistance and

capacitance, degrading the accuracy of timing analysis and worsening

the electromigration. As a result, in order to improve chip thickness

uniformity, TSMC recommends performing virtual CMP (VCMP)

analysis to identify the metal and dielectric thickness variation hotspot

before chip fabrication for 65nm manufacturing processes (see TSMC

Reference Flows 7.0) [24].

In order to improve the CMP quality, modern foundries often

impose recommended layout density rules and fill dummy features
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into layouts to restrict the variations on each layer. Dummy features

may either be connected to power/ground (tied fills) or left floating

(floating fills) [19]. The tied fill has predictable but higher capaci-

tance, while the floating fill has lower but unpredictable one due to

the floating nature. Traditionally, electrical impacts of dummy fills

can be negligible, and dummy features are inserted during the post

routing stage. Filling algorithms have been proposed to satisfy density

bounds and reduce the density variation [16], [25]. However, as

reported in [26], these filled dummy features may incur troublesome

problems at 65nm and successive technology nodes. The tied fill

may induce crosstalk for its high coupling capacitances to nearby

interconnects and would place a heavy burden for P/G (power/ground)

network. On the other hand, the floating capacitance of floating

fills is usually uncertain, and thus the induced coupling capacitance

might unpredictably harm the timing-optimized results in the previous

design stages. Moreover, dummy fills also sheerly increase the data

volume of mask, lengthening the time of mask-making processes such

as mask synthesis, writing, and inspection verification. Especially,

these filled features would significantly increase the input data in

the following time-consuming reticle enhancement techniques, such

as OPC (optical proximity correction) and PSM (phase shift mask).

Therefore, much research focuses on impact-limited dummy feature

filling algorithms [7], [18].

In the nanometer technology, routing has become a decisive factor

for determining chip manufacturability, since it presides over most

of the layout geometries in the back-end design process. In order

to tackle these manufacturing challenges, routing techniques must

handle the increasing complexity. The routing approaches applying

the bottom-up coarsening and top-down uncoarsening techniques

have demonstrated the superior capability of handling large-scale

routing problems, such as the Λ-shaped multilevel [3], [4], [12],

the V-shaped multilevel [5], and the two-pass bottom-up [6] routing

frameworks.

Recently, routing considering wire distribution has attracted much

attention in the literature. The earlier studies for CMP processes have

indicated that the post-CMP dielectric thickness is highly correlated

to the layout pattern density, because during the polishing step,

interlevel dielectric (ILD) removal rates are varied with the pattern

density [23]. Further, the layout pattern (consisting of wires and

dummy features) density can be systematically determined by the

wire density distribution, as reported in [9]. Therefore, managing

wire density at the routing stage has great potential for alleviating

the aggressive dummy feature filling induced problems.

Li et al. [20] presented the first routing system in the literature

addressing the CMP induced variation. By setting the desired density

in the cost function of global routing, the routing results have

more balanced interconnect distribution. Cho et al. [9] proposed a

pioneering work to consider CMP variation during global routing.



They empirically developed a predictive CMP density model and

showed that the number of inserted dummy features can be predicted

by the wire density. Therefore, they proposed a minimum-pin density

global routing algorithm to reduce the maximum wire density in

each global tile. However, both approaches only consider the wire

density inside a routing tile. Since the topographic variation is a long-

range effect, focusing density value inside each routing tile may incur

larger inter-tile density difference and result in more irregular post-

CMP thickness. (See Fig. 1 (a).) Therefore, optimizing wire-density

uniformity inside a routing tile is obviously not a right metric and

a common pitfall for CMP control. For better CMP control, it is

more desirable to minimize the global variation of wire density, i.e.,

the density gradient. As the example shown in Fig. 1, if the density

lower and upper bounds are 20% and 80% respectively, then the three

adjacent routing tiles in Fig. 1 (b) all satisfy these rules. However,

Fig. 1 (c) is a better choice for CMP control because it has the

minimum wire-density gradient.
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Fig. 1. Density variation among neighboring subregions impacts topography.
(a) Different wire distribution in a subregion exists even under the same
density. Large density variation among neighboring subregions leads to post-
CMP thickness irregularities. (b) Three adjacent routing tiles satisfy density
rules but result in unbalanced wire distribution. (c) A better result for
minimizing the density gradient among tiles.

