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Abstract 28 

In June of 2022, the U.S. Centers for Disease Control and Prevention (CDC) Mpox Response wanted 29 

timely answers to important epidemiological questions which can now be answered more effectively 30 

through infectious disease modeling. Infectious disease models have shown to be valuable tool for 31 

decision making during outbreaks; however, model complexity often makes communicating the results 32 

and limitations of models to decision makers difficult. We performed nowcasting and forecasting for the 33 

2022 mpox outbreak in the United States using the R package EpiNow2. We generated 34 

nowcasts/forecasts at the national level, by Census region, and for jurisdictions reporting the greatest 35 

number of mpox cases. Modeling results were shared for situational awareness within the CDC Mpox 36 

Response and publicly on the CDC website. We retrospectively evaluated forecast predictions at four key 37 

phases during the outbreak using three metrics, the weighted interval score, mean absolute error, and 38 

prediction interval coverage. We compared the performance of EpiNow2 with a naïve Bayesian 39 

generalized linear model (GLM). The EpiNow2 model had less probabilistic error than the GLM during 40 

every outbreak phase except for the early phase. We share our experiences with an existing tool for 41 

nowcasting/forecasting and highlight areas of improvement for the development of future tools. We also 42 

reflect on lessons learned regarding data quality issues and adapting modeling results for different 43 

audiences.  44 
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Background 45 

The 2022 mpox (formerly known as monkeypox) outbreak is the first major infectious disease 46 

outbreak since the COVID-19 pandemic and was declared a Public Health Emergency of International 47 

Concern by the World Health Organization on July 23, 2022 (1). As of April 13, 2023, a total of 86,956 48 

confirmed cases have been reported in 110 countries and territories (2). Unlike COVID-19, mpox is a 49 

disease known to be endemic in West and Central Africa for decades; it is caused by monkeypox virus 50 

(MPXV), a zoonotic orthopoxvirus (3). Historically, classical symptoms involved fever, headache, muscle 51 

aches, fatigue, lymphadenopathy, and rash (4). Human-to-human MPXV transmission occurs through 52 

close contact with infectious material from skin lesions, respiratory secretions during prolonged face-to-53 

face contact, and fomites, such as linens and bedding (5). The 2022 mpox outbreak began in May and 54 

spread rapidly in non-endemic countries. This outbreak was characterized by human-to-human 55 

transmission of MPXV through close physical contact (often associated with sexual activities) and has 56 

disproportionately affected gay, bisexual, and other men who have sex with men (6).  57 

During a public health crisis such as the mpox outbreak, difficult and rapid decisions with limited 58 

available data are often required (7). Infectious disease models may assist with informing policy and 59 

practice by predicting the magnitude and duration of an outbreak or epidemic, evaluating characteristics 60 

of pathogen transmission such as transmissibility, and designing vaccination strategies, among others (8, 61 

9). However, infectious disease models are often complex, integrating data from heterogenous sources 62 

with many parameter assumptions that are subject to uncertainty. These aspects make it challenging to 63 

effectively implement such models and communicate the results and potential limitations to decision 64 

makers, other public health partners, and the general public (10, 11). 65 

During the COVID-19 pandemic, the state of the art of outbreak analysis advanced considerably 66 

(12). Methods and tools for estimating key epidemiological parameters, such as the effective reproduction 67 

number, Rt, were developed and shared in real-time (13). Monitoring Rt, the average number of secondary 68 

cases caused by a single infected individual in a large population, during an outbreak is useful for 69 

assessing transmission dynamics and evaluating the effectiveness of public health measures (e.g., 70 
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vaccination, contact tracing, isolation, and quarantine) (14). Nowcasts and forecasts have been produced 71 

by numerous research groups around the globe (15-18), the results of which were instrumental for 72 

decision makers weighing possible control measures (19) such as social distancing measures. Outbreak 73 

forecasting predicts specific outcomes (e.g., number of cases, deaths, or hospitalizations) at some specific 74 

future times (e.g., weeks, months, etc.), whereas nowcasting estimates those outcomes for the current 75 

