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Abstract Novelty detection, or one-class classification,
aims to determine if data are “normal” with respect to
some model of normality constructed using examples
of normal system behaviour. If that model is composed
of generative probability distributions, the extent of
“normality” in the data space can be described using
Extreme Value Theory (EVT), a branch of statistics
concerned with describing the tails of distributions. This
paper demonstrates that existing approaches to the use
of EVT for novelty detection are appropriate only for
univariate, unimodal problems. We generalise the use
of EVT for novelty detection to the analysis of data
with multivariate, multimodal distributions, allowing a
principled approach to the analysis of high-dimensional
data to be taken. Examples are provided using vital-
sign data obtained from a large clinical study of patients
in a high-dependency hospital ward.
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1 Introduction

1.1 Novelty Detection

Novelty detection, alternatively termed one-class clas-

sif ication or anomaly detection, classifies test data as
“normal” or “abnormal” with respect to a model of
normality. This approach is particularly well suited to
problems in which a large quantity of examples of
“normal” behaviour exist, such that a model of nor-
mality may be constructed, but where examples of
“abnormal” behaviour are rare, such that a multi-class
approach cannot be taken. For this reason, novelty
detection has become popular in the analysis of data
from high-integrity systems, such as hospital patients
[10, 24, 25], jet engines [4, 11], manufacturing processes
[6], or power-generation facilities [27], which spend the
majority of their operational life in a “normal” state,
and which exhibit few, if any, failure conditions.

Furthermore, the complexity of such systems is usu-
ally very high, because they are comprised of large
numbers of mutually interacting subsystems, often in-
cluding very large numbers of components. The num-
ber of possible modes of failure in such systems is very
large, making explicit modelling of expected failure
modes difficult, and the variability in observed behav-
iour between systems of the same type (such as between
jet engines of the same type, or hospital patients of
similar ages) can be significant, making it difficult to use
fault information obtained from other systems. Thus,
the novelty detection approach can be used to best
exploit our prior knowledge that the “normal” class is
better represented, and more readily defineable, than
the large number of ill-defined classes of “abnormality”
that may exist.
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1.2 Overview

We first consider existing approaches to novelty de-
tection, in Section 2, and describe the disadvantages
associated with such approaches. EVT is introduced in
Section 3 as being a principled method of avoiding such
disadvantages.

A review of existing work in the use of EVT for nov-
elty detection follows in Section 4, which also describes
how existing methods are inappropriate for novelty de-
tection in data which have multivariate or multimodal
distributions.

Section 5 proposes a numerical solution for using
EVT for novelty detection in multivariate, multimodal
applications. This is based on the insight that novelty
detection in multivariate data is equivalent to perform-
ing novelty detection in the probability space of the
model of normality.

A closed-form solution is proposed in Section 6 for
novelty detection in multivariate, unimodal problems,
which avoids the requirement of sampling in the numer-
ical method proposed in Section 5.

An application of the latter proposed technique is
given in Section 7, where novelty detection is per-
formed in the monitoring of vital signs obtained from
patients in a high-dependency hospital ward.

Conclusions are drawn in Section 8, where poten-
tial extensions to the work proposed in this paper are
discussed.

2 Existing Work

In much of the existing work on novelty detection, an
assumption is made that “normal” data {x1 . . . xN} are
i.i.d.,1 and distributed according to some underlying
generative distribution fn(x), which is a probability dis-
tribution function2 (pdf) over an n-dimensional data
space, D; i.e., x ∈ D = R

n, where n is the number of
features in the data (or the dimensionality of each
feature vector x). Typically, the underlying distribution
fn is multivariate and multimodal; it could be, for ex-
ample, approximated using a Gaussian mixture model
(GMM), a Parzen window estimator, or some other
mixture of components [2]. If we define a null hypothe-
sis H0 that test data x are generated from fn, then nov-
elty detection evaluates the hypothesis that H0 is true;

1independent and identically distributed
2Note that this probabilistic approach contrasts with another
popular method of novelty detection, that of one-class support
vector machines (SVMs) [21].
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Figure 1 Integrating a bimodal probability distribution p(x) to
the contour p(x) = 0.05. The contour is shown as a horizontal

dashed line, intercepting the distribution function at the locations
shown by the vertical straight lines. The area corresponding to the
integration is shown in grey.

if H0 holds with probability P < κ for some threshold
probability κ , then the null hypothesis is rejected, and
x is classified “abnormal” w.r.t. fn. The problem then
becomes one of setting the novelty threshold.

In previous work [10, 16, 17, 26], a heuristic novelty
threshold has been set on the pdf fn(x) = κ , such that
x is classified “abnormal” if fn(x) < κ . Such thresholds
are set with no principled probabilistic interpretation:
fn(x) is used simply as a novelty score, and the thresh-
old is set such that separation between “normal” and
any “abnormal” data is maximised on a validation
dataset. Some authors [10, 14] have interpreted fn

probabilistically, by considering the cumulative prob-
ability Fn associated with fn. That is, they find the
probability mass obtained by integrating fn over the
region R where fn exceeds the novelty threshold; i.e.,
the region R = {x ∈ D| fn(x) ≥ κ}:

Fn(κ) =
∫

R

fn(x) dx (1)

An example is shown in Fig. 1, in which the distri-
bution fn is univariate and multimodal, and which has
been approximated using a GMM with two components
of equal variance (σ 2

1 = σ 2
2 = 1) and with prior proba-

bilities3 P(μ1) = 0.75, P(μ2) = 0.25. A novelty thresh-
old is shown at fn(x) = κ = 0.05 in the figure, where the
probability mass P enclosed by that threshold is shaded.
The probability mass will fall in the range 0 ≤ P ≤ 1.
In this example, the shaded areas from each Gaussian

3alternatively known as mixing coef f icients or weights
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component do not significantly overlap, and it is pos-
sible to approximate closely the integration in Eq. 1
in closed form, treating each component distribution
independently.

For a unimodal pdf, Eq. 1 corresponds to integrating
from the mode of fn to the pdf contour defined by
the novelty threshold fn(x) = κ , which can usually be
determined in closed form. However, for a multimodal
pdf, the integration may need to be performed us-
ing Monte Carlo techniques [17]. Setting the novelty
threshold using the above method, and then determin-
ing the probability mass Fn enclosed by that fn(x) = κ

contour, allows a probabilistic interpretation: if we
were to draw one sample from fn, we would expect
it to lie outside the novelty threshold with probability
1 − Fn. Thus, we could set the novelty threshold
fn(x) = κ such that Fn is some desired probability mass;
e.g., Fn(κ) = 0.99. We note in passing that this ap-
proach is equivalent to the high-density region (HDR)
approach of [14], which has been used for novelty
detection [15, 18].

