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Abstract

The goal of this work is to train models that can identify a spo-

ken language just by interpreting the speaker’s lip movements.

Our contributions are the following: (i) we show that models

can learn to discriminate among 14 different languages using

only visual speech information; (ii) we compare different de-

signs in sequence modelling and utterance-level aggregation in

order to determine the best architecture for this task; (iii) we

investigate the factors that contribute discriminative cues and

show that our model indeed solves the problem by finding tem-

poral patterns in mouth movements and not by exploiting spuri-

ous correlations. We demonstrate this further by evaluating our

models on challenging examples from bilingual speakers.

Index Terms: language identification, language recognition.

1. Introduction

Language identification from audio is a relatively easy task for

humans. Indeed we can distinguish between languages that we

do not speak or understand [1]. Moreover, automatic language

identification (LID) from audio speech, is a well studied prob-

lem [2, 3, 4, 5], and determining the spoken language is often a

first step for multilingual speech recognition [6, 7].

But is it possible to infer the language spoken by only look-

ing at the speaker’s lip movements, without the audio? There

is evidence that humans can infer the spoken language by ob-

serving the lip movements of the speaker [8, 9, 10]. Moreover,

Newman and Cox [11, 12] have shown that, under controlled

visual conditions, visual language identification can also be au-

tomated.

Our objective in this paper is visual language identification

‘in the wild’ – speaker independent, and text (content) inde-

pendent identification. To this end, we train and evaluate vi-

sual language identification (VLID) models on a large multilin-

gual audio-visual speech dataset, composed of public datasets

of TEDx talks. We show that VLID can be accomplished un-

der more general conditions, with good accuracy and for a large

number of languages. To ensure that the models are indeed dis-

tinguishing between languages by finding patterns in the mouth

movement, and not instead using other factors (e.g. inferring

ethnicity from appearance cues) or spurious correlations, we

compare with a face recognition baseline and also evaluate the

models on a dataset from a different domain, VoxCeleb2 [13].

VLID opens up a host of interesting applications such as

automatically recognising the language in silent films, auto-

matically detecting dubbing in films, or recognising the spo-

ken language from a distance. Most importantly, from a prac-

tical perspective, it can be used to pre-condition lip reading

models, which are highly dependent on context, and to make

audio-based language identification more robust in noisy envi-

ronments. Please see our website http://www.robots.

ox.ac.uk/˜vgg/vlid for video examples.

1.1. Related Work

Audio language identification. Research in audio language

identification has a long history, and the performance given rea-

sonably long speech segments is very high. The architectures,

aggregation methods and loss functions used in the LID task are

similar to those in speaker recognition. For example, Geng et

al. [14] investigate the use of RNNs for temporal aggregation in

language identification. Cai et al. [15] explore the encoder and

loss function for LID and propose some efficient temporal ag-

gregation strategies, while Chen et al. [16] use NetVLAD [17]

for temporal aggregation. In more recent work [18] use a 2D

CNN as feature extractor with a BLSTM backend for temporal

modelling and a self-attentive pooling layer for utterance level

aggregation. The experiments show that decision-level fusion

of different architectures yields the best results. Miao et al. [19]

propose the use of a CNN-LSTM-TDNN encoder in combi-

nation with attention mechanisms in both time and frequency.

Padi et al. [20] use a BLSTM-based attention model, obtaining

state-of-the-art results on the NRE17 dataset. Wan et al. [21]

and Mazzawi et al. [22] also investigate LSTM based architec-

tures for this dataset. Titus et al. [23] explore the effect of accent

in language identification performance and train models robust

to accented speech.

Visual language identification. The ability of humans to rec-

ognize languages by observing the lip movements of the speaker

has been researched in psycholinguistics. Soto et al. [8] first re-

port that facial speech information alone is sufficient for lan-

guage identification. Weikum et al. [9] study visual speech

identification in infants, while Ronquest et al. [10] investigate

if humans are able to distinguish between English and Spanish

based on visual speech.

However, there is limited research in using the visual

modality to automatically identify the spoken language. Previ-

ous works by Newman and Cox [11, 12] are of closest relevance

to ours: they introduce visual language identification as a clas-

sification problem, and show that languages can be classified

by using only lip motion. However, the videos used are con-

strained to studio conditions, with a small number of subjects

reading a set text, and their method does not use deep learning

methods. Also related is [24] that identifies language in music

videos by using both audio and video cues, while [25] used fa-

cial landmarks to classify between two languages, English and

French. Brahme et al. [26] use constrained local models to the

solve same task.