time, accounting for delays in reporting.   76 

In this manuscript, we share our experience nowcasting and forecasting the mpox outbreak, 77 

including adapting the modeling output to different audiences. We also describe challenges faced vis-a-78 

vis data quality, parameter estimation, and model application and propose ways to improve nowcasting 79 

and short-term forecasting efforts for future outbreaks. 80 

Methods 81 

Nowcasting/forecasting the mpox outbreak  82 

We used data on probable and confirmed mpox cases in the United States (see “Case definition” 83 

in Supplementary methods) reported to CDC by state and local public health jurisdictions from May 17, 84 

2022, through March 16, 2023. Data were submitted in several different formats throughout the outbreak 85 

period. These formats included: a CDC-operated call center through the Emergency Operations Center 86 

(EOC), a long and a short case report form (CRF), and the National Notifiable Diseases Surveillance 87 

System (NNDSS). Cases could have data submitted via more than one format and jurisdictions could 88 

update data on cases after initial submission (Supplementary methods). All reported data were processed 89 

in CDC’s Data Collation and Integration for Public Health Event Response (DCIPHER) platform, an 90 

instance of Palantir Foundry (Palantir Technologies Inc, Denver, CO). DCIPHER is a secure, cloud-based 91 

data integration, analytics, and situational awareness platform used by the Centers for Disease Control 92 

and Prevention (CDC), federal partners, and state, tribal, local, and territorial public health jurisdictions to 93 

collect, collaborate on, and share public health data (20). DCIPHER collates data of differing origin, 94 

structure, and purpose to provide near real-time insights into public health problems, with the goal of 95 

providing a complete picture of situational awareness.   96 
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We considered three approaches for estimating Rt which are implemented in the R packages 97 

EpiEstim (version 2.2-4) (21), earlyR (version 0.0.5) (22), and EpiNow2 (version 1.3.2) (23) 98 

(Supplementary methods). Initially, we used all three methods to estimate Rt at the national level as well 99 

as for jurisdictions reporting the highest incidence of mpox. Although estimates of the historical range of 100 

the serial interval of mpox were available at the start of the outbreak, they were based on data from the 101 

Democratic Republic of Congo, which reflected largely non-sexual household spread (24). We considered 102 

these historical parameter estimates as a starting point for early outbreak analysis, using them (along with 103 

sensitivity analyses) until new estimates were generated. Updated estimates characterized by the mean 104 

and standard deviation were needed for the global outbreak given the novel mode of transmission. In June 105 

2022, we were able to use an estimated mean serial interval (i.e., the period of time between symptom 106 

onset in the primary case and symptom onset in the secondary case) of 9.8 days (95% credible interval 107 

[CrI]: 5.9 – 21.4) from 17 case pairs reported by the United Kingdom (6). At that time, symptom onset 108 

date was available for most reported cases, and imported cases were still contributing to a high proportion 109 

of MPXV transmission. EpiEstim results were considered the most appropriate at this stage of the 110 

outbreak because this method accounts for imported vs. locally acquired cases, has a stable codebase, is 111 

widely used, and is computationally efficient (25).  112 

In July 2022, we started exclusively using EpiNow2, which uses a similar approach as EpiEstim 113 

(a branching process model, Supplementary methods), but it better accounts for reporting delays and 114 

incorporates multiple sources of uncertainty (13); for example, it removes noise associated with weekend 115 

effects and uses random walks for temporal smoothing. Forecasting is supported internally for Rt, number 116 

of infections, cases by date of report, and growth rate. Unlike EpiEstim, EpiNow2 does not distinguish 117 

between imported vs. locally acquired infections. EpiNow2 is the most computationally expensive 118 

approach, requiring longer model run times (Supplementary methods). The model assumes that testing 119 

procedures, surveillance effort, and reporting delays remain constant over the estimation period. To use 120 

