
Artif Intell Rev (2016) 45:235–269
DOI 10.1007/s10462-015-9444-8

Novelty detection in data streams

Elaine R. Faria1
· Isabel J. C. R. Gonçalves2

·

André C. P. L. F. de Carvalho3
· João Gama4

Published online: 27 October 2015
© Springer Science+Business Media Dordrecht 2015

Abstract In massive data analysis, data usually come in streams. In the last years, several
studies have investigated novelty detection in these data streams. Different approaches have
been proposed and validated in many application domains. A review of the main aspects
of these studies can provide useful information to improve the performance of existing
approaches, allow their adaptation to new applications and help to identify new important
issues to be addresses in future studies. This article presents and analyses different aspects
of novelty detection in data streams, like the offline and online phases, the number of classes
considered at each phase, the use of ensemble versus a single classifier, supervised and
unsupervised approaches for the learning task, information used for decision model update,
forgetting mechanisms for outdated concepts, concept drift treatment, how to distinguish
noise and outliers from novelty concepts, classification strategies for data with unknown

label, and how to deal with recurring classes. This article also describes several applica-
tions of novelty detection in data streams investigated in the literature and discuss important
challenges and future research directions.

Keywords Novelty detection · Data streams · Survey · Classification

B Elaine R. Faria
elaine@ufu.br

Isabel J. C. R. Gonçalves
isagoncalves@estg.ipvc.pt

André C. P. L. F. de Carvalho
andre@icmc.usp.br

João Gama
jgama@fep.up.pt

1 Faculty of Computing, Federal University of Uberlândia, Uberlândia, Brazil

2 Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal

3 Institute of Mathematics and Computer Science (ICMC), University of São Paulo, São Paulo, Brazil

4 Laboratory of Artificial Intelligence and Decision Support (LIAAD-INESC TEC),
University of Porto, Porto, Portugal

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-015-9444-8&domain=pdf

236 E. R. Faria et al.

1 Introduction

Novelty detection (ND) is the ability to identify an unlabeled instance (or a set of them) that
differs significantly from the known concepts. Since it is an important capacity for learning
systems, it has received considerable attention from machine learning (ML) and data mining
(DM) researchers. In the literature, it is possible to find many definitions for ND, such as:

– The recognition that an input differs in some respect from previous inputs (Perner 2008).
– Novelty detection is concerned with identifying abnormal system behaviours and abrupt

changes from one regime to another (Lee and Roberts 2008).
– Novelty detection makes it possible to recognize novel concepts, which may indicate the

appearance of a new concept, a change occurred in known concepts or the presence of
noise (Gama 2010).

Several previous studies address ND in batch scenarios, where it is assumed that the whole
set of data is available (Markou and Singh 2003a, b; Marsland et al. 2002; Schölkopf et al.
2000; Hoffmann 2007). However, nowadays, an important scenario, where ND represents an
important challenge to be addressed, is data streams.

A data stream (DS) is a sequence of examples that arrive continuously. They are con-
tinuous, unbounded, flow at high speed and have a data distribution that may change over
time (Silva et al. 2014). In DS scenarios, new concepts may appear and known concepts may
disappear or evolve.

Since concepts are hardly ever constant, the application of ND techniques to DSs presents
many challenges (Gama 2010), which include presence of:

– Concept drift, making difficult the distinction between new concepts and changes in known
concepts;

– Noise and outliers, which can be confused with the occurrence of a new concept;
– Recurring concepts, which can be confused with the appearing of a new concept;
– Concept evolution, when the number of problem classes increases over time, and these

novel classes need to be incorporated into the decision model.

Among the many DS applications in which the use of ND techniques is important, we
can mention: intrusion detection (Coull et al. 2003; Spinosa et al. 2008), fault detection
(Zhang et al. 2006), medical diagnosis (Perner 2008; Spinosa and Carvalho 2004), detection
of interest regions in images (Singh and Markow 2004), fraud detection (Wang et al. 2003),
forest cover type detection (Masud et al. 2011a), spam filter (Hayat et al. 2010), information
retrieval (Gaughan and Smeaton 2005) and text classification (Li 2006).

The purpose of this study is to describe and analyze the main algorithms for ND in DS
scenarios. There are important surveys about ND (Markou and Singh 2003a, b; Marsland
2003; Pimentel et al. 2014), anomaly detection (Chandola et al. 2009) and outlier detection
(Hodge and Austin 2004; Gogoi et al. 2011). However, they only deal with batch scenarios,
not addressing this task in the context of DSs. Besides, they focus on only one of the aspects
of ND, the classification technique.

In the last years, several researchers have proposed different approaches for ND in DSs
(Masud et al. 2011a; Spinosa et al. 2009; Hayat and Hashemi 2010; Faria et al. 2013a; de
Faria et al. 2015b; Farid and Rahman 2012; Al-Khateeb et al. 2012a, b). A review of the
main aspects of these studies may provide an useful inspiration for the development of new
techniques and highlight the main issues to be addressed in future researches. For such, this
survey covers different aspects of ND in DSs, like:

– Definition of the main approaches for DS analysis;

123

Novelty detection in data streams 237

– Formalization of the ND in DSs, clearly distinguishing the offline and the online phases;
– Taxonomy of the main approaches for ND in DSs;
– Learning task;
– Number of classes and classifiers considered in the two stages;
– External feedback for model update;
– Forgetting mechanisms;
– Treatment of noise and outliers;
– Treatment of recurring classes;
– Evaluation measures.

This paper is structured as follows. Section 2.1 contextualize this article by pointing out
the main differences between novelty, anomaly and outlier detection. Section 2.2 explains
two important aspects of DSs, concept drift and concept evolution. Section 3 formalizes the
ND task in DSs. Section 4 shows the taxonomy used to survey the algorithms for ND in
DSs. Section 5 presents the details about the offline (or learning) phase. Section 6 presents in
details the online phase discussing about the three task performed in this phase, classification
of new instances, detection of novelty patterns, and update of the decision model. Section 7
discusses other relevant aspects about ND in DSs as treatment of noise and outliers, detection
of recurring contexts and evaluation measures. Section 8 discusses the main limitations and
strengths of the works presented in this article. Section 9 describes the main applications for
ND in DSs. Finally Sect. 10 discusses the main challenges to be addressed as future works.

2 Important definitions

This section presents what we understand to be the main differences among novelty, anomaly
and outlier detection. Besides, important concepts regarding ND, such as, concept drift and
concept evolution, are discussed.

2.1 Novelty detection, anomaly detection and outlier detection

Novelty, anomaly and outlier detection are correlated terms. While in some contexts these
three terms seem to have the same meaning and are used indistinctly, here these terms will be
distinguished. In general, the latter two terms are more similar and frequently used to express
very close problems.

In fact, novelty, anomaly and outlier detection are terms related to find patterns that are
different from the normal, usual, patterns. While the terms anomaly and outliers give the idea
of an undesired pattern, the term novelty indicates an emergent or a new concept that needs
to be incorporated to the normal pattern.

According to Chandola et al. (2009), anomaly detection refers to the task of finding
patterns in data that do not conform to expected behavior. These patterns are also referred to as
anomalies, outliers, discordant observations, exceptions, aberrations, surprises, peculiarities,
or contaminants. According to Chandola et al. (2009), ND also aims to detect unobserved
patterns (emergent, novel) in data. However this term is distinguished from anomaly detection,
since, in the first, the novel patterns are typically incorporated into the normal model after
their detection.

In Aggarwal (2013), the author defines outlier as a data point, which could be considered
either an abnormality or a noise, whereas an anomaly refers to a special kind of outlier,
which is of interest to an analyst. According to Gogoi et al. (2011), outliers can be candidates

123

238 E. R. Faria et al.

for aberrant data that may affect systems adversely, such as by producing incorrect results,
misspecification of models, and biased estimation of parameters. Some of the causes for
outliers are malicious activity, instrumentation error, change in the environment, human error
(Chandola et al. 2009). For Gama (2010), a concise group of examples should be required
as an evidence of the appearance of a novel concept, or novelty. On the other hand, sparse
independent examples, whose characteristics largely differ from those defined as normal,
should be seen simply as outliers, since there is no guarantee that they represent concepts.

According to Marsland et al. (2002), ND is useful in cases where an important class is
under-represented in the training set. For Markou and Singh (2003a), it is an important task,
since, for many problems, we never know if the currently available training data include on
all possible object classes. According to Gama (2010), ND allows the recognition of novel
profiles (concepts) in unlabeled data.

In this study, we treat novelty as a cohesive and representative group of examples represent-
ing a new concept to be incorporated to the decision model. This new concept is different from
the known problem concepts and represents an evolution, e.g., the appearing of a new class.
Isolated examples, non-representative and non-cohesive groups of elements, not explained
by the normal concept, are considered as outliers. Thus, they need to be identified, but not
added to the current model.

2.2 Concept drift and concept evolution

In concept learning, concept is the function to be learned by a learning algorithm, defined
over the set of training examples, mapping input values to their corresponding output values
(Mitchell 1997). In DS scenarios, which represent a non-stationary environment, the concepts
are not static, but they evolve over time. Thus, two important phenomena, called concept drift
and concept evolution, may occur.

According to Dries and Rückert (2009), concept drift is an important problem in ML and
DM, and can be described as a significant change in the data distribution. The concept of
interest may depend on some hidden context, and changes in the hidden context may induce
changes in the target concept, producing concept drift (Widmer and Kubat 1996). There are
different types of concept drift, named sudden, incremental, gradual, and recurring (Gama
et al. 2013).

For Tsymbal (2004), a difficult problem in handling concept drift is to distinguish between
true concept drift and noise. For example, if the concepts are viewed as images in a repre-
sentation space, then they can change their shapes, sizes, and locations (Kolter and Maloof
2007). Examples of concept drift are changes in the pattern of a disease, changes in the
weather and changes in the purchasing profile over years.

Two approaches, named blind and informed, are used to adapt the decision model in order
to address concept drift (Gama et al. 2013). Blind approaches update the decision model at
regular time intervals without verifying if changes really occurred. In general, the decision
model is retrained using the latest stream labeled examples. Informed approaches modify
the decision model when a change is detected. Most of the ND algorithms discussed in this
survey use blind approaches to address concept drift.

Another aspect of DSs is concept evolution. Traditional ML algorithms assume that the
number of classes is previously defined and that each example belongs to one of these classes
(Park and Shim 2010). However, in real DSs this assumption is not valid, since all classes
may not be known in the offline training phase and new examples may not fit in the existing
classes. According to Masud et al. (2011a), a concept-evolution occurs when a new class

123

Novelty detection in data streams 239

emerges in a stream. Concept-evolution, also named emerging classes, is seen in tasks like
network intrusion detection, spam identification and text classification.

It is important to highlight that ND must deal with concept drift, new emergent classes and
outliers. Algorithms for ND should be able to detect concept drift and update the decision
model in order to represent the changes in the known concepts, detect emergent classes and
update the decision model with these new classes, and identify and discard noisy examples
and outliers.

3 Formalization of the problem

A data stream is an infinite sequence of examples that flow rapidly in a continuous way, and
whose distribution may vary over time.

Definition 1 (Data Stream) A data stream S is a massive sequence of multi-dimensional
examples x1, x2, . . . , xN ,…, which is potentially unbounded, arriving in time stamps
T1, T2, . . . , TN ,…Each example xi is described by an n-dimensional attribute vector (Aggar-
wal et al. 2003).

Data streams, as well as time-series, are sequence data sets. According to Han (2005), a
sequence data set is a sequence of ordered events, with or without concrete notion of time.
Data streams are typically multi-variate sequences, in which the notion of time is not always
present. Web page traversal sequences and customer shopping transactions sequences are
examples of sequence data, but they may not be time-series data (Han 2005). A time-series
is a numeric sequence of observations of a random variable taken sequentially in time, which
presents an intrinsic feature of dependence between adjacent examples (Box and Jenkins
1990). In data streams, this dependence does not always occurs and in several situations
adjacent examples are completely independent. However, time-series in which the data flows
continuously and in high speed, can be considered data streams.

In general, algorithms for ND in data streams work in two phases, namely offline and
online. In the offline phase, a set of labeled examples is used to induce a classifier. These
labeled examples represent the known concepts about the problem. From now on, we refer to
known concepts about the problem as simply known concepts. Usually, the known concept
is composed by examples from only one class, named normal class. In the online phase,
whenever a new example arrives, it is classified in the normal class or it is rejected (or classified
as abnormal, anomaly or novelty). This is the classical setting in one-class-classification
(Spinosa et al. 2009; Hayat and Hashemi 2010; Tax and Duin 2008; Denis et al. 2005; Liu
et al. 2003; Yeung and Ding 2003; Yeung and Chow 2002; Aregui and Denœux 2007; Tan
et al. 2011).

