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ABSTRACT

Extreme Value Theory (EVT) describes the distribution of

data considered extreme with respect to some generative

distribution, effectively modelling the tails of that distribu-

tion. In novelty detection, or one-class classification, we

wish to determine if data are “normal” with respect to some

model of normality. If that model consists of generative dis-

tributions, then EVT is appropriate for describing the be-

haviour of extremes generated from the model, and can be

used to determine the location of decision boundaries that

separate “normal” areas of data space from “abnormal” ar-

eas in a principled manner. This paper introduces existing

work in the use of EVT for novelty detection, shows that ex-

isting work does not accurately describe the extrema of mul-

tivariate, multimodal generative distributions, and proposes

a novel method for overcoming such problems. The method

is numerical, and provides optimal solutions for generative

multivariate, multimodal distributions of arbitrary complex-

ity. In a companion paper, we present analytical closed-

form solutions which are currently limited to unimodal, mul-

tivariate generative distributions.

1. INTRODUCTION

Novelty detection, or one-class classification, classifies test

data as “normal” or “abnormal” with respect to a model

of normality. This approach is particularly well suited to

problems in which a large quantity of examples of “nor-

mal” behaviour exist, such that a model of normality may be

constructed, but where examples of “abnormal” behaviour

are rare, such that a multi-class approach cannot be taken.

For this reason, novelty detection has become popular in

the analysis of data from high-integrity systems, such as jet

engines, manufacturing processes, or power-generation fa-

cilities, which spend the majority of their operational life

in a “normal” state, and which exhibit few, if any, failure

conditions.
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1.1. Existing Work

In much of the existing work on novelty detection, an as-

sumption is made that “normal” data x are i.i.d., and dis-

tributed according to some underlying generative distribu-

tion fn(x), which is a probability distribution over an n-

dimensional data space, D; i.e., x ∈ D = R
n. Typically, fn

is multivariate and multimodal; it could be, for example, a

Gaussian mixture model (GMM), Parzen window estimator,

or other mixture of kernels. If we define a null hypothesis

H0 that test data x are generated from fn, then novelty de-

tection evaluates the hypothesis that H0 is true; if H0 holds

with probability P < κ for some threshold probability κ,

then the null hypothesis is rejected, and x is classified “ab-

normal” w.r.t. fn. The problem then becomes one of setting

the novelty threshold.

In previous work, a heuristic novelty threshold has been

set on the unconditional pdf fn(x) = κ, such that x is clas-

sified “abnormal” if fn(x) < κ. Such thresholds have no

principled probabilistic interpretation: fn(x) is used simply

as a novelty score, and the threshold is set such that sepa-

ration between “normal” and any “abnormal” data is max-

imised on a validation dataset. Some authors [1, 2] have

interpreted fn probabilistically, by considering the cumula-

tive probability Fn(x) associated with fn(x). That is, they

find the probability mass obtained by integrating fn over the

region R where fn exceeds the novelty threshold; i.e., the

region {x ∈ R|fn(x) ≥ κ}:

Fn(x) =

∫

R

fn(x) dx (1)

For a unimodal pdf, this corresponds to integrating from

the mode of fn to the pdf contour defined by the novelty

threshold fn(x) = κ, which can usually be determined in

closed form. However, for a multimodal pdf, the integration

may need to be performed using Monte Carlo techniques.

Setting the novelty threshold using the above method, and

then determining the probability mass Fn enclosed by that

fn(x) = κ contour, allows a probabilistic interpretation: if

we were to draw one sample from fn, we would expect it
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to lie outside the novelty threshold with probability 1−Fn.

Thus, we could set the novelty threshold fn(x) = κ such

that Fn is some desired probability mass; e.g., Fn = 0.99.

However, setting a novelty threshold using Fn has associ-

ated disadvantages for novelty detection. In order to exam-

ine these disadvantages, we must first consider a different

method for determining the location of novelty thresholds:

that of EVT.

