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Abstract

Given a need for nowcasting, we consider how nowcasts can best be achieved, the use
and timing of information, including disaggregation over variables and common features,
and the role of automatic model selection for nowcasting missing disaggregates. We focus
on the impact of location shifts on nowcast failure and nowcasting during breaks, using
impulse saturation, its relation to intercept correction,and to robust methods to avoid sys-
tematic nowcast failure. We propose a nowcasting strategy,building models of allN dis-
aggregate series by automatic methods, forecasting every variable each period, then testing
for shifts in available measures, switching to robust forecasts of missing series when breaks
are detected.
Keywords: Nowcasting; disaggregate information; Autometrics; location shifts; impulse
saturation; robust forecasts.

JEL Classification:C51; C52.

1 Introduction

Given the need for nowcasts, an issue discussed extensivelyin Clements and Hendry (2003)
and Castle, Fawcett and Hendry (2009d), we first consider in section 2 how they might best
be produced. Section 3 then discusses the aggregation of disaggregate information, building
on Hendry and Hubrich (2009). Since large numbers of time series are involved, and random
subsets are missing intermittently, section 4 discusses the potential role of automatic model
selection for nowcasting all the disaggregates. Our approach seeks to handle all the available
information allowing for multiple past breaks at unknown dates, and contemporaneous location
shifts, so inherently involves more variables than observations in the proposed models. To
do so, we extend the approach described in Castle, Doornik and Hendry (2009a), based on
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Autometricswith impulse saturation: see Doornik (2009), Hendry, Johansen and Santos (2008),
and Johansen and Nielsen (2009). Section 5 describes how these ideas can be combined for
nowcasting the disaggregates. We then address how to handlelocation shifts in section 6:
subsections 6.1 and 6.2 respectively discuss robust nowcasting and nowcasting during a break,
leading to the description of the proposed nowcasting strategy in section 7. Section 8 concludes.

2 Producing ‘good’ nowcasts

A timely data source that provided an accurate ‘measure’ of arequired aggregate variable is
clearly preferable to seeking ‘good forecasts’ of it. Nevertheless, as there will usually be a role
for forecasting ‘preliminary estimates’, the best use of forecasting methods is important, albeit
that it is an empirical issue as to which methods might be ‘best’. Nowcasting is partly a ‘signal
extraction’ problem for missing data entering the aggregate, but if the first announcements can
be systematically improved by forecasting them either directly or via the disaggregates, then the
quality of the resulting data are bound to be better. Four fundamental problems inhibit achieving
that outcome.

First, the objective functions of the users of a nowcaster’soutput are almost always un-
known. A convenient approximation is to assume a quadratic loss, in which case the aim of
nowcasting becomes to find a forecastŷT |T−δ of the aggregateyT which solves:

argmin
byT |T−δ

ET

[
yT − ŷT |T−δ

]2
(1)

whereŷT |T−δ = gT−δ(ĴT−δ), andgT−δ (·) is the relevant function of the available measured
information set,ĴT−δ, which estimates the actual information,IT−δ, on whichyT depends via
yT = fT (IT−δ). We have dated information asT − δ for δ > 0, since some evidence must be
unavailable atT to necessitate nowcasting. To proceed, we will assume that (1) does indeed
provide the objective function, as it is difficult to see why either direction of asymmetry should
dominate.

The second difficulty is that the information to be included in ĴT−δ is also unknown, and
could comprise the history of the series alone (via a univariate time-series model), survey in-
formation, current and past data on other related time series, past information about revisions
etc. We will address this issue below by proposing automaticmodel selection either directly
for the aggregate itself, or for nowcasting the disaggregates allowing for all the available infor-
mation, multiple past breaks and contemporaneous locationshifts as in Castleet al. (2009a),
then relating the aggregate to its own past and all the disaggregates as in Hendry and Hubrich
(2009). Section 3 considers relating aggregates to disaggregates, and§4 discusses automatic
model selection.