In this paper, we present a new full-chip grid-based routing system,

named TTR (Two-pass Top-down grid-based Router), considering

wire-distribution uniformity for density variation minimization. To

fully consider wire distribution, the router is based on a novel two-

pass, top-down planarization-driven routing framework. (See Fig. 2

for an illustration.) Different from the aforementioned works, TTR

has the following distinguished features:

• A new routing framework of performing density prediction in

the prerouting stage, followed by planarization-aware global

routing at the first uncoarsening stage, an intermediate stage of

density-driven layer/track assignment, and then detailed routing

at the second uncoarsening stage.

• An efficient density critical area analysis (CAA) algorithm

based on Voronoi diagrams is performed off-line in the pre-

routing stage, which considers both topological information of

pins and wire connection to complement the density analysis.

As shown in Section IV, the Voronoi-diagram based CAA

algorithm leads to 3–5% faster overall routing process due to

easier density control for later detailed routing. Further, it can

substantially improve the resulting wire-density uniformity.

• A planarization-aware global router is employed to consider the

density lower and upper bounds while minimizing the density

gradient among global tiles.

• A layer assigner for panel-density minimization and a density-

driven track assignment algorithm based on the incremental

Delaunay triangulation are performed before detailed routing

to preserve more flexibility for wire density arrangement.

Compared with the density-driven routing system [20], experimen-

tal results show that TTR can achieve 43% reduction on the maximum

number of nets crossing in tiles and obtain at least 35% smaller

standard deviations of wire distribution.

The rest of this paper is organized as follows. Section II describes

the routing model and the routing framework. Section III presents our

density-driven routing algorithms. Experimental results are reported

in Section IV, and conclusions are given in Section V.

II. ROUTING MODEL

We first explain the routing model. As illustrated in Fig. 2, Gk

corresponds to the routing graph of level k. Each level contains a

number of global cells (GCs), and the GCs belonging to different

levels have different sizes. We denote GCk as the GC of level k.

The first top-down routing pass is for global routing, which starts

uncoarsening from the coarsest level to the finest level (level 0). At

each level k, our global router finds routing paths for the local nets

(those nets that entirely sit inside GCk but not inside GCk−1). After

all the global routings of level k are performed, we divide one GCk

into four smaller GCk−1 and at the same time perform resource

estimation for use at level k-1. Uncoarsening continues until the size

of GCk at a level is below a threshold.

The second top-down routing pass is for detailed routing. As the

first pass, it processes uncoarsening from the coarsest level to the

finest level. At each level, a detailed router is performed and rip-up/re-

route procedures are applied for failed nets. The process continues

until we reach level 0 when the final routing solution is obtained.

III. DENSITY-DRIVEN ROUTING

To deal with wire density optimization, we develop a Two-pass

Top-down full-chip grid-based Routing system, named TTR (see

Fig. 2). The rational for top-down routing lies in the fact that it tends

to route longer nets first level by level, which directly contributes

to better wire planning since longer nets have greater impacts on

planarization than shorter ones. We detail the three distinguished

stages of TTR in the following subsections.

A. Density Critical Area Analysis (CAA)

In order to guide the following routing for making better deci-

sions, TTR features a density critical area analysis in the prerouting

stage that identifies the potential over-dense hotspots. Recently,

Cho et al. [9] performed minimum-pin density routing to prevent

global-routing paths from crossing through over-dense areas. The

reason is that a path with higher pin density tends to pass through

more wire dense areas, since the existence of a pin means that

eventually there is at least one wire connecting to other pins. This

approach can help reduce the wire density in each global tile.

