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ABSTRACT

The sampling frequency and quantity of time series data collected from water distribution systems

has been increasing in recent years, giving rise to the potential for improving system knowledge if

suitable automated techniques can be applied, in particular, machine learning. Novelty (or

anomaly) detection refers to the automatic identification of novel or abnormal patterns embedded

in large amounts of ‘‘normal’’ data. When dealing with time series data (transformed into vectors),

this means abnormal events embedded amongst many normal time series points. The support

vector machine is a data-driven statistical technique that has been developed as a tool for

classification and regression. The key features include statistical robustness with respect to

non-Gaussian errors and outliers, the selection of the decision boundary in a principled way, and

the introduction of nonlinearity in the feature space without explicitly requiring a nonlinear

algorithm by means of kernel functions. In this research, support vector regression is used as a

learning method for anomaly detection from water flow and pressure time series data. No use is

made of past event histories collected through other information sources. The support vector

regression methodology, whose robustness derives from the training error function, is applied

to a case study.

Key words 9999 data analysis, leakage, novelty detection, support vector machines,

water distribution systems

INTRODUCTION

Water utility companies are collecting ever-increasing

amounts of data from sewerage and clean water distribution

systems via loggers and telemetry systems. Interpreting this

information is a challenging task due to:

� the large volumes of data
� missing data, data errors from sensors, and communica-

tions and data noise
� the parameter pattern being specific to a particular loca-

tion, often with a predictable though changing fingerprint

due to various forms of seasonality (daily, weekly and

seasonal)
� inaccuracies in hydraulic models due to imprecise and

outdated asset information, poor calibration and lack of

system operational feedback.

UK industry practice is to separate water distribution

systems (WDSs) into hydraulically isolated district meter

areas (DMAs), which are generally permanent in nature

(apart from occasional temporary rezoning). There has been

recognition of zonal (DMA) monitoring as international best

practice for monitoring and managing leakage in recent years

(WHO 2001; Farley 2008). Although hydraulic measurements

have historically been taken before DMAs were introduced,

technological advances in flow metering and data capture

and communications are facilitating identification of events

in the distribution network. The size of zonal areas is of

course a matter of debate, and consequently varying practices

exist in different parts of the world. Janković-Nisić et al.

(2004) recommended that the size of the monitored DMA

Stephen R. Mounce (corresponding author)
Richard B. Mounce
Joby B. Boxall
Pennine Water Group,
Department of Civil and Structural Engineering,
University of Sheffield,
Sheffield S1 3JD,
UK
E-mail: s.r.mounce@sheffield.ac.uk

doi: 10.2166/hydro.2010.144

& IWA Publishing 2011 Journal of Hydroinformatics 9999 13.4 9999 2011672

Downloaded from http://iwaponline.com/jh/article-pdf/13/4/672/386589/672.pdf
by guest
on 20 August 2022

https://crossmark.crossref.org/dialog/?doi=10.2166/hydro.2010.144&domain=pdf&date_stamp=2010-11-06


area should be smaller than it is typically in operational

practice of water utilities in the UK, and further that it should

be determined independently for every distribution network.

Each DMA (consisting of approximately 200–2000 proper-

ties) is instrumented with a flow and pressure meter at the

inlet. Most DMAs then typically have an additional pressure

meter (DG2, regulated minimum pressure standard), which is

usually located at the point of highest elevation in order to

monitor the minimum pressure in a DMA. The flow meter is

generally primarily used to derive information about leakage,

though current research is also investigating utilizing pressure

for leakage detection (e.g. Wu et al. 2010). Currently, the

standard approach is based on using the input/output/

night-line to calculate the water loss per DMA. A large

change in this value (from day to day) or more gradually

over a longer period will alert the water company to a

problem in a specific DMA (Alegre et al. 2000).

Owing to the availability of cheaper telemetry (such as

via SMS and GPRS), water utility companies are investigating

using near real-time flow and pressure data directly for the

detection of pipe rupture and other problems by applying

simple flat-line alarm levels. Data analysis conducted in

Mounce (2005) illustrated that pressure is a less reliable

parameter than flow for abnormal event detection (through

simulated burst by way of flushing), with the response of a

particular meter more dependent on location. For example, a

pressure meter at the inlet of a zone fed by a service reservoir

is unlikely to display a significant drop in reaction to a burst

within the zone. However, multiple pressure loggers within a

DMA, especially if additional instrumentation is installed,

which is becoming more common, gives the opportunity to

gain additional information about event location (Farley et al.

2008). Research projects are exploring applying artificial

intelligence and statistical techniques to improve upon flat-

line alerts. Mounce et al. (2010a) describe an online system

pilot implemented with a UK water company using an

artificial neural network (ANN) and fuzzy logic system for

detection of leaks/bursts at DMA level. Ye and Fenner (2010)

present an automatic burst and leak detection algorithm

based on the Kalman filtering of flow and pressure measure-

ments. The technique was validated by application to a DMA

with engineered tests and 10 DMAs with real burst events

identified by customer contacts to the water company and

pipeline reparation works. Several other methodologies have

been demonstrated on offline data. Akselaa et al. (2009)

describe a method for leakage detection based on the self-

organizing map (SOM) ANN. The data used consists of

vectors of the flow meter readings and knowledge of reported

leak locations used for training and validating the test results.

