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ABSTRACT

Extreme Value Theory (EVT) describes the distribution of
data considered extreme with respect to some generative
distribution, effectively modelling the tails of that distribu-
tion. In novelty detection, we wish to determine if data are
“normal” with respect to some model of normality. If that
model consists of generative distributions, then EVT is ap-
propriate for describing the behaviour of extrema generated
from the model, and can be used to separate “normal” areas
from “abnormal” areas of feature space in a principled man-
ner. In a companion paper, we show that existing work in
the use of EVT for novelty detection does not accurately de-
scribe the extrema of multimodal, multivariate distributions
and propose a numerical method for overcoming such prob-
lems. In this paper, we introduce an analytical approach to
obtain closed-form solutions for the extreme value distribu-
tions of multivariate Gaussian distributions and present an
application to vital-sign monitoring.

1. INTRODUCTION

Extreme Value Theory (EVT) is a branch of statistics that
is concerned with extreme deviations from the median of
some data-generating distribution; i.e., abnormally high or
low values in the tails of these distributions. Classical EVT,
for which the theory is well-established [1, 2], is mainly
concerned with the statistics of the largest (or smallest val-
ues) of univariate distributions. While this is useful in fields
such as hydrology, insurance, and finance, it is inadequate
for multivariate machine learning problems, e.g outlier or
novelty detection. In the latter, we are interested not only
in data of abnormal magnitude but in all areas of data space
of abnormally low probability, including those that may be
located between the modes of the distributions. In applica-
tions such as structural health monitoring [3, 4] or vital-sign
monitoring, data in these areas can indicate a potential mal-
function of the system or deterioration of patient condition.
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[5, 6] proposed an extension of classical EVT to mix-
tures of multivariate Gaussians, with three applications in
biomedical engineering. This work recommends, for a given
sample x, that only the extreme value distribution (EVD)
associated with the kernel closest to x (in the Mahalanobis
sense) is considered, which may be calculated using the
known EVD of the single-sided univariate Gaussian distri-
bution. In a companion paper [7] we argued the need for
a multivariate Extreme Value Theory (mEVT) in machine
learning, identified some of the limitations of the existing
approach, and proposed a numerical scheme for multimodal
multivariate estimation.

In this paper, we offer an analytical approach to mEVT,
restricted to single Gaussian distributions; i.e., for dimen-
sionality n ∈ N∗, distributions Fn with probability density
functions of the form:

fn(x) =
1
Cn

exp
(
−M(x)2

2

)
(1)

where M(x) =
(
(x− µ)>Σ−1(x− µ)

)1/2
is the Maha-

lanobis distance, Cn = (2π)n/2|Σ|1/2 the normalisation
coefficient, µ the centre, and Σ the covariance matrix. We
term D = Rn the data space, and P = fn(D) =

]
0, 1

Cn

]
,

the associated probability space. A unimodal approach is
of interest because the existing method [5] yields signifi-
cant errors when estimating EVD parameters, which can be
solved directly by the use of analytically-derived estimates.
Furthermore, the numerical approach presented in the com-
panion paper [7] requires that we generate extrema from a
multivariate distribution, which can be time-consuming as
the sample size is increased. While a fully analytical mEVT
may not be possible, the analytical study presented here
paves the way to more elaborate numerical schemes with
no need for sampling extrema.
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2. EXTREME VALUE THEORY

2.1. Classical univariate theory

Consider {Xm}, a set ofm independent and identically dis-
tributed random variables (iid rvs), where Xi ∈ R is drawn
from a distribution F , and Mm = max(X1, X2, . . . , Xm).
The basis of EVT is the Fisher-Tippett theorem [8]:

Theorem 1. (Fisher-Tippett theorem)
Let {Xm} be a sequence of iid rvs andMm the maximum of
the sequence {Xm}. If there exist norming constants dm ∈
R, cm > 0 and some non-degenerate distribution function
(df) H such that

c−1
m (Mm − dm) d→ H, (2)

then H belongs to the type of one of the following three
distribution functions:

Gumbel: H+
1 (x) = exp (−e−x), x ∈ R.

Fréchet: H+
2 (x, α) =

{
0, x ≤ 0
exp (−x−α) , x > 0 ,

Weibull: H+
3 (x, α) =

{
exp (−(−x)α) , x ≤ 0
1, x > 0 ,

for α > 0.