Recently, several authors extended this framework to a multiclass context (Faria et al.
2013a; de Faria et al. 2015b; Farid and Rahman 2012; Masud et al. 2010a, 2011a; Al-
Khateeb et al. 2012a, b). In this case, the previous formalization must be generalized to the
multiclass context. In this new generalization, in the offline phase, each example from the
training set has a label (yi), where yi ∈ Y tr , with Y tr = {Cknw1 , Cknw2 , . . . , CknwL

}, where
Cknwi

represents the i th known class of the problem and L is the number of known classes. In
the online phase, as new data arrive, new novel classes may be detected, expanding the set of
class labels to Y all = {Cknw1 , Cknw2 , . . . , CknwL

, Cnov1 . . . , CnovK
}, where Cnovi

represents
the i th novel class and K is the number of novel classes, which is previously unknown.

Definition 2 (Novel Class) A class that is not available in the training phase (offline), appear-
ing only in the online phase.

123

240 E. R. Faria et al.

Fig. 1 Overview of the novelty detection task

Initially, a classifier can deal effectively only with examples from the training classes.
When examples belonging to novel classes appear over the stream, they are temporally
classified as unknown.

Definition 3 (Unknown) An example not explained by the current model. In one-class clas-
sification, it is named abnormal, rejected or anomaly, i. e., the example does not belong to
the normal concept. In some contexts, this is sufficient. In multiclass classification tasks, a
group of unknown examples can be used to model new concepts.

The unknown examples are submitted to a ND task in order to produce different novelty
patterns. Figure 1 shows an overview of the ND task.

Definition 4 (Novelty Pattern) A pattern identified in unlabeled examples, previously con-
sidered as unknown by the classification system.

It is important to highlight that, in a data stream classification task, besides the emergence
of novel classes, known as concept evolution, another phenomenon must be considered, the
concept drift. In this case, the known concept can change over time.

Definition 5 (Concept drift) Every instance xt is generated from a source that corresponds
to a certain distribution Dt . If for any two examples x1 and x2, with timestamps t1 and
t2, D1 �= D2, then a concept drift occurs (Farid et al. 2013).

Distinguish occurrence of new classes from changes in the known classes (concept drift)
is an important issue to be addressed in DS research. In order to address each change that
can occur in the data, ND algorithms, instead of identify when a concept drift occurs and,
next, update the decision model, usually update the decision model constantly. If there is no
treatment for concept drift, every change in the known concept can be detected as a novelty
pattern. In contrast, it also necessary to forget outdated concepts.

123

Novelty detection in data streams 241

Besides, noise or outlier cannot be considered as a novelty pattern, since they represent
isolated or groups of non-cohesive examples.

The next section provides an overview of the main studies found in the literature investi-
gating ND in data streams.

4 Overview of novelty detection in data streams

This section proposes a taxonomy to classify the ND algorithm for DSs. This taxonomy covers
the main studies found in the literature, which are surveyed in this paper. This taxonomy
characterize this work according to:

– Offline phase:

– Number of classes (one or more-than-one)
– Number of classifiers (single or ensemble)
– Learning task (supervised or unsupervised)

– Online phase:

– Classification:
• Classification with unknown label option (yes or no)
• Number of classifiers (single or ensemble)

– Detection of novelty patterns:
• Number of novel classes (one or more-than-one)

– Decision model update:
• External feedback (yes or no)
• Number of classifiers (single or ensemble)
• Forgetting mechanism (yes or no)

– Other aspects

– Treatment of outliers
– Treatment of recurring contexts
– Evaluation measures

The algorithms to be analysed are presented in Table 1.
In general, the ND techniques work in two phases, the offline and the online phases. The

offline phase, detailed in Sect. 5, receives a training set and induces a decision model, like
in traditional ML tasks. Three important aspect of this phase are the type of learning used
(supervised or unsupervised), the number of classifiers built (single or ensemble), and the
number of classes that composes the known concept (one or more-than-one).

The online phase, detailed in the Sect. 6, receives an unlabeled DS and execute three
task: classification of new examples, detection of novelty patterns and update of the decision
model. The classification task uses the current decision model to classify new examples
that continuously arrive over the stream. Some approaches classify every new example,
while others mark as unknown the examples classified with low confidence. In addition, the
classification task can be based on either a single classifier or an ensemble of classifiers.
Besides, a few approaches consider that the novelty concept is composed by only one class,
while others distribute the novelty concept into more-than-one class.

Another difference between the existing approaches is whether they use feedback to update
the decision model. Some techniques also use forgetting mechanisms, which discard previous
concepts that do not represent to current behavior of the stream.

123

242 E. R. Faria et al.

Table 1 Algorithms for ND in DSs

Algorithms References

1- ECSMiner - Enhanced Classifier for Data

Streams with novel class Miner Masud et al. (2011a)

2- MCM - Multi Class Miner in Data

Streams Masud et al. (2010a)

3- CLAM - CLAss-based Micro classifier

ensemble Al-Khateeb et al. (2012a)

4- MINAS - MultI-class learNing Algorithm

for data Streams Faria et al. (2013a); de Faria
et al. (2015b)

5- OLINDDA - OnLine Novelty and Drfit

Detection Algorithm Spinosa et al. (2009)

6- DETECTNOD - DiscrETE Cosine

Transform based NOvelty and Drift

detection

Hayat and Hashemi (2010)

7- Tree for ND
Farid and Rahman (2012)

8- Ensemble Tree for ND
Farid et al. (2013)

9- HS-Trees - Streaming Half-Space-Trees
Tan et al. (2011)

10- SONDE - Self-Organizing Novelty

Detection Albertini and de Mello (2007)

11- Neural Network (NN) for ND
Rusiecki (2012)

12- Adaptive WOCSVM - Weighted

One-Class Support Vector Machine Krawczyk and Michal (2013)

Other relevant aspects of ND are discussed in Sect. 7. The first aspect is the treatment of
outliers, which is not considered by all algorithms. The treatment of recurring contexts is also
an important issue to be addressed by ND algorithms, but treated by few algorithms. Finally,
the evaluation measures used by the data stream ND algorithms must also be highlighted,
since there few studies addressing this task.

The Table 2 classify each one of the algorithms surveyed in this paper according to the
previous taxonomy.

5 Offline phase

The offline phase represents the static learning phase of a ND algorithm. In this phase, the
known concepts are learned, using a labeled data set. This phase involves three aspects (see
Fig. 2), number of classes associated with the known concepts, number of classifiers, and
learning task.

Several approaches proposed in the literature consider that the known concept is composed
by only one class, named normal class or normal concept. They usually employ one-class
classification techniques to induce a decision model, named normal model. Thus, only exam-
ples from one class (normal class) are used to induce the classifier. The classification output
is binary, thus each example is classified as either normal, if explained by the decision model,
or not normal, otherwise. This strategy is adopted by algorithms like Spinosa et al. (2009),

123

Novelty detection in data streams 243

Hayat and Hashemi (2010), Tan et al. (2011), Albertini and de Mello (2007), Rusiecki (2012)
and Krawczyk and Michal (2013).

Other approaches consider the known concepts to be composed by more-than-one class
and use multiclass classification approaches. Thus, the induced decision model is able to
distinguish between three or more classes. This strategy is adopted by algorithms like Faria
et al. (2013a), de Faria et al. (2015b), Al-Khateeb et al. (2012a), Masud et al. (2011a), Masud
et al. (2010a), Farid and Rahman (2012) and Farid et al. (2013).

The second aspect is the number of classifiers. The techniques proposed in Faria et al.
(2013a), de Faria et al. (2015b), Spinosa et al. (2009), Hayat and Hashemi (2010), Albertini
and de Mello (2007), Rusiecki (2012), Farid and Rahman (2012) and Krawczyk and Michal
(2013) create only one classifier in the offline phase, which will be update over the stream
incrementally. Techniques, found in Masud et al. (2010a), Masud et al. (2011a), Tan et al.

Table 2 Taxonomy of the algorithms for ND in DSs

Algorithm Offline phase

Number
of classes

Number
of classifiers

Learning task

1- ECSMiner More-than-one Ensemble Supervised

2- MCM More-than-one Ensemble Supervised

3- CLAM More-than-one Ensemble Supervised

4- MINAS More-than-one Single Supervised

5- OLINDDA One Single Unsupervised

6- DETECTNOD One Single Unsupervised

7- Tree for ND More-than-one Single Supervised

8- Ensemble Tree More-than-one Ensemble Supervised

9- HS-Trees One Ensemble Unsupervised

10- SONDE One Single Unsupervised

11- NN for ND One Single Unsupervised

12- Adaptive WOCSVM One Single Unsupervised

Algorithm Other aspects

Treat recurring
contexts

Treat outliers Evaluation measures

1- ECSMiner No Yes Fnew, Mnew, Err

2- MCM No Yes Fnew, Mnew, Err, AUC

3- CLAM Yes Yes Fnew, Mnew, Err

4- MINAS Yes Yes Confusion matrix not squared

5- OLINDDA No Yes Fnew, Mnew, Err

6- DETECTNOD No No Fnew, Mnew, Err

7- Tree for ND No No Fnew, Mnew, Err

8- Ensemble Tree No No Fnew, Mnew, Err

9- HS-Trees No No AUC

10- SONDE No No Precision, recall, f-measure

11- NN for ND No No 2D-plot (signal×ND result)

12- Adaptive WOCSVM No No Accuracy

123

244 E. R. Faria et al.

Table 2 continued

Algorithm Online phase

Classification Novelty detection

Classification with
unknown label
option

Number of
classifiers

Number of novel
classes

1- ECSMiner Yes Ensemble One

2- MCM Yes Ensemble More-than-one

3- CLAM Yes Ensemble One

4- MINAS Yes Single More-than-one

5- OLINDDA Yes Single One

6- DETECTNOD Yes Single One

7- Tree for ND No Single One

8- Ensemble tree Yes Ensemble One

9- HS-Trees No Ensemble One

10- SONDE No Single One

11- NN for ND No Single One

12- Adaptive WOCSVM No Single One

Algorithm

Decision model update

External feedback Number of
classifiers

Forgetting
mechanism

1- ECSMiner Yes Ensemble Yes

2- MCM Yes Ensemble Yes

3- CLAM Yes Ensemble Yes

4- MINAS No Single Yes

5- OLINDDA No Single No

6- DETECTNOD No Single No

7- Tree for ND Yes Single No

8- Ensemble tree Yes Ensemble Yes

9- HS-Trees No Ensemble Yes

10- SONDE No Single Yes

11- NN for ND Yes Single No

12- Adaptive WOCSVM Yes Single Yes

(2011), Al-Khateeb et al. (2012a), Al-Khateeb et al. (2012b) and Farid et al. (2013) are based
on an ensemble of classifiers. From these studies, Al-Khateeb et al. (2012a), Al-Khateeb
et al. (2012b) use an ensemble per class. In all these studies, a chunk of labeled examples is
used for the induction of each classifier.

5.1 Learning task

Although the labels of the training examples are known, several algorithms do not use this
information when building a decision model. They suppose that all examples from the training

123

Novelty detection in data streams 245

Fig. 2 Taxonomy used in the offline phase

set belong to the normal concept and they do not distinguish among their different classes.
For these algorithms, the learning task is unsupervised. In opposite, several algorithms use
supervised approaches in the building of the decision model, that is, they take into account the
labels of the training examples. Thus, the decision model can classify examples in different
known classes. These approaches are detailed next.

5.1.1 Normal concept composed by a set of classes

The techniques discussed in this section consider that the normal concept can be composed
by a set of classes. They use the label of the training examples for the induction of a deci-
sion model able to represent the known problem classes. These techniques follow distinct
approaches to induce the decision model.

MINAS (Faria et al. 2013a; de Faria et al. 2015b) associates a set of clusters to each one of
the problem classes. Each cluster is represented by a center, a radius and a label, that indicates
to each class it belongs. The training data set is divided into subsets, each one representing
one class from the data set. Algorithms like k−means (MacQueen 1967; Lloyd 1982) or
CluStream (Aggarwal 2013) are used to model each one of the problem classes by a set of
clusters. The decision model is composed by the union of the k clusters obtained for each
class.