Romano et al. (2009) describe a Bayesian-based system for

application to flow and pressure data, which removes noise

using wavelets and then uses the group method of data

handling (GMDH) to predict future flow and pressure pro-

files for short-term changes and statistical process control

(SPC) to monitor long-term changes.

Abnormality (i.e. deviation) from the normal pressure

profile can result from a variety of causes. In fact, low or

fluctuating pressure is the most frequently occurring opera-

tional problem. It is important for the water utility to be aware

of low pressure, because, though not as severe as a complete

interruption to water supply, inconvenience is caused to

customers and there can be penalties applied by the regulator.

Pressure abnormalities can result from the following:

� Low pressure can be caused by a large water loss resulting

from a pipe burst. These are characterized by a sudden loss

of water. Third-party damage can similarly cause such

water loss.
� A power outage can affect a pump station and hence turn

off one or more pumps. A number of failsafes generally

limit this occurrence. Zones with storage will first experi-

ence a drop in pressure as water levels fall, and then a loss

of service once the tanks are empty.
� Maintenance activities such as flushing, which is an

important tool for helping operators to control distribution

system water quality, may be the cause. At a high enough

level and depending upon location, such activities can

result in pressure drops within the DMA.
� Other operational events, such as tanks being taken offline,

the adjustment of pressure zone boundaries, shutting down

sections of the system or opening of cross-connections to

adjacent zones, may also result in abnormal pressures.
� Logger and communications failures can of course also

impact on the pressure data signal.

Some of these operational problems are described in

more detail by Walski et al. (2001).

Time series novelty detection (or anomaly detection) is

the process of automatic identification of novel (or abnormal)
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events embedded in potentially large amounts of normal time

series vectors. Novelty detection is a problem that data

mining can address and is a useful approach for many

applications where, for example, there is an abundance of

normal data while abnormal data is scarce or when, even if

abnormal data is available, abnormality is not easily defined.

This last point is one of the particular challenges posed by

WDSs applications suitable for machine learning approaches,

as the classification of novelty is often unknown and usually

uncertain in historic data sets. In addition, explicit models

may be unavailable. There is generally no clear cut boundary

between novel events and normal events in real-world appli-

cations, and interpretation of similarity of events can be

subjective and task dependent. Application areas include,

for example, intrusion detection systems (IDS) for protecting

systems and their users on the internet (e.g. Mukkamala et al.

2002) and medical applications such as cancer detection

(e.g. Tarassenko et al. 1995) and seizure analysis (Gardner

et al. 2006). One way that abnormalities can be characterized

is as outliers of the ‘‘normal’’ data.

In the field of water resources, Branisavljevic et al. (2009)

explore online and offline data pre-processing techniques as a

tool for improving anomaly detection methods (with the main

aim to flag anomalous data before use in other models). After

pre-processing, they applied flat-line thresholds and statistical

tests to data from the Belgrade sewage system. Jarrett et al.

(2006) explored data processing and anomaly detection

techniques for data from WDSs, including control charting,

time series analysis, Kriging techniques and Kalman filter

techniques. They concluded that they did not find any one

methodology in the literature which ‘‘answers all the ques-

tions’’. For water industry data, efficient techniques are

needed that are data-driven, capable of self-learning, with

limited exemplars and able to deal with often patchy, poor-

quality data.

This paper presents the application of support vector

regression (SVR) for novelty detection to time series collected

from WDSs. Example detections of burst, artificial flushing

and sensor failure events are given. A protocol is described

for applying the approach to the application. Data from a

water supply system in the UK was used for a case study that

forms part of the Neptune Project. The Neptune Project is a

d2.7 m UK research council and industrially sponsored

project with seven academic and three industrial partners

(2007–2010). The core deliverable will be an integrated risk-

based decision support system (DSS) for evaluating interven-

tion strategies to inform decision-making for sustainable

water system operation (Bicik et al. 2009). The analysis

system described here is one component of this deliverable,

providing alerts for further analysis and aggregation (http://

www.neptune.ac.uk).

SUPPORT VECTOR MACHINES

A commonly encountered machine learning problem is to

classify data into two or more groups. There exist many

different approaches to classification, including statistical,

naive Bayes and artificial neural networks (ANNs). The

support vector machine (SVM) is a statistical learning theory

based on machine learning methods. SVMs are widely used

in the fields of bioinformatics, data mining, image recognition

and hand-writing recognition. SVMs possess a number of

similarities to ANNs. Both learn from experimental data and

are universal approximators (i.e. they can approximate any

function to any desired degree of accuracy with sufficient

training data). Both can be applied to classification and

regression. In contrast, they do differ by learning method:

ANNs use back-propagation (or a similar gradient descent

algorithm) whereas SVMs learn by solving a constrained

quadratic optimization problem. This implies that there is a

unique optimal solution for each choice of the SVM para-

meters. This is unlike other learning machines, such as

standard ANNs trained using back-propagation. When apply-

ing an ANN, an appropriate structure (number of layers,

neurons, etc.) is chosen and, keeping the confidence interval

fixed in this way, the training error is minimized. An SVM

keeps the value of the training error fixed (equal to zero or to

some acceptable level) and minimizes the confidence interval

(related to future generalization error). A key issue is dealing

with the trade-off between under-fitting and over-fitting to the

training data.