However, setting a novelty threshold using Fn has
associated disadvantages for novelty detection. In order
to examine these disadvantages, we must first consider
a different method for determining the location of nov-
elty thresholds: that of EVT.

3 Classical Extreme Value Theory

EVT is a branch of statistics concerned with modelling
the distribution of very large or very small values
(extrema) w.r.t. a generative distribution fn. Here, we
consider “classical” EVT as previously used in novelty
detection [19, 20, 23, 28], in contrast to a method com-
monly used in estimating financial risks, often termed
the peaks-over-threshold (POT) technique [8].

3.1 Extreme Value Distributions

Consider a set of m i.i.d. data X = {x1, x2, . . . , xm},
which are univariate (n = 1) for classical EVT, and are
distributed according to some pdf f1(x), with maximum
xmax = max(X). We define the cumulative distribution
function (cdf) for xmax to be H+(xmax ≤ x); i.e., H+

models our belief in where the maximum of m data
generated from distribution f1 will lie.4 This is directly
applicable to novelty detection, in which we wish to de-
termine where the boundary of “normality” lies under

4Noting that the superscript ‘+’ refers to the distribution of
maxima.

normal conditions. We here term H+ the extreme value

distribution (EVD), because it describes the expected
location of the extremum of m data generated from fn.

According to the Fisher–Tippett theorem [9] upon
which classical EVT is based, H+ must belong to one of
the following three families of distributions,5 no matter
what the form of f1:

Gumbel, H+
1 (y) = exp(− exp(−y)) (2)

Fréchet, H+
2 (y) =

{

0 if y ≤ 0

exp(−y−α) if y > 0
(3)

Weibull, H+
3 (y) =

{

exp(−(−y)α) if y ≤ 0

1 if y > 0
(4)

for α ∈ R
+, and where y is a transformation6 of x,

y = (x − cm)/dm, for location and scale parameters cm

and dm, respectively. In classical EVT, these para-
meters for the EVD corresponding to the univariate
Gaussian are dependent only on the number of data m

drawn from the underlying distribution f1 [8]:

cm =
√

2 ln m − ln ln m + ln 4π

2
√

2 ln m
, dm = 1√

2 ln m
(5)

In this paper, we are primarily concerned with mix-
tures of Gaussian distributions, for which the limiting
distribution of maxima is the Gumbel distribution H+

1 .
We label this limiting cdf Fe

n = H+
1 , which has a corre-

sponding pdf f e
n (the EVD).7 Here, the superscript e is

used to denote the fact that these are the cdf and pdf
of the extremum of our dataset X, where that dataset X

has its own cdf Fn and pdf fn, as described previously.
Note that in the case of m = 1 (i.e., when we observe

only one data-point from fn), the EVD is the original
generative distribution f e

n = fn; i.e., the original distri-
bution describes where a single sample drawn from fn

will lie, because the extremum of a singleton set {x} is
simply x.

In Section 6.2, we are interested in the Weibull-type
EVD of minima, or minimal Weibull, for which the
attractor is [3]:

H−
3 (x, α) =

{

0, x < 0

1 − exp(−(x)α), x ≥ 0
. (6)

5Noting that this is an asymptotic relationship, which is true as
the number of data m → ∞.
6termed the reduced variate
7The EVD f e

n is implicitly parameterised by the number of
observations in the dataset, m. Thus, each value of m will yield
a different EVD f e

n .
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3.2 Disadvantages of Using Fn

With a method of describing where we expect the ex-
tremum of a set of m samples generated from fn to oc-
cur, we can examine the disadvantages associated with
setting a novelty threshold using Fn, as was introduced
in Section 2. For the purpose of illustration, suppose
that f1 = N(0, 1), the standard univariate Gaussian
distribution.

The upper plot in Fig. 2 shows the generative distri-
bution f1, and the EVDs f e

1 for increasing numbers m

of observed data x. As more data are observed from
f1, the expected location of their maximum increases
on the x-axis. This matches our intuition: if we generate
large numbers of random data, the extremum of those
random data is likely to be more extreme than if we
generate small numbers of data. Similarly, in the case
of novelty detection, if we observe more “normal”
data, distributed according to fn, then we expect their
extremum to be more extreme than if smaller numbers
of data are observed.
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Figure 2 EVDs f e
1 (x) and probability 1 − Fe

1(κ) in the upper and
lower plots, respectively, for increasing number m of data x.

A novelty threshold has been set at F1(κ) = 0.99 in
the figure, which occurs at x = xκ , and which is shown
in the upper plot of the figure as a dashed line. We
anticipate that this novelty threshold will be exceeded
with probability 1 − F1(κ) = 1 − 0.99 = 0.01 when gen-
erating a single sample (i.e., m = 1) from f1. However,
when generating multiple samples (m > 1) from f1, the
probability that the novelty threshold will be exceeded
is given instead by the extreme cdf, 1 − Fe

1(κ), and not

by the original distribution fn. This is a key point in the
use of EVT for novelty detection: only EVT provides
the correct probability distribution of the boundary of
“normality” when more than one data-point has been
observed.

The lower plot in Fig. 2 shows the probability that
the novelty threshold set at F1(κ) = 0.99 will be ex-
ceeded for increasing numbers m of observed data
x. After m = 10 observations, the threshold will have
been exceeded with probability P = 0.163, and after
m = 100, the threshold will have been exceeded with
probability P = 0.797. The threshold is exceeded with
probability P = 0.99 after m = 248 samples have been
generated. That is, if we observe 248 data from f1, then
the novelty threshold is almost certain to be exceeded
(P = 0.99), rather than being exceeded with probability
P = 0.01 that we would expect if we were to use the
cdf F1.

Thus, setting a novelty theshold using Fn only has
a valid probabilistic interpretation when m = 1; i.e.,
for classification tasks in which a single entity is being
compared with a model of normality. An example of
this is when comparing a single mammogram to a model
constructed using “normal” mammogram data [26].

