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Abstract

This paper presents a principled method for detecting “abnormal” content
in vibration spectra obtained from rotating machinery. We illustrate the use
of the method in detecting abnormality in jet engine vibration spectra corre-
sponding to unforeseen engine events. We take a novelty detection approach,
in which a model of normality is constructed from the typically large numbers
of examples of “normal” behaviour that exist when monitoring jet engines.
“Abnormal” spectral content is then detected by comparing new vibration
spectra to the model of normality. The use of novelty detection allows us to
take an engine-specific approach to modelling, in which the engine-under-test
becomes its own model, rather than relying on a model that is generic to a
large population of engines. A probabilistic approach is taken that employs
Extreme Value Theory to determine the boundaries of “normal” behaviour
in a principled manner. We also describe a novel visualisation technique that
highlights significant spectral content that would otherwise be too low in mag-
nitude to see in a standard plot of spectral power.

1 Introduction

Vibration spectra obtained from rotating systems (such as gas-turbine engines, com-
bustion engines, or machining tools), are characterised by peaks in spectral power
at the fundamental frequency of rotation, and smaller peaks at harmonics of that
fundamental frequency. In jet engine terminology, these peaks are conventionally
called tracked orders. Methods exist [1, 2, 3] for the principled analysis of informa-
tion pertaining to these tracked orders, such that precursors of system failure can
be identified, and preventative maintenance action taken. However, many modes of
failure manifest themselves as changes in vibration spectra that are not related to
energy of the tracked orders.

An example of this is the failure of engine bearings, which are small ball-bearings
enclosed within fixed cages such that they may rotate freely. These are used to form
load-bearing contacts between the various rotating engine shafts, and they main-
tain the position of the shafts relative to one another. Damage to the surfaces of
these bearings may result in previously-unobserved vibration energy at high frequen-
cies, significantly removed from the narrow frequency bands of the tracked orders
observed under “normal” conditions. Failure of the cages in which bearings are
mounted can result in constant peaks in spectral energy at previously-unseen multi-
ples of the fundamental tracked orders [4, 5]. The latter could be described as novel
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tracked orders (NTOs) because they are peaks in vibration energy within narrow
frequency bands, and are thus tracked orders, but occur at frequencies for which
tracked orders are not observed under “normal” conditions.

This paper describes a method for identifying NTOs and other abnormal content
in spectral data, allowing the identification of modes of failure that methods based
on modelling of tracked orders cannot detect. Principled methods are used for
modelling time-series of spectral data observed under “normal” conditions. The
goal is to learn an engine-specific model of normality on-line, to provide sensitive
novelty detection without the need for tuning heuristic parameters.

A model of normality is introduced in Section 2, and in Section 3, we discuss
principled methods of identifying which components of a vibration spectrum are
significant with respect to background noise. We use these models to transform
the problem into probability space, in Section 4, describe how to perform novelty
detection in Section 5, and present results from jet engine vibration data in Section 6.

Throughout this paper, absolute values of vibration amplitude and frequency
are not given for purposes of commercial confidence, and units of measurement have
been omitted from some figures.

2 Modelling Normality

Previous work [1, 2] has shown that the vibration amplitude of tracked orders can
be characterised with respect to the operating point of the engine; i.e., the rota-
tional speed of the engine shafts. We here extend this approach to examining whole
vibration spectra with respect to engine speed, which we will use both for deter-
mining engine-specific noise-floor thresholds, and ultimately to construct a model of
normality for use in novelty detection.

Figure 1 shows the mean vibration amplitude in each of the fi, i = 1 . . . NFFT

spectral bins computed using all data from an exemplar jet engine (here, NFFT =
1024), collected in 1% sub-ranges of shaft speed ωLP, which is the rotational speed
of the low-pressure (LP) shaft. Energy associated with the fundamental tracked
orders appears in the lowest decile of the frequency range. Energy associated with
the second harmonic tracked orders appears in the second decile of the frequency
range (though at lower amplitudes than the fundamental tracked orders). The whole
speed-frequency space shown in the figure has been partitioned into Nω = 10 bins
on the speed axis, and Nf = 10 bins on the frequency axis, giving a 10× 10 matrix
representation of the speed-frequency space.