Lip reading. The methods used in visual language identifi-

cation are closely related to those used for lip reading. There

has been significant progress in the recent years, mainly due to

the advances in deep learning and the creation of large scale

datasets. While earlier work in the field used neural networks

to predict phonemes [27] or words [28, 29], it has been proven

http://www.robots.ox.ac.uk/~vgg/vlid
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Table 1: Statistics of audio-visual datasets used for training and

evaluating our VLID models and baselines. # videos: Number

of original YouTube videos. # hours: Total number of hours

# clips:. Number of clips (each video is separated into multiple

clips). For each statistic, we shown the minimum per language

in parenthesis.

dataset # hours # videos # clips

LRS3-Lang+ (dev) 1,707 (38) 19,300 (342) 683k

LRS3-Lang+ (test) 166 (0.9) 1,816 (30) 59k

VoxCeleb2-Lang 9 (0.8) 1,595 (98) 8.8k

VoxCeleb2-Biling 20.7 (0.7) 921 (26) 15k

347

424

156

172

64

84

97

57

66

54
48

46
47 38

Japanese
2.8%
Korean
2.7%
Greek
2.8%
Polish
3.2%
Russian
3.9%
Turkish
3.4%
Chinese
5.7%
Italian
4.9%

Arabic
3.8%

French
10.1%

English
20.4%

Spanish
24.9%

Portuguese
9.2%

train/# hours vs. Language

Figure 1: Language distribution of the LRS3-Lang+ dataset

in number of hours.

more recently that automatic lip reading can be generalised to

continuous speech in unconstrained domains [30, 31, 32, 33,

34]. Recent works have shown that lip reading models trained

on very large datasets can achieve word error rates as low as

33% on a real-world dataset, far exceeding the performance of

professional lip readers [35].

2. Datasets

For training and evaluation, we use the LRS3-Lang [36] and

LRS3 [37] datasets, as well as VoxCeleb2 [13] as a second

multilingual test set. We show aggregate statistics of all datasets

used in Table 1.

2.1. LRS3-Lang+

LRS3-Lang [36] is a multilingual audio-visual dataset based

on videos collected from TEDx talks. The dataset covers 13 dif-

ferent (non-English) languages with a total of over 1,300 hours

of video. For English we use the “pretrain” set of LRS3 [37],

where the videos come from the same domain (TED(x) talks)

and the exact same process has been followed to collect the data.

The test set of LRS3 is small and contains short segments of no

more than 6 seconds long. Therefore we re-split the “pretrain”

set into a development and test set containing disjoint speakers.

We incorporate this new split into LRS3-Lang as the English

part to create a composite multilingual dataset of 14 languages,

which we call LRS3-Lang+. The relative distribution of lan-

guages in our composite dataset are shown in Figure 1.

2.2. VoxCeleb2

VoxCeleb2 is an audio-visual speech dataset which consists

of 5,994 speakers with a total of 1,092,009 clips in the develop-

ment set, and 118 speakers with 36,237 clips in the test set. To

assess the cross-domain generalization capabilities of the mod-

els and baselines (trained on LRS3-Lang+), we create two

subsets from the development set of VoxCeleb2, which we

use as test sets.

VoxCeleb2-Lang. VoxCeleb2 contains no language labels,

however the identity of the speakers and their nationality are

known. We therefore obtain language labels from two sources.

The first is training an audio-only model on LRS3-Lang+ (de-

tails in Section 3) and using it to classify the audio of the speak-

ers in VoxCeleb2. The second source is using the nationality

of the speakers: each language is assigned a list of nationalities

– i.e. countries where the language is predominantly spoken.

For example, English is associated with American, British, Aus-

tralian, and Scottish nationalities; Spanish is associated with

Spanish, Mexican, and Argentinean nationalities etc. For ev-

ery speaker, we then use their nationality to list a set of possible

languages. This narrows down the search space for each lan-

guage considerably. The final language pseudo-labels are ob-

tained by exploiting the redundancy between these two sources:

For a given video, we only assign a language label when the

audio-only model predicts one of the languages associated with

the nationality of the speaker with a probability higher than

a strict threshold (90%). This process gives us very accurate

pseudo-labels, however leaves very few samples (less than 0.5

hour in total) for Japanese, Arabic and Greek. We therefore

exclude these languages during evaluation on this dataset. The

above procedure results in 11 languages, each containing mate-

rial from at least 98 original YouTube videos each (see Table 1).