However, there are some limitations. As the global routing instance

shown in Fig. 3 (a), although the routing path n1 passes fewer pins,

it may exacerbate the over-dense areas in its adjacent regions. In

contrast, the routing path n2 contains more pins but results in a better

balanced wire distribution. Moreover, the pin density is not directly

proportional to the wire density. As shown in Fig. 3 (b), the small

pin count in the global tile may still contribute to large wire density.

Therefore, it is necessary to consider both topological information

and wire connections of each pin to complement the density analysis.

To remedy the deficiencies, we develop a new enhanced analysis

model based on Voronoi diagrams. The Voronoi diagram of a point

set P partitions the plane into regions, called Voronoi cells, each of

which is associated with a point of P . If a point in the plane is closer

to the point pt ∈ P than to any other point of P , then this point will

be in the interior of the Voronoi cell associated with pt. The boundary
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Fig. 2. The new two-pass, top-down routing framework.
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Fig. 3. Limitations of minimum-pin density routing [9]. (a) Path n1 passes
fewer pins but tends to exacerbate the over-dense areas in its adjacent regions,
whereas path n2 passes more pins but leads to better balanced wire density.
(b) Pin count cannot reflect the wire density in the global tile well.

segments of a Voronoi cell are called the Voronoi edges. A Voronoi

diagram can efficiently compute the physical proximity and has

been well studied in computational geometry [13]. Papadopoulou and

Lee [21] used Voronoi diagrams of rectilinear polygons to compute

the critical areas for short defects in a circuit layout.

The motivation for the Voronoi diagram approach lies in the

following observation.

Observation 1: Given the Voronoi diagram of points, the standard

deviation for the size of Voronoi cells strongly depends on the

distribution of these points.

As illustrated in Fig. 4 (a), the Voronoi cells for points with non-

uniform distribution have large variation in sizes; in contrast, as

shown in Fig. 4 (b), for points with uniform distribution, the sizes of

Voronoi cells are almost the same.

Another observation can quantify the proximity relation to indicate

whether a point lies in the dense area.

Observation 2: For a point, the number of adjacent Voronoi cells

which entirely sit within a specified distance from this point reflects

(a) (b)

Fig. 4. Voronoi diagram for points with (a) non-uniform distribution and
(b) uniform distribution.

p

(a) (b)

Fig. 5. Voronoi-diagram-based pin density analysis. (a) Proximity relation
induced by the Voronoi diagram reflects the dense quantity well. (b) Density
cost is measured by the topological proximity and the number of wire
connections.

the dense quantity of the region where this point lies.

As shown in Fig. 5 (a), the point in the dense area has more Voronoi

cells around it within a given circle with its center at this point.

Base on these observations, we specify a range r and associate

each pin p with a density cost dp, which is defined as

dp = ανp + (1 − α)ωp, (1)

where νp is the number of Voronoi cells around p (excluding the



Voronoi cell associated with p itself) which entirely sit inside the

circle with a center at p and radius r, ωp is the number of wire

connecting to p, and α, 0 ≤ α ≤ 1, is a user-defined parameter. For

the example shown in Fig. 5 (b), there are three Voronoi cells around

p which entirely sit inside the circle, and four wires are connected

to p. Therefore νp and ωp equal 3 and 4, respectively.

In the current implementation, we set the radius r as the average

distance among pins of adjacent Voronoi cells. In this way, the

expected value for νp would be zero if p lies in a uniformly distributed

region; otherwise, νp would increase as a penalty to reflect the density

hotspot where p lies. Additionally, since two-pin nets practically

dominate the netlist in most designs, the expected value of ωp would

equal one. Therefore, the ranges of νp and ωp in Eq. (1) are similar

and can be reasonably combined together through the α parameter.

