
HYPOTHESIS AND THEORY ARTICLE
published: 11 December 2013

doi: 10.3389/fpsyg.2013.00907

Novelty or Surprise?
Andrew Barto1*, Marco Mirolli 2 and Gianluca Baldassarre2

1 School of Computer Science, University of Massachusetts Amherst, Amherst, MA, USA
2 Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche, Rome, Italy

Edited by:

Tom Stafford, University of
Sheffield, UK

Reviewed by:

Karl Friston, University College
London, UK
Nathan F. Lepora, The University of
Sheffield, UK

*Correspondence:

Andrew Barto, School of
Computer Science, University of
Massachusetts Amherst,
272 Computer Science Building,
Amherst, MA 01003, USA
e-mail: barto@cs.umass.edu

Novelty and surprise play significant roles in animal behavior and in attempts to understand
the neural mechanisms underlying it. They also play important roles in technology, where
detecting observations that are novel or surprising is central to many applications, such
as medical diagnosis, text processing, surveillance, and security. Theories of motivation,
particularly of intrinsic motivation, place novelty and surprise among the primary factors
that arouse interest, motivate exploratory or avoidance behavior, and drive learning. In
many of these studies, novelty and surprise are not distinguished from one another: the
words are used more-or-less interchangeably. However, while undeniably closely related,
novelty and surprise are very different. The purpose of this article is first to highlight
the differences between novelty and surprise and to discuss how they are related by
presenting an extensive review of mathematical and computational proposals related
to them, and then to explore the implications of this for understanding behavioral and
neuroscience data. We argue that opportunities for improved understanding of behavior
and its neural basis are likely being missed by failing to distinguish between novelty and
surprise.
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1. INTRODUCTION
Novelty and surprise play significant roles in animal behavior and
in attempts to understand the neural mechanisms underlying it.
They are intimately connected to sensory processing, attention,
learning, and decision making. Theories of motivation, particu-
larly of intrinsic motivation (Deci and Ryan, 1985; Baldassarre
and Mirolli, 2013), place novelty and surprise among the primary
factors that arouse interest and motivate exploratory or avoidance
behavior. Novelty and surprise also play important roles in tech-
nology, where detecting observations that are novel or surprising
is central to many applications, such as medical diagnosis, text
processing, surveillance, and security. In many—perhaps most—
of these studies, novelty and surprise are not distinguished from
one another: the words are used more-or-less interchangeably.

However, while undeniably closely related, novelty is in fact
very different from surprise. The ordinary dictionary definition of
novelty refers to the quality of not being previously experienced
or encountered, while surprise refers to the result of encounter-
ing something suddenly or unexpectedly. In the most abstract
setting (and ignoring many subtleties with which we attempt to
deal below), detecting novelty requires examining (by one means
or another) the contents of memory to determine if the stim-
ulus has or has not previously been experienced and attended
to. Surprise, on the other hand, is the result of a discrepancy
between an expectation and an observed actuality. This com-
parison of an experience with an expectation does not require
examination of the contents of memory despite the fact that an
expectation is clearly built on previous experience. Something can
be unanticipated without being un-experienced.

To pick just two illustrations of how natural it is to blur the
distinction between novelty and surprise, consider the following

quotations. Marsland (2003) writes: “Novelty detection, recog-
nizing that an input differs in some respect from previous inputs,
can be a useful ability for learning systems, both natural and
artificial. For animals, the unexpected perception could be a
potential predator or a possible victim.” When discussing what
happens when a naked man enters a classroom, Ranganath and
Rainer (2003) write: “Suffice to say, the entrance of the naked
guy was a novel event in that it was unexpected and out of con-
text.” Although this blurring is completely understandable given
how closely related novelty and surprise can be and the diffi-
culty of formalizing the concepts, we argue that the failure to
clearly distinguish between novelty and surprise precludes oppor-
tunities for improved understanding of behavior and its neural
basis.

The purpose of this article is foremost to remind readers of
differences between novelty and surprise, to discuss how these
concepts are related, and to explore the implications of this for
understanding behavioral and neuroscience data. A review of all
that has been written about novelty and surprise is significantly
beyond the scope of this paper. Here we present an extensive
review of mathematical and computational proposals related to
surprise and novelty, and we discuss these proposals in terms of
our common sense notions. We also point out key factors that
distinguish surprise from novelty, and we argue that some of
the definitions in common use are misleading, as are some of
the labels applied to results of experiments by psychologists and
neuroscientists.

A caveat with respect to the interpretation of empirical data
is needed. The distinction between novelty and surprise critically
depends on the mechanisms in play when the nervous system pro-
duces the experimental results in question. As a consequence, it is
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to be expected that one cannot say with certainty whether exper-
imental results provide evidence for novelty or for surprise when
the actual mechanisms implemented by the brain are incom-
pletely known. However, we suggest that by distinguishing novelty
from surprise some existing results might be reinterpreted in a
way that improves our understanding of behavior and the neu-
ral machinery that underlies it. And, even more importantly,
keeping the distinction in mind may be a useful heuristic for
studying the brain. Although the names used to describe results
are not important, the distinction may encourage neuroscien-
tists to ask questions such as: Is there a predictor at play? If so,
where is it? What kind of predictions does it produce? On the
basis of what information? Or, if there is no prediction, what
are the memories that are searched for? Where are those repre-
sentations stored? These are important questions that may not
arise as clearly if one fails to distinguish between novelty and
surprise.

This article begins with accounts of representative examples
of how the words have been interpreted, first addressing sur-
prise (Section 2) and then novelty (Section 3). For the most
part, the examples in each of these sections were chosen because
they provide formalizations related to each concept, although
not all of them are intended to model surprise or novelty in
animals. The examples are placed in either the surprise or nov-
elty section on the basis of which word their adherents chose
to associate with them. Section 4 summarizes the main fea-
tures of surprise and novelty, viewing each in an idealized form
that largely ignores the more complicated issues about how they
are related. Section 5 takes on some of these issues by exam-
ining the relationship between less idealized views of surprise
and novelty. Some of the categories in which formalisms were
placed in Sections 2 and 3 are reconsidered here. Section 6 con-
siders how an improved understanding of differences between
surprise and novelty may have beneficial consequences in neu-
roscience, where it can serve to sharpen the interpretation of
experimental results and raise useful questions for continuing
research. The article ends with a brief summary and concluding
remarks.

2. SURPRISE
Of the two concepts novelty and surprise, surprise is probably the
easiest to characterize. There is wide agreement that surprise is an
emotion arising from from a mismatch between an expectation
and what is actually observed or experienced (e.g., Ekman and
Davidson, 1994). Since our concern here is not with the emo-
tion of surprise but rather with the conditions that elicit it, by
surprise we mean these eliciting conditions. Surprise requires a
mechanism for comparing an expectation with actuality.

But what is an expectation and how is one aroused? An
expectation is usually thought of as a mental representation of
a stimulus or event that is aroused by some cue or set of cues
that has regularly preceded that stimulus or event in the past.
Alternatively, an expectation might be aroused by an inferen-
tial process that predicts the occurrence of a stimulus or event
(Berlyne, 1960). According to the most straightforward view,
expectations are representations of the values that some per-
ceptual features are likely to assume in the future. However,

expectations are naturally expressed in probabilistic terms as
well, where a probability distribution over the range of possible
observations can be considered to be a “belief state,” a kind of
expectation that can generate surprise. If an estimated probability
of an observation is available to the perceiving agent when the
observation is made, then the certainty of the observation can
be compared to its probability of occurrence, yielding a measure
of surprise. Importantly, expectations as probabilistic beliefs are
usually conditioned, in the sense of being conditional on a partic-
ular state or context. This notion of expectation (which is not the
same as the expectation, or expected value, in probability theory)
underlies Bayesian views of surprise that we discuss in Section 2.2
below.

The psychologist D. E. Berlyne, who wrote extensively about
novelty, surprise, and curiosity, used the term incongruity for the
situation of a stimulus creating an expectation that is unfulfilled
by other stimuli that occur at the same time (Berlyne, 1960). The
“two-headed lady” of his example is incongruous because her
extra head violates the expectations generated by the rest of her
image. Berlyne regards this as a special case of surprise that does
not involve the passage of time, while acknowledging that it might
actually involve time because parts of the incongruous stimulus
may be scanned in succession.

Surprise plays a key role in theories of learning and finds nat-
ural expression in the framework of Bayesian statistics. Here we
first discuss how prominent models of associative learning rep-
resent expectations and surprise, followed by a description of a
modern Bayesian theory of surprise in which expectations appear
as probability distributions over classes of environment mod-
els. Then we briefly discuss closely related information-theoretic
notions of surprise. We discuss these examples in some detail
because they are concrete examples of how surprise has been
expressed in formal terms.

2.1. SURPRISE IN ASSOCIATIVE LEARNING THEORY
Surprise plays a key role in theories of classical, or Pavlovian,
conditioning. In classical conditioning experiments, conditioned
stimuli (CSs) are followed after a short time by biologically sig-
nificant events (such as a shock, food, etc.), called unconditioned
stimuli (USs) that reflexively produce unconditioned responses
(URs). Great care is taken to prevent the animal’s response to the
CS from influencing the occurrence of the US (unlike instrumen-
tal conditioning experiments where a reward is contingent on the
animal’s behavior). After repeated trials consisting of the CS-US
sequence, the animal comes to produce a conditioned response
(CR) that resembles the UR but occurs as a response to a CS.
For example, an air puff to the eye (the US) elicits a reflexive
eye blink (the UR). When regularly preceded by another stimu-
lus (the CS), say a tone or a light, occurrence of the CS comes
to elicit an eye blink that anticipates the US. The process is often
regarded as one of learning about predictive relationships among
stimuli.

What is now called Kamin blocking is the failure of an animal
to learn to elicit a CR when a CS is presented to an animal as
part of a compound that includes another CS that had been pre-
viously conditioned to elicit a CR (Moore and Schmajuk, 2008).
Kamin thought that this might be due to the fact that the US is
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no longer surprising since it is already predicted by the previously
conditioned CS:

. . . perhaps, for an increment in an associative connection to
occur, it is necessary that the US instigates some mental work on
the part of the animal. This mental work will occur only if the US
is unpredicted, if it in some sense surprises the animal. Thus, in
the early trials of a normal conditioning experiment, the US is an
unpredicted, surprising event of motivational significance and the
CS-US association is formed. (Kamin, 1969, p. 293)

This idea that an organism learns only when events violate its
expectations, that is, when the organism is surprised, was elab-
orated by Rescorla and Wagner in the most widely-known and
influential model of classical conditioning (Rescorla and Wagner,
1972):

The central notion here can also be phased in somewhat more cog-
nitive terms. One version might read: organisms only learn when
events violate their expectations. Certain expectations are built up
about the events following a stimulus complex; expectations ini-
tiated by that complex and its component stimuli are then only
modified when consequent events disagree with the composite
expectation. (Rescorla and Wagner, 1972, p. 75)

In the associationist tradition, the Rescorla-Wagner model adjusts
associative strengths of stimuli that specify how strongly each
stimulus predicts the US. Each constellation of stimuli that occurs
(CS) generates a composite expectation for the US. This composite
expectation is the weighted sum of the saliencies of the stimuli in
the constellation, each weighted by its corresponding associative
strength for the US. The model adjusts the associative strengths
that specify how strongly each component csi of the CS present
on a trial predicts the US:

�Vcsi = αcsiβ(λ − V), (1)

where Vcsi is the associative strength of component i of the CS
and �Vcsi is its change, αcsi is the salience of component i of
the CS, β is the learning rate parameter associated with the US,
λ is the asymptote for learning for the US, and V is the com-
posite expectation for the CS. The model adjusts the associative
strengths of the stimuli present on each trial up or down depend-
ing on λ − V , the difference between the composite expectation,
V , and the associative strength supported by that particular US,
λ, which we call the “target associative strength.”