VoxCeleb2-Biling. To assess our models on bilingual speak-

ers, we isolate individual speakers in VoxCeleb2-Langwho,

across multiple videos, appear to be speaking both in English

and in a non-English language with a high confidence, as deter-

mined by the audio model prediction. This is common due to

the Celebrity content of the VoxCeleb2 dataset (international

actors, football players, politicians etc). We then create pairs of

mother-tongue and English clips for those speakers. We refer to

the resulting split as VoxCeleb2-Biling.

3. Architecture

We implement two types of models: an audio baseline, using

audio features for LID, and our lip models using video features

for VLID.

3.1. Input representation

Audio features. The input to the audio LID network is

80-dimensional log-mel spectrograms, extracted at every 10ms

with 25ms frame length.

Video features. We extract embeddings modelling the

lip movement with a spatio-temporal (3D/2D) ResNet18 net-

work [38, 29] pretrained on word-level lip reading in En-

glish [31]. The model ingests a sequence of video frames (con-

verted to grayscale) and outputs 512-dimensional visual fea-

tures densely, one for every input frame.



3.2. Sequence modeling

We consider variations of Time-Delay Neural Networks

(TDNN) and BLSTM [39, 40] encoders for the back-end. Those

models ingest the visual features and convert them to represen-

tations more discriminative for the language recognition task,

whilst potentially modelling longer term temporal dependen-

cies. We experiment with 3 different encoder architectures.

TDNN model. This is a 10-layer residual temporal (1D) con-

volutional network. We use depth-wise separable convolutions

[41] which we find to train faster and overfit less. The kernel

width is set to 5, the number of channels to 512, and the tempo-

ral stride to 1 for all the layers.

TDNN + BLSTM. This model uses a TDNN as described above,

followed by a bi-directional LSTM (BLSTM) with a cell dimen-

sion of 512.

3×BLSTM. This model, inspired by [22], uses a stack of 3

BLSTMs with cell size 512.

Utterance level aggregation. In line with the common prac-

tices in the audio LID literature, we also experiment with 3 dif-

ferent utterance-level aggregation techniques.

Temporal average pooling (TAP). The TAP layer simply takes

the mean of the features along the time domain.

Self-attentive pooling (SAP). Unlike the TAP layer that equally

pools the features over time, [15] introduces a self-attentive

pooling layer that pays attention to the frames that are more

informative for utterance-level speaker recognition.

NetVLAD. We also consider NetVLAD[17], which has been

successfully used for temporally aggregating features in speech

models for LID [16] and speaker verification [42]. NetVLAD

mimics the BoW-derived VLAD[43] descriptor by learning a

feature vocabulary from the input representations, then soft-

quantising them over this dictionary and finally aggregating the

results (in our case temporally).

3.3. Face recognition ablation

In order to assess to what extent our models learn to distinguish

between spoken languages and are not using other appearance

cues that are strongly correlated (e.g. ethnicity), we also con-

sider the following baseline: We take a ResNet50 convolutional

network [38] pretrained for face recognition on the VGGFace2

dataset [44] and fine-tune it on the on the VLID task. We con-

sider 2 versions: (i) the model is trained end-to-end; (ii) the

model is frozen at the penultimate residual block, i.e. only the

last residual block and classification layers are fine-tuned.

4. Experimental Setting

Training. All models are trained only on LRS3-Lang+. We

train the LID and VLID models by randomly sampling a seg-

ment of T contiguous frames from a given training clip. To

accelerate training for all models we use a curriculum, first set-

ting T = 64 and then increasing it to 128 and 256 frames (2.5s,

5s and 10s). During training the batches are balanced for lan-

guages. For languages with more samples available, the same

frames are seen less often. To run inference with the RNN-

based models on sequences longer than 256 frames (max seen

during training), we split the sequence into 128 frame segments

with 50% overlap and then average the predictions [21].

The face recognition baselines are trained by feeding one

Table 2: Language Identification performance on the test set

of LRS3-Lang+ and the VoxCeleb2-Lang split. The av-

erage class accuracy is reported everywhere (higher is bet-

ter). For all lip-reading models, a 3D/2D ResNet18 frontend

is implied, and only the sequence-processing backend is varied

and listed for comparison. Mod.: Input modality; A: Audio;

L: Lips; F: Face. Agg.: Temporal aggregation strategy; NV.:

NetVLAD. For LRS3-Lang+ we report the average over all 14

languages (chance = 7%), while for VoxCeleb2-Lang, the

average over 11 languages (excluding Japanese, Korean and

Greek, chance = 9%). As the audio model is used to generate

the pseudo-labels for the VoxCeleb2-Lang dataset, we don’t

report it’s accuracy on this test set.