The third, and most serious, problem is obtainingŷT |T−δ. At first sight, it may be thought
that the conditional expectationET [yT |ĴT−δ] of yT given ĴT−δ should be the solution to (1),
namely the minimum mean-square error predictor. Unfortunately,ET [·] is not known atT either,
since the statistical process generating{yt} is also never known, and in economics is always
wide-sense non-stationary, namely its distribution changes over time from both stochastic trends

2



and location shifts, reflected in our notationfT (·). Thus, the form of the optimal predictor
ŷT |T−δ is never known. Worse,ET−δ[yT |ĴT−δ], which might be available, need not be a good
forecast device when location shifts occur, as it is calculated over the wrong distribution: see
e.g., Castle, Doornik, Hendry and Nymoen (2009b). Thus, therealized mean square forecast
error (MSFE) given (1) is:

ET

[
fT (IT−δ) − gT−δ

(
ĴT−δ

)]2
(2)

leading to the following abbreviated taxonomy of forecast errors ûT |T−δ = yT − ŷT |T−δ:

ûT |T−δ = fT (IT−δ) − gT−δ

(
ĴT−δ

)

= fT (IT−δ) − fT−δ (IT−δ) –distribution shift (§6)

+fT−δ (IT−δ) − gT−δ (IT−δ) –model mis-specification (§4)

+gT−δ (IT−δ) − gT−δ (JT−δ) –reduced information (§3.1)

+gT−δ (JT−δ) − gT−δ

(
ĴT−δ

)
–measurement error (3)

Clements and Hendry (1998, 1999) provide a framework for analyzing the properties of
forecasting models in wide-sense non-stationary processes, when the device being used does
not coincide with the generating mechanism of the process (Clements and Hendry, 2008, pro-
vide a non-technical explanation). To summarize, they explain:
(a) the recurrent episodes of systematic mis-forecasting that have occurred historically;
(b) show thatex antewell-specified models need not forecast better than badly specified; since
(c) causally-relevant variables need not improve forecasting over irrelevant variables;
(d) the benefits of many of the empirical practices of forecasters, such as intercept corrections;
(e) show why pooling across a range of methods and models can be beneficial (see e.g., Hendry
and Clements, 2004), but need not be unless carefully undertaken (see Hendry and Reade,
2008);
(f) why forecasting devices that are robust to location shifts do not experience systematic fore-
cast failure; and so
(g) dominate in forecasting competitions (such as Makridakis and Hibon, 2000: see Fildes and
Ord, 2002, and Clements and Hendry, 2001); hence
(h) why so-called ‘naive devices’ (simple adaptive deviceslike damped trend, differenced mod-
els, and exponentially weighted moving averages–EWMAs) can outperform; whereas
(i) equilibrium-correction models can experience systematic forecast failure (see Hendry, 2006).
Despite its non-specific assumptions, therefore, a theory of forecasting which allows for unan-
ticipated structural breaks in an evolving economic mechanism for which the forecasting model
is mis-specified in unknown ways can provide a useful basis for interpreting, and potentially
circumventing, systematic forecast failure in economics.These implications seem to carry over
to nowcasting, so section 6 considers the issue of breaks in that context.

Fourthly, the disaggregates that have been measured atT as partial inputs to calculating
yT are themselves subject to unknown inaccuracies and future revisions. This is more difficult
to handle, but Castleet al. (2009d) seek to address the impact of measurement errors in the
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context of the much simpler EWMA model, which applies to a random walk that is subject to
measurement errors.

All these considerations seem to apply to nowcasting an aggregate either directly or via its
disaggregates.

3 Aggregation

The variable of interest,yT , say GDP, is an aggregate variable, comprisingyt =
∑N

i=1
wiyi,t

whereyi,t are the disaggregates andwi are the weights, which could be changing over time.
Data are released with varying time delays, such that at timeT some components ofyT will be
observed and some will be unavailable untilT + δ. Foryi,T , thei = 1, . . . , J , components are
known atT and thei = J + 1, . . . , N , components are unknown atT . The two sets are not
uniquely defined, so an individual element can switch back and forth between the sets through
time depending on how the information is accrued andJ is not fixed. Hence, a forecasting
strategy needs to be flexible enough to allow for changes in the timing of releases. As some
components ofyT are unknown atT a nowcast is computed. There are three alternative methods,
see Hendry and Hubrich (2009):

I Forecast the aggregate using only aggregate information,some of which perforce must
be lagged one period:

ŷT |T−δ∗ = f
(
Y0

T−1,Z
0

T−δ∗

)
,

whereY0
T−1 = yT−1, . . . , y0, andZ0

T−δ∗ = zT−δ∗ , . . . , z0 is a vector of conditioning
variables such as surveys or leading indicators, which may be more recent than the latest
aggregate observation, withδ∗ ≤ δ ≤ 1.