Suppose we have some training data ðx1; y1Þ;
ðx2; y2Þ; y; ðxn; ynÞ, where xi 2 Rk and yi 2 {�1, þ 1} indi-

cates the class to which each vector xi belongs. Any hyper-

plane can be expressed as the set of points satisfying the

equation wTx¼b, where w 2 Rk. Providing that the data can

be separated into the two classes, we can chose w and b such
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that wTx�b¼ 1 for vectors on the margin in the class with

yi¼ 1 and wTx�b¼�1 for vectors on the margin with

yi¼�1. Such vectors are called the support vectors and the

width of the margin is 2=8w8, where 8w8 is the norm of the

hyperplane normal weight vector. The SVM algorithm finds

the optimal hyperplane separating the two classes. Figure 1

illustrates such a hyperplane dividing two data groups. Many

other linear learning machines have been considered for the

task of finding a hyperplane in a feature space that optimally

separates two classes, but the SVM yields a unique solution

that can be shown to minimize the expected risk of misclas-

sifying unseen examples (Vapnik 1998). This is in contrast to

the perceptron, which finds any solution.

The use of kernel functions allows all computations to be

carried out in the input space, with no explicit computations

in the higher dimensional space. SVMs are as powerful as

nonlinear methods (such as ANNs) and statistically more

robust than ANNs because of the error function used, which

also limits the curse of dimensionality issue. Theoretical

analysis and practical studies have shown that SVMs not

only have a simple structure, but also have good general-

ization ability and the facility to provide a globally optimal

solution (Trafalis 1999). In particular, when only limited

samples are available, they tend to avoid over-learning and

falling into local minima, which can be a weakness of other

approaches. The C-support vector machine is the basic tech-

nique for classification, first proposed by Boser et al. (1992)

and as described by Cortes & Vapnik (1995). Bishop (2007)

provides more information on training and general back-

ground, and for algorithm implementation details see Chang

& Lin (2001). SVMs work well with limited size training data

N, but solving the quadratic programming (QP) problem with

increasing N is more difficult and memory intensive (Giusto-

lisi 2004). Consequently several authors have proposed

decomposition methods to solve QP or a linear programming

(LP) approach designed to be more robust and faster in large-

scale problems (e.g. Bennett 1999; Kecman & Hadzic 2000).

The LibSVM library used in this work implements a sequen-

tial minimal optimization (SMO) algorithm to solve the

SVM’s quadratic programming optimization problem, which

is usually more efficient than using a QP solver. SVMs have

been applied in many areas of hydroinformatics over the last

decade. For example, Yu et al. (2004) use embedding theory

to create a state space reconstruction using hydrological time

series and then use SVM for regression to predict future

values of the time series. Moreover, they present an EC-

SVM evolutionary methodology for optimal parameter selec-

tion. Giustolisi (2006) demonstrated their use for nonlinear

regression of environmental data and presented a multi-

objective genetic algorithm approach for optimizing the ker-

nel parameter, input selection and E-tube.

Support vector regression (epsilon SVR)

Although the SVM was originally developed for solving

classification problems, it can be extended and successfully

applied to regression estimation. Many applications deal with

experimental data (training patterns, observations, samples,

etc.) and unlike pattern recognition problems (where the

desired outputs yi are discrete values) we need to use real-

valued functions. The general regression problem involves

the learning machine being provided with l training

data values from which it attempts to learn the func-

tional mapping f(x) as follows. A training data set

D ¼ f½xi 2 Rn; yi 2 R; i ¼ 1; y; l�g consists of l pairs

ðx1; y1Þ; ðx2; y2Þ; y; ðxl; ylÞ, where the inputs x 2 Rn are

n-dimensional vectors and system responses y 2 R are real

valued. The SVM functional approximation is given by:

fðx;wÞ ¼ wTxþ b ð1Þ

x may be replaced with a transformation f(x), e.g. for normal-

ization. The prediction error is given by:

y� fðx;wÞj j ð2ÞFigure 1 9999 SVM classifying hyperplane.
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Vapnik (1998) generalized the error function by introducing

an E-insensitive loss function. E-SVR carries out the regression

estimation by risk minimization, where the risk is measured

by the E-insensitive loss function:

y� fðx;wÞj jE ¼
0 for y� fðx;wÞj jrE
y� fðx;wÞj j � E otherwise

�
ð3Þ

The error function is a key feature of SVR and the fact that

it is linear is an important feature for statistical robustness with

respect to outliers. This loss function only counts as errors

those predictions that are more than E away from the training

(measured) data. The slack variables x and x* represent the size

of this excess deviation for positive and negative deviations

respectively. This loss function defines an E-tube around f(x, w)

as shown in Figure 2. It allows the concepts of margin to be

carried over to the regression case while maintaining useful

statistical properties. The model produced by the support

vector classification depends only on a subset of the training

data, because the cost function for building the model does not

care about training points that lie beyond the margin. Analo-

gously, the model produced by SVR depends only on a subset

of the training data, because the cost function for building the

model ignores any training data close to the model prediction

(within E). The support vectors are those vectors that actually

contribute to determining the approximating function.