In other words, if the distribution overMn is to be stable
in the limit m→∞, then it can only converge, under posi-
tive affine transformation, to three types of distributions. dm
is the location parameter and cm is the scale parameter. For
the distributions in which it appears, α is the shape param-
eter and is not explicitly made dependent on m in the the-
orem. We show in section 4 that α can be made dependent
on m for practical purposes. The superscript ‘+’ refers to
the fact that these distributions are distributions of maxima.
The theorem holds for the distribution of minima, as min-
ima of {Xm} are maxima of {−Xm}. EVDs of minima are
therefore the same as EVDs of maxima, with a reverse axis.
In section 4, we are interested in the Weibull-type EVD of
minima, or minimal Weibull, for which the attractor is (see
[2]):

H−3 (x, α) =
{

0, x < 0
1− exp (−(x)α) , x ≥ 0 . (3)

2.2. Multivariate EVT: redefining extrema

Classical univariate EVT (uEVT) cannot be directly applied
to the estimation of multivariate EVDs. For the multivariate
case, we no longer wish to answer the question “how is the
sample of greatest magnitude distributed?”, which would
require choosing an ad-hoc multivariate distance, but rather
“how is the most improbable sample distributed?”. To this
end, we use an alternate definition of extremum:

Definition 1. Letm ∈ N∗ and {Xm} be a sequence of (pos-
sibly multivariate) iid rvs, drawn from a distribution F with
probability density function f . We define the extremum to be
the random variable Em = argmin {f(X1), . . . , f(Xm)}.

This different perspective on EVT can be related to clas-
sical EVT in two ways:

• away from the distribution modes, the pdf monotoni-
cally decreases with increasing distance to the modes.
Extrema in magnitude are therefore also minima in
probability density values,

• selecting the most improbable sample with respect to
f is equivalent to selecting the sample of minimal
magnitude with respect to the df over f(X). uEVT
can therefore be applied to samples drawn in the prob-
ability space.

However, using this definition is better-suited to problems
where all improbable events are of interest, including those
that could occur between modes of f . The aim of the next
two sections is to find the form of the df over Em.

3. PROBABILITY DISTRIBUTION OF
PROBABILITY DENSITY VALUES

3.1. Sampling in the data space is equivalent to sam-
pling in the image probability space

Let x1,x2, . . . ,xk be samples (vectors of D) drawn from
the distribution Fn for k ∈ N and fn(x1), fn(x2), . . .,
fn(xk) be the corresponding pdf values of these samples.
The probability of obtaining a given value in the probabil-
ity space by drawing a sample in the data space is strongly
related to the form of f . Assuming that X is a random vari-
able distributed according to Fn, our aim in this section is to
determine the form of the df Gn according to which fn(X)
is distributed on P .

3.2. Distribution function over fn(X)

We define a distribution over Y = fn(X) as follows:

∀y ∈ P, Gn(y) =
∫
f−1(]0,y])

fn(x)dx (4)

where f−1(]0, y]) is the preimage of ]0, y] under fn.
To take advantage of the ellipsoidal symmetry of the

problem we rewrite f in a Mahalanobis n-dimensional spher-
ical polar coordinate system. Then, xv = (r, θ) such that
θ = (θ1, . . . , θn−1) , r = M(x), θi ∈

[
−π2 ,

π
2

[
for i ≤ n−

2 and the base angle θn−1 ranges over [0, 2π]. The Jacobian
of the transformation is |J | = |Σ|1/2rn−1

∏n−3
i=0 (cos θi)n−i

(see, for instance, [9]).



Gn(y) =
∫
f−1

n (]0,y])

1
Cn

exp
(
−M(x)2

2

)
dx, (5)

=
∫
f−1

n (]0,y])

|J |
Cn

exp
(
−r

2

2

)
drdθ , (6)

= Ω
∫ +∞

M−1(y)

rn−1

(2π)n/2
exp

(
−r

2

2

)
dr, (7)

= Ω|Σ|1/2
∫ y

0

[−2 ln (Cnu)](n−2)/2 du. (8)

M−1(y) =
√
−2 ln (Cny) is the unique Mahalanobis

distance associated with the pdf value y. Eq. 6 is obtained
by rewriting eq. 5 in the spherical polar coordinate system.
Integrating out the angles yields eq. 7, where Ω = 2πn/2

Γ( n
2 ) is

the total solid angle subtended by the unit n-sphere. Eq. 8 is
obtained after making the substitution u = 1

Cn
exp

(
− r

2

2

)
.