4 EVT for Novelty Detection

Existing work on the use of EVT for novelty detection
has been limited to [4, 5, 19, 20, 23, 28]. We here
consider the use of EVT for novelty detection with
(i) multivariate and (ii) multimodal data, and identify
problems with existing approaches in both cases.

4.1 EVT in Multivariate Novelty Detection

Multivariate extrema defined in the EVT literature
[3, 8], also termed component-wise extrema, are those
n-dimensional data xn that are maxima or minima in
one or more dimensions of n. For novelty detection,
we require extremes w.r.t. our multivariate model of
normality, rather than considering extrema in each di-
mension independently. EVT was first used for novelty
detection in multivariate data in [19, 20], where models
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of normality were represented by mixtures of Gaussian
distributions. In multivariate space, the Gaussian dis-
tribution describes a hyperellipsoid with fn(x) varying
along a radius r according to the univariate Gaussian
(scaled by a normalisation factor dependent on di-
mensionality n). That is, to determine the probabil-
ity density fn(x) at any point in the hyperellipsoid,
the problem is reduced to a univariate case f1(r), in
Mahalanobis radius r. Roberts [19, 20] uses this assump-
tion to reduce the problem of determining the EVD
for a multivariate Gaussian kernel to a corresponding
univariate case. As illustrated in Fig. 3, the EVD for
a single Gaussian distribution along a radius r varies
according to a univariate Gumbel distribution.

Existing work uses classical EVT to estimate the
parameters cm, dm of this Gumbel cross-section f e

n in
multivariate n-space, as defined in Eq. 5. Figure 4
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shows the estimates of cm, dm given by classical EVT
compared to maximum likelihood estimates (MLEs)
obtained using the unimodal, univariate method of [3]
for increasing dimensionality n of the Gaussian distrib-
ution. For the univariate case f1, it may be seen from
the figure that classical EVT correctly estimates the
Gumbel parameters. For n > 2, the location parameter
cm of f e

n is significantly underestimated, and this error
becomes greater with increasing dimensionality n.

Figure 5 shows the error between the actual parame-
ters cm, dm of f e

n and varying estimates ĉm, d̂m for n = 2

cm

d
m

2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

1

Figure 5 Error in estimates of Gumbel parameters cm, dm for
f e
2 , for varying cm and dm. The MLE is shown by the marker

at cm = 3.04, dm = 0.32; the classical EVT estimates are shown
by the marker at cm = 2.37, dm = 0.33, which is significantly far
from the desired MLE values.
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and m = 100, where it may be seen that classical EVT
fails to estimate cm correctly.

Thus, we conclude that for multivariate distribu-
tions fn, we cannot use classical EVT to estimate the
EVD, f e

n .

4.2 EVT in Multimodal Novelty Detection

EVT defines an “extreme value” to be that which is
either a minimum or maximum of a set of observations
x. This is due to the conventional use of EVT [7] for de-
termining events of extremely large or small magnitude,
such as extreme financial events, extreme meteorolog-
ical events, etc. In novelty detection, when considering
the extrema of unimodal distributions, as is the focus
of most previous work in the field of EVT [5, 23, 28],
this existing definition of “extreme value” is sufficient
for univariate f1. For multivariate data, providing that
fn is unimodal,8 the existing definition may be taken
to mean the minimum or maximum radius r from the
single mode of fn (reducing the multivariate problem
to a univariate problem in r, as we have described in
Section 4.1).

However, for multimodal fn, whether uni- or multi-
variate, the notion of minimum or maximum value is
no longer sufficient, because there is no single mode
from which distance may be defined.9 The upper plot
in Fig. 6 shows a univariate bimodal pdf. While the
minimum or maximum should be treated as extrema
(e.g., x = 1 or x = 28), values between the two modes
(such as x = 10) should similarly be taken to be extreme
in terms of probability density fn(x), because they are
just as improbable as the minimum or maximum on the
x-axis.

This is a key point of departure in our work with
EVT for novelty detection, in which we are interested
in determining extremely unlikely events, whereas con-
ventional EVT is interested in determining events of
extremely large or small magnitude. As illustrated in
Fig. 6, while events of extremely large or small mag-
nitude may be events that are extremely unlikely, not
all events that are extremely unlikely are events of
extremely large or small magnitude.

Similarly, the lower plot of Fig. 6 shows a multi-
variate, multimodal distribution. For bivariate data
x = (x1, x2), data-points which represent a minimum
or maximum in either dimension x1 or x2 should be

8and radially symmetric
9and where there is no global symmetry

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

x

f 1
(x

)

–10 –5 0 5 10
–10

–5

0

5

10

Figure 6 Multimodal distributions require redefinition of the
term “extreme value”. The upper plots shows a bimodal distribu-
tion f1, where extrema could fall between the two modes, and so
we must consider more than “minimum” and “maximum” values
on the x-axis. The lower plot shows a multimodal Parzen windows
model formed from k = 60 components, where extrema could fall
in the “horseshoe” between clusters of modes.

considered “extreme”,10 but it is also desireable that
similarly improbable areas of data space, such as the
origin x = (0, 0) in this example, should be considered
“extreme” for the purposes of novelty detection.

Given that the goal of using EVT for novelty detec-
tion is to identify improbable events w.r.t. fn, rather
than events of extreme absolute magnitude, we re-
define “extreme value” in terms of probability:

Definition 1 For novelty detection, the “most ex-
treme” of a set of m samples X = {x1, x2, . . . , xm}

10This is a component-wise extremum, as described earlier.
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distributed according to pdf fn(x) is that which is
most improbable with respect to the distribution; i.e.,
argminx∈X

[

fn(x)
]

.

The conventional use of “extrema” to mean mini-
mum or maximum values with respect to a unimodal

distribution becomes a special case of the above defi-
nition: because the pdf fn typically decreases monoton-
ically with increasing distance from the single mode,
selecting the samples furthest from that mode (i.e., the
minimum or maximum of a set of samples) is equivalent
to selecting the samples for which fn is minimised.

This selection of extrema based on minimising fn

is equivalent to selecting extrema by maximising Fn

using Eq. 1. Our definition satisfies the condition of
[14], which states that the probability of observing data
inside a novelty boundary should be at least as large
as the probability of observing data outside the novelty
boundary. That is, the novelty boundary is a lower
bound on fn for “normal” data.