CLAM (Al-Khateeb et al. 2012a) creates an ensemble of M classifiers for each problem
class. As a result, c ensembles are built, where c represents the number of known classes. Each
classifier in the ensemble is represented by a set of clusters, where each cluster is summarized
by its radius, center and number of elements. Each classifier is built from a different chunk
of data. Each chunk is divided into subsets, each one representing one of the classes present
in the chunk. For each class, a set of clusters is built, using the k−means algorithm.

MCM (Masud et al. 2010a) and ECSMiner (Masud et al. 2011a) use only one ensemble
to represent the known classes. While in Masud et al. (2010a), the ensemble is composed by

123

246 E. R. Faria et al.

M KNN classifiers, in Masud et al. (2011a), the ensemble is composed by M decision trees.
Each classifier is built using data from a chunk and consider all the classes present in this
chunk. The size of each chunk, as well as the number of ensembles M , are input parameters
defined by the user. In Masud et al. (2010a), each classifier is represented by k clusters,
obtained using the k−means algorithm. The summary of each cluster (centroid, radius and
frequencies of examples belonging to each class) is stored. In Masud et al. (2011a), after
inducing the decision tree, a clustering algorithm is applied to each leaf node of the tree, in
order to identify examples not explained by the current model (unknown). In Masud et al.
(2011a), the authors also propose to use an ensemble of KNN classifiers.

In Farid et al. (2013), an ensemble of three decision trees is proposed. The first step is
to initialize a weight for each example of the training set D, using the highest posterior
probability of a Naive Bayes classifier. The first tree is built using a data set, named Dnew

obtained from a selection and replacement technique in D. For the two other trees, the
examples with higher weights are selected, creating a new training set. The weight of the
examples is updated, according to their classification by the latest decision tree (correctly
classified or misclassified). Each leaf node of the tree is also clustered and has the percentage
its examples regarding the training set size calculated. A weight T is associated to the tree,
based on its classification accuracy rate to classify the examples of the original training set.
The work is an extension of Farid and Rahman (2012), which used only one decision tree.

5.1.2 Normal concept composed by one class

Several techniques do not use the class label of the examples to induce the decision model.
They assume that all training examples belong to one class, named normal class. Some of
these techniques are based on clustering algorithms or neural networks (NN).

OLINDDA (Spinosa et al. 2009) uses a clustering algorithm to create a set of clusters
to represent the normal concept, without distinction between different normal classes. The
clustering algorithm (e.g. k−means) produces a set of k clusters, which are represented
by their center and radius. In addition, a macro-hypersphere is created around the clusters
that compose the normal model, whose center is the centroid of the clusters and the radius
is the distance to the farthest center. This macro-hypersphere is used to separate novelty
from extensions in the online phase. Thus, the normal concept is composed by only one
class, represented by a set of clusters. DETECTNOD (Hayat and Hashemi 2010) also uses a
clustering algorithm to create a set of k clusters. However, afterwards, a clustering algorithm
is applied to each cluster, producing sub-clusters. By using interpolation, the number of
examples in each sub-cluster is set to the same value. In order to decrease the memory usage,
a Discrete Cosine Transform (DCT) is applied to the sub-clusters.

In Albertini and de Mello (2007), the authors proposed an unsupervised NN, named Self-
Organizing Novelty Detection (SONDE), to represent the normal class. Though the authors
do not propose its use for DS environments, SONDE can be easily used in DSs. SONDE
has three layers: input layer, which normalizes the data, competitive layer, where neurons
compete to provide an output to the normalized data, and the Best Matching Unit (BMU),
where the winner neuron is used to represent a new received pattern. Neurons are used to
represent the input data as well to detect novelties. Each neuron is represented by a centroid,
an average radius, and a similarity degree to recognize new examples. Similar input data are
assigned to the same neuron. The examples used in its training represent the normal concept.

In Rusiecki (2012), two autoregressive feedforward NN induce the decision model. The
first NN is trained with a robust learning algorithm, which tries to minimize the error by
decreasing the influence of outliers in the training set. The second uses the traditional back-

123

Novelty detection in data streams 247

propagation algorithm to minimize the least squares error. A time window of a predefined
length which moves in discrete periods is used to represent the recent data. The training set,
whose size is the window length, is used to train the NNs.

In Krawczyk and Michal (2013), the authors use a technique based on SVMs (Vap-
nik 1998), named Weighted One-Class Support Vector Machine (WOCSVM) (Bicego and
Figueiredo 2009) to represent the normal class. Based on One-Class Support Vector Machine
(OCSVM) (Schölkopf et al. 2001), an adaptation of SVMs to one-class classification,
WOCSVM adds one weight value to each example from the training set. The weights are used
to minimize the hypersphere volume and still encompass all the training data. In the training
phase, the first chunk is used to induce a WOCSVM classifier. The minimization function
is presented in Eq. 1, subject to the constraint given by Eq. 2, and the weight associated to
each example in Eq. 3. In these Equations, C represents the center of the hypersphere, R is
its radius, wi (0 ≤ wi ≤ 1) and ξi (ξi ≥ 0) are the weight and slack variable respectively,
associated to the i th example, N is the number of examples, O is a parameter that controls
the optimization process (larger O , less outliers), and δ is a parameter that, when larger then
0, avoids the division by 0 in Eq. 3.

Θ(C, R) = R2 + O

N∑

i=1

wiξi (1)

∀1≤i≤N : ‖xi − C‖2 ≤ R2 + ξi (2)

wi =
|xi − xmean |

R + δ
(3)

In Tan et al. (2011), an ensemble of Half-Space-Trees (HS-Tree) (Ting et al. 2009) is used
to represent the normal class. HS-Trees are binary trees that are induced without using the
training examples, but using the data space dimensions. Each node of the HS-Tree contains
the number of examples (mass) that reaches this node in the reference chunk (mass r) and in
the latest chunk (mass l). After building the M first HS-Tree, the system uses the first chunk
of examples to update the mass r of each tree. For this, each example descends each one of
the M HS-Trees, updating the mass r in its corresponding node.

6 Online phase

In the online phase, new unlabeled data arrive continuously (in general in high speed). In this
phase three tasks are executed, classification of new examples, detection of novelty patterns,
and adaptation of the decision model. Figure 3 shows an overview of the tasks performed in
this phase.

6.1 Classification

The classification task verifies if a new example can be explained by the current decision
model. Figure 4 summarizes the taxonomy used in this task.

Some approaches, like Albertini and de Mello (2007), Krawczyk and Michal (2013), Tan
et al. (2011), Farid and Rahman (2012) and Rusiecki (2012), classify every new example as
either normal, if explained by the current decision model, or novelty (anomalous or abnormal),
if not explained. In these approaches, a novelty is detected by the presence of a single new
example not explained by the current model. Other approaches (Faria et al. 2013a; de Faria
et al. 2015b; Spinosa et al. 2009; Hayat and Hashemi 2010; Farid et al. 2013; Masud et al.

123

248 E. R. Faria et al.

Fig. 3 Tasks performed in the online phase a classification, b detection of novelty patterns without unknown

label option, c detection of novelty patterns with unknown label option, d decision model update with feedback
e, decision model update without feedback

Fig. 4 Taxonomy used in the classification task

123

Novelty detection in data streams 249

2010a, 2011a; Al-Khateeb et al. 2012a) do not immediately classify every new example,
but, instead, assign an unknown profile to those not explained by the current decision model.
These examples are placed in a short-term memory for future analysis and can be later used
to model novelty patterns. In these approaches, a novelty pattern is composed by a set of
cohesive and representative set of examples not explained by the current model. In Faria et al.
(2013a), de Faria et al. (2015b), Spinosa et al. (2009) and Hayat and Hashemi (2010) the
unknown examples are also used to model extensions of the known concepts.

Additionally, two different approaches have been used to classify new examples, based
on a single classifier and based on an ensemble of classifiers.

6.1.1 Single classifier

The techniques from (Faria et al. 2013a; de Faria et al. 2015b; Spinosa et al. 2009; Hayat
and Hashemi 2010) use a decision model represented by a set of clusters and allow the
classification with unknown label option. In Spinosa et al. (2009), for the classification of a
new example, the distance between the new example and one of the clusters is measured. If
the distance is smaller than the radius of the cluster, the example is explained by the decision
model. Otherwise, it is marked as unknown. In this case, as the decision model is composed
by the normal, extension and novelty submodels, each one of these submodels is checked.
The example is assigned to the class associated with the submodel of the cluster it falls within,
allowing three possibles classifications: normal, extension or novelty. In Hayat and Hashemi
(2010), the closest sub-cluster of the normal model is selected to classify a new example
and a unknown score is computed. This score represents the difference between the DCT
representation of the sub-cluster before and after the inclusion of the new example. If this
score is above a threshold, the example is labeled as unknown. In Faria et al. (2013a) and
de Faria et al. (2015b), there is only one decision model, without submodels, composed by
the clusters learned offline and online. The closest cluster is used to classify a new example,
which receives the label associated with the cluster. In this case, in the online phase, a new
example is classified either in one of the classes learned in the offline phase, which can be
extended in the online phase

Two studies, Albertini and de Mello (2007) and Rusiecki (2012), propose the use of a
single classifier based on NNs, without the unknown label option. In Albertini and de Mello
(2007), classifying a new example means finding the neuron that best represent this example.
For such, the distance between the new example and each neuron is measured and later used
in the definition of the activation value of the neuron. The neuron with the highest activation
value is chosen to classify the example. However, this neuron has to present a minimum
similarity degree. Otherwise, it cannot be used to explain this new example, indicating the
presence of a novelty. In Rusiecki (2012), a new example is submitted to two NN. If the
difference between the results produced by these two NN is smaller than a threshold, the
example is classified as belonging to the normal concept. Otherwise, it is labeled as novelty.

In Krawczyk and Michal (2013), a single classifier is also used, without the unknown

label option. In the work, the classification of a new example during the online phase checks
whether it falls within a hypersphere, created in the offline phase by using a single SVM
classifier. If it is true, the new object is labeled as belonging to normal concept.

In another study, (Farid and Rahman 2012), a decision tree is used to classify new examples
from a stream, without considering the unknown label option. When a new example reaches
a leaf node, the percentage of examples classified by this leaf node is updated. An increase
in this value may be an indicative of a novel class.

123

250 E. R. Faria et al.

6.1.2 Ensemble of classifiers

In the approaches that use an ensemble of classifiers, each classifier corresponds to one-vote
and the final decision is made by a rule that combines the outputs of multiple classifiers
(Menahem et al. 2013). Some of the rules found in the literature are majority voting, mean
vote, mean weighted vote, max rule, etc. (Menahem et al. 2013; Tax et al. 2001; Juszczak
and Duin 2004).

In Masud et al. (2011a), Masud et al. (2010a), Al-Khateeb et al. (2012a) and Farid et al.
(2013), an ensemble is used to classify a new example using the unknown label option. In
Masud et al. (2011a) and Farid et al. (2013), the first task is to verify whether the example
is unknown by using an ensemble of decision trees. If the example is outside all the clusters
present in the leaf node reached, for all classifiers in the ensemble, it is labeled as unknown.
Otherwise, it is classified using the majority vote of the ensemble. The authors also propose
to use an ensemble of KNN classifiers. In this variation, to classify a new example, it is
initially necessary to verify whether it should be marked as unknown. This occurs when
the example is outside the radius of its closest cluster for all classifiers of the ensemble.
Otherwise, it receives the label with the highest frequency in the closest cluster. However,
the final decision is given by the majority vote of the classifiers in the ensemble.

A similar approach is used in Masud et al. (2010a). However, a slack space is created
for each cluster, where a cluster is represented by a hypersphere (center and radius). If an
example is outside the radius of the hypersphere, but inside the slack space, it is considered
as belonging to this hypersphere. The slack space is defined by a threshold set by the user.

Another technique that uses an ensemble of classifiers, named CLAM (Al-Khateeb et al.
2012a), employs one ensemble of classifiers per class, where each classifier is represented
by a set of clusters. When CLAM receives a new example, each ensemble verifies if the
example is unknown. An example is considered unknown by an ensemble if it is outside the
decision boundary of the majority of its classifiers. A new example is labelled as unknown if
all ensembles considered it unknown. Otherwise, the example is classified in one of the known
classes. For such, for each ensemble, the distances between the example and the clusters that
compose each classifier in the ensemble are measured. The example is classified in the class
of the ensemble with the minimum distance.

In Tan et al. (2011), an ensemble of HS-Trees without the unknown label option is used.
When a new example needs to be classified, it is assigned by each one of the t HS-Trees to a
leaf node and a score is computed for each tree, using the mass r (an information computed
in the training phase for each node). The sum of the scores of a new example, obtained for
each tree, defines an anomaly score, which is used to decide if a new example is anomalous
or not.