2. CLASSICAL EXTREME VALUE THEORY

EVT is a branch of statistics concerned with modelling the

distribution of very large or very small values (extrema)

w.r.t. a generative distribution fn. Here, we consider “clas-

sical” EVT as previously used in novelty detection [3, 4, 5,

6], in contrast to a method commonly used in estimating

financial risks, often termed the peaks-over-threshold tech-

nique [7].

2.1. Extreme Value Distributions

Consider a set of m i.i.d. data, which we here assume to be

univariate (n = 1) for the purposes of simplifying the in-

troduction, X = {x1, x2, . . . , xm}, distributed according to

some function f1(x), with maximum xmax = max(X). We

define the cumulative distribution function (cdf) for xmax to

be H+(xmax ≤ x); i.e., H+ models our belief in where the

maximum of m data generated from distribution f1 will lie.

According to the Fisher-Tippett theorem [8] upon which

classical EVT is based, H+ must belong to one of the fol-

lowing three families of distributions, no matter what the

form of f1:

Gumbel, H+

1 (y) = exp(− exp(−y)) (2)

Fréchet, H+

2 (y) =

{

0 if y ≤ 0

exp(−y−α) if y > 0
(3)

Weibull, H+

3 (y) =

{

exp(−(−y)α) if y ≤ 0

1 if y > 0
(4)

for α ∈ R
+, and where y is a transformation of x, termed

the reduced variate, y = (x − cm)d−1
m , for location and

scale parameters cm and dm, respectively. In classical EVT,

these parameters for the EVD corresponding to the univari-

ate Gaussian are dependent only on the number of data m
drawn from the underlying distribution f1 [7]:

cm =
√

2 ln m− ln lnm + ln 4π

2
√

2 ln m
, dm =

1√
2 ln m

(5)

In this paper, we are primarily concerned with mixtures of

Gaussian distributions, for which the limiting distribution is

the Gumbel distribution H+

1 . This limiting cdf F e
n = H+

1

has a corresponding pdf fe
n, which we term the extreme

−1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

f(
x
),

 f
e
(x

)

 

 

f(x), m=1

f
e
(x), m=10

2

f
e
(x), m=10

3

f
e
(x), m=10

xκ

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

m
1
 −

 F
e
(x

κ)

m=248

m=10

m=100

Fig. 1. EVDs fe
1 (x) and probability 1−F e

1 (xκ) in the upper

and lower plots, respectively, for increasing m.

value distribution (EVD). Note that in the case of m = 1,

the EVD is the original generative distribution fe
n = fn;

i.e., the original distribution describes where a single sam-

ple drawn from fn will lie.

2.2. Disadvantages of Using Fn(x)

With a method of describing where we expect the extremum

of a set of m samples generated from fn to occur, we can

examine the disadvantages associated with setting a novelty

threshold using Fn, as was introduced in Section 1.1. For

the purpose of illustration, suppose that f1 = N(0, 1), the

standard univariate Gaussian distribution.

The upper plot in Figure 1 shows the generative distribu-

tion f1, and the EVDs fe
1 for increasing numbers of samples

m. As more samples are generated from f1, the expected

location of their maximum increases on the x-axis. A nov-

elty threshold has been set at F1 = 0.99, which occurs at

x = xκ, and which is shown in the figure as a dashed line.

We anticipate that this novelty threshold will be exceeded

with probability 1 − F1 = 1 − 0.99 = 0.01 when generat-

ing a single sample (i.e., m = 1) from f1. However, when

generating multiple samples m > 1 from f1, the probability

that the novelty threshold will be exceeded is given instead

by the extreme cdf, 1 − F e
1 (xκ).



The lower plot in Figure 1 shows the probability that

the novelty threshold set at F1 = 0.99 will be exceeded

for increasing numbers of samples m. After m = 10 sam-

ples, the threshold will have been exceeded with probability

0.163, and after m = 100, the threshold will have been ex-

ceeded with probability 0.797. The threshold is exceeded

with probability 0.99 after m = 248 samples have been

generated.