Definition 1 provides us with the mechanism we
require to determine the extent of data space that is
considered “normal”: if we observe m “normal” data
generated from a model of normality fn, the EVD
f e
n now describes where the least probable of those m

normal data will lie. Thus, we can use the EVD to set
a novelty threshold, as will be described, and perform
novelty detection in a principled manner.

As with multivariate novelty detection, little work
exists in using EVT for novelty detection with multi-
modal fn [19, 20]. In this work, the multimodal distrib-
ution represented by a mixture of Gaussian component

distributions was reduced to a single-component prob-
lem: to find the value of the EVD f e

n at some location x,
the closest component distribution (determined using
Mahalanobis distance) was assumed to dominate f e

n ,
and thus the EVD is based on the Gumbel distribu-
tion corresponding to that closest component (using
radius r from that component’s centre, as described in
Section 4.1). Here, the contribution of other com-
ponents to f e

n is assumed to be negligible, and they
are ignored.

4.2.1 Problems Arising due to Dif fering

Component Variances

Figure 7 shows the EVD f e
1 , determined using the

existing method, corresponding to the univariate, bi-
modal distribution f1 from Fig. 6, which is a mixture of
two Gaussian component distributions. Here, the prior
probabilities of each component are equal, P(μ1) =
P(μ2) = 0.5, and the kernel variances are σ 2

1 =1, σ 2
2 =4.

Figure 7 also shows the corresponding cdf Fe
1 , from

which it may be seen that each component is respon-
sible for 0.5 of the total probability mass. The EVD
modes for component μ2 have a maximum value of
f e
1 (x) = 0.15, half of the maximum value of the modes

for component μ1, because the modes for μ2 are spread
out twice as far (σ2 = 2σ1).

In Fig. 7, the circles correspond to a histogram
of N = 106 extrema generated from each component

distribution independently. That is, component μ1 has
been responsible for 0.5N extrema and component μ2

has been responsible for 0.5N extrema. This is not the
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Figure 7 Comparison of EVD determined using the existing
method (solid line) and histograms of 106 extrema (circles) drawn
from bimodal distribution f1(x) (dashed line). The left- and right-
hand plots show the pdf f e

1 and cdf Fe
1 , respectively. Extrema are

drawn from each component of f1(x) independently, according

to their prior, P(μ1) = P(μ2) = 0.5, and so each component
generates half of the samples. This closely matches the EVD
determined by the existing method, but does not represent the
process of drawing m samples from f1(x).
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same as drawing N extrema directly from the mixture
f1, which is what we wish to perform.

Figure 8 shows the histogram obtained when N = 106

extrema are generated correctly from the mixture; i.e.,
where m samples are drawn from the mixture f1(x) =
1
2

∑

i P(μi)p(x|μi), and the most extreme is retained,
for each of N =106 iterations. The cdf Fe

1 in Fig. 8 shows
that component μ2 is responsible for more than 0.5 of
the probability mass (in fact, two-thirds of it).

This example shows that, when samples are gener-
ated directly from the model of normality, component
μ2, having wider variance and thus taking lower f1(x)

values than component μ1, is responsible for more
extrema than we would expect from the kernels’ equal
prior probabilities. Though in each of N = 106 iter-
ations, we generate, on average, 0.5m samples from
each component (in accordance with their equal prior
probabilities), we have a greater chance of retaining
those samples from μ2 because the absolute values of
their probability densities f1(x) are generally lower,
due to the increased variance of that component. This
unintuitive phenomenon was observed by [14] when
considering conventional integration of mixtures of
Gaussian distributions.

Thus, the assumption that only the closest compo-
nent distribution to x need be considered when de-
termining the EVD f e

n(x) cannot generally be made.
Though the effect of other components on fn(x) may
be negligible, because of their distance from x, their
effect on f e

n(x) may be significant due to the relative
differences in variances between kernels, as shown
in the example in Fig. 8. This typically occurs with

Gaussian mixture models, in which components usually
have differing variances.

4.2.2 Problems Arising due to Overlapping

Components

The existing method results in a piecewise-
hyperspherical EVD, because f e

n for all x is determined
using only a single component (the closest to x). This
is illustrated in Fig. 9, in which a mixture of two com-
ponent distributions with equal variance and significant
overlap is shown. The figure shows the actual EVD
(shown by the outer solid line) evaluated at Fe

2(κ) ≤
0.999, evaluated using Monte Carlo methods. The re-
sulting equiprobable contour follows the contours
of the underlying distribution f2(x). The figure also
shows the equivalent contour of the EVD obtained
using the existing method (shown by the inner solid
line), in which the resultant contour is piecewise-
circular. It may be seen that areas of data space that
should be considered “normal” (i.e., lying within the
outer line, if the contour is used as a novelty threshold)
would be incorrectly considered “abnormal” by the
existing method.

The areas of data space thus misclassified as “ab-
normal” by the existing method will increase with in-
creasing overlap between components. For models of
normality comprising large numbers of components,
such as those constructed using Parzen windows esti-
mation, the misclassified areas of data space could be
large due to the typically considerable overlap between
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Figure 8 Comparison of EVD determined using the existing
method (solid line), as before, and histograms of 106 extrema
(circles) drawn from bimodal distribution f1(x) (dashed line).
The left- and right-hand plots show the pdf f e

1 and cdf Fe
1 ,

respectively. Here, the extrema are correctly drawn from the
mixture f1(x) (i.e., m samples are drawn from f1(x) and the most
extreme of those m samples is retained). The EVD determined
by the existing method does not fit the actual observed extrema.



J Sign Process Syst (2011) 65:371–389 379

0 5 10 15 20
0

5

10

15

20

Figure 9 A mixture of two component distributions with equal
variance and significant overlap. The true EVD integrated to
Fe

2(x) ≤ 0.999 is shown by the outer solid line. The existing
method results in an equiprobable contour Fe

2(x) ≤ 0.999 that
is piecewise circular, shown by the inner solid line. Part of the
overlapped regions of the components (between the inner and

outer solid lines) would incorrectly be classified “abnormal” by
the existing method, using this contour as a novelty threshold.

components and the typically large numbers of compo-
nents used in such models.

We note that with increasing data dimensionality
n, the overlapped hypervolume of data space be-
tween neighbouring components (as a proportion of
the total probability mass) decreases. Thus, for high-
dimensional models with smaller regions of overlapped
data space, we expect that these problems will be less
significant.