6.2 Detection of novelty patterns

In general, this task uses unlabeled examples not explained by the current decision model to
identify novelty patterns. In anomaly detection systems, the presence of only one example
not explained by the current model is sufficient to identify an anomaly behavior. However,
several approaches consider that a novelty is composed by a set of cohesive and representative
examples not explained by the model. The taxonomy adopted in this task can be seen in Fig. 5.

Most of the approaches from the literature (Masud et al. 2011a; Al-Khateeb et al. 2012a;
Farid and Rahman 2012; Farid et al. 2013; Albertini and de Mello 2007; Rusiecki 2012; Tan
et al. 2011; Krawczyk and Michal 2013) considers the novelty concept to be composed by
only one class. In this case, an example, or a set of examples, not explained by the current

123

Novelty detection in data streams 251

Fig. 5 Taxonomy used in the detection of novelty patterns

decision model are classified as novelty. Differently, Masud et al. (2010a); and de Faria et al.
(2015b) consider that different novel classes, composed by one or more novelty patterns,
may appear over time. Thus, the different novelty patterns should be distinguished when they
appear. As a result, it is not sufficient to classify a new example only as novelty, but it must
be labeled with the novelty pattern to which it belongs.

Several approaches have been proposed to identify novelty patterns from unlabeled exam-
ples. Some of them use clustering algorithms to find groups of similar examples in order to
identify novelties. In OLINDDA (Spinosa et al. 2009), every time a new example is labelled as
unknown, the k−means algorithm is executed, producing k clusters. Each cluster is checked
in order to verify if it is valid. Otherwise, it is discarded. A cluster is considered valid if it
is cohesive and representative. Cohesiveness evaluates the degree of similarity between the
examples in a cluster. Representativeness establishes a minimum number of examples in a
valid cluster. Threshold values are used to eliminate clusters that are not representative (user
threshold) and cohesive (threshold based in the normal model). When a new valid cluster
is identified, it is verified if it represents a novelty or an extension of the normal model.
If the centroid of the new valid cluster is inside the macro-hypersphere, created using the
clusters of the normal class, it is considered an extension of the normal concept. Otherwise it
is considered a novelty. Thus, the novelty concept is composed by a set of clusters, but there
is no distinction between different novelty patterns.

DETECTNOD (Hayat and Hashemi 2010) applies a clustering algorithm to the unknown

data. When deciding between a extension or a novelty, DETECTNOD uses the distance
between the new cluster and its nearest sub-cluster in the normal model. If this distance is
lower than a threshold, the new cluster is considered an extension, otherwise it is considered
a novelty. The novelty concept is also composed by a set of clusters, but there is no distinction
between different novelty patterns.

The MINAS (Faria et al. 2013a, de Faria et al. 2015b) algorithm also groups unknown

examples by using a clustering algorithm. Like OLINDDA, MINAS eliminates invalid clus-
ters. When a new cluster is created, it is evaluated to decide if it represents a novelty pattern
or an extension of the known classes. If the distance between the centroid of a new cluster and
the centroid of its nearest cluster is less than a threshold, the new valid cluster is considered
an extension of a known concept, and its label is the label of its nearest cluster. Otherwise,
it is considered a novelty pattern and a sequential label is associated to it (N1, N2, N3,
…). Thus, a novelty pattern can be composed by one or more clusters and different novelty
patterns can be detected over the stream.

After clustering the examples in a short-term memory, ECSMiner (Masud et al. 2011a)
calculates a clustering validation internal measure, named q-NSC measure, for each cluster
in each classifier of the ensemble (see Eq. 4). This measure is a combination of cohesion and
separation and produce values in the range [−1,+1]. In this Equation, Dcout ,q(x) is the mean
distance from an unknown example x to λcout ,q(x), λcout ,q(x) is the set of q-nearest neighbors
of x regarding the unknown example, and Dcmin ,q(x) is the minimum among all Dc,q(x),

123

252 E. R. Faria et al.

where c is an existing class. A positive value indicates that the unknown examples are more
cohesive and more distant from the existing classes. If the number of clusters in a classifier
with positive q-NSC value is larger than a threshold, the classifier votes for the detection
of a new class. If all classifiers vote for the detection of a new class, a novelty is identified.
For each chunk, if more than two novel classes appear simultaneously, they are considered
only one novelty. CLAM (Al-Khateeb et al. 2012a) uses a similar procedure to ND, based on
the q-NSC measure. CLAM, like ECSMiner, does not distinguish between different novel
patterns in the same chunk.

q − N SC(x) =
Dcmin ,q(x) − Dcout ,q(x)

max(Dcmin ,q(x), Dcout ,q(x))
(4)

Another technique that uses the q-NSC metric is MCM (Masud et al. 2010a). For each
example marked as unknown, MCM calculates its Gini Coefficient, whose value to separate
the examples that represent a concept evolution from the noisy or concept-drift examples.
If the Gini Coefficient is higher than a threshold, the example represents a concept evolu-
tion. Next, the q-NSC is computed for each example (see Eq. 4). If the q-NSC value for
an unknown example is negative, the example is removed. Afterwards, the Nscore mea-
sure (see Eq. 6) is calculated for each example that has a positive value for q-NSC. In this
Equation, r is the radius of the closest cluster to the example, d is the distance between
the example and the center of the closest cluster and minweight is the minimum weight
among all the unknown examples with positive q-NSC. A larger value of Nscore indi-
cates a higher probability for the example to be considered a novelty. At the end, the
Nscore(x) is discretized in n intervals, a cumulative distribution function is computed (CDF),
and the discrete Gini Coefficient is computed. If the Gini Coefficient value is larger than
n−1
3n

, a novel class is detected. MCM distinguish different novel classes by computing the
connected components of a graph, built from the clusters of the examples marked as nov-
elty.

weight (x) = er−d (5)

Nscore(x) =
1 − weight (x)

1 − minweight
q − N SC(x) (6)

Anomaly detection systems were proposed in Albertini and de Mello (2007), Rusiecki
(2012), Farid and Rahman (2012), Farid et al. (2013), Tan et al. (2011) and Krawczyk and
Michal (2013). In these systems, the presence of only one unknown example indicates an
anomaly behavior. Although most of these studies use the term novelty detection to define
this anomalous behavior, we believe that a more adequate definition for this task is anomaly
detection. We believe that a novelty should be composed by a cohesive and representative
set of examples not explained by the current model.

In Albertini and de Mello (2007), when no neuron is able to classify a new example a new
neuron is created, indicating that a novelty was detected. The centroid of the new neuron
centroid is equal to the attribute vector of the new example, the minimum similarity degree
is set to a predefined value α, and the radius is set to − ln (α).

In Rusiecki (2012), when the difference between the results produced by the two NNs for
a new example is larger than a given threshold value T , a novelty is detected. In order to find
the best value for this threshold, an approach based in the standard deviation of differences
between NN outputs is employed, see Eq. 7. In this Equation, ymse(xi) is the output of the
traditional neural network and ymls(xi) is the output of the robust network for the i th example,
where k is a constant defined by the user.

123

Novelty detection in data streams 253

T = k ∗ Std(|ymse(xi) − ymls(xi)|) (7)

The works from Farid and Rahman (2012), Farid et al. (2013), Tan et al. (2011) use a
decision tree structure to detect novelties. In Farid and Rahman (2012), the proposed ND
algorithm checks if the addition of a new example in a leaf node increases a percentage p

(proportion of examples in the leaf node considering the number of examples in the training
set) already computed. An increase indicates the presence of a novel class. If this new example
is outside all the clusters of this leaf, it belongs to a novel class arrived. In Farid et al. (2013),
if a new example does not belong to any of the clusters in its corresponding leaf, it is placed
in a short-term memory and a novel-flag is set to 1. If the number of examples classified by a
leaf node increases or decreases (in comparison with the previous calculated value) and the
novel-flag value is 1, the example belongs to a novel class.

In Tan et al. (2011), an accumulated score is computed for each new example (described
in Sect. 6.1). If this value is higher than a threshold, the example is considered anomalous.
In Krawczyk and Michal (2013), if a new example is labeled as not belonging to the normal
concept, it is considered an anomalous example.

6.3 Update of the decision model

Algorithms for ND in DSs should update their decision model continuously, in order to
address concept drift and concept evolution. Figure 6 shows three aspects to be considered
in this phase:

– Type of update, which can be carried out with or without feedback;
– Number of classifiers;
– Use of forgetting mechanisms to remove outdated concepts.

The use of single classifiers (Faria et al. 2013a; de Faria et al. 2015b; Spinosa et al. 2009;
Albertini and de Mello 2007; Hayat and Hashemi 2010; Farid and Rahman 2012; Rusiecki
2012; Krawczyk and Michal 2013) in contrast to an ensemble of classifiers (Farid et al. 2013;
Masud et al. 2010a, 2011a; Al-Khateeb et al. 2012a; Tan et al. 2011) affects the update of

Fig. 6 Taxonomy used in the decision model update task

123

254 E. R. Faria et al.

the decision model. While single classifiers usually are induced by incremental algorithms,
for ensembles, whenever a new classifier is trained, an old, outdated classifier is usually
removed.

The use of external feedback in the update of the decision model is also an important
aspect to be considered. Techniques that use feedback assume that the true label of all the
examples will be available after a delay. Besides, there are techniques that ask the user the
label of a subset of the examples, the important examples, in the stream (active learning).
In contrast, in techniques that do not use feedback, the decision model is updated without
information about the true label of the examples. It is important to observe that obtain the true
label of all examples is a time consuming and expensive task, and in several real problems
can be impracticable.

6.3.1 Number of classifiers and external feedback

Single classifiers without external feedback: In some algorithms, like Faria et al. (2013a),
de Faria et al. (2015b), Spinosa et al. (2009), Hayat and Hashemi (2010) and Albertini and
de Mello (2007) the decision model is composed by a single classifier, which is updated
incrementally. These algorithm do not use feedback to update their decision model.

In MINAS (Faria et al. 2013a; de Faria et al. 2015b), whenever a new valid cluster is
obtained using the unknown examples, it is labeled as either a novelty pattern or an extension.
In both cases, this new cluster is included in the current decision model and used to classify
new examples. In Spinosa et al. (2009), the new valid cluster is also included in the decision
model, however there is one decision model to represent the normal concept, one to the
extension concept and one to the novelty concept. In Hayat and Hashemi (2010), the normal
model is updated with the clusters that represents a drift. The strategy followed replaces an
old cluster by a new one. In Albertini and de Mello (2007), when a new example is classified
by a neuron, it is considered to represent this example, updating its radius and centroid. When
none of the existing neurons can explain a new example, a new neuron is created.

Single classifiers with external feedback: The works proposed in Farid and Rahman (2012),
Krawczyk and Michal (2013) and Rusiecki (2012) also use only a single classifier, however
they are updated with feedback information. In Farid and Rahman (2012), a new example
is considered a novelty when none of the clusters present in the leaf node reached by the
example can explain it. In this case, the example is added to the training data set and the
decision model is updated. In Krawczyk and Michal (2013), the authors propose a single
classifier based on SVMs. A passive incremental learning technique is used to update the
decision model. This technique adds every new example to the training data with an associate
weight. Two approaches are proposed to calculate the weight for each example. The first uses
the Eq. 3, the second assigns the highest weight values to the most recent examples. As a
result, all examples in the latest chunk have their weight set to 1. In Rusiecki (2012), the
authors argues that update the network every time a new example arrives is computationally
expensive. According to him, a better approach is to train a network only once for a given
period of time. Training examples are accumulated until a given size is achieved, determined
by a parameter named window length. Next, the network weights are updated by using these
examples. Another parameter defines the distance between two time windows, since not all
examples are used for the training.

Ensemble of classifiers with external feedback: Some works that use an ensemble of classi-
fiers are Masud et al. (2010a), Masud et al. (2011a), Al-Khateeb et al. (2012a), Farid et al.

123

Novelty detection in data streams 255

(2013) and Tan et al. (2011). Most of them assume that, after a delay, the true label for all
examples is available. Thus, from time to time, they update offline their decision model.
These algorithms are able to address concept drift and incorporate new classes to the deci-
sion model using the feedback information. However, if the true label of the examples is not
available or the delay takes a long time, these algorithms have their performance decreased.