The objective is to minimize the empirical risk as well as
1
2 8w82. Implementation of the optimization is described in

detail in the literature (Chang & Lin 2001; Schölkopf et al.

2001). If y� fðx;wÞj j is sufficiently large (the difference

between the observed value and the value predicted by the

SVR regression model), this is classified as abnormal and

termed a ‘‘surprise’’, as will be described in the methodology.

METHOD

SVR-based novelty detection for time series

SVR can be used to model and predict from a temporal

sequence. A training set of samples can be constructed

using a particular dimensional delay vector m of the last m

observations, where the sampling time is taken as uniform

with t the lag time, i.e. the sampling rate:

xt ¼ xðtÞ; xðt� tÞ;y; x t� ðm� 1Þtð Þ½ � with target prediction

yt ¼ xðtþ 1Þ ð4Þ

Ma & Perkins (2003) present a general framework for

using a model for novelty detection with a given confidence

level consisting of five key concepts. This scheme is then

specialized to using SVR (summarized in Table 1). A model

Mx(t0) represents the knowledge about an underlying tem-

poral sequence up to t0, which in the case of SVR is

constructed from available data xt.

Table 1 provides the basis of a methodology that allows

the SVR to be used for novelty detection. The formulation of

pEn enðt0Þj jð Þ can be determined by the occurrences

Oðt0 þ iÞ; i ¼ 0;y;n� 1. If the occurrences in fOðt0 þ iÞ;
i ¼ 0;y;n� 1g are identical independent Bernoulli vari-

ables, En(t0) becomes a binomial random variable and

pEn enðt0Þj jð Þ ¼
Xn

k¼x

PEn enðt0Þj j ¼ kð Þ

¼
Xn

k¼x

n !

k!ðn� kÞ! q
kð1� qÞn�k ð5Þ

McKenna et al. (2007) adopt a similar approach for event

detection in water quality measurement data to gather

evidence over multiple consecutive time steps. A binomial

event discriminator (BED) is presented that uses a failure

model based on the binomial distribution to determine the

probability of an event existing based on r outliers occurringFigure 2 9999 Parameters for (one-dimensional) SVR.
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within n time steps. The BED can be used on the results of

any event detection algorithm that produces a binary result

(success/failure) for every time step. They successfully

applied the technique to 15 minute data for specific conduc-

tivity (SC), pH and oxidation reduction potential (ORP),

demonstrating the potential to detect both events and base-

line changes.

There are various approaches for selecting an appropriate

value of lag m. A rule of thumb that Schaffer et al. (1988)

recommend is to adopt a lag length of 10% to 30% of

the periodicity of interest in the time series. However, one

of the most commonly used techniques involves calculating

the autocorrelation function for the time series, and then

determining the first minimum of this function. In this

context, the autocorrelation function is a measure of the

linear dependence of a variable with a lagged (time-shifted)

version of itself. A variant on this, mutual information, can be

used, which is a measure of the general dependence of

one variable and a lagged version of itself. The first minimum

of the auto mutual information function can be used to

find a good choice for a delay time (e.g. Fraser & Swinney

1986). Mounce (2005) found that in analysing a set of ten

flow sensors with three months of 15 minute interval

data each, this value varied between 12 and 19 (with mean

15.3). In essence, this means that most of the information

regarding the next value of the time series is on average

contained in approximately the previous four hours, i.e.

m ¼ 16.

The occurrences from Table 1 are not actually indepen-

dent but under certain conditions we assume they are in

order to make the detection; this is reasonable for normal

training data. The approximation for q(t0) when using SVR is

Table 1 9999 General and SVR-based framework for novelty detection with confidence

General scheme Using SVR

Matching function

and value

Quantifies how well the model matches the temporal

sequence.

Vðt0Þ ¼ F Mxðt0 � 1; xðt0ÞÞð Þ

Vðt0Þ ¼ xðt0Þ �Mxðt0 � 1Þ ¼ xðt0Þ � x̂ðt0Þ
i.e. the matching value is the residual of the regression

function at t0

Occurrence An occurrence at t0 is defined by

Oðt0Þ � IfVðt0Þeð�Eðt0Þ; Eðt0ÞÞg
where I{} is an indicator function and 2E(t0)40 is the

tolerance width

Utilize the E-insensitive loss function and define the

tolerance width as 2E for any t0 where E is the insensi-

tivity parameter from SVR

Surprise A surprise is observed if:

Oðt0Þ ¼ 1

Using the E-insensitive loss function results in any sample

that is a surprise to model Mx(t0) being a support vector

in the updated model Mx(t0þ 1) (Smola & Schölkopf

1998)

Event and event

duration

Enðt0Þ ¼ Oðt0Þ Oðt0 þ 1Þy Oðt0 þ n� 1Þ½ �T where n is

the event duration and the number of surprises in event

En(t0) is

Enðt0Þj j ¼
Pn�1

i¼0
Oðt0 þ iÞ

having density function pEn enðt0Þj jð Þ
where enðt0Þj j ¼ 0; 1; y; n

En(t0) is defined as a sequence of independent Bernoulli

random variables with the same parameter:

pEn jenðt0Þjð Þ ¼ n
jenðt0Þj

� �
qðt0Þjenðt0Þjð1� qðt0ÞÞn�jenðt0Þj

where enðt0Þj j ¼ 0; 1; y; n

Novel event with

confidence

Event en(t0) is defined as a novel event with confidence

c(t0) if it satisfies

(i) enðt0Þj j4max h;E Enðt0Þj jf gð Þ
(E{} is the mean and h is a fixed lower bound) and