5 Understanding the EVD

We have shown that existing approaches to EVT are
unsuitable for novelty detection where the generative
data distribution is multivariate or multimodal. This
section presents a new method of understanding the
EVD, which we require in order to estimate the EVD
for multivariate, multimodal fn.

5.1 The EVD as a Transformation of fn

The EVD f e
n for a distribution fn follows the probabil-

ity contours of that distribution. This is a consequence
of using Definition 1, where extrema are defined in

terms of minimising fn(x) for a set X of m samples (or,
equivalently, maximising Fn).

It is convenient to consider the EVD as a transforma-
tion of equiprobable contours on fn. Figure 10 shows
equiprobable contours for a bivariate model of nor-
mality f2 represented by a mixture of three Gaussian
components with full (non-diagonal) covariance matri-
ces. The EVD f e

2 is shown for m = 100. Equiprobable
contours of the EVD f e

2 occur at equiprobable contours
of f2, and thus we may consider the EVD to be a
weighting function of the contours of fn,

f e
n(x) = g

[

fn(x)
]

(7)

for some weighting function g. With the EVD thus
defined in terms of fn, we have the facility to accurately
determine f e

n for complex, multimodal, multivariate
distributions, if we can find the form of g.

–8 –6 –4 –2 0 2 4 6 8

–8

–6

–4

–2

0

2

4

6

8

0

0.01

0.02

0.03

0.04

0.05

0.06

–8 –6 –4 –2 0 2 4 6 8

–8

–6

–4

–2

0

2

4

6

8

0

0.005

0.01

0.015

0.02

0.025

Figure 10 Probability contours on fn for a tri-modal GMM
(upper plot) with full (non-diagonal) covariance matrices and
corresponding EVD f e

n (lower plot).
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5.2 The �-Transform

For a standard Gaussian distribution,

fn(x) = (2π)−n/2 exp(−r2/2) (8)

and so, rearrangement gives

r = (−2 ln fn(x) − n ln 2π)
1/2

. (9)

We define a transform of the extrema x,

�
[

fn(x)
]

=
{

(−2 ln fn(x) − n ln 2π)
1/2 if fn(x) < K

0 if fn(x) ≥ K

(10)

where K = (2π)−n/2. If fn is a (unimodal) Gaussian
distribution N(μ, �), the �-transform would map the
fn(x) values back onto r, the radii of x from μ, which
we know are distributed according to the Gumbel dis-
tribution (as shown in Section 4.1). The �-transform
maps the distribution of fn(x) values back into a space
into which a Gumbel distribution can be fitted, having
observed that fn(x) for extrema are distributed simi-
larly for mixtures of negative exponentials of varying
number of kernels, priors, and covariances [4].

The upper plot in Fig. 11 shows a normalised his-
togram of N = 106 extrema generated from the exam-
ple mixture of three Gaussian components f2 in Fig. 10,
for m = 100. The distribution is highly skewed towards
f2(x) = 0, as is expected for extrema. The lower plot
in the figure shows the �-transform of the histogram of
extrema, which may be seen to be distributed according
to the Gumbel (after normalisation such that its area
is unity). The MLE Gumbel distribution fitted in �-
space using the univariate, unimodal method of [3] is
shown, which is f e

2

(

�[ f2(x]
)

. Thus, all locations x in
the original data space D = R

n may be evaluated w.r.t.
f e
n

(

�[ fn(x)]
)

, as was shown in Fig. 10, and we have
successfully found the multivariate, multimodal EVD
which is a transformation of fn, as required.

We may determine the location of a novelty thresh-
old on f e

n by equating the corresponding cdf Fe
n (which

is univariate in �-space) to some probability mass; e.g.,
Fe

n[ fn(x)] = 0.99, as shown in Fig. 11. Thus, we have
defined a contour in data space D that describes where
the most extreme of m “normal” samples generated
from fn will lie, to some probability (e.g., 0.99).

This is the key insight that allows us to determine the
EVD for data of arbitrarily large dimensionality n: we
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Figure 11 Normalised histogram of f2(x) values for N = 106

extrema generated from trimodal GMM with m = 100 (upper

plot). Histogram of the �-transformed f2(x) values shown in
grey, with the corresponding MLE Gumbel distribution fitted
in �-space, shown in black (lower plot). A novelty threshold at
Fe

2 = 0.99 is shown as a dashed line.

have reduced the problem of analysis in multivariate
data space to a simpler, but equivalent, problem in
univariate probability space.

Note finally that, though the novelty threshold set
using our proposed method occurs at some contour
fn(x) = κ (due to Definition 1), it is not heuristic: the
threshold is set such that generating m samples from fn

will exceed the threshold with probability 1 − Fe
n(κ) =

1 − 0.99 = 0.01; that is, the final novelty threshold has
a valid probabilistic interpretation provided by EVT.

5.3 Investigating the EVD

The method described in the previous sub-section
scales with dimensionality n and the number of compo-
nents in the mixture fn. Figure 12 shows the EVD for
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Figure 12 EVD f e
3 shown in data space D estimated using the

proposed �-transform method for a trivariate, trimodal f3 (upper

plot). The EVD determined using the proposed method (lower-

right plot) closely matches the histogram of experimentally-
obtained extrema (lower-left plot).

a trivariate model f3 (projected onto four planes for vi-
sualisation), which closely matches the EVD observed
from experimentally-obtained extrema. Figure 13
also shows the �-transform for a 6-dimensional mix-
ture f6 of 15 Gaussian components with full (non-
diagonal) covariance, where it may also be seen that the
EVD closely matches that of experimentally-obtained
extrema.

We note that this �-transform method is numerical,
requiring the sampling of extrema from fn, and then
fitting the MLE Gumbel distribution after application
of the �-transformation. Future work aims to find
closed-form solutions (or approximations) for multi-
variate, multimodal distributions fn. Currently, closed

forms have been obtained for multivariate, unimodal

distributions, which are presented in the next section.

6 Closed-Form EVT for Multivariate, Unimodal

Novelty Detection

In the previous section, we argued the need for a
multivariate Extreme Value Theory (mEVT) in ma-
chine learning, identified some of the limitations of the
existing approach, and proposed a numerical scheme
for multimodal, multivariate estimation.