Characterising the spectral energy in each spectral bin across the full range
of shaft speeds, as illustrated in Figure 1, provides a useful summary of engine
vibration energy during the “training period” in which the data used to construct
the summary, or model, are acquired. Thus, a representation of this form can be
used for novelty detection, because we anticipate that “abnormal” vibration energy
observed during testing will appear in some way abnormal with respect to this
representation.
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Figure 1: A speed-based representation of spectral data, showing the mean vibration
amplitude from an exemplar jet engine collected in 1% sub-ranges of LP shaft speed.
In this figure, the speed-frequency space is quantised into Nω × Nf = 10 × 10 bins,
shown in red. The vertical axis shows spectral bin indices fi ranging between [0 fs/2].

3 Noise-Floor Estimation

In order to identify NTOs within time-series of spectra, we must first identify and dis-
regard spectral components corresponding to background noise. In existing heuris-
tic methods, this has been performed by defining a single “noise-floor” threshold on
spectral energy, below which spectral components are deemed to be noise. A single
value for this threshold has been applied to all gas-turbine engines of a similar class,
using expert knowledge [6]. In order to avoid large numbers of false-positive clas-
sifications during novelty detection when using this single threshold with an entire
class of engines, it must be set conservatively due to inter-engine variability within
that class. However, this causes subsequent novelty detection to have low sensitiv-
ity, because the conservative threshold results in a high number of false-negative
classifications.

Furthermore, as will be shown in this section, a constant noise-floor threshold
applied to all frequencies of spectral data results in an inability to determine sig-
nificant engine events that manifest as changes in spectral energy at frequencies
much higher than the first few harmonics of fundamental tracked orders. In order
to detect bearing failure and other events occurring at higher frequencies, a dynamic
approach to noise-floor estimation is required.

3.1 Examining Noise Distributions

Experimental observation of jet engine vibration data shows that the vibration am-
plitude of noise generally decreases with increasing spectral frequency. In [7], the
authors observed similar behaviour for background noise in acoustic signals, where
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(c) Bin bω = 8, bf = 10

Figure 2: Histograms of vibration amplitudes falling within selected speed-frequency
sub-ranges for vibration data observed from an exemplar jet engine. Histograms are
normalised such that they integrate to unity and are approximately pdfs, p(x).
Maximum likelihood gamma distributions for each bin are shown in black.

narrow frequency bands used to transmit speech were seen to contain Gamma-
distributed background noise.

Bin (bω = 8, bf = 1), shown in Figure 2(a), covers the speed range 70% ≤ ωLP ≤
80%. This bin contains the highest vibration energy of all those shown. The figure
shows that the distribution of vibration amplitudes within this bin is approximately
Gamma, corresponding to background noise.

Bin (bω = 8, bf = 5), shown in Figure 2(b), covers the same range of shaft speeds
as the bin described above, but corresponds to a higher range of frequencies. The
figure shows that the distribution of vibration amplitudes within this bin remains
approximately Gamma, but is reduced in location and scale (where the location and
scale of the Gamma distribution Gam(x|a, b) are a and b, respectively) compared
with that of the lower-frequency bin.

Bin (bω = 8, bf = 10), shown in Figure 2(c), again covers the same range of shaft
speeds, but corresponds to the highest frequencies in the FFT . The distribution of
vibration amplitudes contained within this is approximately Gamma, but further
reduced in location and scale compared with the lower-frequency bins.

3.2 Modelling Noise Distributions

In order to model the distribution of amplitudes Xω,f = {x1, . . . , xN} within each of
the Nω×Nf = 10×10 bins considered above, we find the Maximum Likelihood (ML)
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Gamma distribution, GamML

(

x|â, b̂
)

for which the log likelihood may be written

lnL(a, b) = Na ln b − N ln Γ(a) + (a − 1)
N

∑

i=1

ln(xi) − b
N

∑

i=1

xi (1)

The maximum likelihood parameters (â, b̂) are given by argmaxa,b lnL(a, b). Solu-
tions for this maximisation do not exist in closed form, and we use the iterative
methods described in [8].