EpiNow2, cases by date of report must be provided as well as the generation time distribution (the time 121 

between infection of a primary and secondary case), incubation period distribution (the time between 122 
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infection and symptom onset in a case), and any other delay distributions (e.g., the delay between 123 

symptom onset and report date). The model estimates the number of new cases by date of report, number 124 

of cases by their date of infection, Rt, and time-varying growth rate. Estimates over the last 16 days of the 125 

time-series are based on partial data due to the presumption of reporting delays. Input parameters and 126 

methods for adjusting for right-truncation evolved as we learned more about the outbreak.  127 

Communication methods 128 

Rt estimates were shared internally through Situational Reports and leadership meetings and 129 

publicly through CDC’s Technical Reports (26) and CDC’s public-facing mpox website (27). The 130 

Technical Reports were co-led by the Center for Forecasting and Outbreak Analytics (CFA) and the 2022 131 

Multi-National Mpox Outbreak Response. Estimates were generated for distribution at least once per 132 

week. The technical reports were intended for scientific audiences. The purpose of sharing these results 133 

was to improve understanding of the outbreak and inform further scientific inquiry. 134 

Performance assessment methods 135 

We chose eight dates during four key outbreak phases to retrospectively evaluate our short-term 136 

(one-week-ahead) forecasts of reported mpox cases generated from EpiNow2: 1. one month into the 137 

outbreak prior to exponential growth (June 13 and June 27); 2. during exponential growth (July 5); 3. near 138 

the outbreak peak (July 27); and 4. during the declining phase (September 6, September 19, October 11, 139 

and December 5). Ideally, the same day of the week would be used, but some historical versions of the 140 

dataset were not available for this analysis and some dates fell on national holidays which may have 141 

introduced additional delays. Like the real-time analyses, we used rash onset date as the first reference 142 

date to define the reporting delay distribution for all eight time points, while the second reference date 143 

changed over time (Table S1).  144 

We used three metrics to evaluate the forecasts. Our primary metric was the weighted interval 145 

score (WIS). For each of the eight time points considered, WIS was computed for each daily prediction 146 

and averaged across the seven-day forecast. The WIS measures the consistency of a group of prediction 147 

intervals with an observed value (probabilistic accuracy). The WIS is positive, and lower values 148 
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correspond to smaller error (Supplementary methods) (15). To evaluate the error in the forecast’s point 149 

estimate, we used the mean absolute error (MAE), which was computed as ��� �  
�

�
∑ |�� 	 �
�|�

��� , 150 

where ��  is the observed number of mpox cases on day �, �
� is the median forecast on day �, and N = 7 151 

(15). We also used prediction interval (PI) coverage rates, which check the degree to which the model 152 

provides calibrated predictions. Coverage rates are calculated by determining the proportion of times the 153 

50% or 90% PIs included the observed value (for example, a well-calibrated forecast would have a 50% 154 

PI coverage close to 0.50. Also see Supplementary methods) (15).  155 

We compared the performance of EpiNow2 with a naïve Bayesian generalized linear model 156 

(GLM, Supplementary methods). We calculated the relative WIS and relative MAE for EpiNow2 and the 157 

GLM as �������	,��
 �
���� ����� �� ������	

���� ����� �� ��

, where the mean score is the average of the models’ 158 

performance (WIS or MAE) over all eight dates evaluated. If �������	,��
 was less than 1, that indicated 159 

the forecasts generated by EpiNow2 had less error than the GLM, whereas �������	,��
 > 1 indicated 160 

EpiNow2 performed worse.  161 

For both EpiNow2 and the GLM, we removed recent cases (defined as cases reported in the last 3 162 

– 5 days) from the time series to adjust for right truncation of the data for all four outbreak phases (Table 163 