For the sake of brevity we skip further details and the impor-
tant role this model has played in the history of animal learning
theory (see Schmajuk, 2008, for a review; see also Lepora et al.,
2010, and Mannella et al., 2010, for two models that capture
the basic brain mechanisms with which classical conditioning is
implemented in, respectively, cerebellum and amygdala). The key
point is that the difference, or discrepancy, λ − V , is considered
to be a measure of surprise: a constellation of stimuli generates an
expectation that is compared with what actually happens.

The Rescorla-Wagner model is an example of an error-
correcting learning rule such as the Widrow-Hoff Least
Mean Square learning rule (Widrow and Hoff, 1960)

and the well-known error backpropagation algorithm
(Rumelhart et al., 1986), where the US corresponds to the
“teaching input” or “desired output,” and λ − V is the error
guiding learning (although the error is sometimes called a
teaching signal in biological models of classical conditioning,
e.g., Lepora et al., 2010). Error correction is also central to the
widely-used Kalman filter and related algorithms, where the error
is called the “innovation” or “measurement residual” (Welch and
Bishop, 1995).

Connecting the Rescorla-Wagner model to probabilistic
notions of surprise is the observation that in the case where the
US is represented by a binary variable with values 0 or 1, the
model computes the conditional probability of the US given pos-
sible patterns of CSs (Dayan and Long, 1998). In addition, the
process of error correction is related to Bayesian learning as we
discuss in Section 2.2 below.

Error correction is also the basis of Temporal Difference (TD)
learning (Sutton, 1988), where the error incorporates informa-
tion about the long-term expectation of reward and not just the
immediate reward. TD learning is the basis of a model of classical
conditioning that elaborates the Rescorla-Wagner model (Sutton
and Barto, 1990) as well as the reward-prediction-error hypothe-
sis about the phasic activity of dopamine producing neurons in
the brain (Barto, 1995; Houk et al., 1995; Schultz et al., 1997;
Schultz, 1998). TD learning is not restricted to predicting reward;
the role of reward can be replaced by other stimulus features,
and it can be generalized to networks of interrelated predictions
(Sutton and Tanner, 2004).

In accord with the associationist view, the associative strengths
of the stimuli needed for determining a composite expectation
become available as a consequence of the mere occurrence of
the stimuli. They have been formed in response to the animal’s
experience over time in observing sequences of stimulus constel-
lations. Think of a two-layer neural network whose connection
weights from its input layer to its output layer correspond to
the adjustable associative strengths. In response to input patterns
the network computes composite expectations in the form of the
activity levels of the output units. Target output values represent-
ing USs, provided by so-called “teaching inputs,” are compared
to the network’s actual outputs—the surprise computation—to
determine the error that drives learning. In addition to participat-
ing in this comparison, these expectations also directly determine
the strength of the animal’s tendency to produce a CR.

This process does not require a scanning of the organism’s
memory for previously experienced instances of the stimulus
constellation that is currently present: this experience has been
cached in the connection weights, and the network reads out an
expectation in response to the current input pattern. In a neural
network setting that considers the relative timing of inputs (i.e.,
the teaching input is whatever stimulus pattern occurs shortly
after the input pattern setting the activation levels of the input
units), the network becomes a predictor, meaning that each of its
output patterns will tend to resemble the input pattern that comes
next. (Of course this assumes the network is complex enough
to represent the prediction function.) The process is not tied to
a specific US. The network’s weights summarize, in a statistical
sense, the totality of the organism’s previous experience as to what

www.frontiersin.org December 2013 | Volume 4 | Article 907 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Barto et al. Novelty or surprise?

stimulus constellations tend to follow other stimulus constella-
tions. In machine learning, one would say that a forward model
of environmental contingencies is learned via supervised learning
(Barto, 1990).

Other concepts have been proposed for how an expectation for
associative learning might be implemented in the nervous system.
For example, Grossberg (1982) proposed that an expectation is a
feedback pattern of neural activity derived from signaling across
an entire network gated by long-term memory, and that unex-
pected events trigger a “mismatch-modulated arousal burst,” i.e.,
what we would call a surprise signal.

2.2. BAYESIAN SURPRISE
A formal theory of surprise was proposed by Itti and Baldi based
on the Bayesian framework (Itti and Baldi, 2005, 2006, 2009).
In this framework, probabilities, which correspond to subjective
beliefs, are updated as new observations are made using Bayes’
theorem to convert prior beliefs into posterior beliefs. What they
call Bayesian surprise is a measure of the difference between an
observer’s prior and posterior beliefs.

Here is how they formalize this. An observer is assumed to have
background beliefs characterized by a prior probability distribu-
tion over hypotheses or models of its world, M, that are in some
space of models, M:

{P(M)}M ∈M.

Upon obtaining new data D, the observer updates this prior
distribution into the posterior distribution by applying Bayes’
theorem:

∀M ∈ M, P(M|D) = P(D|M)

P(D)
P(M).

Bayesian Surprise is a measure of the dissimilarity between the
prior and posterior distributions. Itti and Baldi do this using the
relative entropy, or Kullback-Leibler (KL) divergence, between
these distributions:

S(D,M) = KL(P(M), P(M|D))

=
∫

M ∈M
P(M|D) log

P(M|D)

P(M)
dM.

This measure gives the amount of information needed to trans-
form the prior into the posterior distribution:

A unit of surprise—a “wow”—may then be defined for a single
model M as the amount of surprise corresponding to a two-fold
variation between P(M|D) and P(M), i.e., as log P(M|D)/P(M)

(with log taken in base 2), with the total number of wows expe-
rienced for all models obtained through the integration [in the
equation above]. (Itti and Baldi, 2009)

According to this theory, surprise is a measure of the discrep-
ancy between beliefs before and after an observation. A sur-
prising event is one that is not well predicted by the animal’s
current beliefs formed in response to its previous experience.
In this case, the expectation that determines surprise is the

set of beliefs held by the agent before the observation in
question, that is, the prior probability distribution over pos-
sible world models: {P(M)}M ∈M. Itti and Baldi (2005, 2006,
2009) argue that this definition has key advantages over alter-
natives in being more principled, more widely applicable, and
more able to account for what attracts human visual atten-
tion. Importantly for our purposes, these authors also discuss
how assessing surprise differs from detecting statistical outliers,
which is one of the notions commonly (though erroneously we
will argue) invoked for detecting novelty. We discuss this in
Section 5 where we examine differences between surprise and
novelty.

Schmidhuber and colleagues (Schmidhuber et al., 1994; Storck
et al., 1995) proposed using Bayesian surprise (as later defined by
Itti and Baldi) as a measure of learning progress for reinforcement
learning agents. This measure of surprise generates a “curiosity
reward” that encourages the agent to behave so as to continue
learning efficiently by seeking regions of its environment where
it is surprised while avoiding regions where it is “bored,” either
because it has already learned as much as it can in those regions
(thereby eliminating surprise) or because there are no learnable
regularities (so that surprise is absent because new information
is not acquired). This is one of the first proposals for how ideas
related to what psychologists call intrinsic motivation can be
implemented in a machine learning system, and much additional
research has been lately done in this area (Baldassarre and Mirolli,
2013).

Itti and Baldi (2005, 2006, 2009) were concerned with atten-
tion rather than learning, but their concept of surprise arises from
the Bayesian approach to learning where a prior belief distri-
bution is updated by Bayes’ theorem to a posterior distribution
upon each new observation. Large Bayesian surprise means that
learning from a new observation has made a large change in the
animal’s beliefs about the contingencies in its world. In its most
general form, Bayesian learning does not explicitly involve the
computation of prediction errors. Instead of processing errors
generated by an existing model, learning processes evidence for
all possible models and updates beliefs accordingly. Unlike error-
correction learning, where the error as a measure of surprise is the
direct driving force of learning, Bayesian surprise is the result of
learning but not its direct cause, coming after the Bayesian update
instead of before it.

However, Bayesian learning can be approximated, and in
some cases computed exactly, by an error-correction process.
The Kalman filter, for example, uses error correction to per-
form Bayesian learning in the context of linear-Gaussian systems
(Welch and Bishop, 1995). The mean of the Gaussian posterior
distribution is updated by multiplying the innovation, or pre-
diction error, by the Kalman gain which controls the allocation
of weight between the prediction of a current model and a new
observation based on a measures of confidence in the model and
in the observation. Bayesian learning can be approximated in a
number of ways, such as through the Laplace approximation and
variational methods (Bishop, 2006), that permit updates to be
made on the basis of prediction errors. Variational approxima-
tion plays a key role in the hierarchical architecture proposed
by Mathys et al. (2011), who discuss the relationship of the
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resulting learning process to error-correction methods like the
Rescorla-Wagner model.

Models of classical conditioning based on Bayesian methods,
including the Kalman filter, have been proposed that go beyond
the account provided by the Rescorla-Wagner model (Dayan
et al., 2000; Kakade and Dayan, 2002a; Courville et al., 2004,
2006). Changes in the world, and therefore changes in the correct
world model, are sources of Bayesian surprise. Bayesian methods
not only update beliefs in specific models but also the confi-
dence in those beliefs, and surprise causes decreased confidence
in current beliefs. As a result, new observations should be given
more weight than previous observations (as in the Kalman fil-
ter), implying that the speed of learning about the uncertain
predictive relationships should increase. This Bayesian account of
increases in the rate of animal learning observed in certain experi-
ments (Rescorla, 1971) accomplishes what the Pearce-Hall model
(Pearce and Hall, 1980) does via its use of an explicit measure of
surprise as the magnitude of a prediction error. TD learning has
also been developed in a Bayesian framework (Engle et al., 2003).