(ii) pEn enðt0Þj jð Þo1� cðt0Þ

q(t0) is the probability of an occurrence in the event En(t0)

being a surprise and which can be approximated by

q̂ðt0Þ ¼ NSV ðt0Þ
Dt0

with NSV(t0) the number of support

vectors in Mx(t0) and Dt0 number of training samples of

the form specified in (4)

Journal of Hydroinformatics 9999 13.4 9999 2011677 S. R. Mounce et al. 9999 Novelty detection for data analysis using support vector machines

Downloaded from http://iwaponline.com/jh/article-pdf/13/4/672/386589/672.pdf
by guest
on 20 August 2022



reasonable and provides acceptable accuracy in the confi-

dence level of a detection if the following conditions hold:

Firstly, the regression function can sufficiently capture the

dependent relationship in a temporal sequence. In practice,

this is achieved by adequate model training. Secondly, all

occurrences in an event should have approximately the same

probability of being a surprise. This latter is sensible if the

event duration n is not too large. A more robust approach can

use a variant in which r different event durations are picked

evenly from the range and each is applied to create a set of

detection outputs, and a voting procedure can be applied to

these to create a single generated output.

Implementation

The code developed to implement the scheme described

utilizes LibSVM (Chang & Lin 2001), which is a library for

support vector machines. It integrates C-SVM classification,

nu-SVM classification, one-class-SVM, epsilon-SVM regres-

sion and nu-SVM regression. The implementation has been

widely used in the academic research community and the

developers were the winners of the EUNITE worldwide

competition on electricity load prediction and also the

IJCNN challenge (using SVR). The latest version 2.91 was

released on 1 April 2010 and the MATLAB instantiation of

the support vector algorithms was used for this application.

The program developed implements the required data hand-

ling, normalization, formatting into time-delayed vectors

(sparse format), SVM training and testing, and also realises

the algorithmic procedure outlined in Table 1.

Within water distribution networks there is a distinct

diurnal pattern (for both flow and pressure) and therefore

the training in Equation (4) is performed for each time of day

and day type (i.e. weekday, Saturday or Sunday, as usage is

different between them). Hence there is a separate SVR

model for each (time of day, day type) pair, which is trained

using all instances of that (time of day, day type) pair from the

training data. Although this can limit the amount of data

available to train the separate models, fortunately SVR is not

reliant on a vast amount of training data. The SVR scheme

was implemented with 96 periods per day (i.e. 15 minute

data) and with an embedding dimension of D, i.e. each value

was predicted using only the previous D values. Hence there

are 96 weekday models, 96 Saturday models and 96 Sunday

models. The model at time t is trained with all vectors of the

form ½yt�D; yt�Dþ1;y; yt�1; yt� in the training data for that day

type. The SVR regression model finds an approximating

function of the form:

y ¼ fðx;wÞ ¼ wTxþ b ð6Þ

where x ¼ ½yt�D; yt�Dþ1;y; yt�1�.
The original investigations had explored using a single

model; however, improved results were obtained with a (time

of day, day type) multiple model approach. Since this was not

found to be a large computational overhead, the latter was

utilized. For a single logger, and using three months data for

training and six months for testing, the run time was 8.7

seconds on a dual core PC (2.2 GHz, 2 GB RAM). Although

the application is not focussed on producing the most accu-

rate possible regression, this was generally reasonable for

stable data sets and found to be better for flow data because

of this. For the historical data set presented in the Results

section, the average R2 value for flow was 0.86 for training

data (calculated over three months) and 0.70 for test data

(calculated over six months). For pressure, the average R2

value for training data was 0.24 and 0.11 for test data. These

lower R2 values for pressure are consistent with the nature of

the data (discussed in the Introduction), one specific factor

observed in the pressure data was the effect of pressure

reducing value (PRV) settings due to pressure management

activities evident over such an extended period.

The SVR algorithmic parameters are set based on domain

knowledge, empirical experimentation and with reference to

Ma & Perkins (2003). Table 2 summarizes the parameters

with recommended default values for this application.

The difference between the SVR model prediction and

the actual value was divided by the average value for that time

of day. When the modulus of the resulting value was greater

than the tolerance width E, this was classed as a ‘‘surprise’’. If

enough surprises occur (as calculated using the proportion of

surprises in the training data set) within a moving event

window (of fixed size), this signals a novel event detection.

More specifically, a surprise occurs when the difference

between the observed and the predicted value is more than a

given number, the tolerance width (chosen for the case study to

be five) of standard deviations for that time of day, automati-

cally calculated by the implementation. A fixed lower bound of
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number of surprises h (occurring in event duration) is an

algorithmic parameter and the value can be varied depending

on the application (hence the minimum time for detection

h multiplied by the data sampling interval size). Unless this

parameter is used, training data with few occurrences

will result in a single surprise generating a detection, which

for most applications is not desirable. Ma & Perkins (2003)

suggest using h¼n/2, though it was empirically discovered

that this seems on the conservative side for water data, so the

cube root of the event window size was used for the case study.