II Forecast those disaggregates that are unknown atT :

ỹi,T |T−δ∗ = f
(
y0

i,T−δ,Z
0

T−δ∗

)
, i = J + 1, . . . , N,

then aggregate their forecasts together with the known data:

ỹT |T =
J∑

i=1

wiyi,T +
N∑

i=J+1

wiỹi,T |T−δ∗

Typically the weights are taken as given but could also be forecast; we abstract from the
issue of weights in the subsequent analysis, as with GDP data.

III Forecast the aggregate, conditioning on both aggregateand disaggregate information.
There are two possible methods.

a. In order to apply standard forecasting procedures, a balanced panel is needed:

yT |T−δ = f
(
Y0

T−δ,y
0

i,T−δ,Z
0

T−δ

)
, ∀i ∈ N,

where the conditioning information includes information datedT − δ and previous,
resulting in aδ-step ahead forecast.
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b. Alternatively, an unbalanced panel can be used, conditioning on whatever informa-
tion is also available atT :

yT |T = f
(
Y0

T−1;y
0

1,T , . . . ,y
0

J,T ,y
0

J+1,T−δ, . . . ,y
0

N,T−δ;Z
0

T−δ∗

)
,

resulting in a large unbalanced panel in which there are missing observations at the
end of the sample: see Wallis (1986) for a discussion of the ‘ragged edge’ problem.

3.1 Nowcasting aggregates from disaggregates

[I] has been the most common approach in the literature, witha focus on predicting the revision
process at the aggregate level, see Lee, Olekalns and Shields (2008). However, the aggregate
approach relies on a reduced information set,JT−1 ⊂ IT−1, whereIT−1 is the full information
set including disaggregate information. As unpredictability is relative to the information set
used, using a subset of information will result in less accurate, albeit unbiased, predictions,
see Clements and Hendry (1998, p.36). Hence, we do not consider [I] in this analysis, instead
focusing on using the additional disaggregate information. When all disaggregates are observed,
Mayo and Espasa (2009) discuss how to incorporate cointegrated and cyclical information about
disaggregates to improve the aggregate forecasts relativeto unrestricted estimation.

We now show analytically that when interest focuses on predicting the aggregate, then noth-
ing is lost by doing so directly from disaggregate information, without predicting the disaggre-
gates, i.e., method [III].N = 2 suffices to illustrate the analysis, which generalizes to many
components:

yT = w1y1,T + (1 − w1) y2,T (4)

with weightsw1 andw2 = (1−w1), where for simplicity we take the weights to be constant over
time, as in a simple sum aggregate. Assume thatJ = 0, so the contemporaneous disaggregates
are not observed, and information is only available fromT − 1. The DGP for the disaggregates
is assumed to be:

yi,t = γ ′
ixt−1 + ηi,t

wherext−1 = (y1,t−1, . . . , yN,t−1; zt−1)
′ denotes all the available information, which includes

the lagged disaggregates, so:

ET−1 [yi,T | xT−1] = γ ′
ixT−1 for i = 1, 2 (5)

Aggregating the two terms in (5), delivers:

ET−1 [yT | xT−1] =
2∑

i=1

wiET−1 [yi,T | xT−1] =

(
2∑

i=1

wiγ
′
i

)
xT−1 = ψ′xT−1 (6)

say. PredictingyT directly fromxT−1 yields:

ET−1 [yT | xT−1] = π′xT−1 (7)
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Since the left-hand sides of (6) and (7) are equal:

π′xT−1 = ψ′xT−1 (8)

so nothing is lost by predictingyT directly, instead of aggregating component predictions once
the same information setxT−1 is used for both, i.e. there is no benefit to method [II] over [IIIa].

Hendry and Hubrich (2009) show that this analysis generalizes to non-constant weights
and changing parameters, and demonstrate that forecast-origin breaks equally affect combining
disaggregate forecasts to forecast an aggregate as in (6) orforecasting the aggregate directly as
in (7), so there is no benefit inMSFE terms from building models of disaggregates. However,
that analysis assumes that all conditioning information isavailable atT − 1, and does not make
use of the contemporaneous information available atT that is an essential component of the
nowcasting strategy. Discarding information available atT is particularly costly when breaks
occur simultaneously across the disaggregates (or a subset) as this information can be used to
ensure robust forecasts in the presence of breaks. This implies that either [II] or [IIIb] is a
preferable strategy.