Another area in which prediction errors appear in a Bayesian
framework is in the “predictive coding” architectures of Rao and
Ballard (1999) and Friston and Kiebel (2009). These are layered
hierarchical systems going from input levels to levels encoding
information in a more abstract fashion. The key aspect of these
systems is that the bottom-up flow of information from sen-
sations to abstract representations is paralleled by a top-down
information flow where the top levels project predictions to
the lower-levels. This allows higher-level stages to receive infor-
mation only through the information mismatch between their
predictions and sensations, so that higher levels receive only
unpredicted information. Prediction errors are used to propagate
information from the bottom up to the higher levels of the sys-
tem, and also to continuously update the top-down predictors.
These proposals refine the concept of surprise as they capture
surprise at multiple levels, namely from the prediction of sim-
ple, isolated events at the lower levels, to the prediction of the
behavior of more complex compounds of items at the higher
levels.

2.3. INFORMATION THEORETIC SURPRISE
Although Itti and Baldi’s Bayesian theory of surprise is connected
to information theory (KL divergence is a measure of informa-
tion gain), other concepts of surprise are more directly based on
information theory. One example is what Tribus (1961) called
surprisal to refer to the self-information of the outcome of a ran-
dom variable, which is a measure of the information content of
the outcome. If outcome ω occurs with probability P(ω), then
the self-information, or surprisal, is − log P(ω). Thus, an out-
come that is highly unlikely has high surprisal when it occurs. The
expected value of surprisal for observations drawn from a random
source is the entropy of that source. Computational linguists, e.g.,
Roark (2011) and Monsalve et al. (2012), use the term lexical sur-
prisal to refer to the negative log of the conditional probability of
a word in a sentence given the preceding words in the sentence.
Although Tribus’ definition of surprisal does not explicitly invoke
conditional probabilities, there is always an implicit assumption
that surprisal is conditioned on a context or model. Therefore,

when we refer to surprisal below, we always have a conditional
form of surprisal in mind.

An important contrast can be drawn between surprisal and
Baysian surprise. The usual example is to consider viewing a tele-
vision screen showing white noise, or “snow” (Schmidhuber et al.,
1994; Storck et al., 1995; Itti and Baldi, 2005). After a while this
becomes very boring even though the information content of each
frame, or its surprisal, is very high because there are so many
equally-likely patterns of random noise. On the other hand, a
viewer’s Bayesian surprise will decrease and eventually disappear
as their beliefs adjust so that random frames become expected.
“Thus, more informative data may not always be more important,
interesting, worthy of attention, or surprising” (Itti and Baldi,
2005).

Tribus’ notion of surprisal plays a prominent role in the global
brain theory of K. Friston and colleagues which is based on
the principle of “free-energy minimization” (Friston et al., 2006;
Friston, 2009, 2010). This principle states that intelligent agents
aim to minimize a free energy function of their internal states. If
one assumes that an agent maintains a model of the causes of its
sensory input, this principle implies that intelligent agents act on
their environments to avoid surprises, which means working to
make observations that conform to their expectations. Another
component of this theory is that intelligent agents learn by
revising their models to make more accurate predictions. These
implications can be seen to follow from free-energy minimization
through the perspective of variational Bayesian inference. Free
energy (in this case the variational free energy) is always greater
than or equal to the negative log of the evidence, or the marginal
likelihood, of the agent’s model. Model evidence is the probabil-
ity of observations given the agent’s current model: if s denotes
an agent’s sensory state at some time and M denotes its current
model, the model evidence is P(s|M) (where hidden states have
been marginalized out). Thus, acting to minimize this free energy
function tends also to minimize the negative log of model evi-
dence (since the latter quantity is always less than or equal to
the free energy). This is equivalent to tending to maximize the
(positive) log of model evidence, which is the same as tending to
maximize the model evidence itself since the logarithm is a mono-
tonically increasing function. The theory’s connection to surprisal
is due to the fact that the negative log evidence for a model is the
surprisal conditioned on that model, − log P(s|M), so that max-
imizing model evidence is the same as minimizing this notion of
surprise. According to this theory, then, intelligent agents act on
their environments to suppress discrepancies between their pre-
dictions and what they actually experience, that is to avoid being
surprised.

The theory also relates to Itti and Baldi’s (and Schmidhuber’s)
notion of Bayesian surprise. In addition to acting to increase evi-
dence of a current model, agents can reduce free energy by adjust-
ing their model to make more accurate predictions. Through a
learning process, a current probability distribution over models
(a prior distribution) is updated to a new distribution (a posterior
distribution) that takes into account each new observation. As the
model becomes more accurate, the KL divergence between these
distributions—that is, the Bayesian surprise—decreases, which
decreases free energy. The Bayesian surprise becomes zero only
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when the model makes perfect predictions. An additional impli-
cation of this theory arises from the role of model evidence in
Bayesian model comparison, where there is an automatic penalty
for model complexity. This implies that the work done by agents
to increase how well their model accounts for observations is bal-
anced by a tendency to minimize model complexity, a form of
Occam’s razor. Friston and colleagues present hypotheses about
how the brain might implement the elements of this theory
(Friston et al., 2006; Friston, 2009, 2010).

In his book “Novelty, Information, and Surprise” Palm (2012)
provides definitions of all three of these terms. Roughly, novelty
is the same as Tribus’ surprisal, but surprise is given an inter-
esting definition that depends on the concept of a “description,”
which is a mapping from possible outcomes of a random variable
to propositions that are true for a collection of outcomes. A key
aspect of this theory seems to be that by knowing the descrip-
tion an observer is using, that is, by knowing the whole mapping,
it is possible to consider the probability that an outcome will
have the same description as the outcome observed. Then the
amount of surprise experienced by an observer depends not on
the probability of the observation, but on the probability of any
observation with the same description. Palm gives the following
example. Suppose that in a state lottery the sequence of numbers
(1, 2, 3, 4, 5, 6) were to be drawn. This would be much more sur-
prising than the sequence (5, 11, 19, 26, 34, 41) even though both
sequences have the same probability of being drawn. “The reason
for our surprise in the first case seems to be that this sequence can
be exactly described in a very simple way: it consists of the first
six numbers. . . . it is much more probable to obtain a sequence
that does not admit a simple exact description . . . . In the spe-
cial case of (1, 2, 3, 4, 5, 6) we could argue that there are only two
such extremely simple sequences, namely the last 6 and the first 6
numbers” (Palm, 2012, p. xix). Palm argues that his extension of
classical information theory allows one to incorporate a “person’s
interests, intentions, and purposes.” How this intriguing view of
surprise relates to the more familiar ones discussed above is not
yet completely clear to the authors.

2.4. SUMMARY
According to the commonsense notion as well as the most promi-
nent formulations, surprise involves a comparison between an
expected and an actual observation. The comparison does not
need to entail a scan of the contents of memory. Expectations
formed on the basis of past experience can be linked directly to
stimuli so that they are aroused by the occurrence of those stimuli,
or aroused by an inference process in the absence of those stimuli.
Surprise is a measure of the discrepancy this comparison reveals,
whether it is a simple signed difference as in error-correction
learning rules, the KL divergence in Itti and Baldi’s Bayesian sur-
prise, or some other measure. Predictive coding by hierarchical
systems suggests how surprise might be generated at different lev-
els of abstraction. The term surprisal has been proposed for an
observation’s self information, a quantity inversely related to the
probability of the observation conditional on a model. Bayesian
surprise and surprisal differ in significant ways. Friston’s global
brain theory based on the free-energy principle suggests that
intelligent agents act in order to reduce surprisal conditioned on

their current models, while they also reduce (future) Bayesian
surprise by adjusting their models to make better predictions.

3. NOVELTY
Confronting the problematic concept of novelty, Berlyne (1960)
emphasized a number of relevant distinctions. First, he distin-
guished between short-term, long-term, and complete novelty.
Something may never have been encountered before (complete
novelty), or not encountered in the last few minutes (short-term
novelty), or not encountered for some intermediate time, e.g., a
few days (long-term novelty). Another distinction is that between
absolute and relative novelty. A stimulus is absolutely novel when
some of its features have never been experienced before, whereas
it is relatively novel if it has familiar features but they occur in
some combination or arrangement that has not been previously
encountered.

Berlyne claimed the following:

Any new experience, even if it does not seem to be a combination
of familiar experiences, must have some definite degree of resem-
blance to experiences that have occurred before. It will inevitably
be possible to insert it into an ordering of familiar stimuli or to
assign to it values among dimensions that are used to classify them.
(Berlyne, 1960, p. 19)

He gives the example of seeing a man taller than any seen before:
it is still possible to place the experience on a familiar scale,
or more generally, to locate the experience in the appropriate
multidimensional feature space. Further, according to Berlyne:

For any adult human being, or even any adult dog, cat, or rat,
a new stimulus must be similar to, and relatable to, a host of
familiar and frequently experienced entities. However, bizarre a
non-sense figure may be that is shown to a human adult, it must
consist of lines, angles, and curves such as he has seen on countless
occasions. (Berlyne, 1960, p. 20)

Note that Berlyne restricts this comment to adults. The situation
must be different for young children, due not only to their relative
lack of experience but also due to the deeper need to establish
the feature spaces and dimensions that are useful for categorizing
experience. For designers of artificial agents this is a key issue.

Berlyne’s distinctions are important because they connect to
our ordinary understanding of what the term novelty means while
revealing some of the issues that make the concept problematic.
In formal notions of novelty to which we now turn, the links to
our commonsense notion are not always apparent.

3.1. MEMORY-BASED NOVELTY
The simplest translation of our commonsense idea of novelty into
a more precise notion is that the novelty of an event is assessed by
examining a memory store of past observations, where a memory
system might require more than one experience of an event to
form a lasting memory. An observation is completely novel, to use
Berlyne’s term, if a representation of it is not found in memory. If
memory fades with time, this process assesses short-term or long-
term novelty depending to the fading rate. This of course ignores
many aspects both of novelty and of memory, and it may not be
feasible from a computational perspective.
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But some more sophisticated methods for novelty detection
are elaborations of this basic idea. Novelty detection based on
clustering is one example. Using a distance measure based on sim-
ilarity, data can be clustered into classes so that items in a class are
“close” to one another and not close to items in the other clus-
ters. Novelty here means that an item is not close enough to the
mean of an already existing cluster, so that a new cluster needs
to be formed. There are very many clustering methods, and there
are many methods for determining when a new cluster should be
added (Markou and Singh, 2003).

Determining distances from existing clusters is a search of
a memory that stores the cluster means, making it more fea-
sible than a naive memory-based method. Prominent neural
network methods for novelty detection, such as methods based
on self-organizing feature maps (Kohonen, 1984; Nehmzow et al.,
2013), perform this basic process where the memory scan is
performed in parallel by the network. Of current interest in
statistics and machine learning are Bayesian non-parametric clus-
tering methods (Gershman and Blei, 2012). Instead of specifying
the number of clusters in advance, these methods allow the
number of clusters to grow as new data items arrive. These
methods do not involve a literal scan of memory, but deter-
mining whether a new cluster is needed essentially relies on
determining that none of the existing clusters properly explains
the data.