In Masud et al. (2010a) and Masud et al. (2011a) in order to handle concept drift, the
ensemble is continuously updated, by substituting in the ensemble the model with the high-
est classification error by a new model. In Farid et al. (2013), each decision tree in the
ensemble has an associated weight. A small weight value is associated with a low accuracy
classifier, which can be replaced by a new one. The ensemble of the classifiers is updated,
if a new decision tree has a weight higher than every other decision trees in the ensem-
ble. In Al-Khateeb et al. (2012a), whenever a new micro-classifier is trained, it replaces
one of the micro-classifiers from its corresponding ensemble. The micro-classifiers with the
highest prediction error, considering the corresponding subset in the last training chunk, is
removed.

Finally, some ensemble approaches assume that the labeled examples are limited, once
to label all the examples is very time consuming. In Masud et al. (2010b), after classify
each example from a chunk in one of the known classes or as novelty, it selects a set of
examples weakly classified to be labeled by a specialist. These examples are placed in a
buffer of training examples. When there is a sufficient number of examples in this buffer, a
new learning supervised phase updates the current classification model.

Ensemble of classifiers without external feedback: In the ensemble of classifiers used in Tan
et al. (2011), a classifier can be updated, but there is no replacement of classifiers in the
ensemble. In addition, the tree structure is not modified during the update, only the attributes
mass l and r are updated. Thus, the external feedback is not used to update the ensemble of
classifiers.

6.3.2 Forgetting mechanism

In addition to the update of the decision model, some works use a mechanism to forget
previous, outdated, concepts. The approaches based in an ensemble, identify and remove
these concepts every time a new classifier is trained, replacing an old model. In approaches
that use a single classifier, a specific mechanisms for such is included.

The approach adopted by MINAS (Faria et al. 2013a; de Faria et al. 2015b) to forget
previous concepts, actually previous clusters, is based on the assumptions that clusters that
not received new examples for a long time should be removed. If a cluster does not receive a
new example for a long period, it goes to a sleep memory. In Albertini and de Mello (2007), as
known concepts can change, neurons adapt, forgetting past information. When the neuron is
updated due to its use to classify a new example, its centroid and radius are updated following
the exponential weighted moving averages (EWMA), which uses parameters that define the
influence of the old examples in the current behavior of the stream.

In Krawczyk and Michal (2013), an incremental forgetting reduces the weights of the
examples from the previous chunk. After reading some chunks, old examples have their
weight set to 0 and are removed from the training data, assuming that they are not important
in the current stream. Two approaches are proposed to calculate the weight of the exam-
ples from the previous chunks. The first decreases the weight values gradually, taking into
account their initial importance. Thus, objects with different initial weights will be removed
in different timestamps. The second uses an aligned decrease that does not consider the initial

123

256 E. R. Faria et al.

importance of the weights. Thus, all the objects in the same chunk will be removed at the
same timestamp.

7 Other relevant aspects of the novelty detection algorithms

In this section, we discuss some aspects of ND that, although important for this task, are
addressed only by few studies. The first aspect is the detection of recurring contexts, which
can lead to high false positive rates when a recurring class is confused with the emergence of
a new class. The second is the treatment of noise and outliers, which can be confused with
concept drift or concept evolution. Finally, the adaptation of classical classification measures
and the design of new evaluation measures for ND in DS scenarios.

7.1 Detection of recurring contexts in novelty detection

Recurring contexts are an important phenomenon observed in many real world applications,
like climate change, electricity demand, buyer habits and detection of new topic in a text.
In these applications, the class definitions may change when previous situations recur, in
periodic or random way, after some period of time (Elwell and Polikar 2011). According to
Katakis et al. (2010), recurring contexts are a special type of concept drift where concepts
that appeared in the past may recur in the future.

In domains where concepts reappear, it would be a waste of effort to relearn an old concept
from scratch for each recurrence (Widmer and Kubat 1996). Even in anomaly detection
scenarios, the treatment of recurrence contexts is an important issue (Srivastava 2006). In
recurring contexts, instead of forgetting outdated concepts, these concepts should be saved
and reexamined at some later time when they can improve the prediction performance in a
cost-effective way.

For Masud et al. (2011b) and Al-Khateeb et al. (2012a), a recurring class is a special case
of concept-evolution where a class appears in the stream, then disappears for a long time,
and appears again. A common error committed by systems that do not address recurring
classes is to treat them as a novelty. According to Katakis et al. (2010), this strategy creates
undesirable effects, like the increase in the false alarm rate, in the human effort in analyzing
the false alarms, additional computational efforts in executing a ND task and in learning a
new class that was already learned.

Although the phenomenon of reappearing concepts is very common in real world prob-
lems, only few stream-based classification methodologies take it into account (Katakis et al.
2010). In the context of ND in DSs, these problems are addressed by Masud et al. (2011b),
Al-Khateeb et al. (2012a), Faria et al. (2013a), de Faria et al. (2015b) and Katakis et al.
(2010).

In Masud et al. (2011b), a chunk based approach is proposed to classify new examples
in the recurring class context. For such, an ensemble of M classifiers is used to classify
new examples and an auxiliary ensemble of size M A detects recurring classes. When a new
example arrives, if it is not labelled as unknown by the first ensemble, it is assigned by this
ensemble to a known class. If the example is considered unknown (i.e. not explained by the
first ensemble), the auxiliary ensemble is consulted. If the auxiliary ensemble can explain the
example, it is classified by this second ensemble in a recurring class. Otherwise, the example
is stored in a buffer and can be later evaluated in a ND task.

According to Al-Khateeb et al. (2012a) chunk-based techniques for ND cannot detect
recurrent classes. This happens because if a class disappears for a long time, the ensemble

123

Novelty detection in data streams 257

discards all models trained with examples from this class. Thus, when examples of this class
reappear, none of the models in the ensemble can classify them, and probably these examples
will be identified as novelty patterns.

In order to address this problem, in Al-Khateeb et al. (2012a), the authors propose a
new ensemble technique, named class-based ensemble, to classify examples in scenarios
involving recurring classes and thus overcome the drawbacks of the chunk based approach.
The authors propose the use of c ensembles, one per class, each ensemble is composed by
M micro-classifiers (models). If c is the number of classes seen so far in the stream, there
are c ensembles. Whenever a new model is trained, it replaces an old model. However, if a
class disappears with time, its corresponding ensemble is not deleted. In this case, a class
is always considered active, i.e., it never disappears. By doing so, this technique identifies
recurring classes as existing classes.

Another algorithm able to deal with ND in DS multiclass classification with recurring
contexts is proposed in Faria et al. (2013a) and de Faria et al. (2015b). It represents each
problem class by a set of clusters. The clusters that not classify new examples for a long
period of time are put in a sleep memory, indicating that the concept, which they represent,
disappeared during a time period. However, when new valid clusters are detected from exam-
ples not explained by the current model, these clusters are assigned to one of three categories:
novel concept, extension of a known concept, or recurrence of a concept. The last category
occurs when the new cluster is close to a cluster in the sleep memory.

A ND application to email filtering using ensemble of classifiers able to deal with recurring
contexts is found in Katakis et al. (2010). In the work, the stream is divided into batches of
examples. Each batch is used by a transformation function to produce a new conceptual
representation model, named conceptual vector. Conceptual vectors describe the concepts
present in a particular batch of examples. If two batches are conceptually similar, their
conceptual vectors are close. A clustering algorithm groups batches of examples, represented
by conceptual vectors, into concepts, which allows the identification of recurring contexts.
For every concept detected by the algorithm over the stream, an incremental classifier is
created and added to the ensemble. For each cluster, there is an associated classifier. Thus,
new examples are always classified using the classifier that corresponds to the cluster of the
previous conceptual vector.

7.2 Treatment of outliers

Outliers are data that are isolated, sparse and not present in a representative number (Spinosa
et al. 2009). Outlier detection techniques look for examples not following the normal behavior,
which may represent undesired patterns. ND algorithms, on the other hand, look for a cohesive
and representative set of examples that describe a new emergent concept. ND techniques must
address an important issue, the treatment of noise or outliers examples, which can be confused
with the appearing of a new concept or a change in the known concepts. According to Rusiecki
(2012), outlier detection is more complex in DSs, once they may be noise, which needs to
be removed from the data, or produced by a concept drift, representing important changes in
the system behavior. Some algorithms address this issue by developing specific techniques
to identify noise or outliers.

An approach used by techniques like OLINDDA (Spinosa et al. 2009), ECSMiner (Masud
et al. 2011a), MCM (Masud et al. 2010a) and MINAS (Faria et al. 2013a; de Faria et al. 2015b)
is to store the examples that are not explained the current model into a temporary memory and
label them as unknown. The unknown examples are later analyzed to decide if they represent
a noise or outlier or a novelty pattern.

123

258 E. R. Faria et al.

In OLINDDA (Spinosa et al. 2009), a clustering algorithm is applied to the unknown

examples. The clusters obtained are evaluated to decide if they represent novelty patterns.
Each cluster has its representativeness and cohesiveness evaluated by validation criterion.
Clusters with a low evaluation, named invalid clusters, are removed. However their examples
stay in the temporary memory, which has a limited capacity. If a new example must be stored
but there is no space available, the oldest example is removed. The removed examples have
not been used lately. There is a high chance that these examples are noise or outliers. MINAS
(Faria et al. 2013a; de Faria et al. 2015b) uses a similar strategy to eliminate noise or outliers.
Clusters that are neither cohesive nor representative are removed from the temporary memory.

ECSminer (Masud et al. 2011a), MCM (Masud et al. 2010a) and CLAM (Al-Khateeb
et al. 2012a) also applies a clustering algorithm to the unknown examples and use the clusters
obtained to identify novelty patterns. For each cluster, a q-NSC measure, a combination of
cohesion and separation, is computed. If the number of clusters with positive q-NSC value
is greater than a threshold, its associated classifier vote for the detection of a new class. If
all classifiers votes for the detection of a new class, a novelty is identified. Otherwise, the
examples probably represent either noise or outliers or drifts in the known concepts.

7.3 Evaluation in novelty detection

Although several algorithms have been proposed to deal with ND in DS scenarios, little
attention has been devoted to the evaluation of their predictive performance.

7.3.1 Experimental methodology

In batch scenarios, the evaluation procedure uses well-known methodologies, like fold-cross-
validation, leave-one-out and bootstrap, among others. In DS scenarios, these methodologies
must be adapted or new methodologies must be developed. Conventional batch sampling
methodologies, like cross-validation, are not applicable to DSs due to the constraints present
in this scenario, such as data potentially infinite and non-stationary data distribution (Gama
et al. 2013).

For DS classification tasks, two sampling methods have been often used: holdout and
prequential (predictive sequential) (Dawid 1984). In the holdout method, the data are divided
into training and test sets. The decision model induced by the training set is applied to the
test set at regular time intervals. In the prequential method, the induced decision model is
applied to each example from the stream. The error rate is computed by the accumulated sum
of a loss function between the prediction and true values.

Most of the studies found in the literature for ND in DSs do not discuss the experimental
methodology used. Some of these studies use the same methodologies used in batch scenarios,
which we believe are not direct applied to DSs, while others create new ad-hoc methodologies,
but do not discussed their motivations.

In OLINDDA (Spinosa et al. 2009), the authors use 10-fold-cross-validation. The folds
used for training are composed by examples from only one class, the normal class. The test
set is composed by examples from the novel classes plus the remaining examples from the
normal class. DETECTNOD (Hayat and Hashemi 2010) uses a similar method.

In ECSMiner (Masud et al. 2011a), MCM (Masud et al. 2010a) and CLAM (Al-Khateeb
et al. 2012a), the training set for the offline phase is composed by the first ini t windows of
data. The remaining elements are used in the online phase. MINAS (Faria et al. 2013a, de
Faria et al. 2015b) employs the first p elements of the stream for the offline training, and

123

Novelty detection in data streams 259

the remaining for test. In these four studies, all examples from the test set are used in the
computation of the evaluation measures.

7.3.2 Evaluation measures

A few studies employ classical classification measures to evaluate the predictive performance
of the investigated classifiers. In Tan et al. (2011), e.g., the Area Under Curve (AUC) measure
is used. The instances of the test set are ranked according to their anomaly score. The AUC
measure is calculated by using this score and the ground truth. In Krawczyk and Michal
(2013), the authors use the accuracy measure, but it is not clear how this measure is computed
in the ND context.

In Albertini and de Mello (2007), the evaluation measures precision, recall, and f-measure
are used. In the ND context, these measures are calculated according to Eqs. 8, 9, and 10.
In the first two equations, T Nov is the number of true detected novelties, DNov is the total
number of examples detected as novelty and Nc is the total number of examples from the
novel classes in the stream.