After all density costs of pins have been computed, we transform

these costs into the cost of global tiles. For each global tile t, we set its

predicted density cost d̃t = max{dp | p is inside t} in the prerouting

stage. Then TTR feeds the pre-estimated density information to the

following routing stages. The density critical area analysis can be

efficiently performed. We have the following theorem.

Theorem 1: The Voronoi-diagram based density CAA runs in

O(|P | lg |P |) time, where |P | is the number of pins.

Note that the Voronoi-diagram based CAA algorithm is performed

only once, and its running time overhead is very small (about 3% of

the total running time in our experiment). Further, it even leads to

3–5% faster overall routing process due to easier density control for

later detailed routing, and it can substantially improve the resulting

wire-density uniformity.

B. Planarization-Aware Global Routing

The global routing plans tile-to-tile routing paths for all nets and

thereby is an important step to decide the wire distribution and

maintain a uniform metal density across the chip. As mentioned in

the introduction, both previous works [9], [20] consider only the wire

density inside each global tile, which might incur larger inter-tile

density gradient and thus more irregular post-CMP thickness. As a

result, for better CMP control, a global router has to consider the

density variation (gradient) among global tiles in addition to wire

density inside each tile.

In our TTR, the global routing performed in the first top-down

uncoarsening pass is based on pattern routing [17]. Pattern routing

uses an L-shaped (1-bend) or Z-shaped (2-bend) route to make the

connection, which gives the shortest path length between two points

while reducing the routing bends. Therefore, the obtained routing

path is the shortest, and we thus can focus on the objectives that we

most concern.

We define the planarization-aware cost Φt for each global tile t as

follows:

Φt = d̃t+

{
κp, if dt ≥ Bu

β(2dt − 1) + (1 − β)(dt − dt)
2

, if Bl ≤ dt < Bu

κn, if dt < Bl

(2)

where dt is the wire density of t, d̃t is the predicted hotspot cost

calculated in the prerouting stage, dt is the average wire density of

tiles adjacent to t, Bl and Bu are density lower and upper bounds

specified in foundry density rules respectively, and β, 0 ≤ 1, is

a user-defined parameter. (Note that both the values of 2dt − 1

and (dt − dt)
2

are between 0 and 1.) κp and κn are constants,

where κp is a positive penalty that hinders the over denseness in the

global tile, and κn is a negative reward that encourages paths to go

through sparse tiles. The second equation simultaneously considers

local density and minimizes the density difference among adjacent

regions.

For more balanced wire distribution, the cost function Φp of the

global routing path gp is defined as follows:

Φp = avg{Φt | tile t is on the path gp}, (3)

in which the average manner can represent the consciousness of even

wire distribution.

C. Density-Driven Layer/Track Assignment

Recently, Cong et al. [11] proposed the first wire-planning scheme

between global and detailed routers to reduce congestion. Battery-

wala et al. [2] also suggested to add a track assignment stage

between global and detailed routing to improve the routing quality.

Ho et al. [14] developed a layer/track assignment heuristic in the

intermediate stage for crosstalk optimization. Later in [15], Ho et al.

further extended their track assigner for the wirelength reduction in

X-architecture routing. However, wire density is not addressed in

these works.

1) Density-Driven Layer Assignment: In this paper, we pro-

pose a new layer/track assignment algorithm for wire-density op-

timization. To our best knowledge, this is the first work of wire

planning that addresses the wire-density optimization in the literature.

We handle long horizontal (vertical) segments which span more

than one complete global tile in a row (column) in the middle

layer/track assignment stage and delegate short segments to the

detailed router. The full row (or column) of a global tile array is

called a row (column) panel. We will refer to a row panel as a panel

throughout the paper for brevity, unless specified otherwise.

In a panel, the local density of a column is defined as the

total number of segments and obstacles at that column, and the

panel density is the maximum local density among all columns. For

example, Fig. 6 (a) gives a row panel with 11 columns, c1 to c11.