Another kind of memory-based novelty arises in the case
of content-addressable associative memory systems. Perhaps the
most well-known and simplest is the correlation matrix mem-
ory proposed by Kohonen (1977, 1980, 1984). Instead of being
stored in separate memory locations, information is superim-
posed and distributed across a memory substrate, for example
a neural network, and retrieval is a kind of filtering process.
The stored items are vectors of real numbers, and the memory
is a matrix formed from the stored vectors in such a way that
upon being presented with an input vector, the system produces
as output a weighted sum of all the stored vectors, where each
weight is a measure of how well that stored vector correlates
with the input vector. When the input vector is a distorted ver-
sion or a fragment of a stored vector, it is expected that it will
correlate most strongly with that vector and much less with the
other stored vectors, implying that the memory’s output will be
a less noisy version of the input vector or a “completion” of it.
Mathematically, the memory’s output is the orthogonal projec-
tion of the input, x, onto the subspace, L, spanned by the stored
vectors, which is the vector, call it x̂ ∈ L that is “closest” to x.
Every vector x can be expressed as the sum of x̂ and a vector,
x̃, in the subspace orthogonal to L. Kohonen (1977) says that
“x̃ is the amount that is ‘maximally new’ in x. It may be justi-
fied to call this component the ‘novelty,’ and the name Novelty
Filter is hereupon used for a system which extracts x̃ from input
data x”. . .
fragments or aspects of an observation that are not fragments
or aspects of previously stored experiences. Our memory sys-
tems are undoubtedly much more complicated than a correlation
matrix memory, but it is worth keeping this example in mind
when we discuss associative novelty as studied in neuroscience in
Section 6.2 below.

3.2. NOVELTY AS STATISTICAL OUTLIER
A common notion is that an observation is novel if it is a statistical
outlier, meaning that it is significantly different from other mem-
bers of the sample from which it is drawn. In general terms,
detecting outliers requires modeling the usual distribution of
observations and detecting when an observation departs signifi-
cantly from the model. Sometimes this is called anomaly detection.
Many methods have been proposed to detect outliers and to han-
dle them, but what concerns us here is what being an outlier
means with respect to our common idea of novelty and how it
differs from surprise.

One area in which this idea of novelty plays a prominent role
is machine learning. For example, learning a classification rule by
supervised learning involves adjusting a classifier’s parameters on
the basis of training examples drawn from a corpus of labeled
examples. It is important that the corpus of training examples
is representative of the input data to which the classifier will be
applied. Novelty detection for supervised learning is the problem
of determining if an input does not belong to the class of inputs
represented by the training examples, i.e., determining if the input
is an outlier. For novel inputs, the output of the classifier will be
considered unreliable.

Nearly all the statistical approaches to this problem model the
probability density of the training data and identify inputs as
novel if they fall in regions of low estimated density. Many meth-
ods exist for estimating probability densities from a finite number
of samples, both parametric or non-parametric (Duda and Hart,
1973; Markou and Singh, 2003), and many methods have been
suggested for how to use the estimated probabilities to determine
when an input should be regarded as novel. The details of these
methods need not concern us here; the principle remains the
same: according to this view novelty means having a low estimated
probability of occurrence. Note that according to the definition of
surprisal given in Section 2, this is the same as saying that being
novel means having high surprisal, a point to which we return in
Section 5 below.

We commented in Section 2.3 that although Tribus’ definition
of surprisal does not explicitly invoke conditional probabilities,
there is always an implicit assumption that surprisal is condi-
tioned on a model or context. Estimated probabilities for outlier
detection are conditioned on the context of the collection of
samples and background assumptions about the sample space.
This raises questions about equating novelty with “low proba-
bility” because it is based on the assumption that the system
can represent the entire domain of possible samples in advance
of experiencing them, and so can assign zero probability to all
instances not observed up to a given moment. An aspect of our
commonsense notion of novelty for which this view is not able
to account is the possibility that an observation might occur that
the system is not able to represent in terms of existing categories.
Assuming that the sample space consists of all possible config-
urations of the lowest-level sensor readings may be a solution
for artificial systems (e.g., the pixels of a camera), but it seems
an inadequate account of biological memory which is typically
not so eidetic. Indeed, as we discuss in Section 6 below, nov-
elty may trigger brain activity whose function is to acquire new
representations.
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3.3. SUMMARY
Berlyne (1960) distinguished between several difference senses in
which the term novelty is used, and formalizations of novelty are
not as unified as those of surprise. Straightforward interpreta-
tions involving searches of memory for previous encounters do
not do justice to the complexity of either the concept of novelty
or of the nature of memory. Clustering-based concepts expand
naive memory search and make better contact with the common-
sense notion of novelty as the quality of being different from what
is in a memory store. Content-addressable associative memory
systems suggest a more abstract notion of novelty as, roughly,
fragments or aspects of an observation that were not present in
previous experiences. Statistical interpretations in terms of out-
lier detection have many applications, but as we argue below they
also abstract away from important aspects of our commonsense
understanding. In neuroscience additional categories of novelty
are described, which we discuss in Section 6.

4. NOVELTY AND SURPRISE: TYPICAL FEATURES
We have seen that there are various proposals about how to
define surprise and novelty, all having some strengths. On this
basis, we think it is premature to propose definitive defini-
tions. Nevertheless, we also think it is possible and useful to
highlight the main features of the two concepts that repre-
sent the “poles” around which the different definitions should
gravitate. Table 1 displays these features, and we now briefly
explain them.

A key difference between novelty and surprise is due to the
type of knowledge store they use and the way they process such

knowledge. Novelty is based on memory stores and the pro-
cesses that determine if a given item is, or is not, in the store.
Surprise, on the other hand, is based on expectations of systems
capable of predicting, the processes generating such expectations,
and the processes that compare the expectations with what is
actually experienced. An observation is novel when a represen-
tation of it is not found in memory, or, more realistically, when
it is not “close enough” to any representation found in mem-
ory. Novelty triggers the formation of new representations for
entry into long-term memory. These representations can then
be exploited to perform other cognitive processes, including
the generation of surprise by exploiting already existing rep-
resentations (Lisman and Grace, 2005; Kumaran and Maguire,
2007). The case of surprise is different because its core element
is not the incoming item but the predicted item. Indeed, the
incoming item can be either familiar or novel—this does not
count. What counts for surprise is that the system perceives
“something” that is different from the prediction, whatever that
“something” is.

Novelty and surprise also differ with respect to their relation to
time. The expectations or predictions that underly surprise have
to do with the dynamic flow of events happening in time (with
the possible exception of spatial predictions underlying Berlyne’s
notion of incongruity, which may, however, involve the visual
scan of a stimulus, thereby again involving time). Predictions
typically involve a specific time, or range of times, in the future
when something is expected to happen: “If I see A at time t,
then I expect to see B at time t plus something.” Novelty, on
the other hand, seems not to be strictly related to time. The

Table 1 | The typical features of novelty and surprise.

Features Novelty Surprise

Type of knowledge store, Memory, Predictor,

process involved memory recall prediction

Variants of the knowledge - Formation of new representations - Deterministic expectations

and process involved - Formation of new links between - Stochastic expectations

the representations of the

features/components of the novel data

Time Time not a key factor: Incoming data usually

items in memory are always compared with a

available for comparison temporalized prediction

Processes for One phase: Two phases:

novelty/surprise - Formulation of prediction

triggering - Experience does not match memory - Prediction is violated

Typical functions - Support the formation of new - Support the improvement

representations of predictions

- Generate learning signals for - Generate learning signals for

the sub-component detecting novelty, the predicting sub-component

or for other sub-components or for other sub-components

- Direct/motivate attention and - Direct/motivate attention and

learning resources learning resources

to novel stimuli to unpredicted stimuli
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comparison of current experience with the contents of memory,
i.e., the process that supports novelty detection, is not sensitive
to the time at which a memory was formed, nor to the time the
novel item is perceived: what really matters is only the absence of
a representation of the perceived stimulus in memory. Berlyne’s
distinction between short-term, long-term, and complete novelty
refers to differences in how this process may work, but in none
of these cases is the timing of the perception as critical as it is
for surprise.

Both surprise and novelty increase an animal’s level of arousal,
direct its attention, enhance learning, and elicit other appropriate
behavior. But in some other respects surprise and novelty differ in
their typical functions. Where novelty often supports the acqui-
sition of representations, surprise supports the improvement of
predictions. More specifically, novelty supports the acquisition of
items by memory, while surprise plays a key role in improving the
capacity of the system to predict (as in error-correction learning
reviewed in Section 2.1) or to signal that such an improve-
ment has taken place (as in the Bayesian account as discussed in
Section 2.2).

5. RELATIONSHIP BETWEEN SURPRISE AND NOVELTY
Surprise often—perhaps always—accompanies novelty, which
may be a major reason the two concepts tend to be confounded.
Indeed, if one assumes that an agent is always making predictions
about what it is going to soon experience, encountering some-
thing novel should not only trigger a novelty response, because
no representation has been found in memory that corresponds
to the perception, but also surprise, because the agent’s expecta-
tions must be violated by the novel item which could not have
been predicted. In this case, the agent is not predicting that
it will not observe that item, but it is predicting that it will
observe something else—a prediction that is violated. Whether
or not this argument is convincing depends upon whether ani-
mals are always expecting something, which in turn depends on
what it really means to expect something, which we will discuss
shortly.

On the other hand, it is clear that surprise does not imply
novelty. A familiar observation may be surprising in a context
in which something else is expected. It is easy to come up with
examples: for instance, we can be surprised at finding our car door
locked when we thought we had just clicked the unlock button on
the key fob.

A more interesting example is provided in a study by Huron
(2004) of laughter in listeners to Peter Schickele’s PDQ Bach
compositions. In this example, the expected “something else”
is in fact rare, whereas the actual observation is familiar,
though unexpected. Schickele has composed a large number
of humorous pieces attributed to the fictional P.D.Q. Bach.
Huron argues that a plausible explanation for the laughter these
compositions induce is that laughter occurs at “dramatic viola-
tions of expectation.” In one composition (Quodlibet for Small
Orchestra), Schickele reproduces a well-known theme from a
Beethoven symphony, but instead of continuing with Beethoven’s
finish to the movement “which is the rarest continuation in
Western music with a probability of less than 0.007,” he switches
to a “musically banal” conclusion. Invariably, listeners burst

into laughter at the moment of this switch. Huron (2004)
summarizes:

In short, Schickele’s transgression here is a violation of veridi-
cal expectation (“That’s not how the music goes.”) rather than
a schematic transgression (“That’s not what happens in music.”)
The violation is amplified by the extreme contrast between veridi-
cal and schematic probabilities. (Huron, 2004, p. 702)

What Huron means by a “veridical expectation” is an expec-
tation created through past experience with the specific music
in question, in this case Beethoven’s symphony, which—during
listening—generates an expectation for its usual ending. But the
usual ending is rare in music in general, that is, its probability
of being heard is very low, whereas Schickele’s ending has much
higher probability. Therefore, the “schematic transgression” is a
mismatch between an expectation for something unlikely and the
receipt of something familiar.