Thus, setting a novelty theshold using Fn only has a

valid probabilistic interpretation when m = 1; i.e., for clas-

sification tasks in which a single entity is being compared

with a model of normality. An example of this is when com-

paring a single mammogram to a model constructed using

“normal” mammogram data [9].

3. EVT FOR NOVELTY DETECTION

Existing work on the use of EVT for novelty detection has

been limited to [3, 4, 5, 6, 10]. We here consider the use of

EVT for multivariate and multimodal novelty detection, and

identify problems with existing approaches in both cases.

3.1. EVT in Multivariate Novelty Detection

Multivariate extrema exist in the EVT literature [7, 11], are

also termed block extrema, and are those n-dimensional data

xn that are maxima or minima in one or more dimensions

of n. For novelty detection, we require extremes w.r.t. our

model of normality, rather than considering block extrema.

EVT was first used for novelty detection in multivariate data

in [3, 4], where models of normality were represented by

mixtures of Gaussian kernels. In multivariate space, the

Gaussian kernel describes a hyperellipsoid with fn(x) vary-

ing along a radius r according to the univariate Gaussian

(scaled by a normalisation factor dependent on dimension-

ality n). That is, to determine the probability density fn(x)
at any point in the hyperellipsoid, the problem is reduced to

a univariate case f1(r), in Mahalanobis radius r. [3, 4] uses

this assumption to reduce the problem of determining the

EVD for a multivariate Gaussian kernel to a corresponding

univariate case. As illustrated in Figure 2, the EVD for a

single Gaussian kernel along a radius r varies according to

a univariate Gumbel distribution.

Existing work uses classical EVT to estimate the param-

eters cm, dm of this Gumbel cross-section fe
n in multivariate

n-space, as defined in (5).

Figure 3 shows the estimates of cm, dm given by classi-

cal EVT compared to maximum likelihood estimates (MLEs)

obtained using the unimodal, univariate method of [11] for

increasing dimensionality n of the Gaussian kernel. For the

univariate case f1, it may be seen from the figure that clas-

sical EVT correctly estimates the Gumbel parameters. For

n > 2, the location parameter cm of fe
n is significantly un-
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Fig. 2. The bivariate Gaussian f2 and its EVD fe
2 (shown in

the upper plot), which is a torus with Gumbel cross-section

(shown in the lower plot).

derestimated, and this error becomes greater with increasing

dimensionality n.

Thus, we conclude that for multivariate distributions fn,

we cannot use classical EVT to estimate the EVD, fe
n.

3.2. EVT in Multimodal Novelty Detection

EVT defines an “extreme value” to be that which is either

a minimum or maximum of a set. This is due to the con-

ventional use of EVT for determining events of extremely

large or small magnitude, such as extreme financial events,

extreme meteorological events, etc. In novelty detection,

when considering the extrema of unimodal distributions, as

is the focus of most previous work in the field of EVT [5, 6,

10], this existing definition of “extreme value” is sufficient

for univariate f1. For multivariate data, providing that fn is

unimodal, the existing definition may be taken to mean the

minimum or maximum radius r from the single mode of fn

(reducing the multivariate problem to a univariate problem

in r, as we have described in Section 3.1).

However, for multimodal fn, whether uni- or multivari-

ate, the notion of minimum or maximum value is longer

sufficient, because there is no single mode from which dis-

tance may be defined. Given that the goal of using EVT

for novelty detection is to identify improbable events w.r.t.

fn, rather than events of extreme absolute magnitude, we
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redefine “extreme value” in terms of probability:

Definition 1. For novelty detection, the “most extreme” of

a set of m samples X = {x1,x2, . . . ,xm} generated from

a distribution fn(x) is that which is most improbable with

respect to the distribution; i.e., argmin
x

fn(x).

The conventional use of “extrema” to mean minimum

or maximum values with respect to a unimodal distribution

becomes a special case of the above definition: because the

pdf fn typically decreases monotonically with increasing

distance from the single mode, selecting the samples fur-

thest from that mode (i.e., the minimum or maximum of

a set of samples) is equivalent to selecting the samples for

which fn is minimised.