In this section, we offer an analytical approach to
mEVT, restricted to single Gaussian distributions; i.e.,
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Figure 13 Histogram of �-transformed extrema (shown in grey)
and MLE Gumbel (shown in black) for a 6-dimensional f6

mixture of 15 components. A novelty threshold has been set at
Fe

6 = 0.99, shown as a dashed line.

for dimensionality n ∈ N
∗, distributions Fn with proba-

bility density functions of the form:

fn(x) = 1

Cn

exp
(

− M(x)2

2

)

(11)

where

M(x) =
(

(x − μ)⊤�−1(x − μ)
)1/2

(12)

is the Mahalanobis distance,

Cn = (2π)n/2|�|1/2 (13)

is the normalisation coefficient, μ the centre, and � the
covariance matrix. We term D = R

n the data space, and
P = fn(D) =

]

0, 1
Cn

]

, the associated probability space.
A unimodal approach is of interest because the existing
method [19] yields significant errors when estimating
EVD parameters, as shown previously, which can be
solved directly by the use of analytically-derived esti-
mates. Furthermore, the numerical approach presented
in the previous section requires that we generate ex-
trema from a multivariate distribution, which can be
time-consuming as the sample size is increased. While
a fully analytical mEVT may not be possible, the ana-
lytical study presented here paves the way to more
elaborate numerical schemes with no need for sampling
extrema.

6.1 Probability Distribution of Probability
Density Values

6.1.1 Sampling in Data Space is Equivalent to Sampling

in Probability Space

Let x1, x2, . . . , xk be samples (vectors of D) drawn from
the distribution Fn for k ∈ N and fn(x1), fn(x2), . . .,
fn(xk) be the corresponding pdf values of these sam-
ples. The probability of obtaining a given value in the
probability space by drawing a sample in the data space
is strongly related to the form of fn. Assuming that
X is a random variable distributed according to Fn,
our aim in this section is to determine the form of the
distribution function (df) Gn according to which fn(X)

is distributed on P . That is, we wish to determine the
probability distribution over probability density values,
noting from the previous section that novelty detection
in the probability space defined by the model of nor-
mality is equivalent to novelty detection in the data
space.

6.1.2 Distribution Function Over fn(X)

We define a distribution over Y = fn(X) as follows:

∀y ∈ P, Gn(y) =
∫

f −1
n (]0,y])

fn(x)dx (14)

where f −1
n (]0, y]) is the preimage of ]0, y] under fn. Gn

is the complementary function of that in Definition 1
where κ is now y.

To take advantage of the ellipsoidal symmetry of the
problem we rewrite fn in a Mahalanobis n-dimensional
spherical polar coordinate system. Then, xv = (r, θ )

such that θ = (θ1, . . . , θn−1) , r = M(x), θi ∈
[

−π
2
, π

2

[

for
i ≤ n − 2 and the base angle θn−1 ranges over [0, 2π ].

The Jacobian of the transformation [22] is

|J| = |�|1/2rn−1

n−3
∏

i=0

(cos θi)
n−i (15)

Thus, we may now expand Eq. 14, to find the distribu-
tion over the pdf fn,

Gn(y) =
∫

f −1
n (]0,y])

1

Cn

exp
(

− M(x)2

2

)

dx, (16)

=
∫

f −1
n (]0,y])

|J|
Cn

exp
(

−r2

2

)

drdθ , (17)
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= 	

∫ +∞

M−1(y)

rn−1

(2π)n/2
exp

(

−r2

2

)

dr, (18)

= 	|�|1/2

∫ y

0

[

−2 ln (Cnu)
](n−2)/2 du. (19)

In the above, M−1(y) =
√

−2 ln (Cn y) is the unique
Mahalanobis distance associated with the pdf value y.

Equation 17 is obtained by rewriting Eq. 16 in the
spherical polar coordinate system. Integrating out the
angles yields Eq. 18, where 	= 2πn/2

Ŵ( n
2 )

is the total solid

angle subtended by the unit n-sphere. Equation 19 is

obtained after making the substitution u= 1
Cn

exp
(

−r2

2

)

.

Note that Eq. 18 and Eq. 19 hold for n = 1, such that
they may be applied to univariate distributions as well
as multivariate distributions.

The integrand in Eq. 19 is the pdf of Gn, which we
aim to find,

gn(y) = 	n|�|1/2
[

−2 ln (Cn y)
]n−2/2 (20)

In the univariate case n = 1, the integration of Eq. 18
yields

G1(y) = erfc
(

√

− ln (C1 y)

)

(21)

where erfc (.) is the complementary error function.
For the multivariate case n ≥ 2, the integration of

Eq. 19 is possible using a recursive integration by parts,
which yields two cases:

G2p(y) = y

p−1
∑

k=0

Ak
2p

(

−2 ln
(

C2p y
))(p−k−1) (22)

G2p+1(y) = y

p−1
∑

k=0

Ak
2p+1

(

−2 ln
(

C2p+1 y
))p−k−1/2

+ erfc
(

√

− ln
(

C2p+1 y
)

)

(23)

for all p ∈ N
∗, where

Ak
2p = 	2p|�|1/2 2k(p − 1)!

(p − 1 − k)! (24)

and

Ak
2p+1 = 	2p+1|�|1/2 (2p − 1)!(p − k)!

2k−1(p − 1)!(2p − 2k)! . (25)

Gn and gn are plotted for n = 1 to 5 in Fig. 14, to-
gether with simulated data. Perhaps counter-intuitively,
we observe that, relative to the right endpoint of Gn, the
probability mass shifts towards 0 as the dimensionality
n increases, which indicates that the probability mass
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Figure 14 Analytical and simulated Gn and gn for various values
of n. The x-axis is scaled so that all distributions have the same
right endpoint. Crosses are the result of drawing 106 samples in
the data space and computing the cumulative histograms of their
probabilities. Fn is the multivariate standard normal distribution.

in the data space moves away from the centre of the
distribution, as is noted by Bishop in [1] (example 1.4,
page 29).

This is the key reason that classical EVT cannot ac-
curately estimate the EVD parameters for multivariate
data, as was discussed in Section 4.1; as dimensionality
of the data increases, the probability mass tends to-
wards regions of low probability density, whereas clas-
sical EVT can only estimate the case for n = 1, in which
the probability mass is clustered around the mode of f1,
as shown in Fig. 14.