There are six segments s1 to s6 in the panel and two obstacles o1 and

o2 in layers, and its panel density is equal to 4. We intend to evenly

arrange these segments to two horizontal layers (say layers 1 and 3)

while minimizing the panel density at each layer. The density-driven

layer assignment problem is defined as follows.

• The Density-driven Layer Assignment (DLA) Problem:

Given a set L of layers, a set S of disjoint segments in a panel,

and a set O of fixed obstacles in layers, assign each segment

of S to a layer, such that for each layer the local density is

balanced, and the panel density is minimized.

To solve the DLA problem, we partition the segments and obstacles

in each panel into |L| layer groups such that the main objective of

DLA is achieved.

First, we build the horizontal constraint graph HCG(V, E) for S

and O in the panel. Each vertex v ∈ V corresponds to a segment

or an obstacle, and two vertices vi and vj are connected by an edge

e ∈ E if their spans overlap. The cost of edge e(vi, vj) is defined as

the maximal local density among the overlapping columns between

vi and vj . With this weighting policy, if two vertices are connected

by an edge with a high cost, they should be separated into different

layers. Fig. 6 (b) shows the HCG of the panel in Fig. 6 (a). Here,

the obstacle o2 and segment s3 overlap in columns c3 and c4, and

the maximal local density of c3 and c4 is 3. So the cost of the edge

(o2, s3) equals 3.

Consequently, we can formulate the DLA problem as a max-cut, k-

coloring problem (MCP) [10] on the HCG graph, where k equals |L|.
In this way, we can guarantee that the partitioning result can evenly
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Fig. 6. A density-driven layer assignment example. (a) A row panel A

consists of six segments and two obstacles. We intend to evenly assign
these segments to two horizontal layers (layers 1 and 3). (b) The horizontal
constraint graph. (c) The layer-partitioning result for two layer groups by
applying the maximum spanning tree and k-coloring algorithms. (d) The final
layer assignment result by applying a minimum-impact repair procedure to
exchange the layers of s6 and o1. (e) and (f) The final local densities of layers
1 and 3, respectively.

distribute the segments of the maximal local density to different layer

groups. However, the MCP is NP-complete [10]. Thus, we resort to

a simple, yet efficient heuristic by constructing a maximum spanning

tree on the HCG and applying a k-coloring algorithm on this tree.

Note that the k-coloring algorithm on a tree can be solved in linear

time. Fig. 6 (c) shows a layer-partitioning result of Fig. 6 (a), where

s1, s2, s3 and s6 are partitioned as one layer group, and o2, s4, s5 and

o1 are partitioned as another one. Note that the objects o1, s3, s5, and

s6 at columns c9 and c10 that induce the maximum local density are

separated into two different layer groups.

At the last step, since obstacles are already in fixed layers, we

applied a minimum-impact repair procedure for obstacles. If an

obstacle is not placed in the right layer (e.g., o1 in Fig. 6 (c)), the

layer of a vertex vo of an obstacle is exchanged with that of a vertex

vs of a segment such that the edge cost (vo, vs) is the maximum

among the edges connected with vo in the maximum spanning tree.

If there does not exist such a vertex vs, we can just assign vo to the

correct layer since there is no segment there (otherwise, there must

be an edge connected with vo). The final assignment result after the

repair procedure for exchanging the layer of vertex o1 with that of

vertex s6 is shown in Fig. 6 (d). As a result, the final assignment has

a very balanced density distribution that the average local density of

layer 1 is 1.18 and that of layer 3 is 1.27 while the panel densities in

both layers equal 2. See Figs. 6 (e) and (f) for the resulting segment

assignments for layers 1 and 3, respectively.

Note that for practical concern, in addition to the objectives of

DLA, a good/practical layer assigner shall also assign layers with

more segments of the same nets closer to each other to minimize

the stacked-via usage. We can model the connectivity among layers

as a connection graph C(V, E) whose nodes represent layers and

edges denote the corresponding connectivity. Then, the problem can

be solved by first computing the Maximum-Weighted Hamiltonian

Path (MWHP) on C(V, E) and then assigning layers with the largest

connectivity closer to each other. Since the MWHP problem is NP-

hard, we apply a greedy algorithm similar to Kruskal’s minimum

spanning tree algorithm to handle the MWHP problem. We first sort

edges by their weights, and then add edges in non-increasing weight

order if they form a path.