3.3 Determining Noise-Floor Thresholds

Using the noise distributions, a threshold x+

ω,f may now be defined for each of the
10 × 10 bins, below which vibration amplitudes will be deemed to be background
noise. Thus, we wish to determine the upper limit of extrema generated from the
Gamma distribution in each bin.

Extreme Value Theory (EVT ) provides a means of estimating the maximum
likely value to be generated from a given distribution F , which effectively models
the tails of F [9, 10]. According to the Fisher-Tippett theorem [11] upon which
EVT is based, the tails of the univariate Gamma distribution F = Gam(a, b) are
modelled using the Gumbel distribution,

pe(x|c, d) = exp(− exp(−y)) (2)

where y = (x − c)/d for Gumbel parameters (c, d), and where these latter may be
estimated [12] from the Gamma parameters (a, b) and the number of data m drawn
from the Gamma distribution,

c =
1

b
(3)

d =
1

b

(

ln m + (a − 1) ln lnm − ln Γ(a)
)

(4)

This Gumbel distribution describes where we expect the maximum of m values
drawn from the Gamma distribution to lie. To estimate a noise-floor threshold,
we wish to determine the most extreme value generated by noise under “normal”
conditions, which is given by this Gumbel distribution. Given a spectrum of NFFT

components for each observation, each bin will contain NFFT/Nf data. We thus
define m = ⌈NFFT/Nf⌉.

Let Pe(x) be the cdf obtained by integrating the pdf pe(x) defined in equation
(2). We can set a noise-floor threshold x+

ω,f by setting this cdf equal to some suitable
probability value; e.g., Pe(x) = 0.99.

Thus, for each of the Nω × Nf speed-frequency bins in our representation,

• we can find the ML Gamma distribution using the method described above;

• we find the Gumbel distribution defined in equation (2) that describes where
we expect extrema generated from that distribution to lie; and thus,
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• we can set a noise-floor threshold for this speed-frequency bin at some proba-
bility value, such as Pe(x) = 0.99.

Vibration data in each speed-frequency bin are compared to the corresponding
noise-floor threshold determined using EVT. Data falling below the threshold are
thus deemed to have been generated by the noise process, and discarded, while data
exceeding the threshold are deemed to be significant spectral content which will be
analysed further.

4 Analysing Spectral Data

This section considers how spectral data may be tested with respect to the model
of normality.

Consider now a test sample which consists of X = {x1, . . . , xNFFT
} spectral com-

ponents, observed at LP shaft speed ωLP. Each spectral component xi in X is evalu-
ated with respect to the Gumbel distribution of the appropriate speed-frequency bin
in the Nω ×Nf quantisation. Figure 3(a) shows spectra of vibration amplitudes for
part of a flight of the exemplar engine, in which the engine initially accelerates at a
high rate from time index t = 50 to t = 180, and then more gradually until t = 700.
Fundamental tracked orders may be seen in the lowest decile of the frequency range,
varying in frequency proportional to engine speed. Between time indices t = 100
and t = 150, significant vibration energy may be seen to occur in the lower three
deciles of the frequency range, associated with harmonic tracked-order vibration.
Low-amplitude vibration associated with higher-order harmonic tracked orders may
be seen throughout the example, appearing as a series of inclined lines extending
across the frequency range. Horizontal bands of low-amplitude vibration noise may
be seen extending across the frequency range throughout the example.

Figure 3(b) shows the result of determining cumulative Gumbel probabilities
Pe(x) for each spectral component with respect to the Gumbel distributions for
each of the 10 × 10 bins considered previously. It may be seen that harmonic and
fundamental tracked orders alike have Pe(x) ≈ 1, as vibration amplitudes associated
with them are considerably higher than the distributions of background noise used to
construct the Gumbel distributions in the 10×10 bins. The horizontal bands of low-
amplitude noise occurring across the frequency range generally have probabilities
Pe(x) ≪ 1.