LRS3-Lang+ VoxCeleb2

Model Mod. Agg. 5s 10s 30s 5s 10s

TDNN + BLSTM A TAP 95.6 96.6 97.3 - -

ResNet50 F AP 66.0 67.0 67.5 16.3 20.6

ResNet50 frozen F AP 39.9 40.8 41.2 24.5 27.4

TDNN L TAP 67.2 76.3 81.8 56.0 64.8

TDNN L SAP 66.4 74.2 76.8 52.9 62.0

TDNN L NV 66.3 74.0 75.8 46.4 59.8

TDNN + BLSTM L TAP 64.0 75.5 79.1 52.4 61.5

TDNN + BLSTM L SAP 65.4 75.2 79.2 52.1 61.1

3×BLSTM L TAP 64.8 75.5 82.0 59.5 67.4

3×BLSTM L SAP 64.5 76.0 84.0 58.5 66.7

random frame from a clip at a time, with a batch of 32. For

a fair comparison with our models, during inference we feed

the face recognition models with all the frames of each test clip

(e.g. 125 frames for the 5 seconds ones). The prediction is then

obtained by averaging the model logits for all the frames.

Evaluation protocol. We evaluate on sequences of 5, 10 and

30 seconds long. As continuous clips of 30 seconds are very

scarce in the datasets, we synthesize those by merging smaller

clips from the same video together. For all experiments, the

metric that we report is the average class language identifica-

tion accuracy. We evaluate our models and baselines on the

test set of LRS3-Lang+, on VoxCeleb2-Lang, and on

VoxCeleb2-Biling.

5. Results

We summarize the results of our experiments on LRS3-Lang+

and VoxCeleb2-Lang in Table 2.

As expected, the audio LID model achieves a very high ac-

curacy. The visual VLID models also perform well. In both

cases the model’s performance improves as more temporal in-

put is available. Indeed, when the visual models are supplied

with 30 seconds of input the accuracy rises as high as 84%.

In terms of architectures, all options that we examine

perform reasonably. The simplest of the models, TDNN

performs best on LRS3-Lang+, except for the 30s case

where the 3×BLSTM model achieves marginally better re-

sults. When evaluating the models on the different domain of

VoxCeleb2-Lang, the advantage of using the 3×BLSTM is

more apparent. Adding a BLSTM layer on top of the TDNN

model impairs performance. In terms of utterance-level aggre-

gation, neither SAP or NetVLAD clearly outperform simple

temporal pooling. We conjecture that these results are due to
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Figure 2: Confusion matrix for predictions of 3×BLSTM-SAP

model on the test set of LRS3-Lang+ (10 seconds experiment).
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Figure 3: Visual language identification accuracy on bilingual

test set (VoxCeleb2-Biling). The model is tasked with dis-

criminating between each language and English. Utterances of

length 5 seconds are used. Chance accuracy is 50%.

overfitting in the more complicated models.

We show the confusion matrix for the predictions of the

3×BLSTM-SAP model in Figure 2. We note that the lan-

guages that are most commonly confused have phonetic similar-

ities (e.g. German-English, Greek-Spanish, Korean-Japanese,

Russian-Polish).

We next turn to the question of whether the visual model

is indeed modelling the temporal mouth patterns to recognize

the language or is just relying on appearance cues, such as face

shape or skin tone. It is worth noting that (i) the visual fea-

tures only use monochrome (not RGB) inputs, and (ii) they are

trained on a word-level lip reading task on videos from British

television and then frozen. This limits the extent of the in-

formation that they can access from the raw frames. In con-

trast, the baselines have a varying degree of access to the raw

frames – and it can be seen that they can exploit this in solving

the task. Examining the performance of the ResNet50-based

face models, we notice that the model trained end-to-end ob-

tains good results on LRS3-Lang+. However, when evaluated

on VoxCeleb2-Lang the same model performs very poorly.

Figure 4: Challenging examples from VoxCeleb2-Biling

for which our VLID model correctly predicts the spoken lan-

guage (indicated by the flag). Modelling of the lip movements

is essential to solve this task.

On the other hand, the evaluations of the model based on the

frozen ResNet50, pretrained on face recognition, shows rela-

tively worse performance on LRS3-Lang+, but its general-

ization on VoxCeleb2-Lang is better. The above suggest

that the end-to-end model finds some shortcut which leads it

to greatly overfitting the dataset. We conjecture that this might

be due to background landmarks or camera artefacts correlated

with the location of shooting of the TEDx events.