S1). Forecasts were evaluated using mpox data as of March 16, 2023. We used the most recent version of 164 

event date as the basis for the comparison.   165 

Results 166 

Challenges of nowcasting/forecasting 167 

It is voluntary for jurisdictions to report mpox cases to CDC, with only minimal data needed to 168 

submit a case report form (e.g., case ID and reporting jurisdiction) in part, because not all cases may be 169 

reached or fully investigated. CDC asks jurisdictions to collect and report additional data variables to 170 

achieve situational awareness and surveillance goals. The number of variables on the case report form 171 

was decreased to reduce reporting burden. Despite these efforts, jurisdictional case surveillance systems 172 

may not have aligned to CDC’s requested data variables, and jurisdictions may choose to limit what data 173 
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are shared with CDC based on local reporting practices. Received data were subjected to additional 174 

manual data cleaning to standardize formats and correct obvious data entry errors. As a result, even key 175 

data variables such as demographic characteristics (e.g., age, race/ethnicity, HIV status, vaccination) were 176 

not consistently available across all jurisdictions and time periods, precluding detailed sub-analyses. For 177 

example, out of 29,921 cases in DCIPHER through December 31, 2022, 21,480 (71.8%) were missing 178 

HIV status, 16,474 (55.1%) were missing smallpox vaccination, 3,913 (13.1%) were missing gender 179 

identity, 3,172 (10.6%) were missing race, 2,928 (9.8%) were missing ethnicity, and 250 (0.8%) were 180 

missing age. The timing and frequency of data submission varied between jurisdictions and changed over 181 

the course of the outbreak. Some jurisdictions reported case data in near real-time whereas others 182 

submitted a large number of cases all at once, the latter of which caused large, artificial spikes in the time-183 

series. There were instances of duplicate cases being reported from several jurisdictions which may be 184 

attributed to the changes in reporting processes. Spurious cases at the end of the time series had to be 185 

investigated (and usually removed) because they artificially inflated the nowcasts/forecasts. These data 186 

issues required us to monitor the model output closely and modify the code as needed. 187 

In early July 2022, reporting of mpox cases to CDC started to lag in some jurisdictions, especially 188 

those most affected by the outbreak. These few jurisdictions were publicly reporting more cases on their 189 

websites than what CDC had received reports for. This led to a lengthy case reconciliation process during 190 

which case data uncertainty prevented it from being used for nowcasting/forecasting at the national level. 191 

Also in July, an increasing proportion of cases were reported with missing symptom onset dates (from 192 

26% to 53% for rash onset date between June 13 and July 5). To ensure each case had a date associated 193 

with it for plotting epidemic curves, a new event date field was created which we started using for 194 

nowcasting/forecasting. The new calculated date field selected the best available date among possible date 195 

fields based on the following priority, ordered from most to least preferable: orthopoxvirus test date, date 196 

of call to the call center, date the short CRF was created, and the long CRF timestamp (Figure S1). The 197 

date in which the record was created was least preferred due to artificial spikes in the time series caused 198 

by bulk uploading data. In September 2022, a different date was adopted by the response for reporting 199 
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case data. This date field was defined as the earliest among all available dates for a case including 200 

symptom onset, which facilitated improved visualization of epidemic curves. However, this new date 201 

presented challenges for its use in the EpiNow2 framework because the delay from symptom onset to this 202 

new date would have more variation than the delay using the original event date, including a delay of zero 203 

for some cases. Thus, we worked to create a new event date field specifically for nowcasting/forecasting 204 

which was similar to the original event date. The definition was expanded to include dates available in 205 

NNDSS data.   206 

Successes of nowcasting/forecasting 207 

 During the case reconciliation process in July, publicly available data through health department 208 

websites was used for subnational analyses [e.g., California (28) and New York City (29). We used 209 

WebPlotDigitizer (30) to extract time series data from pdfs when the underlying data were not available 210 

for download.  211 

In October, we updated estimates of the serial interval for rash onset of 7.0 days (95% CrI 5.8 – 212 

8.4) from 40 case pairs and incubation period for rash onset of 7.5 days (95% CrI 6.0 – 9.8) from 35 U.S. 213 

case-patients and used those as model inputs for EpiNow2 (31). These data were obtained through the 214 

collaboration of several U.S. jurisdictions on a special study. The estimated serial interval for the 2022 215 

outbreak was on the lower end of the historical range observed in the Democratic Republic of Congo (7 – 216 