There is a range of methods for unbalanced panels in which allavailable data are used,
including dynamic factor models, see Giannone, Reichlin and Small (2008) and Schumacher
and Breitung (2008), and mixed frequency time series modelssuch as MIDAS, see Kuzin,
Marcellino and Schumacher (2009). Marcellino and Schumacher (2007) combine factor models
with MIDAS, and Ferrara, Guegan and Rakotomarolahy (2008) use non-parametric methods,
based on nearest neighbors and on radial basis function approaches to nowcast unbalanced
monthly data sets. However, these methods do not take account of structural breaks in the
disaggregates, instead abstracting from wide-sense nonstationarity. Hence, the approach we
propose is to use [II], but augmented for structural break detection, an issue to which we now
turn.

4 Automatic model selection with more variables than obser-
vations

Automatic model selection for nowcasting all disaggregates allowing for all the available infor-
mation, multiple past breaks and contemporaneous locationshifts can be undertaken following
the approach described in Castleet al. (2009a), based onAutometricswith impulse saturation
(see Doornik, 2009, on the former, and Hendryet al., 2008, and Johansen and Nielsen, 2009,
for the latter). The theory of reduction (see e.g. Hendry, 2009, for a recent exposition) explains
the existence of a local data generation process (LDGP) for any subset of variables, and the rela-
tionship of any model to that LDGP. The idea behind general-to-specific (Gets) model selection
is to locate a good approximation to that LDGP, characterized by its being a congruent repre-
sentation and encompassing the evidence on the LDGP directly and via that embodied in other
models. To do so, one commences from the most general model that nests all the candidate
variables, their lags, functional form transformations and possible breaks, intrinsically leading
to having more variables,N , than observationsT . Autometricshandles theN > T problem

6



by a mixture of expanding and contracting searches that seekall the variables relevant at the
chosen significance levelα, set such thatαN remains small (e.g., unity). Multiple breaks are
tackled conjointly by impulse saturation (IS) which adds animpulse indicator for every obser-
vation: Hendryet al.(2008) establish one feasible algorithm, and derive the null distribution for
an IID process, and Johansen and Nielsen (2009) generalize their findings to general dynamic
regression models (possibly with unit roots), and show thatthere is a very small efficiency loss
under the null of no breaks whenαT is small, despite investigating the potential relevance of
T additional variables. Castleet al. (2009a) examine the ability of IS to detect multiple breaks,
and show it can find up to 20 breaks in 100 observations.

The intent of Gets is to find ‘good’ LDGP models as defined above, but as noted in (b) in
section 2, Clements and Hendry (1998, 1999) show that one cannot prove that the pre-existing
LDGP is the best model for forecasting. We address how to handle that issue in section 6 below.

5 Nowcasting the disaggregates

Nowcasts are required of theN − J unknown disaggregates. As breaks may have occurred in
the individual series over the sample period, it is important to account for these in the now-
casting models. The in-sample general unrestricted model (GUM) for nowcasting the unknown
disaggregates is given by:

yi,t = β′xt−1 +α′ft−1 +

T−1∑

j=1

ςj1tj=t + νt, (9)

for t = 1, . . . , T −1, andi = J+1, . . . , N . xt−1 denotes all the available information including
the lagged disaggregates and additional explanatory variables such as survey information or
leading indicators,ft−1 denotes a set ofq latent common factors (discussed in section 5.1),
and1tj=t is a set ofT − 1 individual impulses taking the value unity att and zero otherwise.
Selection is undertaken usingAutometricsand the resulting forecasts are given by:

ỹi,T |T−1 = γ̂
′
x∗

T−1 + θ̂
′
f∗T−1 + ς̂ ′dT−1 (10)

wherex∗
T−1 and f∗T−1 denote the retained variables and factors after selection and dT−1 col-

lects the retained impulses from selection of (9). Loose significance levels could be used to
select the forecasting model regressors inx∗

T−1
: Clements and Hendry (2005) show that all

regressors with squared non-centralities greater than unity should be retained. However, tight
significance levels should be used to select the impulses asα (T − 1) impulses will be retained
on average under the null from (9). In practice,Autometricsimposes one significance level so
selection could be undertaken using a 2-step procedure by appealing to the Frisch and Waugh
(1933) theorem, first identifying the impulses and then selecting the regressors conditional on
the impulses.
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5.1 Common features