For the purposes of visualisation, we define a novelty score

z(x) = − log10 {1 − Pe(x)} (5)

Figure 3(c) shows z(x) for each spectral component in the example. The horizontal
bands of low-amplitude vibration noise have been attenuated, while the fundamental
and harmonic tracked orders appear clearly. Tracked orders can be seen throughout
the frequency range as lines with positive gradient, increasing in frequency pro-
portional to the rotational frequency of the engine, which is increasing during this
interval. The 14HP harmonic tracked order is visible at the top of the frequency
range, and is labelled in the figure.
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(a) Time-series of spectra
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(b) Probabilities, Pe(x)
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Figure 3: Evaluating spectra from a test flight with respect to noise-floor estimates.
(a) Vibration amplitudes for test flight of an exemplar engine, shown as a time-series
of vibration spectra. (b) Probabilities Pe(x) for each spectral component evaluated
with respect to cumulative Gumbels Pe(x) from noise distributions in 10 × 10 bins.
(c) Novelty scores z(x) as defined in (5) for each spectral component.
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We note that energy associated with higher-order tracked orders is usually not
visible in a standard plot of spectral power against speed-frequency, such as that
in Figure 3(a), because of its low amplitude. The figure shows that our proposed
probabilistic method can be used to highlight such spectral content because it is
highly “novel” with respect to the background noise. Such spectral content, even
though of very low absolute magnitude, thus takes high novelty scores z(x), which
causes it to be highlighted in the visualisation, as shown in Figure 3(c).

5 Identifying Novel Tracked Orders

Spectral components with vibration amplitudes above the probabilistic noise-floor
thresholds x+

ω,f have been identified, and it remains for them to be separated into
those which correspond to spectral content previously observed within the training
data, and those which are novel with respect to the training data.

In order to identify novel vibration energy in test spectra, we must record the
location of vibration energy observed in the training data. Note that we here disre-
gard all spectral components with vibration amplitudes deemed to be “background
noise” (using the method described in Section 3), and hereafter only refer to those
spectral components with vibration amplitudes above the appropriate noise-floor
thresholds.

To record the location of vibration energy from the training data in speed-
frequency space, we again partition that space into Nω × Nf = 10 × 10 bins. We
define counting matrix Ci,j such that element (i, j) is set to the number of FFT
components in the training set that fall within the corresponding speed-frequency
bin (i, j).

The C-matrix characterises the distribution of spectral energy throughout the
speed-frequency space for the training data. We now define a quantity Nm such
that any bin (i, j) with Ci,j ≥ Nm will be considered to contain “known tracked
order” vibration energy. Any FFT component from test data (with vibration am-
plitude above the appropriate noise-floor threshold) falling into that bin (i, j) will
be classified “normal”; i.e., it lies in a part of the speed-frequency space for which a
sufficient number of FFT components above the noise-floor threshold were observed
in the training data.

Conversely, if an FFT component from test data falls into a bin (i, j) for which
Ci,j < Nm, it will be classified “abnormal” with respect to the training data; i.e.,
it lies in a part of the speed-frequency space where an insufficient number of FFT
components above the noise-floor threshold were observed during training.

The selection of parameter Nm is performed using example datasets such that the
rate of novelty detection is sufficiently high, while the false-alarm rate is acceptably
low. The optimisation of Nm will vary depending on the nature of the system that is
to be analysed, and on the quantisation Nω×Nf . Experimental observation [13] has
shown that Nm = 3 provides a suitable compromise between being able to detect
example abnormal events in jet engine vibration data and in producing low numbers
of false-positive novelty detections.
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Table 1: Datasets used in the investigation described by this paper.

Dataset Engine Flights Comments

B1 3-shaft class A, engine I 4 B1,3,B1,4 contain bearing failure
B2 3-shaft class B, engine I 4 B2,4 contains bearing-cage failure
B3 3-shaft class A, engine II 6 Normal engine data

6 Test Data

The investigation described by this paper uses three datasets of full spectral data,
described in Table 1. The first three engine flights in datasets B1 and B2 were
deemed to be “normal” by engine experts. Flights B1,3 and B1,4 (the final two flights
in dataset B1) were deemed to contain evidence of a bearing cage event. Flight B2,4

(the fourth and final flight in dataset B2) was deemed to contain evidence of a
bearing event. Dataset B3 contains data recorded from an engine with no abnormal
events, which is used to investigate the performance of the method described by this
chapter when presented with “normal” data.