6.2 Finding the EVD for Probability Density Values

Our approach is based on the idea that pdf values
of the EVD in the data space must be equal on a
level set of F; i.e., the EVD is obtained by applying a
weighting function to the level sets of F, as was shown
in Section 5. Consequently, determining the EVD in the
data space can be performed by determining the EVD
of G in the probability space. We therefore reduce an
n-dimensional problem (finding an EVD in D) to a
simpler one-dimensional case (finding an EVD in P).
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In this section, our aim is to determine the extreme
value distribution of minima for Gn and estimate its
parameters, using classical EVT.

6.2.1 Maximum Domain of Attraction of the Weibull

Distribution

The Fisher–Tippett theorem effectively defines a three-
class (Gumbel, Fréchet, and Weibull) equivalence
relation on the set of non-degenerate univariate distri-
butions. Embrechts et al. [8] gives the characterizations
for each class.

Theorem 3.3.12 in [8] characterizes the maximum
domain of attraction (MDA) of the maximal Weibull
distribution. We adapt it to the MDA of the minimal
Weibull distribution, H−

3 :

Theorem 1 (Maximum domain of attraction of H−
3 )

The df F belongs to the maximum domain of attraction

of the minimal Weibull distribution (α > 0), if and only

if xF >−∞ and F(xF + x−1) = x−α L(x) for some slowly

varying function L. If F ∈ MDA(H−
3 ), then c−1

m (Em−
xF)

d→ H−
3 , where the norming constants cm, dm can be

chosen to be cm = xF + F←(m−1) and dm = xF , and

where Em is the extremum of m data.

In the above, xF is the left endpoint of the df F,
F←(p) is the p-quantile of F, and L is a slowly varying
function at ∞; i.e., a positive function that obeys

∀t > 0, lim
x→∞

L(tx)

L(x)
= 1. (26)

From Eq. 26, it may be seen that y �→−ln (1/y) , y>1

is slowly varying, as is y �→ − ln (1/y)β , y > 1, for all
β ∈ R. Therefore y G2p (1/y) is a sum of slowly varying
functions, which is itself slowly varying. Theorem 1
can therefore be applied to G2p. A similar process
can be followed to show that G2p+1 is in the MDA of
H−

3 . Consequently, Gn is in the MDA of H−
3 for all

values of n.

6.3 Parameter Estimation

If Gn is in the MDA of H−
3 , Theorem 1 gives the

minimal Weibull parameters:

dm = 0, αm = 1, (27)

cm = G←
n

(

1

m

)

. (28)

The scale parameter can be easily estimated numeri-
cally from Eq. 28 to arbitrary accuracy, as Gn is a strictly
increasing function over finite support.

Figure 15 shows that Eq. 28 is a very close approx-
imation to the values of the scale parameter dm ob-
tained via maximum likelihood estimation. However,
the value of the shape parameter αm, although theoret-
ically guaranteed to converge to 1 in the limit m → ∞
seems to decrease significantly as the dimensionality of
the data space increases, and it is overestimated even
for large values of m.

To address this issue, we note that the class of equiv-
alence of H−

3 contains all the distributions with a power
law behaviour at the finite left endpoint [8]. Therefore
the tail of Gn is, in the limit y → 0, equivalent to a
power law; i.e., Gn(y) ∼ Kys. Here, s can be estimated
locally by noting that, in this case, gn(y) ∼ sKys−1; i.e.,
s = y

Gn(y)

gn(y)
.

We therefore propose the following formula for the
shape parameter,

αm = cm

gn(cm)

Gn(cm)
(29)

Figure 15 shows that Eq. 29, although still inaccurate
for very small values of m, gives values closer to the
MLE estimates as m and n increase.

Finally, the EVD of Gn is:

Ge
n(y) = 1 − exp (− (y/cm)αm) , (30)

where cm and αm are given by Eqs. 28 and 29,
respectively.

6.4 Novelty Scores

In novelty detection, extrema are regarded as poten-
tially abnormal data. Assuming a distribution for the
normal data, if we observe m samples for which the
extremum has pdf value ym, the probability of drawing
an extremum of lower probability is given by Ge

n(ym).
Therefore, the probability of drawing an extremum of
higher probability is 1 − Ge

n(ym) and our extremum is
abnormal with probability 1 − Ge

n(ym).
We define a novelty score in the data space as being

the probability of obtaining an extemum closer to the
centre of the distribution (in the Mahalanobis sense):

Fe
n(x) = 1 − Ge

n( fn(x)), (31)

= exp
(

−
(

1

Cncm

e− M(x)2

2

)αm
)

. (32)

In the limit m → ∞, Fe
n(x) can be interpreted as a

Mahalanobis-radial cdf of extrema.
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Figure 15 Comparison between results of maximum likelihood
estimation of the scale parameter cm (top) and the shape parame-
ter αm (bottom) parameter, and values obtained using formulae
29 and 28 for increasing m. Fn is again the multivariate standard
normal distribution. The dots are obtained by taking the means
of 10 MLEs, each with 104 simulated extrema. Error bars are too
small to be visible at this scale.

7 Application to a Vital-Sign Monitoring Problem

7.1 Introduction to Patient Monitoring

In this section, we present an application of our
proposed mEVT method to a vital-sign monitoring
problem. Continuous real-time patient monitoring in
hospital is usually based on single vital-sign channel
alarms, which yield an unusably large number of false
alarms. Recently, efforts have been made to take ad-
vantage of the correlation between vital-sign channels.
In [10, 25], the authors adopt a novelty detection
approach, whereby the model of normality is a 4-
dimensional pdf constructed using data from a high-risk
adult population. The authors then test for abnormal
data by comparing the probability densities f (x) of new
measurements obtained in real-time to a predefined
threshold.

Here, we introduce the use of mEVT to address
the same problem, limited to the use of two vital-sign

channels, heart rate (HR) and breathing rate (BR).
The data set was collected during the first phase of a
trial conducted at the University of Pittsburgh Medical
Center [10, 12, 13], which is composed of the recordings
of 332 high-risk adult patients, totalling over 32,000
hours of data. Vital-sign measurements are available
every second for all patients. Recordings are labeled
with “crisis events”; i.e., events that should have caused
an emergency call to clinical staff to be made on the
patient’s behalf, as they are indicative of potentially
adverse events. The cause of each event (high/low HR,
high/low BR, etc.) is given with its start-time and end-
time. 46 of 113 events are caused by an abnormally
high or low heart rate or breathing rate (approximately
19 hours of data).