The disaggregate series are likely to have common components, such as cycles and trends, as
well as idiosyncratic elements, so it can be useful to include these in the GUM: see Mayo and
Espasa (2009). AsN is large, it may be difficult to identify (say) cointegratingrelationships
across all disaggregates, but factors can proxy missing cointegration information. There are
many ways to obtain the factorsfi for i = 1, . . . , q: Stock and Watson (2002) suggest using
static principal component analysis applied toyd = (y1, . . . ,yN)′:

ft = Λ̂′yd,t

where the set ofq factor loadings are collected in̂Λ, theN × q matrix of eigenvectors corre-
sponding to theq largest eigenvalues of the sample covariance matrixΣ̂. There are alternative
methods of estimating the factors: e.g., Forni, Hallin, Lippi and Reichlin (2005) propose a
weighted version of the static principal components estimator, where time series are weighted
according to their signal-to-noise ratio. However, staticprincipal components capture the main
aspects of common trends and cycles, and seem sufficient for the purpose of nowcasting cur-
rently missing disaggregates. As the factors mainly capture long-run relationships, the available
information on theJ known disaggregates atT will not contribute much, so the factors can be
calculated over the full sample ofN to T − 1.

In practice, we propose separating the disaggregates into blocks corresponding to groups of
variables that exhibit common trends or cycles, as in section 7. The factors would be obtained
for each block,f j

i , wherei = 1, . . . , q denotes the factor andj = 1, . . . , b denotes the block
yd,j whereyd is divided intob subsets, but all factors can be included in the GUM. The key
innovation is that both individual explanatory variables and the factors are included jointly in
the GUM, in contrast to much of the dynamic factor models literature. This is feasible due to the
ability of Autometricsto handle more variables than observations, and hence perfect collinearity.
If factors are helpful in explaining movements in the disaggregates, they should be retained in
the selected model (10).

5.2 Using all available information

The problem with the forecasts from (10) is that additional information may be available through
the disaggregates known atT , yi,T for i = 1, . . . , J , allowing for more rapid identification of
outliers or location shifts. Hence, we propose an augmentedforecast of (10),̃yi,T |T . To motivate
the nowcast, we first outline robust forecasting before proposing the nowcasting strategy.

6 Robust forecasting

To explain the principles, we draw on Hendry (2006). Consider forecasting from a first-order
cointegrated vector equilibrium correction model (VEqCM)in n I(1) variablesxt given in-
sample by:

∆xt = γ +α (β′xt−1 − µ) + ǫt where ǫt ∼ INn [0,Ωǫ] (11)
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so∆xt andβ′xt areI(0), with E [β′xt] = µ, E [∆xt] = γ,β is r×1, γ isn×1 (but subject to the
r restrictionsβ′γ = 0), andµ is r × 1, leavingn unrestricted intercepts in total in (11). When
the parameters of (11) are constant in-sample and known, andall variables correctly measured,
1-step ahead forecasts coincide with the conditional expectationET [∆xT+1|xT ]:

∆x̂T+1|T = γ +α (β′xT − µ) (12)

with forecast error̂ǫT+1|T = ∆xT+1 − ∆x̂T+1|T = ǫT+1. Uncertain forecast origin valueŝxT

and parameter estimation lead to:

∆x̂T+1|T = γ̂ + α̂
(
β̂

′
x̂T − µ̂

)
(13)

where the latter add terms ofOp(T−1), which are negligible relative to the impact of location
shifts in the DGP, the issue we now consider.

6.1 Robust nowcasting

We first consider 1-step ahead forecasting, so let∆xT = (y1,T , . . . , yJ,T )′ be the vector of
known disaggregates and assume a DGP given by (11). Althoughlocation shifts are the key
problem, we allow all parameters of the DGP to shift atT − 1 and (11) to be mis-specified by
omission of a set of relevant variables{zt}, so that:

∆xT = γ∗
0 +α∗

0 ((β∗
0)

′xT−1 − µ
∗
0) + Υ∗

0zT + νT (14)

and from then on:

∆xT+1 = γ∗
0 +α∗

0 ((β∗
0)

′xT − µ∗
0) + Υ∗

0zT+1 + νT+1 (15)

The forecast errors from (13) are:

ν̂T+1|T = γ∗
0 − γ̂ +α∗

0 ((β∗
0)

′xT − µ∗
0) − α̂

(
β̂

′
x̂T − µ̂

)
+ Υ∗

0zT+1 + νT+1 (16)

Every possible source of forecast error occurs in (16): stochastic and deterministic breaks (the
shift to ∗ parameters), omitted variables (zT+1), inconsistent parameter estimates (given the
other mis-specifications), estimation uncertainty (thêon parameters in (13)), mis-measurement
at the forecast origin (xT − x̂T ), and innovation errors (νT+1).