The epsilon value in the E-insensitive loss function of

0.5 standard deviations results in an E-tube of width one

standard deviation. If this value is set to zero, all vectors in

the training data affect the function obtained from the SVR

regression.This can over-fit the model to the trainingdata. If E is

positive, only some vectors from the training data determine

the function obtained from the SVR regression. The larger E

is, the fewer such (support) vectors. In the model, the value

is set to half a standard deviation of the training data for that

time of day.

The epsilon-SVR implementation from LibSVM was used

with mainly default values for the algorithm and which were

found empirically to be robust across a range of values. The

definition of q̂ t0ð Þ ensures that a more fluctuating profile will

result in more surprises and hence a higher value on the

number of surprises required to be observed for a higher

confidence detection.

RESULTS AND DISCUSSION

Experiments were conducted on real data from a distribution

system to explore the performance of the system, and these

results are now described. The aim of the system is not to

detect short-term hydraulic transients (such as water ham-

mer). Instead, the primary focus is to detect unusual flow and

pressure fluctuations that can be detected from (typically) 15

minute sampled data.

Case study

The Harrogate and Dales (H&D) area in the North Yorkshire

region in the UK consists of nearly 200 DMAs (excluding

trunk main and industrial user DMAs) and includes approxi-

mately 122,000 properties. The water utility company installed

450 Cello Loggers equipped with a General Packet Radio

Service (GPRS) communications infrastructure, to dramati-

cally improve data transfer for both flow and pressure data.

Data is communicated every 30 minutes and two readings are

obtained (15 minute sampled data). An online AI system

combining artificial neural networks and a fuzzy inference

system (ANN/FIS) was upgraded in autumn 2009 to monitor

412 flows and pressures in the Harrogate and Dales area. It

was decided to further trial the SVR-based methodology on

measured data with a view to subsequent online implementa-

tion as an alternative alert type available to a decision support

system (DSS). This DSS uses a methodology based on the

Dempster–Shafer theory combining evidence from several

independent sources/models (such as a pipe burst prediction

model, a hydraulic model and a customer contacts model) to

locate a pipe burst within a DMA (Bicik et al. 2010).

Example novel events

The SVR technique can be applied to flow and pressure data,

and indeed potentially to measured water quality parameters.

Associated with the alert, a � average magnitude change for

the occurrences in the window of first detection was calcu-

lated for the monitored data stream (in an online application

Table 2 9999 Recommended algorithmic parameter values

Parameter Value

Epsilon-SVR cost parameter 0.01

Epsilon-SVR epsilon in the loss function 0.5 s.d.

Epsilon-SVR kernel function RBF Kðxi; xjÞ ¼
exp g8xi � x82� �

Epsilon-SVR kernel function gamma value 1

Embedding dimension D 4–16

Event window duration n 8

Tolerance width E 5 s.d.

Confidence level C 99

Fixed lower bound of number of

surprises h

ffiffiffi
n3
p

Training period 4–12 weeks
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calculated for a newly generated alert). The ANN/FIS system

is limited to calculating a burst size estimate for an increase in

the existing observed flow (Mounce et al. 2007).

The first real event occurred in a single DMA, for which

flow (but not pressure) was available at the inlet and a DG2

pressure point was also being measured within the DMA.

Figure 3 plots the results of applying the SVR and classifica-

tion algorithm in a simulated online manner to the measured

data. Twelve weeks data was used to train the model and the

test data consisted of approximately nine days containing the

event. The peaks of the dotted lines indicate the positions and

durations of the detected novel events for the test data.

This event was a major incident and is suspected to have

been a temporary rezone, resulting in a flow and pressure

profile change lasting approximately 20 hours. Although this

resulted in a 70% increase on the maximum flow rate into the

DMA, this was still insufficient to reach the high alarm level

(18 l/s) on the SCADA system. In Figure 4, the first detection

windows to result in a classification are graphed in more

detail. The calculated number of occurrences (using Equation

(5)) for the pressure SVR to result in 99.9% confidence was 2,

while this was only 1 for the flow. A fixed lower bound on the

number of surprises h in the event duration was used as

previously outlined (h ¼ 2 in the case of an event window

size of 8). The engineering context here is that there is a

requirement to minimize ghosts and provide more confidence

in alerts. Table 3 provides the details of the detections along

with real alerts from an online AI alert system producing

automated detections.