7.2 Method

We split patients into three groups: a test group, com-
posed of the 28 patients who suffered at least one
cardio-respiratory crisis over the course of their stay
(approximately 1000 hours of data), a training group,
and a control group, these latter two each composed
of 154 randomly-assigned patients who did not suffer
a cardio-respiratory crisis (approximately 15,500 hours
of data each).

Figure 16 shows histograms of the training data. A
bivariate Gaussian distribution F2 is fitted to the data

0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

heart rate

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

breathing rate

Figure 16 Normalised histograms of the heart rate and breathing
rate values for all patients in the training group. The means and
standard deviations are, 84.41 and 18.45 bpm for the heart rate,
and 16.39 and 4.60 rpm for the breathing rate. The covariance
is 14.75.
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of the control group. To ease their graphical interpreta-
tion, we define novelty scores to be:

Z1(xM) = − ln
(

1 − Fe
2(xm)

)

. (33)

where x is the extremum of m samples and Fe
2 is defined

by Eq. 32. Note that Z1(x) takes low values if x is
close to the centre of the distribution and increases as x

becomes more and more “abnormal”. Novelty scores
are subsequently assigned to the entire recordings of
the patients in all groups. At time t, the highest nov-
elty score of the last m HR and BR measurements is
returned. The value of the parameter m is empirically
chosen to be 30 for illustration.

We compare the mEVT-based approach with the
classical thresholding approach described in Section 2;
i.e., setting a threshold in the probability space to which
each measurement is individually compared.

To make the comparison with the mEVT-based
method easier, we deduce from Eq. 17 that

P ( f2(x) ≥ f2(x0)) = 1 − exp
(

− M(x0)
2

2

)

(34)

and therefore define the novelty score for the classical
thresholding approach to be:

Z2(x0) = − ln (1 − f2(x0)) = M(x0)
2

2
. (35)

For a sample x, Z2 answers the question: “What was
the probability of drawing a sample of smaller magni-
tude?”. Z1 answers the question: “Considering x and
the m-1 samples observed before it, what was the prob-
ability of drawing m samples with a more probable
extremum?”

7.3 Results

For both approaches, we define τtraining(q), τcontrol(q),
τtest(q) and τcrisis(q) to be the fraction of the total
recording time that novelty scores are higher than the
threshold q for the training group, the control group,
the test group in the absence of a crisis, and the test
group during crises, respectively.

Figure 17 shows the evolution of these fractions as
q is increased for the mEVT-based method and the
thresholding method. The heterogeneity of the mea-
surements in the crisis windows means that we cannot
expect a τcrisis = 100%. However, it is important to
detect as much of the crisis data as possible to avoid
false negatives (where the novelty score is below the
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Figure 17 τtraining, τcontrol, τtest and τcrisis for the thresholding
method (upper plot) and the mEVT-based method (lower plot).
A warning system should aim to trigger an alarm only during
crises; i.e., we must set the threshold so that for an acceptable
value of τcrisis, τcontrol is minimal.

threshold during a crisis). If we allow τcrisis to be 90%,
then τtraining, τcontrol, τtest equal 1.02%, 1.92%, 5.70%
for the mEVT method, respectively, and 4.29%, 4.67%,
and 10.25% for the thresholding method.

This is a 58.1% reduction of false-positive alert time
(where the novelty score is above the threshold in the
absence of a crisis) for the control group. This reduction
becomes 56.1%, 59.3%, and 50.4% for τcrisis = 85%,
80% and 70%, respectively.

Therefore, the mEVT-based method consistently
brings a significant improvement to the false-positive
time while yielding the same true-positive detection
rate.

8 Conclusion

8.1 Discussion

Novelty detection can benefit from a comprehensive
multivariate Extreme Value Theory. We have moti-
vated the use of EVT for novelty detection, showing
that novelty thresholds set on the generative cdf Fn
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have a valid probabilistic interpretation only for single-
point classifications; i.e., m = 1. We must use EVT to
describe where the most extreme of m > 1 samples
will lie.

We have described existing methods for the estima-
tion of multivariate and multimodal EVDs f e

n w.r.t.
some mixture distribution fn, and have shown that the
estimation of f e

n is inaccurate for both multivariate and
multimodal cases.

We have proposed a numerical method of accurately
determining the EVD of a multivariate, multimodal
distribution fn, which is a transformation of the prob-
ability density contours of the generative distribution,
and have termed this the �-transform. This allows
EVDs for mixture models of arbitrary complexity to be
estimated by finding the MLE Gumbel distribution f e

n

in the transformed �-space. A novelty threshold may
be set on the corresponding univariate cdf Fe

n in the
transformed �-space, which describes where the most
extreme of m samples generated from fn will lie.

Furthermore, we have proposed a solution for mul-
tivariate, unimodal models of normality. Here, by giv-
ing an alternate definition of extrema and closed-form
solutions for the distribution function over pdf values,
we show that we can obtain accurate estimates of the
EVDs of multivariate Gaussian kernels.

We applied our formulae to actual patient vital-sign
data and showed that the use of EVD is a significant im-
provement over the conventional thresholding method.

Obtaining these formulae relies on our ability to
proceed from Eq. 16 to Eq. 19; i.e., our ability to
parameterise the level sets of the generative probabil-
ity distribution and integrate the resulting parameter-
isation. While this is relatively easy for multivariate
Gaussian distributions, it is not possible for arbitrar-
ily complex, non-symmetrical distributions and fully-
analytical closed-form extreme value distributions are
not to be expected. However, depending on our ability
to estimate the distribution function over the pdf val-
ues, accurate estimates of its minimal EVD can be ob-
tained without any sampling of extrema, which would
be a great improvement over the existing numerical
approach presented in Section 5.

8.2 Future Work

While we have proposed solutions in closed form for
multivariate, unimodal models of normality, it should
be possible to determine either closed-form solu-
tions, or good approximations to those solutions, for
fully multivariate, multimodal distributions. This pa-
per also proposed a numerical solution to estimating

the EVDs from such distributions, which was shown
to agree closely with experimentally-obtained extrema
from such models, but a more light-weight version
(that avoids the sampling requirement of the pro-
posed method) would be beneficial for applications in
which model training is performed on-line, and where
processing resources are constrained.

EVT considers the distribution of the extremum
of a set of observed data, motivated by the fact that
we wish to consider the extent of “normality” w.r.t.
some normal model. However, by considering the ad-
ditional information contained in the distributions of
other order statistics, not just the distributions of the ex-
trema, we may increase our capacity to perform novelty
detection.
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