23 days) (24). 217 

Adapting model output and communicating nowcasts/forecasts 218 

We adapted the presentation of our results for a scientific/technical audience and the general 219 

public. The default plots from EpiNow2 included three panels: cases by date of report, cases by date of 220 

infection, and Rt. Green represented estimates based on complete data, orange represented estimates based 221 

on partial data, and purple represented the forecast (the default is seven days). Gray bars in the top panel 222 

showed the actual time series of reported cases, while gray bars in the middle panel showed the back-223 

calculated infection time series. For the Technical Reports, Situational Reports, and response updates 224 

meetings, we removed the middle panel (Figure 1) (26). For the website, we only showed Rt, removed the 225 
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forecast, and removed the 20% credible intervals to minimize confusion (Figure 2) (27). We included a 226 

simple description of the plot that could be understood by non-experts. In accordance with CDC’s Data 227 

Modernization Initiative, a national effort aimed at modernizing state and national core data and 228 

surveillance infrastructure (32), data for the underlying plots were made available for download as 229 

comma-separated values (csv) files with the Technical Reports. 230 

Sub-national analyses revealed some differences between regions regarding the start of the 231 

outbreak, when it peaked, and how long it lasted (Figures 3 – 4). For example, Figure 4 demonstrates a 232 

later introduction date and slightly longer tail for Texas compared to other jurisdictions. 233 

Performance assessment 234 

The GLM had lower WIS compared to EpiNow2 for early phase of the outbreak (Table 1); 235 

however, during all other phases, EpiNow2 had a slight advantage. The relative WIS was 0.89 over all 236 

eight time points considered, indicating that EpiNow2 had on average 11% less probabilistic error than 237 

the GLM.  238 

EpiNow2 had lower MAE than the GLM for six out of eight time points, but performance was 239 

similar: the relative MAE was 0.96. In other words, EpiNow2 had only 4% less point error than the GLM. 240 

Overall, predictions were moderately well calibrated. For the 90% PI, EpiNow2 achieved 241 

coverage rates within 10% of the desired coverage level for seven out of eight time points compared to six 242 

out of eight for the GLM. For the 50% PI, EpiNow2 achieved coverage rates within 10% of the desired 243 

coverage level for only two out of eight time points compared to five out of eight for the GLM. 244 

Qualitative results of the nowcasts/forecasts are shown in Figure S2. The 90% CrIs from 245 

EpiNow2 were very wide for the early phase of the outbreak, while the GLM had large uncertainty 246 

around the outbreak’s peak. Both models underestimated reported mpox cases for the seventh time point 247 

on October 11 which could be due to a discrepancy in the data available at the time versus the ground-248 

truth data (Figure S3). This time point had the lowest PI coverage rates.  249 

Discussion 250 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted May 8, 2023. ; https://doi.org/10.1101/2023.04.14.23288570doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.14.23288570


 

 

 We performed nowcasting/forecasting to inform the U.S. response to the 2022 mpox outbreak in 251 

real-time. Validation showed that the method implemented in EpiNow2 predicted case counts reasonably 252 

well, but improvements are needed around key time periods such as the outbreak’s peak. One reason that 253 

the nowcasts/forecasts did not always align with reality is because the definition of event date changed 254 

over time, while the study data were constructed the most recent version of the event date field. We found 255 

a higher WIS for EpiNow2 in the early phase of the outbreak compared to the GLM which could be due 256 

to choices of priors for parameters (e.g., wide intervals for Rt).  257 

Subnational analyses allowed us to better understand the spatial heterogeneity of the epidemic 258 

which may be attributed to differences between jurisdictions in terms of composition (e.g., population age 259 

structure, density, and contact patterns) and public health activities (e.g., vaccination, surveillance 260 

methods, frequency of testing) (33) as well as the timing and frequency of case reporting. One limitation 261 

of nowcasting/forecasting at the subregional or jurisdictional level is that the effects of bulk uploads are 262 

more apparent, resulting in greater uncertainty (wider credible intervals). Another limitation is that 263 

movement between jurisdictions could have a greater impact on subnational estimates, as mobility is not 264 

accounted for in our approach. Finally, some jurisdictions stopped reporting rash onset date, which 265 

decreased the sample size available for estimating the reporting delay distribution over time.    266 