This selection of extrema based on minimising fn(x) is

equivalent to selecting extrema by maximising Fn(x) using

(1). Our definition satisfies the condition of [1], which states

that the probability of observing data fn(x) inside a novelty

boundary should be at least as large as the probability of

observing data outside the novelty boundary. That is, the

novelty boundary is a lower bound on fn(x) for “normal”

data.

Definition 1 provides us with the mechanism we require

to determine the extent of data space that is considered “nor-

mal”: if we observe m “normal” data generated from a

model of normality fn, the EVD fe
n describes where the

least probable of those m normal data will lie. Thus, we

can use the EVD to set a novelty threshold, as will be de-

scribed, and perform novelty detection.
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Fig. 4. Bimodal generative pdf f1 (dashed line) with EVD

fe
1 predicted by existing methods (solid line). The his-

togram for N = 106 experimentally-obtained extrema for

m = 100 is shown by the circles.

As with multivariate novelty detection, [3, 4] is the only

existing work in using EVT for novelty detection with mul-

timodal fn. In this work, the multimodal distribution rep-

resented by a mixture of Gaussian kernels is reduced to a

single-kernel problem: to find the value of the EVD fe
n at

some location x, the closest kernel (determined using Ma-

halanobis distance) is assumed to dominate fe
n(x), and thus

the EVD is based on the Gumbel distribution corresponding

to that closest kernel (using radius r from that kernel centre,

as described in Section 3.1). Here, the contribution of other

kernels to fe
n(x) is assumed to be negligible, and they are

ignored.

However, as shown in Figure 4, this existing method

produces poor estimates for the actual EVD fe
n when com-

pared to the distribution of experimentally-obtained extrema.

4. UNDERSTANDING THE EVD

This section presents a new method of understanding the

EVD, which we require in order to estimate the EVD for

multivariate, multimodal fn.

4.1. The EVD as a Transformation of fn

The EVD fe
n for a distribution fn follows the probability

contours of that distribution. This is a consequence of using

Definition 1, where extrema are defined in terms of min-

imising fn(x) for a set X of m samples (or, equivalently,

maximising Fn).

It is convenient to consider the EVD as a transformation

of equiprobable contours on fn. Figure 5 shows equiprob-

able contours for a bivariate model of normality f2 rep-

resented by a mixture of three Gaussian kernels with full
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modal GMM with full (non-diagonal) covariance matrices

and corresponding EVD fe
n.

(non-diagonal) covariance matrices. The EVD fe
2 is shown

for m = 100. Equiprobable contours of the EVD fe
2 occur

at equiprobable contours of f2, and thus we may consider

the EVD to be a weighting function of the contours of fn,

fe
n(x) = g [fn(x)] (6)

for some weighting function g. With the EVD thus defined

in terms of fn, we have the facility to accurately determine

fe
n for complex, multimodal, multivariate distributions, if

we can find the form of g.

4.2. The Ψ-Transform

For a standard Gaussian, fn(x) = (2π)−n/2 exp
(

−r2/2
)

,

and so r = (−2 ln fn(x) − n ln 2π)
1/2

. We define a trans-

form,

Ψ [fn(x)] =

{

(−2 ln fn(x) − n ln 2π)
1/2

if fn(x) < K

0 if fn(x) ≥ K

(7)

where K = (2π)−n/2. If fn is a unimodal Gaussian dis-

tribution N(µ,Σ), the Ψ-transform would map the fn(x)
values back onto r, the radii of x from µ, which we know is

distributed according to the Gumbel distribution (as shown

in Section 3.1). The Ψ-transform maps the distribution of

fn(x) values back into a space into which a Gumbel distri-

bution can be fitted, having observed that fn(x) for extrema

are distributed similarly for mixtures of negative exponen-

tials of varying number of kernels, priors, and covariances

[12].