As discussed above in Section 3.2, a common formalization of
novelty in machine learning is that being novel means being a
statistical outlier, and novelty detection is accomplished by mod-
eling the probability density function of possible observations
and regarding an observation as novel if it falls in a region of
low enough estimated density (according to a given threshold
or a more sophisticated criterion). We are not aware of claims
that this formalization of novelty provides a good account of
what novelty means for an animal, but it is pertinent to ask if
this notion of novelty is consistent with either our common-
sense understanding of the term or novelty’s typical features. The
answer has to be no. It is true that if the probability of an event
occurring is low, then the probability that a representation of
that event is stored in memory is low as well. But it is clearly
missing something important about novelty to equate low esti-
mated probability of occurrence with novelty. It is easy to think
of examples of events that are not novel at all but that have a
very low probability of occurring. For example, any event that
occurred only once in the past, and that is distinctly different from
other experienced events, will likely be assigned a low probabil-
ity of occurring again. But that event may be vividly memorable
and therefore familiar if it were to happen again. Furthermore,
if so-called novelty detection happens as a result of a mismatch
between one’s estimated probabilities and current perceptions,
this seems to be a clear case of surprise rather than novelty, as
discussed in Section 2. Thus, while treating low probability events
as novel may be a good method for machine learning, it is a poor
model of what novelty really is and represents a misleading use of
the term.

The same reasoning explains why Tribus’s term surprisal
(Tribus, 1961) is more consistent with what we mean by surprise.
Indeed, the surprisal value of an observation, that is, a measure
inversely related to its probability of occurring, can be thought of
as the discrepancy between its probability of occurring and the
fact that it actually occurred. Thus, surprisal appears to be consis-
tent with the notion of surprise according to our analysis (despite
the fact that it is basically the same as novelty according to the sta-
tistical outlier view of novelty). Surprisal is particularly consistent
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with our characterization of surprise when it is explicitly condi-
tioned on a context as in the lexical surprisal of computational
linguists (Monsalve et al., 2012; Roark, 2011). In this case, sur-
prise as surprisal is triggered by an event occurring in a context in
which the estimated probability of its occurrence is low.

Itti and Baldi’s (2005, 2006, 2009) Bayesian surprise is not a
misleading use of the term since their definition is based on a
discrepancy between beliefs before and after an observation. The
degree of surprise generated by an observation depends on how
strongly it changes the probability distribution over models that
characterize an observer’s beliefs about how its world works. It is
not clear that the Itti/Baldi notion is the only, or the best, Bayesian
account of surprise, but this account of surprise is consistent with
what we regard as its typical features.

Bayesian surprise has interesting implications with respect to
the view of surprise as surprisal. Here is a slightly modified ver-
sion of an example given by Itti and Baldi. Consider incoming
data, D, that has a very low probability given the current context
C, that is, D is surprising in the sense of having high surprisal.
Suppose the observer has only two models, and the observation
has a low probability given the context and either model, that
is, P(D|C, M1) and P(D|C, M2) are both low. In this case, even
though the surprisal of D is high, Bayesian surprise would be very
low since D has little effect on the agent’s beliefs: it is not useful
in discriminating between M1 and M2. This is a very hypothetical
example, but it raises the question of which account of surprise
is more consistent with the processes that generate surprise in
animals.

6. SURPRISE AND NOVELTY IN NEUROSCIENCE AND
COGNITION

This section considers some important threads of neuroscience
research related to surprise and novelty. Enlisting the concepts
developed in the previous sections shows how existing results
might be reinterpreted in a way that improves our understand-
ing of behavior and the neural machinery underlying it. The goal
here is not to cover the large neuroscience literature related to
novelty and surprise, but rather to show how keeping the distinc-
tion in mind may be a useful heuristic for isolating interesting
problems and seeking answers to questions about how surprise
and novelty are processed in the brain. Thus, below we focus on a
selection of biological cases that involve mechanisms where the
distinction between novelty and surprise is blurred or contro-
versial, while omitting consideration of other brain phenomena
more reliably associated to each of the two concepts (e.g., cere-
bellum, forward models, prediction errors, classical conditioning;
anterior cingulate cortex, anticipations, error-related negativity;
amygdala, classical conditioning).

Modern neuroscience literature distinguishes between three
types of novelty to which the brain responds: stimulus nov-
elty, contextual novelty, and associative novelty (Ranganath and
Rainer, 2003; Kumaran and Maguire, 2007). These three types of
novelty are investigated with different experimental paradigms,
involve partially overlapping networks of brain areas, and are
based on various neural mechanisms. In addition, an important
thread of neuroscience research deals with what have been called
dopamine “novelty responses.” In what follows we discuss these

four novelty categories in turn, trying to clarify whether the term
“novelty” is an appropriate label or if the investigated phenomena
have more to do with surprise.

6.1. STIMULUS NOVELTY
Stimulus novelty refers to the phenomenon for which the neu-
ral and behavioral responses to a particular stimulus (e.g., the
sight of an object) change when it is experienced multiple times.
A typical observation is that with repetition of a stimulus the
neurons responding to it present a progressively decreasing acti-
vation, a phenomenon called repetition suppression (Ringo, 1996;
Henson and Rugg, 2003). Repetition suppression is stimulus spe-
cific and has been observed in various types of experiments, from
classification (Sobotka and Ringo, 1994) to delayed-matching-to-
sample tests (Li et al., 1993). Some of the areas most sensitive
to the novelty of stimuli are inferotemporal cortex (Ranganath
and Rainer, 2003), an area involved in object recognition, the
perirhinal cortex (Brown and Aggleton, 2001), an area close to
the hippocampus and involved in episodic memory, and the
prefrontal cortex (Asaad et al., 1998), the highest multimodal
associative cortex.

Stimulus novelty seems to be the classical case of novelty,
where the incoming items trigger novelty detection when they do
not correspond to any existing memory. The novel items trigger
the formation of a neural representation at multiple levels within
the brain areas mentioned above, so they progressively became
familiar (Ranganath and Rainer, 2003).

An intriguing issue related to stimulus novelty arises from the
fact that novel items seem to cause an initial high activation of the
brain areas where novelty is presumed to be computed. This raises
a twofold question: (a) what are the specific mechanisms that
cause such a high activity, and (b) what is its adaptive function?
While the question about mechanisms is an interesting challenge
for computational modeling, the view that the main function of
novelty detection is the formation of representations of the novel
items in memory might explain why novel items cause higher
activation. Learning often needs to be supported by the pro-
duction of neuromodulators. The elevated activation caused by
novel items might trigger the production of neuromodulators, for
example, noradrenaline and achetylcholine (see Ranganath and
Rainer, 2003, for a review). In turn, the presence of neuromodu-
lators may support the formation of new neural representations.
This hypothesis suggests a number of neuroscientific investi-
gations directed toward understanding the brain mechanisms
implementing the various steps of the suggested causal chain, as
has already happened with respect to dopamine and hippocam-
pus, which are involved in the other types of novelty detection
considered below (see Lisman and Grace, 2005).

6.2. ASSOCIATIVE NOVELTY
Associative novelty is one of the most subtle and interesting cases
of novelty studied in neuroscience. Associative novelty refers to
situations where familiar stimuli are associated in novel config-
urations (Kumaran and Maguire, 2007). The associations can be:
spatial, where familiar items appear in new spatial locations; item-
item, where items appear in novel combinations, e.g., two familiar
words are paired in an odd fashion; or temporal, where familiar
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items appear in a novel temporal sequence. Interestingly, the field
of associative memory is one in which the blurring of the distinc-
tion between novelty and surprise is most prevalent. An example
is given by the following from O’Keefe and Nadel (1978) with our
italics:

Imagine that you are in a classroom . . . suddenly, your attention
is diverted when a naked man enters the room. . . . the entrance
of the naked guy was a novel event in that it was unexpected and
out of context. . . . novel events attract attention and they are more
effectively encoded in memory than are predictable events.

Associative novelty includes cases that are most difficult to clas-
sify, including some that may involve both novelty and surprise.

Temporal associative novelty involves a paradigmatic case of
surprise: if you perceive a familiar item in a novel temporal
sequence, it seems that items that precede the target item con-
stitute the context that supports an expectation which is violated
by the appearance of the familiar target item. Hence surprise.

The spatial case is also probably related more to surprise than
to novelty. When we perceive a familiar item in a new spatial loca-
tion, we already have its representation in memory. It is likely that
finding the item in a position where we never experienced it just
violates our expectation regarding its position—hence surprise.
This interpretation is consistent with the fact that in experiments
dealing with spatial associative novelty, subjects are typically
exposed to the associative pairings for many times before their
familiarity/novelty discrimination responses are assessed (Duzel
et al., 2003; Kohler et al., 2005). It is most likely that these repeated
exposures are needed for expectations to be created, so that they
can be violated to trigger the inappropriately-labeled “novelty”
signal.

Item-item associative novelty seems to be the more compli-
cated case to classify. To understand whether a case is best called
novelty or surprise may require knowing which brain mech-
anisms are involved. It is well accepted that the hippocampal
system is involved in the formation of complex episodic memories
and seems to play a critical role for the detection of multiple kinds
of novel associations (Wan et al., 1999; Brown and Aggleton,
2001). The comparator hypothesis is one of the most established
hypotheses about how the hippocampal system detects associa-
tive novelty. It refers to the following processes (Hasselmo and
Schnell, 1994; Kumaran and Maguire, 2007; Duncan et al., 2012):
(a) familiar aspects of the percept (“lures”) actively recall previous
memories on the basis of pattern-completion-like mechanisms,
for example, an item recalls other items previously experienced in
association with it, and (b) some of the perceived items mismatch
with the recalled items so that a mismatch signal is triggered. If
this theory is correct, than associative novelty is closely related
to Berlyne’s notion of incongruity, which we classified as a form
of surprise in Section 2 because it involves a mismatch between
explicit expectations/predictions and incoming data. Kohonen’s
“novelty filter” (Kohonen, 1977) described in Section 3.1 is rele-
vant to this point: the novelty in an input is, roughly, that part of it
that is not predicted by the remaining part. However, it might also
be the case that sometimes sets of items are grouped into single
compound representations, and that the brain, by searching in

memory for these representations and not finding any, registers
observation of the set as actual novelty. It is also plausible that in
such circumstances both novelty and surprise are simultaneously
at play.

The general point here is that some areas of the brain, espe-
cially higher-level associative areas such as the hippocampus, may
use the same machinery to exploit the representations of associ-
ated items to either detect novelty or to detect surprise, depending
on the context and the task at hand, and that in some cases both
novelty and surprise may be registered. What are the actual mech-
anisms that the brain uses in each circumstance is an important
question for neuroscience research.