2) Density-Driven Track Assignment: After the layer assign-

ment, we intend to uniformly spread the segments in each layer

of panels and balance the segment distribution among neighboring

panels. For convenience, we hereafter refer to a layer of a panel

as a panel since the layer assignment has already been performed.

Let T be the set of tracks inside a panel. Each track τ ∈ T can be

represented by the set of its constituent contiguous intervals. Denoting

these intervals by xi. A segment s ∈ S is said to be assignable to

τ ∈ T , τ ≡
⊎

xi, if either xi is a free interval or is an interval

occupied by a segment of the same net. The density-driven track

assignment problem is defined as follows:

• The Density-driven Track Assignment (DTA) Problem:

Given a panel A and its two neighboring panels Au and Ab, a

set of tracks T ∈ A, a set of segments S ∈ A, and a set of fixed

obstacles O ∈ A, for a given cost function Ψ : S × T → R

which represents the density cost of assigning a segment to a

track, find a feasible assignment of S to T that minimizes Ψ.

To solve this problem, we propose an Incremental Delaunay-

triangulation-based Track Assignment (IDTA) algorithm. In Obser-

vation 1, we have discovered the relation between density uniformity

and the Voronoi diagram. Instead of using the Voronoi diagram, we

can leverage the good properties of its dual graph, called Delaunay

Triangulation (DT), to evaluate the segment distribution. The DT for

a point set is a triangulation that minimizes the standard deviations

of angles among all triangles, and the circumscribed circle of every

triangle will not contain any other point in its interior [13]. Similar to

the Voronoi diagram, the standard deviation for the size of triangles in

DT can reflect the distribution of these points. Thus, we can represent

each segment by three points, two end points and one center point,

and analyze the corresponding DT of these points.

Before performing the IDTA algorithm, we first model the distri-

bution of segments and obstacles in each neighboring panel into an

artificial segment lying on the boundary of A. In order to reflect the

distribution of objects in a neighboring panel An of A, we set the

length of an artificial segment as the average occupied length per

track in An, and the center of this artificial segment is determined

by the center of gravity of all segments and obstacles in An.

Fig. 7 shows the IDTA algorithm. Without loss of generality, we

discuss the track assignment at a row panel, and the case for a column

panel is similar. For the track assignment problem, the x-coordinates



Algorithm: IDTA
Input: A /* The panel */

S /* A set of segments */
O /* A set of fixed obstacles */
su, sb /* The artificial segments */

Output: T /* The assignment configuration */
1 for each segment si ∈ S
2 Compute the flexibility of si, ξ(si);
3 T ← ∅;
4 Construct an initial point set P based on O ∪ {su, sb};
5 Construct an initial DT of P ;
6 while S is not empty
7 Choose the segment sj with the smallest flexibility;
8 Determine track(sj) such that the maximum area difference

among the introduced triangles is minimum;
9 T ← T ∪ {sj , track(sj)};
10 Add the points introduced by sj into P ;
11 Update DT incrementally;
12 S ← S − {sj};
13 for each sk ∈ S overlapping sj

14 Update ξ(sk);
15 Return T ;

Fig. 7. The Incremental Delaunay-triangulation-based Track Assignment
(IDTA) algorithm.

of segments are fixed (i.e., the segments in row panels can only move

in the vertical direction), so we can focus on the y direction. At the

beginning, we define the flexibility of a segment si as

ξ(si) = ti +
1

ℓi

,

where ti is the number of assignable tracks of si, and ℓi is the length

of si. Since the x-coordinate of si is fixed, ti can easily be computed.