Surprisingly, (14) is simultaneously almost the solution to the very problem it creates. If
one reads what that equation shows, then∆xT contains nearly everything one ever wanted to
know for forecasting, but was afraid to ask, namelyγ∗

0, α
∗
0, β

∗
0, µ

∗
0, Υ

∗
0 and even the unknown

omitted variablezT . When forecasting, individual parameter estimates are merely instrumental
in arriving at∆x̂T+1|T , and (14) contains all the shifted parameter values as well as the unknown
omitted variables. Thus, consider forecasting∆xT+1 simply by:

∆x̃T+1|T = ∆x̂T (17)
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then the forecast error̃νT+1|T is (assuming that after one-period revisions,x̂T−1 = xT−1):

ν̃T+1|T = (γ∗
0 +α∗

0 ((β∗
0)

′xT − µ∗
0) + Υ∗

0zT+1 + νT+1)

− (γ∗
0 +α∗

0 ((β∗
0)

′xT−1 − µ
∗
0) + Υ∗

0zT + νT )

= α∗
0(β

∗
0)

′∆xT + Υ∗
0∆zT+1 + ∆νT+1 (18)

All terms in the last line areI(−1), so will be ‘noisy’, but systematic forecast failure should
not result. DifferencingνT+1 doubles the innovation error variance, whereas differencingzT+1

could well reduce the overall error. Moreover, althoughα∗
0(β

∗
0)

′∆xT is unknown,α̂β̂
′
∆x̂T is

known and will usually be a better estimate than zero, leading to the forecasting device:

∆xT+1|T = ∆x̂T + α̂β̂
′
∆x̂T (19)

or:
∆2xT+1|T = ∆

(
γ̂ + α̂

(
β̂

′
x̂T − µ̂

))

which is the differenced VEqCM from (13).
Now consider∆x

†
T = (yJ+1,T , . . . , yN,T )′, the vector of unknown disaggregates. AtT , the

nowcast given by (17):
∆x̃

†
T |T−1

= ∆x̂
†
T−1

(20)

will result in the nowcast error:

ν̃
†
T |T−1

=
(
γ∗

0 +α∗
0

(
(β∗

0)
′x

†
T−1

− µ∗
0

)
+ Υ∗

0zT + νT

)

−
(
γ +α

(
(β)′x†

T−2
− µ

)
+ νT−1

)
(21)

which is the same forecast error as (16), abstracting from parameter estimation uncertainty
and forecast origin uncertainty, apart from an additional error term,νT−1. Thus, at the break
point, a forecasting model will fail to reflect the break–unless it is separately predicted–but
robust forecasting models will rapidly adapt after a permanent break, and the forecasts will be
unbiased atT + 1 as in (18). This suggests that robust forecasting devices could be useful in
nowcasting when either a break is suspected (see e.g., Hendry, 2004), or is already detected
by forecast-origin impulses. We next consider whether contemporaneous information available
from the disaggregates can help to nowcast at a break origin.

6.2 Nowcasting during a break

A key problem is the rapid identification of outliers and/or location shifts in real time, to avoid
distortionary effects on nowcasts: anticipation of imminent unusual events would be even more
helpful in avoiding large errors, but is difficult to analyze. However, we address the former issue
briefly, building on Castle, Fawcett and Hendry (2009c). Those authors consider the impacts of
both external shifts, where the parameters of the model in use are unaltered, but data proper-
ties change–as in a change in collinearity–and internal shifts where the model itself alters. The
former induces an immediate and unavoidable increase in theMSFE, but as the forecast origin

10



moves forward (e.g., toT +1−δ), updating quickly mitigates that effect. Unfortunately,updat-
ing is not necessarily helpful when an internal break occurs, such as a change in the intercept.
Moreover, even when the form and timing of the break are knownto the modeller for a scalar
process (e.g., an ogive starting atT ), but the parameters governing the speed and magnitude
are not, then the differenced VEqCM performs as well as the estimated break process, both in
theory and practice.