Precision =
T Nov

DNov
(8)

Recall =
T Nov

Nc
(9)

F Measure = 2 ∗
precision × recall

precision + recall
(10)

The experiments in Spinosa et al. (2009), Hayat and Hashemi (2010), Masud et al. (2010a),
Masud et al. (2011a), Farid et al. (2013), Al-Khateeb et al. (2012a), Al-Khateeb et al. (2012b),
Faria et al. (2013a) and de Faria et al. (2015b) use evaluation measures specifically developed
for the ND task. However, these measures are more adequate to static scenarios and contexts
where ND is considered a one-class classification task. Besides, these measures cannot use
the unknown label option in the evaluation of classifiers.

The works proposed by Spinosa et al. (2009) and Hayat and Hashemi (2010) treat ND
as one-class classification task and use binary classification evaluation measures. Measures
like percentage of novel class examples misclassified in the normal class (Mnew) and the
percentage of normal class examples wrongly labeled as belonging to the novelty or extension
classes (Fnew), defined by the Eqs. 11 and 12, are used. In these equations, F P is the
total number of elements from the normal class wrongly classified as novelty, extension or
unknown, F N is the total number of examples from the novel classes classified in the normal
classes, Nc is the total number of examples from the novel classes in the stream, and N is
the total number of examples in the stream. Another measure commonly used is the percent
of total misclassification, see Eq. 13. This measure includes, besides F P and F N , the F E ,
which is the total number of existing class examples misclassified (other than F P).

Mnew =
FN ∗ 100

Nc
(11)

Fnew =
FP ∗ 100

N − Nc
(12)

Err =
(FP + FN + FE) ∗ 100

N
(13)

In Masud et al. (2010a), Masud et al. (2011a), Farid et al. (2013), Al-Khateeb et al. (2012a)
and Al-Khateeb et al. (2012b), although ND is treated as a multiclass classification task, binary

123

260 E. R. Faria et al.

evaluation measures are used. Binary classification measures are not able to properly evaluate
scenarios where the novelty concept is multiclass. In these scenarios, it is not sufficient to
classify an example from a novel class as novelty. An error should also computed when
examples from different novel classes are classified in the same novelty pattern.

The experiments in Rusiecki (2012) use only artificial, 2D data sets and the classifier
is evaluated without the use of evaluation measures. Instead, the authors propose the use
of a 2D-graphic with two curves, one representing the signal (the data set) and the other
representing the results from the ND task (the timestamps where a novelty was detected).

As another limitation, most of the algorithms for ND found in the literature initially
classify the examples not explained by the current model as unknown. Later, they can label
these examples as novelties. Thus, an important issue to be addressed is how to incorporate
these unknown examples in the evaluation measures. A similar situation is seen in classifiers
with the rejection option (Pillai et al. 2011; Nadeem et al. 2010; Marrocco et al. 2007; Tax
and Duin 2008). In these classifiers, an example is rejected if its true class cannot be reliably
predicted (Nadeem et al. 2010). It is considered to be better to reject an example than to
misclassify it. For these situations, the accuracy and error rate could be calculated regarding
either all the examples or only the examples accepted by the classifier.

Regarding the evaluation of ND by unsupervised methods, Faria et al. (2013b) and de
Faria et al. (2015a) proposes an evaluation methodology for multiclass ND in DSs. The
methodology proposed in Faria et al. (2013b) and de Faria et al. (2015a) is able to associate
novelty patterns with problem classes and after that apply multiclass evaluation measures.
Also, this methodology proposes to compute a measure to evaluate the unknown examples,
separately from the other examples.

In Faria et al. (2013a) and de Faria et al. (2015b), the authors proposed that the con-
fusion matrix (see Fig. 7) for ND should not be square. They argued that a new column
should be added to the matrix whenever a new novelty pattern is discovered. Each row of
this confusion matrix represents one of the problem classes (known and novel classes) and
each column represents one of the classes predicted by the ND algorithm. The columns
Cknw1 , Cknw2 , . . . , CknwL

correspond to the classes learned during the offline phase, the
columns N1, N2, . . . correspond to the novelty patterns learned in the online phase and the
last column is the unknown (Unk) label. For unsupervised algorithms, the novelty patterns
detected over time do not have a direct matching with the problem classes. The novelty pat-
terns are sequentially labeled as N1, N2, etc. Besides, a given problem class can be associated
with one or more novelty patterns and some classes may not be detected by the algorithm.

In order to evaluate this confusion matrix, five aspects should be observed:

1. One class can be represented by two or more novelty patterns, thus it is possible to have
more novelty patterns than problem classes;

cknw1

 ...
cknwL

Cnov1

 ...
cnovK

Yall

cknw1 ... cknwL Unk

Ytr

New novelty pattern was discovered

... ...

New novelty pattern was discovered

cknw1 ... cknwL N1 Unk

Ytr

cknw1 ... cknwL N1 N2 Unk

Ytr

cknw1

 ...
cknwL

Cnov1

 ...
cnovK

Yall

cknw1

 ...
cknwL

Cnov1

 ...
cnovK

Yall

Fig. 7 Evolution of the confusion matrix over time (adapted from Faria et al. (2013b), de Faria et al. (2015a))

123

Novelty detection in data streams 261

2. The algorithm can detect less novelty patterns than the number of novel classes. This
may happen if the algorithm did not properly distinguish the examples from all the novel
classes;

3. Examples not explained by the current model are labeled by the algorithm as unknown;
4. The matrix represents a multiclass scenario, i.e., the computation of accuracy or error

measures must consider the different classes learned in the offline and online phases,
which is usually more difficult than to distinguish between the normal and novel concepts;

5. It is necessary to carry out a periodic evaluation of the confusion matrix in order to
analyse scenarios that vary over time.

8 Discussion

Although several studies have investigated ND in DSs, they usually present limitations that
make their use in real world applications unfeasible. Next, the main limitations and strengths
of these studies are presented.

A first limitation is the assumption that all examples used by the model update procedure
are labeled. This assumption, adopted in Masud et al. (2010a), Masud et al. (2011a), Al-
Khateeb et al. (2012a), Farid and Rahman (2012), Farid et al. (2013), Rusiecki (2012),
Krawczyk and Michal (2013), and Tan et al. (2011) is unrealistic. In a DS, data usually flow
in very high speed, therefore it is impractical to label all examples. In opposite, in Faria et al.
(2013a), de Faria et al. (2015b), Spinosa et al. (2009), and Hayat and Hashemi (2010), the
decision model is updated using unlabeled examples. Thus, the novelty patterns detected over
the stream are not associated with the real problem class. A more realistic assumption is to
consider that the true label of some example are available, and the model update use labeled
and unlabeled examples. Despite of the potentiality of this third approach, few studies of the
literature adopt this approach (Masud et al. 2010b, 2011c; de Faria et al. 2015b).

A second limitation is to consider ND as a binary classification problem, in which two
classes are available: normal and not normal (or novelty). This simplistic view has been
adopted by works like Spinosa et al. (2009), Hayat and Hashemi (2010), Albertini and
de Mello (2007), Rusiecki (2012), Krawczyk and Michal (2013) and Tan et al. (2011).
However, real world problems are composed by different classes and new classes can be
detected continuously. For scenarios where the problem known concepts are composed by
different classes, works such as Faria et al. (2013a), de Faria et al. (2015b), Masud et al.
(2010a), Masud et al. (2011a), Al-Khateeb et al. (2012a), Farid and Rahman (2012), and
Farid et al. (2013) can be used. However, Masud et al. (2011a), Al-Khateeb et al. (2012a),
Farid and Rahman (2012) and Farid et al. (2013) assume that only one new class appear at
time.

A third limitation is to consider every change in the data as concept evolution. Several
studies, such as Farid and Rahman (2012), Albertini and de Mello (2007), Rusiecki (2012),
Krawczyk and Michal (2013), and Tan et al. (2011) assume as concept evolution the simply
presence of one example not explained by the current decision model. However, in some
situations, the known concepts are continuously evolving, thus it is important to distinguish
between changes in the known concepts and appearing of new concepts. In addition, one
example not explained by the current decision model can also indicate the presence of noise
or outliers. Thus, approaches as in Masud et al. (2011a) and Al-Khateeb et al. (2012a) work
with a time constraint, in which the examples can be classified up to T l time units after
their arrival, in order to detect if these examples can be considered as a novelty pattern or

123

262 E. R. Faria et al.

not. Other works, like Spinosa et al. (2009), Faria et al. (2013a), de Faria et al. (2015b) and
Hayat and Hashemi (2010), classify as unknown the examples not explained by the current
decision model. When there are sufficient statistics about these examples, they are classified
as concept drift or novelty pattern. Approaches like those proposed in Faria et al. (2013a), de
Faria et al. (2015b) and Hayat and Hashemi (2010), which try to find a threshold to separate
concept drift from concept evolution, suffer from the difficult of automatically determine this
value from the data set.

Still considering the difference between concept drift and concept evolution, a strong
challenge is to determine when a ND procedure must be applied. While applying this process
whenever a new example arrives is time consuming, to apply it at time intervals requires
the definition of the size of the time interval. In Masud et al. (2010a), Masud et al. (2011a),
Al-Khateeb et al. (2012a), Faria et al. (2013a), de Faria et al. (2015b) and Spinosa et al.
(2009), the technique either asks the user the time interval to execute a ND procedure, or
assigns a fixed value to this interval. However, the automatic definition of this value is still
an open issue.

A fourth limitation is related to the algorithm used to induce the decision model. While
supervised algorithms, such as decision trees (or ensemble of trees) Masud et al. (2010a),
Masud et al. (2011a), Farid and Rahman (2012) and Farid et al. (2013), have presented good
predictive accuracy, they can be updated only in the presence of labeled examples. On the
other hand, the use of unsupervised approaches (Faria et al. 2013a; de Faria et al. 2015b;
Spinosa et al. 2009; Masud et al. 2010a; Al-Khateeb et al. 2012a, b; Hayat and Hashemi 2010)
based on k-means, present two main drawbacks. It is assumed that the classes are represented
by hyperspheres and the number of clusters needs to be defined a priori (input parameter).

A fifth limitation is to ignore recurring contexts. Several approaches developed mecha-
nisms to forget outdated concepts, but few of them treat recurring concepts. In the literature,
a common approach is to consider as NP an old concept that reappears. Works that deal with
this issue include Faria et al. (2013a), de Faria et al. (2015b), Al-Khateeb et al. (2012a) and
Masud et al. (2011b). However, in general, the identification of when a concept needs to be
forgotten or a new concept is reappearing involves the definition of user parameters, which
can vary according to the used data set.

9 Applications

Recent advances in hardware and software have allowed the acquisition of data in a wide
range of applications (Gaber et al. 2005). In general, these data are generated continuously,
creating massive data sets. Models induced by DM techniques have been applied to these
data to extract new and useful information. Additionally, the development of diverse and
powerful sensors has allowed the monitoring many events in real time (Aggarwal 2007).
Since these data sets present a dynamic behavior, it is necessary to build models that are
not only able to represent these data, but can also evolve over time. In general, these models
learn from known scenario about a particular problem, and they need react to changes, forget
old concepts and learn new concepts. Among the large range of applications concerning ND
in DSs, it is possible to mention anomaly/intrusion detection in networks, credit card fraud
detection, fault detection in machinery, video surveillance, etc. Table 3 shows the main ND
applications in DSs found in the literature.

The techniques proposed in the literature for ND in DSs are frequently compared by
using data from real applications. One of the most common real applications used in these
comparisons is the intrusion detection in networks data set. Several studies have used this data

123

Novelty detection in data streams 263

Table 3 Applications of ND in DSs

Applications References

Intrusion detection Spinosa et al. (2008), Masud et al. (2011a), Al-Khateeb et al. (2012a),
Spinosa et al. (2009), Shyu et al. (2005), Wang et al. (2008), Tan
et al. (2011), Farid and Rahman (2012), Farid et al. (2013), de Faria
et al. (2015b), Rios et al. (2011), Perdisci et al. (2006),

Forest cover type detection Masud et al. (2011a) , Al-Khateeb et al. (2012a), Masud et al. (2010a),
Tan et al. (2011), Faria et al. (2013a), de Faria et al. (2015b)

Video and image analysis Singh and Markou (2005), Ramezani et al. (2008), Tavakkoli et al.
(2006), Farid et al. (2013), Gaughan and Smeaton (2005)

Text mining Yang et al. (2002), Masud et al. (2010a)

set, like Spinosa et al. (2008), Masud et al. (2011a), Al-Khateeb et al. (2012a), Spinosa et al.
(2009), Tan et al. (2011), Farid and Rahman (2012), Farid et al. (2013), Wang et al. (2008),
Rios et al. (2011) and Perdisci et al. (2006). The intrusion detection has been employed to
induce classifiers able to identify unauthorized activities in a computer network, separating
the normal access from the attacks. In this application, in the training phase, a classifier
is induced by using examples from the normal access and a set of known attacks. In the
application, online phase, the classifier should be able to recognize new types of attack,
which may appear any time.