If the flexibility of si is smaller, which means that si might have

longer length or less space to insert, then si should be assigned first.

After the flexibility computation, we construct an initial DT that

includes only the obstacles and two artificial segments. Each segment

or obstacle is represented as three points, its left-end, center, and

right-end points. Fig. 8 (a) shows the initial DT. The construction

of DT takes O(|P | lg |P |) time, where |P | is the number of points.

Note that a DT can be updated incrementally; if a new point is added

into an existing DT, we only need to update the triangles introduced

by this new point. Therefore, the process can be performed very

efficiently. The update will be frequently used in the following steps.

Lemma 1: Adding a new point into an existing Delaunay triangu-

lation of |P | points takes O(lg |P |) time.

Segments are assigned sequentially in the non-decreasing order

of their flexibilities. Suppose segment sj has the smallest flexibility

among all unassigned segments, then we assign sj to a proper track.

In order to minimize the area difference among all triangles, the track

which results in a DT with smaller area difference is preferred.

After assigning sj to the track track(sj), we need to update

the DT and the flexibility of segments. Since we can incrementally

update the DT, only the new triangles introduced by sj need to be

re-generated. Only the segments that overlap sj and are originally

assignable to track(sj) need to update their values of flexibility. For

those segments, the new flexibility would be the original flexibility

minus 1. The number of segments overlapping with sj is bounded

by ℓj × tj , which is bounded by the constant size of the panel;

here, ℓj is a value, and tj is bounded by the number of tracks in a

panel, which is predetermined before the routing and is around 10–

20 in our implementation. Therefore, the total time complexity of

updating DT and the flexibilities of segments is O(lg |S|), and we

have the following theorem for the overall time complexity of the

IDTA algorithm.

Theorem 2: The IDTA algorithm runs in O(|S| lg |S|) time, where

|S| is the number of segments in a panel.

Fig. 8 shows a track assignment example. Fig. 8 (a) is the initial

DT including only obstacles and artificial segments, and Figs. 8 (b),

(c), (d) are the assignment results of s3, s2, and s1, respectively.

The flexibilities of unassigned segments are listed on the right side

of the figures. Note that each time when a segment is assigned, the

flexibilities of unassigned segments are incrementally updated.

After the track assignment, the actual track position of a segment

is known. Thus, we can perform classical segment-to-segment maze

routing in the detailed routing stage to connect shorter nets which

span at most two routing tiles, and the whole routing process is

finished.
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Fig. 8. A density-driven track assignment example. (a) The initial Delaunay
triangulation. (b) Track assignment for segment s3. (c) Track assignment for
segment s2. (d) Track assignment for segment s1.

IV. EXPERIMENTAL RESULTS

The TTR routing system was implemented in the C++ program-

ming language on a 1.2 GHz SUN Blade-2000 workstation with 8

GB memory. We used the LEDA packages to compute the Voronoi

diagrams and Delaunay triangulation. We conducted the experiments

based on the 11 MCNC routing benchmarks [3] (these designs have

3–4 routing layers and contain up to 28K connections) and 5 real

industrial Faraday benchmarks introduced in [1]. (See Table I for

the statistics of the Faraday benchmarks.) In our implementation, the



parameter α in Eq. (1) was set to 0.5, and the parameters β, κp, κn,

Bl, and Bu in Eq. (2) for all benchmarks were given as 0.5, 2, -2,

10%, and 40%, respectively.

TABLE I

THE FARADAY BENCHMARK CIRCUITS.

Circuit Size (µm
2) #Layers #Nets #Connections #Pins

DMA 408.4×408.4 6 13256 36162 73982

DSP1 706×706 6 28447 63495 144872

DSP2 642.8×642.8 6 28431 36686 144703

RISC1 1003.6×1003.6 6 34034 95106 196677

RISC2 959.6×959.6 6 34034 95099 196670

We compared the proposed two-pass, top-down routing framework

of TTR with the grid-based full-chip multilevel router considering

balanced routing density in [20] (named MROR). The MROR pro-

gram was provided by the authors of [20] and was run on the same

machine. For fair comparison, TTR used the same setting for the size

of routing tiles in all benchmarks as MROR. Note that as reported

in [20], MROR achieves better solutions than the previous work [3],

and thus we shall directly compare TTR with MROR.