Data Quality 267 

Nowcasting/forecasting methods perform best when the underlying surveillance data are accurate, 268 

timely, and complete, but they are often sub-optimal and variable as the outbreak evolves; while data may 269 

improve as an outbreak progresses, they may re-deteriorate once the outbreak slows and intensity of effort 270 

is low. Fortunately, the quality and frequency of data improved over the course of the U.S. mpox 271 

outbreak. Communicating with specific jurisdictions about our priority dates for modeling improved data 272 

quality. These prompts to the jurisdictions need to be continued regularly throughout the outbreak. Close 273 

collaboration between epidemiologists/modelers and informaticians, including the use of an issue tracking 274 

system in DCIPHER, also facilitated quick investigation and resolution of data errors.  275 

EpiNow2 Limitations 276 
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The main limitation of EpiNow2 is its steep learning curve due to limited documentation of 277 

package functions and few reports of its application to other outbreaks. Increasing commenting in the 278 

code, creating more tutorials or vignettes, and developing a graphical user interface could help.   279 

Another limitation is the long computing time required for the analyses. We were able to increase 280 

computational efficiency by running the model on multiple cores in parallel, but the processing time 281 

became particularly cumbersome if an analysis needed to be repeated. In the future, cloud-based 282 

computing could be used to obtain more consistent and faster model run times.  283 

There were also instances of unusually long run times whereby the first two Markov chain Monte 284 

Carlo (MCMC) chains performed as expected, but subsequent chains never finished processing. Some 285 

MCMC convergence issues were resolved by reducing the parameter fitting period (e.g., truncating the 286 

beginning of the time series). One study reported that EpiNow2 estimates are more reliable when case 287 

numbers at each time step are large and there are at least 14 timepoints without zeroes (34). Large daily 288 

fluctuations and limited case counts could substantially affect model estimates, which should be 289 

interpreted with caution.  290 

Another limitation is that the method we used does not account for under-ascertainment, which 291 

occurs when not all infections are diagnosed and reported as cases of the disease to the surveillance 292 

system. The under-ascertainment rate is needed to understand the true burden of disease caused by the 293 

outbreak; however, current estimates for the U.S. mpox outbreak are lacking. Indirect evidence from a 294 

recent modeling study (35) suggests that 65% of mpox infections were diagnosed and reported in 295 

Washington, D.C. However, the model was not designed to measure the under-ascertainment rate (Patrick 296 

Clay, personal communication, March 10, 2023), and this quantity should be assessed by other methods 297 

(e.g., models specifically designed to assess under-ascertainment, serological surveys, and community-298 

based surveys).  299 

Strategies for Forecasting the Next Outbreak 300 

For the next outbreak, it is important for CDC to develop strategies for regularly capturing and 301 

storing snapshots of surveillance data which remain easily accessible for systematic analysis. For routine 302 
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case-based surveillance of notifiable diseases, such as rabies, most analyses are performed only after the 303 

data have undergone a rigorous and routine reconciliation and closeout process by data submitters with 304 

further validation by CDC surveillance epidemiologists; however, timely outbreak response decision 305 

support does not allow for such processes. Instead, jurisdictions are asked to submit available case data in 306 

near real-time and submit additional data or corrections to data entry errors as time and resources permit. 307 

Snapshots of the surveillance data were saved in an ad hoc manner (by exporting data on a particular day 308 

and saving a csv file locally), and as a consequence, a complete history of the data is not available, 309 

especially around key points in the outbreak, such as the peak. A complete history would help to 310 

understand key delay distributions and other quirks (e.g., backfilling and revision of reference dates) 311 

involved in the data-generating process. Understanding the data generating process is crucial for the 312 

improvement of methods and tools for nowcasting/forecasting and aligns with one of the five priorities of 313 