VoxCeleb2-Lang. We note that there is a significant do-

main shift between LRS3-Lang+, where the models have been

trained, and VoxCeleb2 as well as that the speaker identi-

ties between the two datasets are disjoint. As can be seen, the

VLID models exhibit strong performance despite this domain

shift. The face baselines, in contrast and as discussed above,

drop in performance to near chance level. This demonstrates

again that the VLID models are indeed using the mouth shape

(visemes) and temporal changes for LID, and not employing

shortcuts from the face and raw frames.

Bilingual speakers. On figure 3 we show results on bilingual

speakers from VoxCeleb2. As expected, the accuracy of the face

baseline fluctuates around the random performance (50%), as

inferring the spoken language given the same face is very hard

without any lip movement modelling. Our model significantly

outperforms the baseline, reaching 80% accuracy for Spanish.

We show some qualitative examples of clips of bilingual

speakers that our model predicts correctly in Figure 4. Please

refer to our website for video examples.

6. Conclusion

We can give a qualified answer to the question posed in the in-

troduction: Yes, it is possible to infer the spoken language only

by observing the speaker’s lips, and to a remarkably good accu-

racy. Our experiments have shown that using lip movements for

this task exceeds using appearance cues captured by face em-

beddings. Finally, by performing analysis on bilingual speakers

we demonstrated that our trained models can even distinguish

between different languages spoken by the same person.

In future work we plan to investigate which lip movements

provide the most discriminative cues, as well as explore the vi-

sual similarities and differences between languages – e.g. de-

termine if certain viseme combinations are more prominent for

some groups of languages than in others.
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“Language recognition in ivectors space,” in Interspeech, 2011.

[4] N. Dehak, P. A. Torres-Carrasquillo, D. Reynolds, and R. De-
hak, “Language recognition via i-vectors and dimensionality re-
duction,” in Interspeech, 2011.

[5] F. Richardson, D. Reynolds, and N. Dehak, “Deep neural network
approaches to speaker and language recognition,” IEEE signal

processing letters, vol. 22, no. 10, pp. 1671–1675, 2015.

[6] J. Gonzalez-Dominguez, D. Eustis, I. Lopez-Moreno, A. Senior,
F. Beaufays, and P. J. Moreno, “A real-time end-to-end multilin-
gual speech recognition architecture,” IEEE Journal of selected

topics in signal processing, vol. 9, no. 4, pp. 749–759, 2014.

[7] M. Mller, S. Stker, and A. Waibel, “Neural codes to factor lan-
guage in multilingual speech recognition,” in Proc. ICASSP, 2019.

[8] S. Soto-Faraco, J. Navarra, W. M. Weikum, A. Vouloumanos,
N. Sebastián-Gallés, and J. F. Werker, “Discriminating languages
by speech-reading,” Perception & Psychophysics, vol. 69, no. 2,
pp. 218–231, 2007.

[9] W. M. Weikum, A. Vouloumanos, J. Navarra, S. Soto-Faraco,
N. Sebastián-Gallés, and J. F. Werker, “Visual language discrim-
ination in infancy,” Science, vol. 316, no. 5828, pp. 1159–1159,
2007.

[10] R. E. Ronquest, S. V. Levi, and D. B. Pisoni, “Language identifi-
cation from visual-only speech signals,” Attention, Perception, &

Psychophysics, vol. 72, no. 6, pp. 1601–1613, 2010.

[11] J. Newman and S. Cox, “Speaker independent visual-only lan-
guage identification,” in Proc. ICASSP, 01 2010, pp. 5026–5029.

[12] J. L. Newman and S. J. Cox, “Language identification using visual
features,” IEEE Transactions on Audio, Speech, and Language

Processing, vol. 20, no. 7, pp. 1936–1947, 2012.

[13] J. S. Chung, A. Nagrani, and A. Zisserman, “VoxCeleb2: Deep
speaker recognition,” in INTERSPEECH, 2018.

[14] W. Geng, W. Wang, Y. Zhao, X. Cai, B. Xu, C. Xinyuan et al.,
“End-to-end language identification using attention-based recur-
rent neural networks,” INTERSPEECH, 2016.

[15] W. Cai, J. Chen, and M. Li, “Exploring the encoding layer and loss
function in end-to-end speaker and language recognition system,”
in Speaker Odyssey, 2018.

[16] J. Chen, W. Cai, D. Cai, Z. Cai, H. Zhong, and M. Li, “End-to-
end Language Identification using NetFV and NetVLAD,” in In-

ternational Symposium on Chinese Spoken Language Processing.
IEEE, 2018, pp. 319–323.
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