Examination of the raw data reveals that the event

window of the first SVR detection for flow (h ¼ 2) contains

two abnormal data points. Hence theoretically a classification

could be made within 30 minutes. Similarly the event window

of the first SVR detection for pressure contains two abnormal

data points, although the first abnormal pressure data point is

15 minutes previous to the event registering on the flow signal

(instantaneous versus averaged data). Data is transferred

every 30 minutes and two readings are obtained (15 minute

sample rate). Further, export from the SCADA software

system is limited to at most every hour, so detection within

30 minutes is somewhat hypothetical with the currently

used technology. The ANN/FIS online system detections in

Table 3 suffered from an overall delay of approximately 2.5

hours in total due to these issues and an additional FTP data

transfer to the research prototype system. Also, data is not

always available due to communications interruptions (as

happened with the DG2 data in this example). However, it

is evident from Table 3 that the SVR technique can result in

faster detections than the previously developed AI system: in

the case of the flow SVR analysis, an alert would have been

generated over 8 hours earlier, even allowing for the data

delay (ANN/FIS alert received time versus simulated SVR
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Figure 3 9999 Measured data for District Meter Area (DMA) with SVR detection.
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alert received time). However, it should be noted that the AI

system is operating on a larger window (12 hours) and has

been shown to result in few ghosts for flow analysis (Mounce

& Boxall 2010). The setting of h for the SVR methodology is

thus a trade-off between potential detection time and number

of alerts generated (which, as the number grows, will be

increasingly considered ghosts despite potentially exhibiting

minor novelty). Although flat-line alarm levels can be applied

to this type of time series data in an elementary manner, they

can result in many ghosts, and updating their values to reflect

current conditions is an issue.

Finally, the detection of two other types of novel events is

demonstrated. Figure 5(a) graphs the successful detection of a

hydrant flush from an in-zone DG2 meter, and Figure 5(b)

shows the detection of a flow sensor failure. Note that the

SVM approach as presented here identifies novelty only, and

does not provide a classification on the type of novelty.

Historical analysis

A data set was assembled from the case study area for five

typical DMAs (with different characteristics such as rural/

urban and size) in the water supply network. Each DMA had

an inlet flow and pressure meter, and usually a DG2 pressure

logger in the DMA. Data sets were assembled from opera-

tional meters for the period, and this resulted in a total of four

flow meters and five pressure meters with both existing and

usable data for analysis. In each case, the data consisted of

time-stamped files of 15 minute readings from the pressure
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Figure 4 9999 Detection windows for DMA A event.

Table 3 9999 ANN/FIS and SVR system detections for District Meter Area (DMA) A event

ANN/FIS (online system) SVR (simulated online)

DMA: A DMA: A

*FLOW ALERT*

%CONFIDENCE: 99.00

*FLOW ALERT* %CONFI-

DENCE: 99.00

Received: 07:06 12/11/09 Simulated alert received: 19:15

11/11/2009

Dates: 11-Nov-2009 16:45:00

To 12-Nov-2009 04:45:00

Dates: 11-Nov-2009 19:00:00 To

11-Nov-2009 21:00:00

Size estimate: 4.5 Size estimate: þ 3.8 l/s

DMA: A DMA: A

*PRESSURE ALERT*

%CONFIDENCE: 99.00

*PRESSURE ALERT*

%CONFIDENCE: 99.00

Received: 20:06 12/11/09 Simulated alert received: 19:00

11/11/2009

Dates: 11-Nov-2009 18:15:00

To 12-Nov-2009 00:15:00

Dates: 11-Nov-2009 18:45:00 To

11-Nov-2009 20:45:00

Size estimate: N/A Size estimate: �7.8 m
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management and control telemetry system (PMAC), the work

management system (WMS) mains repairs record and any

associated customer contacts. A period of three months data

(October–December 2008) was used for training for the

period prior to the six month testing phase.

The software developed using the methodology described

previously was applied to the data sets. A total of 46 detec-

tions were produced by the SVM system for the period 1/1/09

to 26/06/09. Of these:

� seven were correlated with WMS
� two were correlated to customer reports of bursts
� four were correlated to customer reports of low pressure/

no water
� 23 are ‘‘abnormal’’, i.e. large unusual demands or short-

term increases in night-line (confirmed in the data)
� 10 are ghosts.

These results are shown graphically in Figure 6.

Pressure profiles are less sensitive to a burst or leak event.

Fewer detections resulted from analysis of the historic pres-

sure data (though the majority of ghosts were from pressure

analysis, perhaps reflecting the less stationary nature of

pressure data used for training). A pressure effect will not

always be seen in the DMA meter, for example where the

pressure change can be supported by a service reservoir. The

sensitivity of the pressure data to a burst or leak depends on

the locality of the logger in the DMA (Farley et al. 2008), so a

pressure sensor that is remote from the burst location is

unlikely to produce a significant change from normal profile.

The ‘‘abnormal’’ classification covers situations where the

system produced an alert and subsequent manual data

investigation confirmed that an event of some type did

occur, but for which there was no correlation with any further

information from the utility company. Examples include

large unusual demands (unknown industrial activity for

example), and those related to known network maintenance

or unexplained but significant short-term increases in night-

line. The signature of some of these abnormal events such as

large industrial demands, holiday consumption, filling of

private fire tanks/ unauthorized filling of street cleaning
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Figure 5 9999 (a) Hydrant flush detection (in-zone pressure, 99% confidence, �3.9 m). (b) Flow sensor failure detection (99% confidence, �22.2 l/s).
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Figure 6 9999 Results for historical case study.
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equipment and bowsers, and closure and opening of valves

cannot be differentiated from bursts in this technique, i.e. type

of novelty is not given. Figure 7 illustrates such an abnormal

event detected in the historic analysis. Manual inspection

reveals there is an apparent novel change in the data but with

no corresponding confirmation in the WMS/contact records.