CDC’s Data Modernization Initiative (Accelerating Data for Action: Tapping into more data sources, 314 

promoting health equity, and increasing capacities for scalable outbreak response, forecasting, and 315 

predictive analytics) (32). In the future, the process of saving snapshots of the data could be automated.   316 

Ensemble models have been used for a variety of infectious disease outbreaks, such as COVID-317 

19 (15, 36), Zika (37), influenza (38), and Ebola (39). Ensembles combine predictions from several 318 

models that use different methodology and sometimes input data. Because some models overpredict, 319 

while others underpredict, ensemble models often outperform individual models over time. In the future, 320 

we may consider using at least two simpler models and comparing them. 321 

One potentially useful addition to EpiNow2 and other currently available tools for  322 

nowcasting/forecasting outbreaks would be flexibility in handling dates. We frequently encountered 323 

missing dates for cases in the mpox surveillance data. Ideally, a method or tool would be able to keep 324 

track of multiple dates for a case and estimate missing dates based on the full distribution of dates across 325 

all cases. Epinowcast is a new hierarchical nowcasting package that enables more flexibility in adjusting 326 

for truncated data (40). Novel nowcasting approaches use hierarchical generalized additive models, which 327 

can provide even more flexibility to modify the model in real-time to the evolving data environment (41). 328 
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Another improvement would be to reduce the time required to run the analyses. Rather than focusing on 329 

the efficiency of the MCMC algorithm, computation time could be reduced if the model only needed to be 330 

run on the new data. Finally, the imputed time series of cases by symptom onset date would be a useful 331 

data visualization output that is not currently available in EpiNow2. As described above, defining the date 332 

field for the presentation of epidemic curves was a challenge in the mpox outbreak and having an imputed 333 

symptom onset date for each case would have been useful for comparison purposes. 334 

 CFA played an important advisory role in our nowcasting/forecasting efforts. CFA produces 335 

models and forecasts to characterize the state of an outbreak and its course, inform public health decision 336 

makers on potential consequences of deploying control measures, and support innovation to continuously 337 

improve the science of outbreak analytics and modeling (42). In the future, CFA plans to create new tools 338 

for outbreak analysis and modeling. CFA could also serve as a link between CDC modelers and 339 

jurisdictions with modeling capacity to share experiences and code. Technical Reports represent a new 340 

way for CDC to share timely information with the federal government, state and local leaders, and 341 

scientists in academia and industry. Technical Reports have been well received within and outside CDC 342 

(43-45) and their publication aligns with CDC’s current restructuring efforts aimed at making the agency 343 

more response ready, including sharing science and data faster (46). 344 

Conclusion  345 

Real-time estimation of Rt as well as nowcasting/forecasting is one method for determining the 346 

extent to which current public health measures are effective and/or need to be modified but is subject to 347 

limitations. The quality and timeliness of reported data pose challenges to these analyses. Ease of use, 348 

model computing time, and ability to handle multiple dates are priorities for consideration in the 349 

development of future nowcasting/forecasting tools. A naïve model may be superior to a complex one, 350 

such as EpiNow2, during the early phase of an outbreak when data scarcity causes Rt to be largely 351 

unconstrained, especially once reporting delays are considered. Future outbreak response activities could 352 

be enhanced through inclusion of clear and consistent communication about modeling outputs as well as 353 

close collaboration between modeling and informatics/data teams. 354 
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Tables 356 

Table 1. Evaluation of short-term (one-week-ahead) forecasts of reported mpox cases during the 2022 U.S. outbreak. For WIS, bold indicates 357 

where one model performed better than the other. 358 

  EpiNow2 Bayesian GLM with negative binomial 
Forecast date Outbreak 

phase 
90% PI 

coverage 
50% PI 
coverage 

WIS MAE 90% PI 
coverage 

50% PI 
coverage 

WIS MAE 

Monday, June 13 Early 1 0.71 33.8 4.3 0.86 0.57 6.4 5.1 
Monday, June 27 Early 0.86 0 34.0 29.0 0.86 0.14 24.7 26.9 
Tuesday, July 5 Exponential 