Most of the experiments reported in the literature for this application uses only numerical
attributes. However, in Shyu et al. (2005) handle nominal is also used. The most popular
public intrusion detection data set comes from the KDD Cup 99. It consists in a simulation of
several types of attacks in an military network environment. It is used in Spinosa et al. (2008),
Masud et al. (2011a), Al-Khateeb et al. (2012a), Spinosa et al. (2009), Tan et al. (2011) and
Shyu et al. (2005). A subset of this data set, named NLS-KDD, is used in Farid and Rahman
(2012) and Farid et al. (2013). The NLS-KDD data set was proposed by Tavallaee et al.
(2009) to overcome some of the problems found in the KDD Cup 99 data set.

Another classical data set used to evaluate ND algorithms for DSs, available in the UCI
repository (Frank and Asuncion 2010), is the Forest Cover Type. This data set represents a
real problem of detecting new types of forest according to a set of geospatial attributes. In
general, a classifier is induced from a set of forest cover types. The induced model can be later
used to identify new types of forest cover. The following studies investigate the performance
of ND algorithms in this data set (Faria et al. 2013a; de Faria et al. 2015b; Masud et al. 2010a,
2011a; Al-Khateeb et al. 2012a; Tan et al. 2011).

ND algorithms have also been applied to identify novelties in images from videos (Singh
and Markou 2005; Ramezani et al. 2008; Tavakkoli et al. 2006) and image analysis (Farid et al.
2013). Some of these works, e.g. (Ramezani et al. 2008), focus on video-based surveillance,
which is an important application for tasks like human security, counter-terrorism and traffic
control. Another study, carried out by Gaughan and Smeaton (2005), uses dialogue or closed
captions to organize broadcast news retrieval results based on the degree of newness of the
topic.

Text mining is another important application for ND in DSs. In Yang et al. (2002), the
authors investigate a new system able to classify online documents into a set of predefined
topic categories. This system uses topic-conditioned ND to identify new topics. In Masud
et al. (2010a), the authors apply the MCM system to ND in Twitter text DSs. For such, the
system is trained with a predefined number of topics (classes). The system is used to detect
new topics that may appear over the stream and incorporate them its the decision model.

123

264 E. R. Faria et al.

10 Challenges and future work

Even though several ND algorithms have proposed and investigated for a wide range of appli-
cations, many issues still need to be addressed. Initially, although experimental methodology
is well established in traditional, batch, ML and DM scenarios, in DSs, different method-
ologies have been adopted by several authors. This lack of standard makes the comparison
of these different studies a difficult task. Besides, many important questions concerning
experimental methodology in DSs scenarios need to addressed or better explored.

An important issue to be addressed is the adaptation and development of evaluation
measures able to provide a meaningful assessment of the performance of ND techniques.
Measures are needed for ND in classification and clustering tasks. In scenarios involving
concept evolution and those where ND is considered a multiclass problem, the evaluation
measures represent an important challenge, especially because the process to detect nov-
elty uses unlabeled examples. Additionally, these evaluation measures need to deal with the
presence of examples labeled as unknown.

Most of the techniques available on the literature consider that the true label of the training
instances will always be available. However, this is not a realistic assumption, since the
obtainance of the true label is a time consuming task, many times needing support from a
domain specialist. A more realistic view is to ask to the true label of only a subset of the
examples, which can be carried out by using active learning. Despite its importance, few
studies have addressed this issue.

Several works have treated ND as a one-class problem, where the training examples
belong only to a normal concept and whose goal is to discriminate examples from the normal
and not normal concepts. In multiclass classification problems, the not normal concept may
associated with two or more classes. This one-class approach needs to be adapted to be used
in these situations. Some examples of multiclass classification problems fitting this situation
are intrusion detection, fault detection, fraud detection, forest cover type detection, spam
filter, and text classification.

New approaches able to deal with outliers and noise and a changing environment, where
the concepts may evolve either gradually or abruptly, are also necessary. The ability to
distinguish a noise or outliers from a novelty concept is crucial to a ND system. While a
novelty concept is composed by a set of cohesive and representative examples, noise and
outliers are sparse examples, which need to be removed. Moreover, the known concepts may
evolve gradually or abruptly and a ND system needs to update its decision model to address
these different situations.

Another important issue is the automatic definition of the main parameter settings of ND
algorithms. In general, an algorithm proposed in the literature requires a set of parameters
whose values should be defined by the user, such as number of classifiers, number of clusters,
parameters related to the cluster validation, window size, number of examples for the training
phase, threshold to separate novelties from extensions, to mention some. Most of these
parameters are very important for the model induction and may have direct impacts on the
model performance. In addition, these parameters may vary according to the data set, which
makes even more difficult their definition by the user.

The development of new approaches to deal with predictive attributes whose values are not
numerical, but categorical, ordinal, hierarchical or assuming other complex data structures,
is also an important issue. Several approaches for ND are based on clustering techniques,
which can only deal with numerical attributes. In addition, the abundance of data generated
from different data sources may lead to complex data structures, which cannot be analyzed
by using most of the algorithms from the literature.

123

Novelty detection in data streams 265

Finally, new public domain data sets, real and artificial, presenting several alternative data
configurations, would be very useful to assess the performance of the existing and new ND
techniques. These new data sets would allow the comparison of these techniques and evaluate
their strength and weakness for several data conformations.

Acknowledgments Thanks to European Commission through project MAESTRA (ICT-2013-612944),
ERDF through the COMPETE Programme, National Funds through FCT within the project FCOMP - 01-
0124-FEDER-022701, and CAPES, CNPq and FAPESP, Brazilian funding agencies.

11 Appendix

The Table 4 lists the principal public online data sets used in the works referred in this
survey. They may be downloaded from the following repositories/sites:

• UCI Machine Learning Repository - is a large collection data sets that may be used
in different kinds of machine learning tasks, such as clustering, classification, pattern
recognition, with a wide variety of different application areas. Available at http://archive.
ics.uci.edu/ml.

• KDD Cup Center - annual Data Mining and Knowledge Discovery competition organized
by ACM Special Interest Group on Knowledge Discovery and Data Mining. Available at
http://www.kdd.org/kddcup/index.php.

• The NSL-KDD Data Set - is a selected collection of records from the KDD Cup 99 which
purpose is to overcome some of the problems of the KDD Cup 99 (Tavallaee et al. 2009).
In this site, there are also available different sets for training and testing. Avalaible at
http://nsl.cs.unb.ca/NSL-KDD/.

• Data Mining Tools Repository - tools developed at the UTD data mining lab, headed by
Dr. Latifur Khan. Each tool is part of a project, where it is possible to download related

Table 4 Public data sets used in ND in DS

Data sets Repository References

Real

KDD Cup 99 KDD Cup center Masud et al. (2011a), Al-Khateeb et al. (2012a),
Spinosa et al. (2009), Tan et al. (2011), Shyu
et al. (2005), Spinosa et al. (2008), de Faria
et al. (2015b)

Forest cover type UCI machine learning Masud et al. (2011a), Al-Khateeb et al. (2012a),
Masud et al. (2010a), Tan et al. (2011), Faria
et al. (2013a), de Faria et al. (2015b)

Image segmentation UCI machine learning Farid et al. (2013)

Statlog (Shuttle) UCI machine learning Tan et al. (2011)

Spambase UCI machine learning
Minegishi and Niimi (2011)

NLS-KDD NLS-KDD Farid and Rahman (2012), Farid et al. (2013)

Synthetic

SynC Data mining tools Masud et al. (2011a)

SynCN Data mining tools Masud et al. (2011a), Al-Khateeb et al. (2012a)

MOA MOA Faria et al. (2013a), de Faria et al. (2015b)

123

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.kdd.org/kddcup/index.php
http://nsl.cs.unb.ca/NSL-KDD/

266 E. R. Faria et al.

published papers, data sets used in the publications and source code of some of the authors
algorithms . Available at http://dml.utdallas.edu/Mehedy/.

• MOA - is an open source framework for DS mining. It includes synthetic data generators
for classification and clustering tasks.

References

Aggarwal CC (2007) Data streams: models and algorithms. Springer, Berlin
Aggarwal CC (2013) Outlier analysis. Springer, Berlin
Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Proceedings

of the 29th conference on very large data bases, pp 81–92
Al-Khateeb T, Masud MM, Khan L, Aggarwal C, Han J, Thuraisingham B (2012a) Stream classification

with recurring and novel class detection using class-based ensemble. In: Proceddings of the IEEE 12th
international conference on data mining (ICDM ’12). IEEE Computer Society, Washington, DC, USA,
pp 31–40

Al-Khateeb TM, Masud MM, Khan L, Thuraisingham B (2012) Cloud guided stream classification using
class-based ensemble. In: Proceedings of the 2012 IEEE 5th international conference on computing
(CLOUD’12). IEEE Computer Society, Washington, DC, USA, pp 694–701

Albertini MK, de Mello RF (2007) A self-organizing neural network for detecting novelties. In: Proceedings
of the 2007 ACM symposium on applied computing (SAC ’07), pp 462–466

Aregui A, Denœux T (2007) Fusion of one-class classifiers in the belief function framework. In: Proceedings
of the 10th international conference on information fusion, pp 1–8

Bicego M, Figueiredo MAT (2009) Soft clustering using weighted one-class support vector machines. Pattern
Recognit 42(1):27–32

Box GEP, Jenkins G (1990) Time series analysis: forecasting and control. Holden-Day, Incorporated, San
Francisco

Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):58
Coull S, Branch J, Szymanski B, Breimer E (2003) Intrusion detection: a bioinformatics approach. In: Pro-

ceedings of 19th international conference on computer security applications (ACSAC 2003). Nevada,
USA, IEEE Computer Society, Las Vegas, pp 24–33

de Faria ER, Goncalves IR, Gama J, Carvalho ACPLF (2015a) Evaluation of multiclass novelty detection
algorithms for data streams. Knowl Data Eng, IEEE Trans 27(11):2961–2973. doi:10.1109/TKDE.2015.
2441713

de Faria ER, Carvalho ACPLF, Gama J (2015b) MINAS: multiclass learning algorithm for novelty detection
in data streams. Data Min and Knowl Discov. doi:10.1007/s10618-015-0433-y

Dawid AP (1984) Statistical theory: the prequential approach (with discussion). J R Stat Soc A 147:278–292
Denis F, Gilleron R, Letouzey F (2005) Learning from positive and unlabeled examples. Theor Comput Sci

348(1):70–83
Dries A, Rückert U (2009) Adaptive concept drift detection. Stat Anal Data Min 2(56):311–327
Elwell R, Polikar R (2011) Incremental learning of concept drift in nonstationary environments. IEEE Trans

Neural Netw 22(10):1517–1531
Faria ER, Gama J, Carvalho ACPLF (2013a) Novelty detection algorithm for data streams multi-class problems.