The upper plot in Figure 6 shows a normalised histogram

of N = 106 extrema generated from the example mixture

of three Gaussian kernels f2 in Figure 5, for m = 100. The
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Fig. 6. Normalised histogram of f2(x) values for N = 106

extrema generated from trimodal GMM with m = 100 (up-

per plot). Histogram of the Ψ-transformed f2(x) values

shown in grey, with the corresponding MLE Gumbel dis-

tribution fitted in Ψ-space, shown in black (lower plot). A

novelty threshold at F e
2 = 0.99 is shown as a dashed line.

distribution is highly skewed towards f2(x) = 0, as is ex-

pected for extrema. The lower plot in the figure shows the

Ψ-transform of the extrema, which may be seen to be dis-

tributed according to the Gumbel. The MLE Gumbel dis-

tribution fitted in Ψ-space using the univariate, unimodal

method of [11] is shown, which is fe
2

(

Ψ[f2(x]
)

. Thus, all

locations x in the original data space D = R
n may be evalu-

ated w.r.t. fe
n

(

Ψ[fn(x)]
)

, as was shown in Figure 5, and we

have successfully found the multivariate, multimodal EVD

which is a transformation of fn, as required.

We may determine the location of a novelty threshold on

fe
n by equating the corresponding cdf F e

n (which is univari-

ate in Ψ-space) to some probability mass; e.g., F e
n = 0.99,

as shown in Figure 6. Thus, we have defined a contour in

data space D that describes where the most extreme of m
“normal” samples generated from fn will lie, to some prob-

ability (e.g., 0.99).

Note finally that, though the novelty threshold set using

our proposed method occurs at some contour fn = κ (due

to Definition 1), it is not heuristic: the threshold is set such

that generating m samples from fn will exceed the thresh-

old with probability 1 − F e
n = 1 − 0.99 = 0.01; that is, the

final novelty threshold has a valid probabilistic interpreta-

tion provided by EVT.
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ing the proposed Ψ-transform method for a trivariate, tri-

modal f3 (upper plot). Histogram of Ψ-transformed ex-

trema (shown in grey) and MLE Gumbel (shown in black)

for a 6-dimensional f6 mixture of 15 components. A nov-
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5. CONCLUSION

We have motivated the use of EVT for novelty detection,

showing that novelty thresholds set on the generative cdf

Fn have a valid probabilistic interpretation only for single-

point classifications; i.e., m = 1. We must use EVT to

describe where the most extreme of m > 1 samples will lie.

We have described existing methods for the estimation

of multivariate and multimodal EVDs fe
n w.r.t. some mix-

ture distribution fn, and have shown that the estimation of

fe
n is inaccurate for both multivariate and multimodal cases.

We have proposed a method of accurately determining the

EVD of a multivariate, multimodal distribution fn, which

is a transformation of the probability contours of the gen-

erative distribution, and have termed this the Ψ-transform.

This allows EVDs for mixture models of arbitrary complex-

ity to be estimated by finding the MLE Gumbel distribution

fe
n in the transformed Ψ-space. A novelty threshold may

be set on the corresponding univariate cdf F e
n in the trans-

formed Ψ-space, which describes where the most extreme

of m samples generated from fn will lie.

This method scales with dimensionality n and the num-

ber of kernels in the mixture fn. Figure 7 shows the EVD

for a trivariate model f3 (projected onto four planes for vi-

sualisation), which closely matches the EVD observed from

experimentally-obtained extrema. The figure also shows the

Ψ-transform for a 6-dimensional mixture f6 of 15 Gaus-

sian components with full (non-diagonal) covariance, where

it may also be seen that the EVD closely matches that of

experimentally-obtained extrema.

This method is numerical, requiring the sampling of ex-

trema from fn, and then fitting the MLE Gumbel distribu-

tion after application of the Ψ-transformation. Future work

aims to find closed-form solutions for multivariate, multi-

modal distributions fn. Currently, closed forms have been

obtained for multivariate, unimodal distributions, which are

presented in a companion paper [13].
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