Note that eq.7 and 8 hold for n = 1.
The integrand in 8 is the pdf of Gn, which we aim to

find,
gn(y) = Ωn|Σ|1/2 [−2 ln (Cny)]n−2/2 (9)

If n = 1, the integration of eq.7 yields G1(y) =
erfc

(√
− ln (C1y)

)
where erfc (.) is the complementary

error function. If n ≥ 2, the integration of 8 is possible us-
ing a recursive integration by parts, which yields two cases:

G2p(y) = y

p−1∑
k=0

Ak2p (−2 ln (C2py))(p−k−1) (10)

G2p+1(y) = y

p−1∑
k=0

Ak2p+1 (−2 ln (C2p+1y))p−k−1/2

+ erfc
(√
− ln (C2p+1y)

)
(11)

for all p ∈ N∗, where Ak2p = Ω2p|Σ|1/2 2k(p−1)!
(p−1−k)! and

Ak2p+1 = Ω2p+1|Σ|1/2 (2p−1)!(p−k)!
2k−1(p−1)!(2p−2k)!

.
Gn and gn are plotted for n = 1 to 5 in figure 1, to-

gether with simulated data. Perhaps counter-intuitively, we
observe that, relative to the right endpoint of Gn, the prob-
ability mass shifts towards 0 as the dimensionality n in-
creases, which indicates that the probability mass in the data
space moves away from the centre of the distribution, as is
noted by Bishop in [10] (ex.1.4, p.29).

4. EVD FOR PROBABILITY DENSITY VALUES

Our approach is based on the idea that pdf values of the
EVD in the data space must be equal on a level set (or con-
tour) of F ; i.e., the EVD is obtained by applying a weight-

Fig. 1. Analytical and simulated Gn and gn for various val-
ues of n. The x-axis is scaled so that all distributions have
the same right endpoint. Crosses are the result of drawing
106 samples in the data space and computing the cumula-
tive histograms of their probabilities. Fn is the multivariate
standard normal distribution.

ing function to the level sets of F . Consequently, determin-
ing the EVD in the data space can be performed by deter-
mining the EVD ofG in the probability space. We therefore
reduce an n-dimensional problem (finding an EVD in D)
to a simpler one-dimensional case (finding an EVD in P).
In this section, our aim is to determine the Extreme Value
Distribution of minima for Gn and estimate its parameters,
using uEVT.

4.1. Maximum domain of attraction of the Weibull dis-
tribution

The Fisher-Tippett theorem effectively defines a three-class
(Gumbel, Fréchet, and Weibull) equivalence relation on the
set of non-degenerate univariate distributions. [1] gives the
characterizations for each class. Theorem 3.3.12 in [1] char-
acterizes the maximum domain of attraction (MDA) of the
maximal Weibull distribution. We adapt it to the MDA of
the minimal Weibull distribution:

Theorem 2. (Maximum domain of attraction of H−3 )
The df F belongs to the maximum domain of attraction of
the minimal Weibull distribution (α > 0), if and only if



xF > −∞ and F (xF + x−1) = x−αL(x) for some slowly
varying function L. If F ∈ MDA(H−3 ), then c−1

m (Em −
xF ) d→ H+

1 , where the norming constants cm, dm can be
chosen to be cm = xF + F←(m−1) and dm = xF .

xF is the left endpoint of the df F , F←(p) is the p-
quantile of F , and L a slowly varying function at∞; i.e., a
positive function that obeys

∀t > 0, lim
x→∞

L(tx)
L(x)

= 1. (12)

From eq.12, it may be seen that y 7→ − ln (1/y) , y > 1
is slowly varying, as is y 7→ − ln (1/y)β , y > 1, for all
β ∈ R. Therefore y G2p (1/y) is a sum of slowly vary-
ing functions, which is itself slowly varying. Theorem 2
can therefore be applied to G2p. A similar process can be
followed to show that G2p+1 is in the MDA of H−3 . Conse-
quently, Gn is in the MDA of H−3 for all values of n.