growth 
0.86 0.71 35.6 32.4 1 0.57 38.5 34.1 

Wednesday, July 27 Peak 1 0.57 137.0 107.9 1 0.57 184.3 94.4 
Tuesday, September 6 Decline 0.86 0.71 107.6 84.3 0.86 0.43 117.1 86.8 
Monday, September 19 Decline 0.86 0.43 61.2 52.4 0.71 0.43 81.8 65.9 
Tuesday, October 11 Decline 0.43 0.29 30.6 33.4 0.57 0.14 38.3 41.9 
Monday, December 5 Decline 1 0.71 4.3 3.1 1 0.71 6.4 4.6 
PI: prediction interval; WIS: weighted interval score; MAE: mean absolute error; GLM: generalized linear model 359 
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Figures  360 

Figure 1. Effective reproduction number estimates for the U.S. 2022 mpox outbreak intended for a 361 
technical/scientific audience. The top panel shows estimates of cases by date of report with actual cases 362 
shown by gray bars. The bottom panel shows estimates of the effective reproduction number by date. In 363 
all panels, shaded regions reflect 90%, 50%, and 20% credible intervals in order from lightest to darkest. 364 
Green shows estimates, red shows estimates based on partial data, and purple shows forecasts. Event date 365 
is determined by a hierarchy across the different data streams where priority is given to diagnosis date, 366 
orthopoxvirus test date, orthopoxvirus test confirmation date, case investigation start date, orthopoxvirus 367 
sample collection date, date of call to CDC call center, report date (to public health department, county, or 368 
state), date CDC announced case, and the date the case was entered into DCIPHER, in that order. 369 
 370 
Figure 2. Effective reproduction number (Rt) estimates for the U.S. 2022 mpox outbreak intended for the 371 
general public. The graph shows the Rt estimation over time based on complete data (gray) or partial data 372 
(blue). The most recent data are considered incomplete due to delays in reporting mpox cases. As a result, 373 
there is more uncertainty associated with the most recent Rt estimates. Rt > 1 means the epidemic is 374 
growing. Rt < 1 means the epidemic is shrinking. Shading represents the 50% and 90% credible intervals 375 
(uncertainty in the estimates) 376 
 377 
Figure 3. Effective reproduction number estimates for the 2022 mpox outbreak in four U.S. Census 378 
regions. The left panels show estimates of cases by date of report with actual cases shown by gray bars. 379 
The right panels show estimates of the effective reproduction number by date. In all panels, shaded 380 
regions reflect 90%, 50%, and 20% credible intervals in order from lightest to darkest. Green shows 381 
estimates, red shows estimates based on partial data, and purple shows forecasts. Event date is determined 382 
by a hierarchy across the different data streams where priority is given to diagnosis date, orthopoxvirus 383 
test date, orthopoxvirus test confirmation date, case investigation start date, orthopoxvirus sample 384 
collection date, date of call to CDC call center, report date (to public health department, county, or state), 385 
date CDC announced case, and the date the case was entered into DCIPHER, in that order. 386 
 387 
Figure 4. Effective reproduction number estimates of the 2022 mpox outbreak for the six jurisdictions in 388 
the U.S. with the highest case counts. The left panels show estimates of cases by date of report with actual 389 
cases shown by gray bars. The right panels show estimates of the effective reproduction number by date. 390 
In all panels, shaded regions reflect 90%, 50%, and 20% credible intervals in order from lightest to 391 
darkest. Green shows estimates, red shows estimates based on partial data, and purple shows forecasts. 392 
Event date is determined by a hierarchy across the different data streams where priority is given to 393 
diagnosis date, orthopoxvirus test date, orthopoxvirus test confirmation date, case investigation start date, 394 
orthopoxvirus sample collection date, date of call to CDC call center, report date (to public health 395 
department, county, or state), date CDC announced case, and the date the case was entered into 396 
DCIPHER, in that order. 397 
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Data availability 398 

Data and code to run the nowcasts/forecasts and perform model validation will be available on GitHub 399 

following publication in a peer-reviewed journal. 400 
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