Figure 7 demonstrates the difficulty of matching with

certainty the alarms/detections indicated by the modelling

with real events. Obtaining exact and precise system informa-

tion at any time is not straightforward. For this study, work

management and customer contact records were available

but no additional investigations were conducted by the water

company. It is possible that in some cases real events go

unnoted in the formal records, whilst considerable and some-

times unexpected changes in pressure and flow can be

observed in the data. This is a root cause of uncertainty in

calculating true and false detection rates. Overall, in the six

month testing period, the WMS system recorded 18 burst

repairs (MR35 and SE30). Seven distinct bursts correspond-

ing to repairs were identified by the analysis system.

However, non-detections of events corresponding to repairs

should not necessarily be considered a false negative, as,

when examining the data corresponding to the recorded

repair, there is often no significantly abnormal profile change

to detect.

Bursts detected (confirmed by WMS only) ranged in size

from approximately 10% to 50% of the average daily max-

imum flow entering DMAs based on flow analysis. However,

more subtle changes were also detected, for example for those

only relating to customer contacts or unknown abnormal

demands. The system detected engineered flushing events of

known size (2 l/s) representing 6% of the maximum flow

entering one DMA and 12% for another (Mounce et al.

2010b).

Testing on various measured data sets revealed the SVR

detection technique is relatively insensitive to different

choices of embedding dimension m (Equation (4)) and

event window duration n. Hypothetically the SVR technique

can detect novelty with high confidence, when well trained,

in two data points (with 15 minute sampled data). Practically,

however, there is a trade-off in parameter setting between

detection time and number of alerts generated. For some

temporal sequences, a Markov chain could be a better model

than a binomial distribution and hence pEn enðt0Þj jð Þ will be

different. Exploration of optimal selection of parameters

could also be useful rather than selection empirically.
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Figure 7 9999 Example ‘‘abnormal’’ detection (þ 1.1 l/s).
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Further work on this system, as well as adaptation for

online application, could explore automatic tuning of the

system parameters, and evolutionary algorithms may lead to

more optimal parameter selection. One issue for online

implementation is that of system configuration changes

requiring the need for the SVR system to be recalibrated.

Rather than waiting for a full three-month training set

to become available, it is suggested that models could be

created with only several weeks data initially, although this

would be flagged to indicate reduced confidence. Also,

it would be interesting to explore the possibility of detecting

gradually growing leaks. However, the challenge is under-

standing what the behaviour is in reality, such as a step

change or more gradual change. A further future area

of interest is combining novelty detection with pattern match-

ing (Fletcher et al. 2008). A pattern matching approach is

very proficient at finding known data patterns (hence classi-

fying the type of novelty) and allowing the system to expand

its knowledge base either autonomously or by supervised

means.

Future operational applications will improve on the

quasi real-time data that is currently being provided and

allow data to be processed locally or remotely to provide

exception alert generation or other information involving

more than one signal. Benefits will accrue with increased

coverage (with a mesh of flows and pressures enabling

the location of incidents) but this will depend on progress

with low-cost sensors and communications using peer-

to-peer technologies or local hubs. The capture of such

data will then need to be supported by data management

(using more distributed middleware infrastructure such

as DataTurbine (Tilak et al. 2007)) and receiving systems

to make it accessible to downstream applications and actual

use in the field through remote communications. This redun-

dancy will provide additional knowledge. Visualization

and aggregation of multiple data sources will be vital

to support management of events and reduce their impact

while improving the overall level of service. If this happens,

opportunities exist to combine the data with other sensor

information types (e.g. water quality) to support inde-

pendent or related applications such as online network

modelling and improved real-time response to customer

issues (such as low pressures being related to a team working

in the area).

CONCLUSIONS

This paper has presented the use of support vector machines

for novelty detection for time series data analysis in WDS. A

‘‘bottom up’’, data-driven approach is suitable for such data,

as often there is a lack of system knowledge (e.g. both with

connectivity and in event information) and hands-on man-

agement at the DMA logger level is rarely a priority (such as

configuration of settings of parameters and continuing main-

tenance). The primary focus of this paper has been on flow

and pressure analysis. However, a generic methodology has

been outlined which can be applied to any water domain

parameter suitable for regression and for which novelty

detection is a useful exercise.

The key conclusions of this work and directions for future

work are as follows:

� The SVM-based approach presented can be used to

achieve novelty detection from WDS time series data.

Novelty can include a variety of events such as pipe bursts,

hydrant flushing and sensor failure.
� The system was applied to a historical dataset consisting of

five DMAs over a six-month testing period and has shown

the ability to detect anomalies in flow and pressure patterns.

Some 78% of detections were able to be correlated with

operational information and manual data interpretation.
� It was demonstrated by example that the SVR methodol-

ogy can provide faster alert generation than a previously

developed ANN/FIS system.
� The system enables automated analysis, with limited man-

ual setup, and the algorithmic settings were shown to be

transferable and robust between DMAs and/or measure-

ment parameter.
� The SVR technique thus shows potential for full online

operation with a suitable scheme for data quality handling,

training data selection and retraining schedule.
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