4.2. Parameter estimation

If Gn is in the MDA of H−3 , theorem 2 gives the minimal
Weibull parameters:

dm = 0, αm = 1, (13)
cm = G←n

(
1
m

)
. (14)

The scale parameter can be easily estimated numerically
from eq.14 to arbitrary accuracy, as Gn is a strictly increas-
ing function over finite support. Figure 2 shows that eq.14
is a very close approximation to the values of the scale pa-
rameter dm obtained via maximum likelihood estimation
(MLE). However, the value of the shape parameter αm, al-
though theoretically guaranteed to converge to 1 in the limit
m→∞ seems to decrease significantly as the dimensional-
ity of the data space increases, and it is overestimated even
for large values of m. To address this issue, we note that
the class of equivalence of H−3 contains all the distributions
with a power law behaviour at the finite left endpoint [1].
Therefore the tail of Gn is, in the limit y → 0, equivalent to
a power law; i.e., Gn(y) ∼ Kys. Here, s can be estimated
locally by noting that, in this case, gn(y) ∼ sKys−1; i.e.,
s = yGn(y)

gn(y) . We therefore propose the following formula
for the shape parameter

αm = cm
gn(cm)
Gn(cm)

(15)

Figure 2 shows that eq.15, although still inaccurate for very
small values of m, gives values closer to the MLE estimates
as m and n increase.

Finally, the EVD of Gn is:

Gen(y) = 1− exp (− (y/cm)αm) , (16)

where cm and αm are given by eq.14 and 15, respectively.

Fig. 2. Comparison between results of maximum likelihood
estimation of the scale parameter cm (top) and the shape pa-
rameter αm (bottom) parameter, and values obtained using
formulae 15 and 14 for increasing m. Fn is again the multi-
variate standard normal distribution. The dots are obtained
by taking the means of 10 MLEs, each with 104 simulated
extrema. Error bars are too small to be visible at this scale.

4.3. Novelty Scores

In novelty detection, extrema are regarded as potentially ab-
normal data. Assuming a distribution for the normal data,
if we observe m samples for which the extremum has pdf
value ym, the probability of drawing an extremum of lower
probability is given by Gen(ym). Therefore, the probability
of drawing an extremum of higher probability is 1−Gen(ym)
and our extremum is abnormal with probability 1−Gen(ym).
Therefore we define a novelty score in the data space as be-
ing the probability of obtaining an extemum closer to the
centre of the distribution (in the Mahalanobis sense):

F en(x) = 1−Gen(fn(x)), (17)

= exp
(
−
(

1
Cncm

e−
M(x)2

2

)αm
)
. (18)



In the limit m→∞, F en(x) can be interpreted as a
Mahalanobis-radial cdf of extrema.

5. APPLICATION TO A VITAL-SIGN
MONITORING PROBLEM

In this section, we present an application of mEVT to a
vital-sign monitoring problem. Continuous real-time pa-
tient monitoring in hospital is usually based on single vital-
sign channel alarms, which yield an unusably large num-
ber of false alarms. Recently, efforts have been made to
take advantage of the correlation between vital-sign chan-
nels. In [11, 12], the authors adopt a novelty detection ap-
proach, whereby the model of normality is a 4-dimensional
pdf constructed using data from a high-risk adult popula-
tion. The authors then test for abnormal data by comparing
the unconditional probabilities f(x) of new measurements
obtained in real-time to a predefined threshold.

Fig. 3. Normalised histograms of the heart rate and breath-
ing rate values for all patients in the training group. The
means and standard deviations are, 84.41 and 18.45 bpm
for the heart rate, and 16.39 and 4.60 rpm for the breathing
rate. The covariance is 14.75.

Here, we introduce the use of mEVT to address the same
problem, limited to the use of two vital-sign channels, heart
rate (HR) and breathing rate (BR). The data set was col-
lected during the first phase of a trial conducted at the Uni-
versity of Pittsburgh Medical Center [11, 13, 14], which is
composed of the recordings of 332 high-risk adult patients,
totalling over 18,000 hours of data. Vital-sign measure-
ments are available every second for all patients. Record-
ings are labeled with “crisis events”; i.e., events that should
have caused an emergency call to clinical staff to be made

on the patient’s behalf, as they are indicative of potentially
adverse events. The cause of each event (high/low HR,
high/low BR, etc.) is given with its start-time and end-
time. 46 of 113 events are caused by an abnormally high or
low heart rate or breathing rate (approximately 19 hours of
data). We split patients into three groups: a test group, com-
posed of the 28 patients who suffered at least one cardio-
respiratory crisis over the course of their stay (approximately
1000 hours of data), a training group, and a control group,
these latter two each composed of 154 randomly-assigned
patients who did not suffer a cardio-respiratory crisis (ap-
proximately 8500 hours of data each). Figure 3 shows his-
tograms of the training data. A bivariate Gaussian distribu-
tion F2 is fitted to the data of the control group. To ease their
graphical interpretation, we define novelty scores to be:

Z1(xM ) = − ln (1− F e2 (xm)) . (19)

where x is the extremum ofm samples and F e2 is defined by
eq.18. Note that Z1(x) takes low values if x is close to the
centre of the distribution and increases as x becomes more
and more “abnormal”. Novelty scores are subsequently as-
signed to the entire recordings of the patients in all groups.
At time t, the highest novelty score of the last m HR and
BR measurements is returned. The value of the parameter
m is empirically chosen to be 30 for illustration.

We compare the mEVT-based approach with the clas-
sical thresholding approach; i.e., setting a threshold in the
probability space to which each measurement is individu-
ally compared. To make the comparison with the mEVT-
based method easier, we deduce from eq.6 that Pr(f2(x) ≥
f2(x0)) = 1 − exp

(
−M(x0)2

2

)
and therefore define the

novelty score for the classical thresholding approach to be:

Z2(x0) = − ln (1− f2(x0)) =
M(x0)2

2
. (20)

For a sample x, Z2 answers the question: “What was the
probability of drawing a sample of smaller magnitude?”. Z1

answers the question: “Considering x and the m-1 samples
observed before it, what was the probability of drawing m
samples with a more probable extremum?” For both ap-
proaches, we define τtraining(q), τcontrol(q), τtest(q) and
τcrisis(q) to be the fraction of the total recording time that
novelty scores are higher than the threshold q for the train-
ing group, the control group, the test group in the absence
of a crisis, and the test group during crises, respectively.

Figure 4 shows the evolution of these fractions as q is
increased for the mEVT-based method and the threshold-
ing method. The heterogeneity of the measurements in the
crisis windows means that we cannot expect a τcrisis =
100%. However, it is important to detect as much of the
crisis data as possible to avoid false negatives (where the
novelty score is below the threshold during a crisis). If we



Fig. 4. τtraining, τcontrol, τtest and τcrisis for the thresh-
olding method (upper plot) and the mEVT-based method
(lower plot). A warning system should aim to trigger an
alarm only during crises; i.e., we must set the threshold so
that for an acceptable value of τcrisis, τcontrol is minimal.

allow τcrisis to be 90%, then τtraining, τcontrol, τtest equal
1.50%, 2.59%, 7.03% for the mEVT method, respectively,
and 3.39%, 4.01%, and 9.34% for the thresholding method.
This is a 35.4% reduction of false-positive alert time (where
the novelty score is above the threshold in the absence of a
crisis) for the control group. This reduction becomes 42.1%,
and 29.2%, for τcrisis =85% and 80%, respectively. There-
fore, the mEVT-based method consistently brings a signif-
icant improvement to the false-positive time while yielding
the same true-positive detection rate.

6. DISCUSSION

Novelty detection can benefit from a comprehensive mul-
tivariate Extreme Value Theory. Here, by giving an alter-
nate definition of extrema and closed-form solutions for the
distribution function over pdf values, we show that we can
obtain accurate estimates of the EVDs of multivariate Gaus-
sian kernels. We applied our formulae to actual patient vital-
sign data and showed that the use of EVD is a significant im-
provement over the conventional thresholding method. Ob-
taining these formulae relies on our ability to proceed from
eq.5 to eq.8; i.e., our ability to parameterise the level sets

of the generative probability distribution and integrate the
resulting parameterization. While this is relatively easy for
multivariate Gaussian distributions, it is not possible for ar-
bitrarily complex, non-symmetrical distributions and fully-
analytical closed-form extreme value distributions are not
to be expected. However, depending on our ability to esti-
mate the distribution function over the pdf values, accurate
estimates of its minimal EVD can be obtained without any
sampling of extrema, which would be a great improvement
over the existing numerical approach presented in the com-
panion paper [7].
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