6.3. CONTEXTUAL NOVELTY
Contextual novelty is another type of widely-studied novelty,
closely related to associative novelty (Ranganath and Rainer,
2003). This refers to the behavioral and neural reactions to stim-
uli that are familiar but are unexpected given the context in which
they occur. Contextual novelty is often studied in oddball exper-
iments where, for example, sequences of a repeating auditory
stimulus (e.g., a simple tone) are interleaved with rare odd sig-
nals (e.g., a “moo” of a cow) (Ranganath and Paller, 1999). The
reaction of the brain to an oddball stimulus is often monitored
via electric field potentials (Event-Related Potentials—ERP) gen-
erated when the brain detects the stimulus. The typical result of
these tests is the manifestation of a positive wave of the electric
field happening about 200–300 ms after the odd stimulus and
named “P300” or “P3” (Friedman et al., 2001). Intense investi-
gation has led to the isolation of a P3a component of the wave,
also called “novelty P3” (Soltani and Knight, 2000). Various stud-
ies indicate that the novelty P3 originates from a network of brain
areas including the the hippocampal system considered above
(Soltani and Knight, 2000). This and other elements suggest that
overlapping brain machinery might underline associative novelty
and contextual novelty (Kumaran and Maguire, 2007).

It is easy to see that in the case of contextual novelty the mecha-
nisms of prediction and surprise, and not of novelty, are in action.
Indeed, in the oddball experiments the odd item is appealed to as
“novel” even if it is often a familiar item that is presented to the
participants in an unpredictable fashion, e.g., a “cow moo” pre-
sented after a sequence of simple tones. In this case, the “moo” is
surely not novel as the participants have surely heard that sound
several times before the experiment. Instead, the “moo” repre-
sents a typical example of familiar item that generates surprise
because it is unpredicted after a sequence of regular tones. We
expect that the clear recognition of what phenomenon is being
observed, in this case surprise, will help researchers to recog-
nize new problems and new solutions to them, and to suggest
experiments that will lead to a better understanding of the brain
processes involved.

6.4. DOPAMINE “NOVELTY” RESPONSES
Another important example of the confusion between surprise
and novelty can be found in the recent neuroscience literature
on dopamine. Dopamine is a neuromodulator that is well known
to play a pivotal role in motivational and reinforcement learning
processes (Wise, 2004; Berridge, 2007). In the mid 1990s, phasic
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dopamine activations were recognized to correspond closely with
the behavior of the Temporal Difference prediction error (TD
error) postulated by the TD algorithm of computational rein-
forcement learning (Barto, 1995; Houk et al., 1995; Schultz et al.,
1997; Schultz, 1998). This has led to the reward-prediction-error
hypothesis of the phasic activity of dopamine neurons, which
has received a large amount of empirical support and repre-
sents one of the most fruitful integrations between computational
and empirical research (Ungless, 2004; Wise, 2004; Schultz, 2007;
Graybiel, 2008; Glimcher, 2011).

Notwithstanding its success, an important problem faced by
the reward-prediction-error hypothesis is that phasic dopamine
neuron activity is not triggered only by rewards and reward pre-
dictors, but by different kinds of salient stimuli (Horvitz, 2000),
such as sudden visual or auditory stimuli that have never been
associated with rewards (Steinfels et al., 1983; Ljungberg et al.,
1992; Horvitz et al., 1997). Because these responses tend to disap-
pear with repeated stimulation, they have been called “novelty”
responses (Schultz, 1998). An interesting explanation of these
responses has been proposed by Kakade and Dayan (2002b), who
relate them to the problem of exploration: according to these
authors, these dopamine activations represent “novelty bonuses”
that are generated when an animal perceives novel states and that
serve the function of increasing the animal’s tendency to explore
the environment, thus augmenting the probability that the animal
finds rewards. The novelty bonus idea has recently attracted much
attention, and it is fostering a number of neuroimaging studies
where the activation of the dopaminergic system is studied while
subjects are exposed to novel stimuli (e.g., Bunzeck and Duzel,
2006; Wittmann et al., 2008; Krebs et al., 2009).

The problem here is that the so-called novelty responses of
dopamine neurons found in animals through electrophysiological
studies do not seem to be related to novelty, but rather to surprise.
In fact, the stimuli that have been used in those electrophysi-
ological experiments are simple light flashes or sudden sounds,
and the dopaminergic responses to lights and tones typically per-
sist after many presentations so that talking about novelty of the
stimuli does not seem appropriate (Steinfels et al., 1983; Horvitz
et al., 1997; Ungless, 2004). Hence, it is more reasonable to
assume that it is the unexpectedness of the event, e.g., the sudden
appearance of a light or sound, that is responsible for dopamine
activation.

Further indirect evidence that the activity of dopaminergic
neurons triggered by lights and tones is due to surprise rather
than novelty comes from behavioral studies of sensory rein-
forcement. Sensory reinforcement is the very well-investigated
phenomenon that many kinds of sensory events (of which the
most frequently studied are again lights and tones) are able to
drive the acquisition of instrumental responses. For example, if
pressing a bar results in the switching on of a light, an animal will
start to press the bar, much as if the bar-press were to lead to a
reward such as food (e.g., Kish, 1955; Williams and Lowe, 1972;
Glow and Winefield, 1978; Reed et al., 1996). Because we know
that dopamine is both necessary and sufficient for appetitive
instrumental conditioning (Robinson et al., 2006; Zweifel et al.,
2009), it is probably safe to assume that it is phasic dopamine that
mediates operant conditioning in sensory reinforcement, just as

we assume that it is dopamine that drives standard instrumental
conditioning reinforced by food.

Further support that surprise and not novelty supports sen-
sory reinforcement comes from the evidence that light offsets
are more-or-less as good reinforcers as light onsets (Glow, 1970;
Russell and Glow, 1974). But in the case of light offset, where
is the “novel” stimulus that acts as a reinforcer (by supposedly
triggering dopamine)? In this case it is even more clear that it is
the unexpectedness of the event (surprise), not the novelty of the
stimulus (which is absent), that is at play.

We have argued that it is surprise and not novelty that triggers
phasic activity of dopamine neurons in animal electrophisio-
logical studies involving lights and tones. But why should this
mere misuse of terminology be worth noting? We think there
are at least two important reasons to be aware of this mislead-
ing labeling. The first reason has to do with the mechanisms
underlying phasic activation of dopamine neurons. If one wants
to understand how dopamine neuron activity is triggered, it is
probably a good idea not to confuse novelty activations due to
novel images with surprise activations due to unexpected events.
In fact, not surprisingly in human experiments with novel images,
it is the hippocampus that seems to be involved (e.g., Lisman and
Grace, 2005), whereas light flashes trigger dopamine activity via
the superior colliculus, which directly projects to the dopamin-
ergic neurons (Dommett et al., 2005). Furthermore, if it is the
unexpectedness of lights or tones that trigger dopamine neu-
ron activity, then the question is raised about the neural circuits
providing the predictions that inhibit surprise activations after
repeated stimulation. This is a very important question that, to
the best or our knowledge, has not yet been addressed. We con-
jecture that a key reason for this neglect is that these dopamine
responses have been regarded as novelty responses, and therefore
that they do not involve predictions.

The second reason the novelty/surprise distinction is impor-
tant with respect to phasic activity of dopamine neurons has
to do with the function that these activations play in animal
behavior. While it is reasonable to assume that the dopamin-
ergic responses to novel stimuli found in animals are actually
“novelty bonuses” that facilitate exploration (Kakade and Dayan,
2002b), it is less reasonable to assume that the same function is
ascribed to dopamine activations triggered by unexpected (sur-
prising) events. In fact, it seems more likely that the function
of dopamine surprise activations is to encourage the animal to
engage in activity to discover which aspects of its own activity may
trigger surprising events so that the animal may add new actions
to its repertoire (Redgrave et al., 1999; Redgrave and Gurney,
2006; Mirolli et al., 2013).

Finally, to reiterate a point made in Section 2, the TD algo-
rithm, which underlies the reward-prediction-error hypothesis
of phasic dopamine neuron activity, is not restricted to predict-
ing reward: the role of reward can be replaced by other stimulus
features. The reward-prediction-error hypothesis essentially says
that the TD error signals the surprising receipt of reward. But
the same machinery equally can signal the surprising receipt of
any stimulus. As in the Rescorla-Wagner model, the essence of
TD learning is surprise. This adds further support to our sug-
gestion that it would be better to think of the phasic activity
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of dopamine neurons as responses to surprise rather than to
novelty.

7. CONCLUSION
Novelty and surprise play significant roles in animal behavior
and in attempts to understand the neural mechanisms underly-
ing it. Surprise and novelty underlie core intrinsic motivations
that allow organisms (and promise to allow robots) to acquire
useful knowledge and skills in the absence of explicit instruc-
tion and externally supplied rewards and penalties. They also play
important roles in technology, where detecting observations that
are novel or surprising is central to many applications, such as
medical diagnosis, text processing, surveillance, and security. The
words novelty and surprise are often used interchangeably despite
the fact that according to our normal understanding novelty and
surprise refer to very different phenomena. Without claiming to
do justice to all that has been written about novelty and surprise,
we described a sample of past attempts to define these concepts,
and we related these definitions to our common sense notions.
We pointed out key factors distinguishing surprise from novelty,
and we argued that some of the definitions in common use are
misleading, as are some of the labels and interpretations applied
to results of experiments by psychologists and neuroscientists.
But clarifying, indeed in some cases correcting, word usage has
not been our goal: opportunities for improved understanding of
behavior and its neural basis are likely being missed by failing to
distinguish between novelty and surprise.

ACKNOWLEDGMENTS
The authors thank Barak Pearlmutter for pointing out Huron’s
PDQ Bach example, Ashvin Shah for helping us track down
many references, John Moore for his sage input, and anonymous
reviewers for their very helpful suggestions. This research was
funded by the European Community 7th Framework Programme
(FP7/2007-2013), “Challenge 2—Cognitive Systems, Interaction,
Robotics,” grant agreement No. ICT-IP-231722, project “IM-
CLeVeR—Intrinsically Motivated Cumulative Learning Versatile
Robots.”

REFERENCES
Asaad, W. F., Rainer, G., and Miller, E. K. (1998). Neural activity in the pri-

mate prefrontal cortex during associative learning. Neuron 21, 1399–1407. doi:
10.1016/S0896-6273(00)80658-3

Baldassarre, G., and Mirolli, M. (eds.). (2013). Intrinsically Motivated Learning in
Natural and Artificial Systems. Berlin: Springer-Verlag. doi: 10.1007/978-3-642-
32375-1

Barto, A. G. (1990). “Connectionist learning for control: an overview,” in Neural
Networks for Control, eds T. Miller, R. S. Sutton, and P. J. Werbos (Cambridge,
MA: MIT Press), 5–58.

Barto, A. G. (1995). “Adaptive critics and the basal ganglia,” in
Models of Information Processing in the Basal Ganglia, eds J. C.
Houk, J. L. Davis, and D. G. Beiser (Cambridge, MA: MIT Press),
215–232.

Berlyne, D. E. (1960). Conflict, Arousal, and Curiosity. New York, NY: McGraw-Hill.
doi: 10.1037/11164-000

Berridge, K. (2007). The debate over dopamine’s role in reward: the case for
incentive salience. Psychopharmacology 191, 391–431. doi: 10.1007/s00213-006-
0578-x

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York, NY:
Springer.