For each dataset, an engine-specific model of normality was constructed using
the techniques described in Sections 3, 4 and 5. Each model was trained using data
from the first two flights of the engine. Data from subsequent flights in each dataset
were used as test data, compared to the model of normality corresponding to that
engine.

6.1 Test Set B1

Vibration spectra from part of flight B1,3 with a suspected bearing-cage event are
shown in Figure 4(a). Pe(x) for “abnormal” spectral data is shown in Figure 4(b).
This shows the high-amplitude vibration energy at frequencies corresponding to
the bearing-cage event, which is a series of novel tracked orders occurring between
t = 200 and t = 400. This abnormal spectral energy is correctly identified using
this speed-frequency quantisation and Nm value. Note that all fundamental and
harmonic tracked orders corresponding to “normal” operation are not shown in
Figure 4, which shows only “abnormal” spectral content.

6.2 Test Set B2

Vibration spectra from part of flight B2,4 are shown in Figure 5(a). Pe(x) for “novel”
spectral data is shown in Figure 5(b). This shows the novel tracked order cor-
responding to the bearing event at f780, which is correctly identified using this
speed-frequency resolution and Nm value.

6.3 Test Set B3

Table 2 shows the results of testing all six flights with respect to the noise-floor
thresholds and C-matrix constructed using the first two runs for the “normal”
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(a) Vibration spectra from flight B1,3
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(b) Pe(x) for flight B1,3

Figure 4: Vibration spectra for episodes from flights from dataset B1, with Pe(x)
for “abnormal” spectral data. (a) Vibration spectra from flight B1,3. (b) Pe(x) for
“abnormal” spectral data from flight B1,3
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(a) Vibration spectra from flight B2,4
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Figure 5: Vibration spectra for episodes from flight B2,4, with Pe(x) for “novel”
spectral data. (a) Vibration spectra from flight B2,4. (b) Pe(x) for “novel” spectral
data from flight B2,4.

dataset B3. Any “novel” classifications made are false positives. It can be seen
from the table that the use of method results in a low number of false-positive
novelty detections.

7 Conclusion

We have presented a method of constructing engine-specific models of normality that
describe “normal” spectral content in vibration spectra. The method is based on a
probabilistic methodology that first seeks to separate noise from significant spectral
content, and then classifies any significant spectral content as either “normal” or
“abnormal” with respect to the model. This method offers advantages over conven-
tional noise-thresholding techniques, in that a separate noise threshold is identified
for each quanta in the speed-frequency space. This causes low-amplitude spectral
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Table 2: Proportion of spectral bins in each flight of dataset B3 that were classified
“novel”

Flight Proportion of bins classified “novel”

B3,1 0
B3,2 0
B3,3 0.10 ×10−4

B3,4 0.21 ×10−4

B3,5 0.11 ×10−4

B3,6 0.05 ×10−4

content to be retained, whereas conventional methods assume it to be noise, and
thus reject it.

Results have been presented which show that the method identifies abnormal
spectral behaviour corresponding to subtle bearing events in jet engine vibration
data. These events are manifested as persistent peaks of low spectral power occurring
high in the frequency range with respect to the fundamental orders of spectral power.
These low spectral powers typically mean that conventional methods find such events
difficult to detect. By transformation of the problem into a probabilistic domain, we
have shown that such events of low absolute magnitude in power take high novelty
scores when compared to an engine-specific model of normality. Novelty detection
then takes place in the transformed probabilistic domain.

The resulting system has a low false-positive detection rate when tested using a
large dataset of “normal” jet engine vibration data, in which no engine events were
present. Though we have illustrated the method using jet engine vibration data, we
anticipate that the method is applicable to rotating machinery from which vibration
spectra may be obtained.

We have shown that the conventional spectral power plot can be transformed
into a probabilistic “novelty” plot that highlights subtle, abnormal spectral content
that would otherwise be undetectable. This visualisation method is intended to
assist domain experts in the diagnosis of events that manifest themselves as subtle
“abnormal” spectral energy.
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