In addition, we also examined the effects of the Voronoi-diagram-

based density critical area analysis (CAA) in TTR by comparing

with the minimum-pin density routing algorithm presented in [9].

Note that in [9], the authors applied their algorithm in an ILP-

based global router called BoxRouter [8]. Therefore, to focus on the

comparison of the two CAA algorithms, we integrated the minimum-

pin density routing algorithm into TTR. In other words, we removed

the prerouting of TTR and replaced the cost function of the global

router in Eq. (2) by the minimum-pin density routing algorithm.

Tables II and III show the comparison results on the MCNC

and Faraday benchmarks, respectively. Note that since the MROR

program can only handle the designs with all pins lying in layer 1

(as in the MCNC benchmarks), we did not conduct the experiments

on the Faraday benchmarks (where pins are distributed between

layers 1 and 3) for MROR. In the tables, we used the same

metrics as those in [20] which can evaluate the uniformity of wire

distribution in the routing stage, where “Rout.” stands for routability,

“#Netmax” denotes the maximum number of nets crossing a level-0

tile, “#Netavg h” represents the average number of nets horizontally

crossing a tile and “σh” gives its standard deviation, and “#Netavg v”

gives the average number of nets vertically crossing a tile and “σv”

gives its standard deviation. For the TTR routing systems, “#LG”

denotes the total number of layer groups for the layer assignment,

and “#Seg” shows the total number of segments.

As shown in the tables, all routers obtain 100% routing com-

pletion on the MCNC benchmarks, and both routers applying the

new framework of TTR outperform the multilevel router MROR

in wire uniformity. Compared with MROR, TTR incorporated with

the minimum-pin density global routing algorithm reduces #Netmax,

#Netavg v , and #Netavg h by 32%, 28%, 26% respectively, and

TTR with Voronoi-diagram-based CAA can achieve 43%, 34%,

36% reductions on #Netmax, #Netavg v , and #Netavg h respectively.

Moreover, the routers using the TTR framework also result in at

least 35% smaller standard deviations of wire distribution in both

directions (which implies better density smoothness) than MROR.

The results on the Faraday benchmarks also show that the global

routing guided by the Voronoi-diagram-based CAA can achieve better

wire uniformity than the minimum-pin density global router. Fig. 9

shows the routing layouts of “S13207” and the corresponding wire-

crossing maps in the vertical direction for the aforementioned three

routers, and Fig. 10 shows the results for the Faraday circuit “RISC1”

and the horizontal wire-crossing maps. The experimental results

consistently show the superior effectiveness and efficiency of our

routing algorithm and framework in wire density control.
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Fig. 9. The routing result and the vertical wire-crossing map in tiles for
“S13207.” (The red, green, and blue lines represent metals 1, 2, and 3,
respectively) (a) and (b) The routing layout and its vertical wire crossing
of MROR [20]. The maximum vertical wire crossing is 27. (c) and (d) The
routing layout and its vertical wire crossing obtained from the minimum-pin
density global routing [9] + TTR’s routing framework. The maximum vertical
wire crossing is 13. (e) and (f) The routing layout and its vertical wire crossing
of TTR (Ours). The maximum vertical wire crossing is only 11.

V. CONCLUSIONS

We have presented a new two-pass, top-down full-chip grid-based

router, named TTR, considering wire density for CMP variation

control. TTR features a new Voronoi-diagram-based density critical

area analyzer, a planarization-aware global router, a layer assigner

for panel-density minimization, and an effective track assigner based

on the incremental Delaunay triangulation. Experimental results have

shown the effectiveness and efficiency of the proposed methods.
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