Brown, M. W., and Aggleton, J. P. (2001). Recognition memory: what are the roles
of the perirhinal cortex and hippocampus? Nat. Rev. Neurosci. 2, 51–61. doi:
10.1038/35049064

Bunzeck, N., and Duzel, E. (2006). Absolute coding of stimulus nov-
elty in the human substantia nigra/vta. Neuron 51, 369–379. doi:
10.1016/j.neuron.2006.06.021

Courville, A. C., Daw, N. D., Gordon, G. J., and Touretzky, D. S. (2004).
“Model uncertainty in classical conditioning,” in Advances in Neural Information
Processing Systems 16, eds S. Thrun, L. Saul, and B. Schölkopf (Cambridge, MA:
MIT Press), 977–984.

Courville, A. C., Daw, N. D., and Touretzky, D. S. (2006). Bayesian theories of con-
ditioning in a changing world. Trends Cogn. Sci. 10, 294–300. doi: 10.1016/j.tics.
2006.05.004

Dayan, P., Kakade, S., and Montague, P. R. (2000). Learning and selective attention.
Nat. Neurosci. Suppl. 3, 1218–1223. doi: 10.1038/81504

Dayan, P., and Long, T. (1998). “Statistical models of learnng,” in Advances in
Neural Information Processing Systems 10: Proceedings of the 1997 Conference,
eds M. I. Jordan, M. J. Kearns, and S. A. Solla (Cambridge, MA: MIT Press),
117–123.

Deci, E., and Ryan, R. (1985). Intrinsic Motivation and Self-Determination in
Human Behavior. New York, NY: Plenum Press. doi: 10.1007/978-1-4899-
2271-7

Dommett, E., Coizet, V., Blaha, C. D., Martindale, J., Lefebvre, V., Walton, N.,
et al. (2005). How visual stimuli activate dopaminergic neurons at short latency.
Science 307, 1476–1479. doi: 10.1126/science.1107026

Duda, R. O., and Hart, P. E. (1973). Pattern Classification and Scene Analysis.
New York, NY: Wiley.

Duncan, K., Ketz, N., Inati, S. J., and Davachi, L. (2012). Evidence for area ca1
as a match/mismatch detector: a high-resolution fmri study of the human
hippocampus. Hippocampus 22, 389–398. doi: 10.1002/hipo.20933

Duzel, E., Habib, R., Rotte, M., Guderian, S., Tulving, E., and Heinze,
H. (2003). Human hippocampal and parahippocampal activity dur-
ing visual associative recognition memory for spatial and nonspatial
stimulus configurations. J. Neurosci. 23, 9439–9444. Available online at:
http://www.jneurosci.org/content/23/28/9439.long

Ekman, P., and Davidson, R. J. (eds.). (1994). The Nature of Emotion: Fundamental
Questions. Oxford: Oxford University Press.

Engle, Y., Mannor, S., and Meir, R. (2003). “Bayes meets Bellman: the Gaussian
process approach to temporal difference learning,” in Proceedings of the twen-
tieth International Conference on Machine Learning (ICML-2003) (Washington,
DC), 154–161.

Friedman, D., Cycowicz, Y. M., and Gaeta, H. (2001). The novelty p3: an
event-related brain potential (erp) sign of the brain’s evaluation of nov-
elty. Neurosci. Biobehav. Rev. 25, 355–373. doi: 10.1016/S0149-7634(01)
00019-7

Friston, K. (2009). The free-energy principle: a rough guide to the brain? Trends
Cogn. Sci. 13, 293–301. doi: 10.1016/j.tics.2009.04.005

Friston, K. (2010). The free-energy principle: a unified brain theory? Nat. Rev.
Neurosci. 11, 127–138. doi: 10.1038/nrn2787

Friston, K., and Kiebel, S. (2009). Predictive coding under the free-energy principle.
Philos. Trans. R. Soc. B 364, 1211–1221. doi: 10.1098/rstb.2008.0300

Friston, K. J., Kilner, J., and Harrison, L. (2006). A free-energy principle for the
brain. J. Physiol. Paris 100, 70–87. doi: 10.1016/j.jphysparis.2006.10.001

Gershman, S. J., and Blei, D. M. (2012). A tutorial on bayesian nonparametric
models. J. Math. Psychol. 56, 1–12. doi: 10.1016/j.jmp.2011.08.004

Glimcher, P. (2011). Understanding dopamine and reinforcement learning: the
dopamine reward prediction error hypothesis. Proc. Natl. Acad. Sci. U.S.A.
108(Suppl. 3), 15647–15654. doi: 10.1073/pnas.1014269108

Glow, P. (1970). Some acquisition and performance characteristics of response
contingent sensory reinforcement in the rat. Aust. J. Psychol. 22, 145–154. doi:
10.1080/00049537008254568

Glow, P., and Winefield, A. (1978). Response-contingent sensory change
in a causally structured environment. Learn. Behav. 6, 1–18. doi:
10.3758/BF03211996

Graybiel, A. (2008). Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci.
31, 359–387. doi: 10.1146/annurev.neuro.29.051605.112851

Grossberg, S. (1982). Processing of expected and unexpected events during condi-
tioning and attention: a psychophysiological theory. Psychol. Rev. 89, 529–572.
doi: 10.1037/0033-295X.89.5.529

www.frontiersin.org December 2013 | Volume 4 | Article 907 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Barto et al. Novelty or surprise?

Hasselmo, M. E., and Schnell, E. (1994). Laminar selectivity of the cholin-
ergic suppression of synaptic transmission in rat hippocampal region
ca1: computational modeling and brain slice physiology. J. Neurosci. 14,
3898–3914.

Henson, R. N. A., and Rugg, M. D. (2003). Neural response suppression, haemo-
dynamic repetition effects, and behavioural priming. Neuropsychologia 41,
263–270. doi: 10.1016/S0028-3932(02)00159-8

Horvitz, J. C. (2000). Mesolimbocortical and nigrostriatal dopamine responses
to salient non-reward events. Neuroscience 96, 651–656. doi: 10.1016/S0306-
4522(00)00019-1

Horvitz, J. C., Stewart, T., and Jacobs, B. L. (1997). Burst activity of ventral tegmen-
tal dopamine neurons is elicited by sensory stimuli in the awake cat. Brain Res.
759, 251–258. doi: 10.1016/S0006-8993(97)00265-5

Houk, J. C., Adams, J. L., and Barto, A. G. (1995). “A model of how the basal gan-
glia generates and uses neural signals that predict reinforcement,” in Models of
Information Processing in the Basal Ganglia, eds J. C. Houk, J. L. Davis, and D. G.
Beiser (Cambridge, MA: MIT Press), 249–270.

Huron, D. (2004). “Music-engendered laughter: an analysis of humor devices
in PDQ Bach,” in Proceedings of the 8th International Conference on Music
Perception and Cognition, eds S. D. Lipscomb, R. Ashley, R. O. Gjerdingen, and
P. Webster (Adelaide, SA: Causal Productions), 700–704.

Itti, L., and Baldi, P. F. (2005). “A principled approach to detecting surprising events
in video,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (San Diego, CA), 631–637.

Itti, L., and Baldi, P. F. (2006). “Bayesian surprise attracts human attention,” in
Advances in Neural Information Processing Systems 18 (NIPS∗2005), eds Y. Weiss,
B. Schölkopf, and J. Platt (Cambridge, MA: MIT Press), 547–554.

Itti, L., and Baldi, P. F. (2009). Bayesian surprise attracts human attention. Vis. Res.
49, 1295–1306. doi: 10.1016/j.visres.2008.09.007

Kakade, S., and Dayan, P. (2002a). Acquisition and extinction in autoshaping.
Psychol. Rev. 109, 533–544. doi: 10.1037/0033-295X.109.3.533

Kakade, S., and Dayan, P. (2002b). Dopamine: generalization and bonuses. Neural
Netw. 15, 549–559. doi: 10.1016/S0893-6080(02)00048-5

Kamin, L. J. (1969). “Predictability, surprise, attention, and conditioning,” in
Punishment and Aversive Behavior, eds B. A. Campbell and R. M. Church (New
York, NY: Appleton-Century-Crofts), 279–296.

Kish, G. B. (1955). Learning when the onset of illumination is used as reinforcing
stimulus. J. Comp. Physiol. Psychol. 48, 261–264. doi: 10.1037/h0040782

Kohler, S., Danckert, S., Gati, J., and Menon, R. (2005). Novelty responses to
relational and non-relational information in the hippocampus and the parahip-
pocampal region: a comparison based on event-related fmri. Hippocampus 15,
763–774. doi: 10.1002/hipo.20098

Kohonen, T. (1977). Associative Memory: A System Theoretic Approach. Berlin:
Springer-Varlag.

Kohonen, T. (1980). Content-Addressable Memories. Berlin: Springer-Verlag. doi:
10.1007/978-3-642-96552-4

Kohonen, T. (1984). Self-Organization and Associative Memory. Berlin: Springer-
Verlag.

Krebs, R. M., Schott, B. H., Schutze, H., and Duzel, E. (2009). The novelty explo-
ration bonus and its attentional modulation. Neuropsychologia 47, 2272–2281.
doi: 10.1016/j.neuropsychologia.2009.01.015

Kumaran, D., and Maguire, E. A. (2007). Which computational mechanisms oper-
ate in the hippocampus during novelty detection? Hippocampus 17, 735–748.
doi: 10.1002/hipo.20326

Lepora, N. F., Porrill, J., Yeo, C. H., and Dean, P. (2010). Sensory predic-
tion or motor control? Application of Marr-Albus type models of cerebel-
lar function to classical conditioning. Front. Comput. Neurosci. 4:140. doi:
10.3389/fncom.2010.00140

Li, L., Miller, E. K., and Desimone, R. (1993). The representation of stimulus
familiarity in anterior inferior temporal cortex. J. Neurophysiol. 69, 1918–1929.

Lisman, J. E., and Grace, A. A. (2005). The hippocampal-vta loop: controlling
the entry of information into long-term memory. Neuron 46, 703–713. doi:
10.1016/j.neuron.2005.05.002

Ljungberg, T., Apicella, P., and Schultz, W. (1992). Responses of monkey dopamine
neurons during learning of behavioral reactions. J. Neurophysiol. 67, 145–163.

Mannella, F., Zappacosta, S., Mirolli, M., and Baldassarre, G. (2010). “A compu-
tational model of the amygdala nuclei’s role in second order conditioning,” in
From Animals to Animats 10: Proceedings of the Tenth International Conference
on the Simulation of Adaptive behavior (SAB2008), Llecture Notes in Artificial

Intelligence 5040, eds M. Asada, J. C. Hallam, J.-A. Meyer, and J. Tani (Berlin:
Springer-Verlag).