In: Proceedings of the 28th symposium on applied computing (ACM SAC’13), pp 795–800
Faria ER, Gonçalves IR, Gama J, Carvalho ACPLF (2013b) Evaluation methodology for multiclass nov-

elty detection algorithms. In: Proceedings of the 2nd Brazilian conference on intelligent systems
(BRACIS’13), pp. 19–25

Farid DM, Rahman CM (2012) Novel class detection in concept-drifting data stream mining employing
decision tree. In: Proceedings of the 7th international conference on electrical computer engineering
(ICECE’ 2012), pp 630–633

Farid DM, Zhang L, Hossain A, Rahman CM, Strachan R, Sexton G, Dahal K (2013) An adaptive ensemble
classifier for mining concept drifting data streams. Expert Syst Appl 40(15):5895–5906

Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml
Gaber MM, Zaslavsky A, Krishnaswamy S (2005) Mining data streams: a review. SIGMOD Rec 34(2):18–26
Gama J (2010) Knowledge discovery from data streams, 1st edn. CRC Press Chapman Hall, Boca Raton
Gama J, Sebastião R, Rodrigues PP (2013) On evaluating stream learning algorithms. Mach Learn 90(3):317–

346

123

http://dml.utdallas.edu/Mehedy/
http://dx.doi.org/10.1109/TKDE.2015.2441713
http://dx.doi.org/10.1109/TKDE.2015.2441713
http://dx.doi.org/10.1007/s10618-015-0433-y
http://archive.ics.uci.edu/ml

Novelty detection in data streams 267

Gaughan G, Smeaton AF (2005) Finding new news: novelty detection in broadcast news. In: Proceedings of
the 2nd Asia conference on Asia information retrieval technology (AIRS’05), pp 583–588

Gogoi P, Bhattacharyya D, Borah B, Kalita JK (2011) A survey of outlier detection methods in network
anomaly identification. Comput J 54(4):570–588

Han J (2005) Data mining: concepts and techniques. Morgan Kaufmann Publishers Inc., San Francisco
Hayat M, Basiri J, Seyedhossein L, Shakery A (2010) Content-based concept drift detection for email spam

filtering. In: Proceedings of the 5th international symposium on telecommunications (IST’10), pp 531–
536

Hayat MZ, Hashemi MR (2010) A DCT based approach for detecting novelty and concept drift in data streams.
In: Proceedings of the international conference on soft computing and pattern recognition (SoCPaR), pp
373–378

Hodge V, Austin J (2004) A survey of outlier detection methodologies. Artif Intell Rev 22(2):85–126
Hoffmann H (2007) Kernel PCA for novelty detection. Pattern Recognit 40(3):863–874
Juszczak P, Duin RPW (2004) Combining one-class classifiers to classify missing data. In: Roli F, Kittler J,

Windeatt T (eds) Multiple classifier systems. Springer, Berlin, pp 92–101
Katakis I, Tsoumakas G, Vlahavas I (2010) Tracking recurring contexts using ensemble classifiers: an appli-

cation to email filtering. Knowl Inf Syst 22(3):371–391
Kolter JZ, Maloof MA (2007) Dynamic weighted majority: an ensemble method for drifting concepts. J Mach

Learn Res 8:2755–2790
Krawczyk B, Michal W (2013) Incremental learning and forgetting in one-class classifiers for data streams. In:

Proceedings of the 8th international conference on computer recognition systems (CORES’ 13), advances
in intelligent systems and computing, vol 226, pp 319–328

Lee H, Roberts S (2008) On-line novelty detection using the kalman filter and extreme value theory. In:
Proceedings of 19th international conference on pattern recognition (ICPR 2008). Tampa, Florida, USA,
IEEE, pp 1–4

Li X (2006) Improving novelty detection for general topics using sentence level information patterns. In:
Proceedings of the 15th ACM international conference on information and knowledge management
(CIKM ’06), ACM, pp 238–247

Liu B, Dai Y, Li X, Lee WS, Yu PS (2003) Building text classifiers using positive and unlabeled examples. In:
Proceedings of the 3rd IEEE international conference on data mining (ICDM’03), pp 179–186

Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137
MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: Cam

LML, Neyman J (eds) 5th Berkeley symposium on mathematical statistics and orobability, vol 1, pp
281–297

Markou M, Singh S (2003a) Novelty detection: a review part 1: statistical approaches. Signal Process
83(12):2481–2497

Markou M, Singh S (2003b) Novelty detection: a review part 2: neural network based approaches. Signal
Process 83(12):2499–2521

Marrocco C, Simeone P, Tortorella F (2007) A framework for multiclass reject in ECOC classification systems.
In: Proceedings of the 15th Scandinavian conference on image analysis (SCIA’07), pp 313–323

Marsland S (2003) Novelty detection in learning systems. Neural Comput Surv 3:157–195
Marsland S, Shapiro J, Nehmzow U (2002) A self-organising network that grows when required. Neural Netw

15:1041–1058
Masud M, Gao J, Khan L, Han J, Thuraisingham BM (2011a) Classification and novel class detection in

concept-drifting data streams under time constraints. IEEE Trans Knowl Data Eng 23(6):859–874
Masud MM, Chen Q, Khan L, Aggarwal CC, Gao J, Han J, Thuraisingham BM (2010a) Addressing concept-

evolution in concept-drifting data streams. In: Proceedings of the 10th IEEE international conference on
data mining (ICDM’10), pp 929–934

Masud MM, Gao J, Khan L, Han J, Thuraisingham B (2010b) Classification and novel class detection in
data streams with active mining. In: Proceedings of the 14th Pacific-Asia conference on advances in
knowledge discovery and data mining—volume Part II (PAKDD’10), pp 311–324

Masud MM, Al-Khateeb TM, Khan L, Aggarwal C, Gao J, Han J, Thuraisingham B (2011b) Detecting recur-
ring and novel classes in concept-drifting data streams. In: Proceedings of the 11th IEEE international
conference on data mining (ICDM ’11), pp 1176–1181

Masud MM, Woolam C, Gao J, Khan L, Han J, Hamlen KW, Oza NC (2011c) Facing the reality of data stream
classification: coping with scarcity of labeled data. Knowl Inf Syst 33(1):213–244

Menahem E, Rokach L, Elovici Y (2013) Combining one-class classifiers via meta-learning. In: ACM inter-
national conference on information and knowledge management (CIKM 2013), p to be appeared

Minegishi T, Niimi A (2011) Detection of fraud use of credit card by extended VFDT. In: World congress on
internet security (WorldCIS’11), pp 152–159

123

268 E. R. Faria et al.

Mitchell TM (1997) Machine learning, 1st edn. McGraw-Hill Inc, New York
Nadeem MSA, Zucker JD, Hanczar B (2010) Accuracy-rejection curves (ARCs) for comparing classification

methods with a reject option. In: Workshop and conference proceedings on machine learning in systems
biology, vol 8, pp 65–81

Park CH, Shim H (2010) Detection of an emerging new class using statistical hypothesis testing and density
estimation. Int J Pattern Recognit Artif Intell 24(1):1–14

Perdisci R, Gu G, Lee W (2006) Using an ensemble of one-class svm classifiers to harden payload-based
anomaly detection systems. In: Proceedings of the 6th international conference on data mining (ICDM
’06), pp 488–498

Perner P (2008) Concepts for novelty detection and handling based on a case-based reasoning process scheme.
Eng Appl Artif Intell 22:86–91

Pillai I, Fumera G, Roli F (2011) A classification approach with a reject option for multi-label problems. In:
Proceedings of the 16th international conference on image analysis and processing: Part I (ICIAP’11),
pp 98–107

Pimentel MA, Clifton DA, Clifton L, Tarassenko L (2014) A review of novelty detection. Signal Process
99:215–249

Ramezani R, Angelov P, Zhou X (2008) A fast approach to novelty detection in video streams using recursive
density estimation. In: Proceedings of the 4th international IEEE conference on intelligent systems (IS
’08), vol 2, pp 14–2–14–7

Rios G, FILHO RH, Coelho ALC (2011) An autonomic security mechanism based on novelty detection and
concept drift. In: Proceeding of the 7th international conference on autonomic and autonomous systems

Rusiecki A (2012) Robust neural network for novelty detection on data streams. In: Proceedings of the 11th
international conference on artificial intelligence and soft computing—volume Part I (ICAISC’12), pp
178–186

Schölkopf B, Williamson R, Smola A, Taylor JS, Platt J (2000) Support vector method for novelty detection.
Adv Neural Inf Process Syst 12:582–588

Schölkopf B, Platt JC, Shawe-Taylor JC, Smola AJ, Williamson RC (2001) Estimating the support of a high-
dimensional distribution. Neural Comput 13(7):1443–1471

Shyu ML, Sarinnapakorn K, Kuruppu-Appuhamilage I, Chen SC, Chang L, Goldring T (2005) Handling
nominal features in anomaly intrusion detection problems. In: Proceedings of the 15th international
workshop on research issues in data engineering: stream data mining and applications (RIDE ’05), pp
55–62

Silva JA, Faria ER, Barros RC, Hruschka ER, Carvalho ACPLF, Gama J (2014) Data stream clustering: a
survey. ACM Comput Surv 46(1):31

Singh S, Markou M (2005) A black hole novelty detector for video analysis. Pattern Anal Appl 8(1):102–114
Singh S, Markow M (2004) An approach to novelty detection applied to the classification of image regions.

IEEE Trans Knowl Data Eng 16(4):396–407
Spinosa EJ, Carvalho ACPLF (2004) SVMs for novel class detection in bioinformatics. In: Proceedings of III

Brasilian workshop on bioinformatics (WOB 2004), BrasÃlia, pp 81–88
Spinosa EJ, de A C P L F de Carvalho, Gama J (2008) Cluster-based novel concept detection in data streams

applied to intrusion detection in computer networks. In: Proceedings of the 2008 ACM symposium on
applied computing (SAC ’08), ACM, pp 976–980

Spinosa EJ, Carvalho ACPLF, Gama J (2009) Novelty detection with application to data streams. Intell Data
Anal 13(3):405–422

Srivastava A (2006) Enabling the discovery of recurring anomalies in aerospace problem reports using high-
dimensional clustering techniques. In: IEEE Aerospace conference

Tan SC, Ting KM, Liu TF (2011) Fast anomaly detection for streaming data. In: Proceedings of the 22th
international joint conference on artificial intelligence—volume 2 (IJCAI’11), pp 1511–1516

Tavakkoli A, Nicolescu M, Bebis G (2006) A novelty detection approach for foreground region detection in
videos with quasi-stationary backgrounds. In: Proceedings of the 2nd international symposium on visual
computing

Tavallaee M, Bagheri E, Lu W, Ghorbani A (2009) A detailed analysis of the kdd cup 99 data set. In: IEEE
symposium on computational intelligence for security and defense applications, 2009. CISDA 2009, pp
1–6

Tax DMJ, Duin RPW (2001) Combining one-class classifiers. In: Proceedings of the 2nd international work-
shop on multiple classifier systems (MCS ’01), pp 299–308

Tax DMJ, Duin RPW (2008) Growing a multi-class classifier with a reject option. Pattern Recognit Lett
29(10):1565–1570

Ting KM, Tan SC, Liu FT (2009) Mass: a new ranking measure for anomaly detection. In: Technical report
fa2386-09-1-4014, Gippsland School of Information Technology, Monash University

123

Novelty detection in data streams 269

Tsymbal A (2004) The problem of concept drift: definitions and related work. In: Technical report TCD- CS-
2004-15, Computer Science Department, Trinity College, Dublin

Vapnik VN (1998) Statistical learning theory, 1st edn. Wiley, New York
Wang H, Fan W, Yu PS, Han J (2003) Mining concept-drifting data streams using ensemble classifiers. In:

Proceeding of the 9th ACM SIGKDD international conference on knowledge discovery and data mining
(KDD’03), pp 226–235

Wang W, Guan X, Zhang X (2008) Processing of massive audit data streams for real-time anomaly intrusion
detection. Comput Commun 31(1):58–72

Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts. Mach Learn
23(1):69–101

Yang Y, Zhang J, Carbonell J, Jin C (2002) Topic-conditioned novelty detection. In: Proceedings of the 8th
ACM SIGKDD international conference on knowledge discovery and data mining (KDD ’02), pp 688–
693

Yeung D, Chow C (2002) Parzen-window network intrusion detectors. In: Proceedings of the 16th international
conference on pattern recognition, pp 385–388

Yeung D, Ding Y (2003) Host-based intrusion detection using dynamic and static behavioral models. Pattern
Recognit 36:229–243

Zhang J, Yan Q, Zhang Y, Huang Z (2006) Novel fault class detection based on novelty detection meth-
ods.In: Intelligent computing in signal processing and pattern recognition. Lecture notes in control and
information sciences, vol 345. Springer, Berlin, pp 982–987

123

	Novelty detection in data streams
	Abstract
	1 Introduction
	2 Important definitions
	2.1 Novelty detection, anomaly detection and outlier detection
	2.2 Concept drift and concept evolution

	3 Formalization of the problem
	4 Overview of novelty detection in data streams
	5 Offline phase
	5.1 Learning task
	5.1.1 Normal concept composed by a set of classes
	5.1.2 Normal concept composed by one class

	6 Online phase
	6.1 Classification
	6.1.1 Single classifier
	6.1.2 Ensemble of classifiers

	6.2 Detection of novelty patterns
	6.3 Update of the decision model
	6.3.1 Number of classifiers and external feedback
	6.3.2 Forgetting mechanism

	7 Other relevant aspects of the novelty detection algorithms
	7.1 Detection of recurring contexts in novelty detection
	7.2 Treatment of outliers
	7.3 Evaluation in novelty detection
	7.3.1 Experimental methodology
	7.3.2 Evaluation measures

	8 Discussion
	9 Applications
	10 Challenges and future work
	Acknowledgments
	11 Appendix
	References