Markou, M., and Singh, S. (2003). Novelty detection: a review - part 1: statistical
approaches. Signal Process. 83, 2481–2497. doi: 10.1016/j.sigpro.2003.07.018

Marsland, S. (2003). Novelty detection in learning systems.
Neural Comput. Surv. 3, 157–195. Available online at:
http://seat.massey.ac.nz/personal/s.r.marsland/PUBS/NCS.pdf

Mathys, C., Daunizeau, J., Friston, K. J., and Stephan, K. E. (2011). A Bayesian foun-
dation for individual learning under uncertainty. Front. Hum. Neurosci. 5:39.
doi: 10.3389/fnhum.2011.00039

Mirolli, M., Santucci, V., and Baldassarre, G. (2013). Phasic dopamine as a pre-
diction error signal of intrinsic and extrinsic reinforcements: a computational
model. Neural Netw. 39, 40–51. doi: 10.1016/j.neunet.2012.12.012

Monsalve, I. F., Frank, S. L., and Vigliocco, G. (2012). “Lexical surprisal as a gen-
eral predictor of reading time,” in Proceedings of the 13th Conference of the
European Chapter of the Association for Computational Linguistics (Stroudsburg,
PA: Association for Computational Linguistics), 398–408.

Moore, J. W., and Schmajuk, N. A. (2008). Kamin blocking. Scholarpedia 3, 3542.
doi: 10.4249/scholarpedia.3542

Nehmzow, U., Gatsoulis, Y., Kerr, E., Condell, J., Siddique, N., and McGinnity,
T. (2013). “Novelty detection as an intrinsic motivation for cumula-
tive learning robots,” in Intrinsically Motivated Learning in Natural and
Artificial Systems, eds G. Baldassarre and M. Mirolli (Berlin: Springer-Verlag),
185–207.

O’Keefe, J., and Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford:
Oxford University Press.

Palm, G. (2012). Novelty, Information and Surprise. Berlin: Springer-Verlag. doi:
10.1007/978-3-642-29075-6

Pearce, J. M., and Hall, G. (1980). A model for Pavlovian learning: variation in the
effectiveness of conditioning but not unconditioned stimuli. Psychol. Rev. 87,
532–552. doi: 10.1037/0033-295X.87.6.532

Ranganath, C., and Paller, K. A. (1999). Frontal brain activity during episodic and
semantic retrieval: insights from event-related potentials. J. Cogn. Neurosci. 11,
598–609. doi: 10.1162/089892999563661

Ranganath, C., and Rainer, G. (2003). Neural mechanisms for detecting and
remembering novel events. Nat. Rev. Neurosci. 4, 193–202. doi: 10.1038/nrn1052

Rao, R. P., and Ballard, D. H. (1999). Predictive coding in the visual cortex: a func-
tional interpretation of some extra-classical receptive-field effects. Nat. Neurosci.
2, 79–87. doi: 10.1038/4580

Redgrave, P., and Gurney, K. (2006). The short-latency dopamine signal: a role in
discovering novel actions? Nat. Rev. Neurosci. 7, 967–975. doi: 10.1038/nrn2022

Redgrave, P., Prescott, T. J., and Gurney, K. (1999). Is the short-latency dopamine
response too short to signal reward error? Trends Neurosci. 22, 146–151. doi:
10.1016/S0166-2236(98)01373-3

Reed, P., Mitchell, C., and Nokes, T. (1996). Intrinsic reinforcing properties of puta-
tively neutral stimuli in an instrumental two-lever discrimination task. Anim.
Learn. Behav. 24, 38–45. doi: 10.3758/BF03198952

Rescorla, R. A. (1971). Variations in the effectiveness of reinforcement and nonre-
inforcement following prior inhibitory conditioning. Learn. Motiv. 2, 113–123.
doi: 10.1016/0023-9690(71)90002-6

Rescorla, R. A., and Wagner, A. R. (1972). “A theory of Pavlovian condition-
ing: variations in the effectiveness of reinforcement and nonreinforcement,” in
Classical Conditioning II, eds A. H. Black and W. F. Prokasy (New York, NY:
Appleton-Century-Crofts), 64–99.

Ringo, J. L. (1996). Stimulus specific adaptation in inferior temporal and
medial temporal cortex of the monkey. Behav. Brain Res. 76, 191–197. doi:
10.1016/0166-4328(95)00197-2

Roark, B. (2011). Expected Surprisal and Entropy. Technical Report CSLU-11-004,
Center for Spoken Language Processing, Oregon Health and Science University,
(Portland, OR).

Robinson, S., Sotak, B., During, M., and Palmiter, R. (2006). Local dopamine
production in the dorsal striatum restores goal-directed behavior in
dopamine-deficient mice. Behav. Neurosci. 120, 196–200. doi: 10.1037/0735-
7044.120.1.000

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). “Learning
internal representations by error propagation,” in Parallel Distributed
Processing:Explorations in the Microstructure of Cognition, Vol. 1: Foundations.
eds D. E. Rumelhart and J. L. McClelland (Cambridge, MA: Bradford
Books/MIT Press), 318–362.

Frontiers in Psychology | Cognitive Science December 2013 | Volume 4 | Article 907 | 14

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


Barto et al. Novelty or surprise?

Russell, A., and Glow, P. (1974). Some effects of short-term immediate prior expo-
sure to light change on responding for light change. Learn. Behav. 2, 262–266.
doi: 10.3758/BF03199191

Schmajuk, N. A. (2008). Computational models of classical conditioning.
Scholarpedia 3, 1664. doi: 10.4249/scholarpedia.1664

Schmidhuber, J., Storck, J., and Hochreiter, S. (1994). Reinforcement driven infor-
mation acquisition in nondeterministic environments. Munich: Technical report,
Fakultät für Informatik, Technische Universität München.

Schultz, W. (1998). Predictive reward signal of dopamine neurons. J. Neurophysiol.
80, 1–27.

Schultz, W. (2007). Multiple dopamine functions at different time scales. Annu.
Rev. Neurosci. 30, 259–288. doi: 10.1146/annurev.neuro.28.061604.135722

Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural substrate of prediction
and reward. Science 275, 1593–1598. doi: 10.1126/science.275.5306.1593

Sobotka, S., and Ringo, J. L. (1994). Stimulus specific adaptation in excited but not
in inhibited cells in inferotemporal cortex of macaque. Brain Res. 646, 95–99.
doi: 10.1016/0006-8993(94)90061-2

Soltani, M., and Knight, R. T. (2000). Neural origins of the p300. Crit. Rev.
Neurobiol. 14, 199–224. doi: 10.1615/CritRevNeurobiol.v14.i3-4.20

Steinfels, G. F., Heym, J., Strecker, R. E., and Jacobs, B. L. (1983). Response
of dopaminergic neurons in cat to auditory stimuli presented across the
sleep-waking cycle. Brain Res. 277, 150–154. doi: 10.1016/0006-8993(83)
90917-4

Storck, J., Hochreiter, S., and Schmidhuber, J. (1995). “Reinforcement-driven
information acquisition in non-deterministic environments,” in Proceedings of
ICANN’95 (Paris), Vol. 2, 159–164.

Sutton, R. S. (1988). Learning to predict by the method of temporal differences.
Mach. Learn. 3, 9–44. doi: 10.1007/BF00115009

Sutton, R. S., and Barto, A. G. (1990). “Time-derivative models of Pavlovian
reinforcement,” in Learning and Computational Neuroscience: Foundations of
Adaptive Networks, eds M. Gabriel and J. Moore (Cambridge, MA: MIT Press),
497–537.

Sutton, R. S., and Tanner, B. (2004). “Temporal-difference networks,” in Advances
in Neural Information Processing Systems 17, [Neural Information Processing
Systems, NIPS 2004], (Vancouver, BC), 1377–1384.

Tribus, M. (1961). Thermodynamics and Thermostatics: An Introduction to Energy,
Information and States of Matter, with Engineering Applications. New York, NY:
D. Van Nostrand Company Inc.

Ungless, M. (2004). Dopamine: the salient issue. Trends Neurosci. 27, 702–706. doi:
10.1016/j.tins.2004.10.001

Wan, H., Aggleton, J. P., and Brown, M. W. (1999). Different contributions of
the hippocampus and perirhinal cortex to recognition memory. J. Neurosci. 19,
1142–1148.

Welch, G., and Bishop, G. (1995). An introduction to the kalman filter. Technical
report, Department of Computer Science, University of North Carolina at
Chapel Hill, (Chapel Hill, NC).

Widrow, B., and Hoff, M. E. (1960). “Adaptive switching circuits,” in
1960 WESCON Convention Record Part IV, (NY: Institute of Radio
Engineers) 96–104, Reprinted in Anderson, J. A., and Rosenfeld, E. (1988).
Neurocomputing: Foundations of Research, (Cambridge, MA: MIT Press),
126–134.

Williams, D., and Lowe, G. (1972). Response contingent illumination change
as a reinforcer in the rat. Anim. Behav. 20, 259–262. doi: 10.1016/S0003-
3472(72)80045-9

Wise, R. (2004). Dopamine, learning and motivation. Nat. Rev. Neurosci. 5,
483–494. doi: 10.1038/nrn1406

Wittmann, B. C., Daw, N. D., Seymour, B., and Dolan, R. J. (2008). Striatal
activity underlies novelty-based choice in humans. Neuron 58, 967–973. doi:
10.1016/j.neuron.2008.04.027

Zweifel, L. S., Parker, J. G., Lobb, C. J., Rainwater, A., Wall, V. Z., Fadok, J. P., et al.
(2009). Disruption of nmdar-dependent burst firing by dopamine neurons
provides selective assessment of phasic dopamine-dependent behavior. Proc.
Natl. Acad. Sci. U.S.A. 106, 7281–7288. doi: 10.1073/pnas.0813415106

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 05 July 2013; paper pending published: 23 September 2013; accepted: 15
November 2013; published online: 11 December 2013.
Citation: Barto A, Mirolli M and Baldassarre G (2013) Novelty or Surprise? Front.
Psychol. 4:907. doi: 10.3389/fpsyg.2013.00907
This article was submitted to Cognitive Science, a section of the journal Frontiers in
Psychology.
Copyright © 2013 Barto, Mirolli and Baldassarre. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this jour-
nal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

www.frontiersin.org December 2013 | Volume 4 | Article 907 | 15

http://dx.doi.org/10.3389/fpsyg.2013.00907
http://dx.doi.org/10.3389/fpsyg.2013.00907
http://dx.doi.org/10.3389/fpsyg.2013.00907
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive

	Novelty or Surprise?
	Introduction
	Surprise
	Surprise in Associative Learning Theory
	Bayesian Surprise
	Information Theoretic Surprise
	Summary

	Novelty
	Memory-Based Novelty
	Novelty as Statistical Outlier
	Summary

	Novelty and Surprise: Typical Features
	Relationship between Surprise and Novelty
	Surprise and Novelty in Neuroscience and Cognition
	Stimulus Novelty
	Associative Novelty
	Contextual Novelty
	Dopamine ``Novelty'' Responses

	Conclusion
	Acknowledgments
	References