Nevertheless, that result relies on the break being relatively persistent, such that the changes
in parameters embedded in (15) reflect those current in the following period. For temporary
shifts, the same strategy will exacerbate the forecast errors, so judgement is required as to
which forecasting method to use after any form of shift, an issue that is especially pertinent
when a ‘shift’ is merely a measurement error, an issue considered in Castleet al. (2009d).

6.3 Detecting breaks in the disaggregates

If a break occurs in more than one of the observed disaggregate series, information about the
break will be contained inyi,T , i = 1, . . . , J , which can be used to improve the forecastỹi,T |T−1,
i = J + 1, . . . , N , by conditioning on contemporaneous information. The firststage is to detect
whether a break has occurred in the disaggregates at timeT . Conventional break detection tests
such as Andrews (1993) and Bai and Perron (1998) will have lowor no power as the break is at
the end-point of the series, but impulse saturation can be used to detect structural breaks atT .
A model analogous to (9) can be used, but with data available up toT :

yi,T = β′xt−1 + ρ′ft−1 +
T∑

j=1

ςj1tj=t + vt, (22)

for i = 1, . . . , J , andt = 1, . . . , T . If there is evidence of a break atT , ς̂T will be significant
and the impulse will be retained. We suggest using a significance level of0.5% ≤ α ≤ 0.1%
to detect the contemporaneous impulses. Such a conservative strategy will ensure that robust
forecasts will only be used if there is strong evidence of a break in the nowcast period. The
forecast error for the known disaggregates will also be informative:

ei,T = yi,T − ỹi,T |T−1, i = 1, . . . , J,

whereỹi,T |T−1 would be obtained from the forecasting model (10). Ifei,T is large relative to
pastei,t, there is evidence of a break in that disaggregate model. Whether breaks in the known
disaggregate series help to predict breaks in the unknown disaggregate series is a question we
address in section 7.

7 Nowcasting strategy

We can now summarize the ingredients of our proposed nowcasting strategy. 1-step ahead fore-
casts,̃yi,T |T−1, are obtained for allN disaggregates using (10). Contemporaneous information is
used to check the forecasts by testing for the significance ofthe impulse datedT in theJ known
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disaggregates using a tight significance level. If there is evidence of a break, incorporating the
information into the forecasts for theN − J unknown disaggregates will depend on judgment
as to whether the break is also expected to occur in other disaggregate series in the same block.
This will depend on: (a) whether the significant outlier is assumed to be measurement error or a
location shift; and (b) whether is assumed to be correlated with the unknown disaggregates atT .
Historical data will only be partly informative as the correlations between disaggregates usually
also change when there is a location shift: see Castleet al. (2009c). Hence, we formalize the
role of judgment using the forecasting rule:

ŷi,T |T = (1 − Ik) ỹi,T |T−1 + Ikỹ
∗
i,T |T , i = J + 1, . . . , N, (23)

whereIk is an indicator function taking the value 1 whenkαJ ≥ p for a small integerk where
p =

∑J

i=1
1T is the number of impulses retained atT for theJ known disaggregates, and̃y∗i,T |T

is an intercept corrected forecast given by:

ỹ∗i,T |T = ỹi,T |T−1 +
1

p

p∑

j=1

ς̂p,T (24)

This uses an average of the retained impulses, but a weightedaverage could be used based on
correlations between the disaggregate series.

Clements and Hendry (1998, ch.8) outline a theory of intercept corrections. Illustrating by
the simplest DGP for the disaggregates:

yi,T = ψiyi,T−1 + vi,T (25)

then whenIk = 0:
ỹi,T |T−1 = ψ̂iyi,T−1

and whenIk = 1:
ỹ∗i,T |T = ỹi,T |T−1 + µp,T

whereµp,T =
∑p

j=1
ς̂p,T , so the forecast error is given by:

ṽ∗i,T = yi,T − ỹ∗i,T |T

=
(
ψi − ψ̂i

)
yi,T−1 + vi,T − µp,T

= ṽi,T − µp,T (26)

where ṽi,T is the forecast error from the uncorrected forecast. (24) isanalogous to setting
the forecast back on track but across disaggregate series asopposed to through time, hence
nowcasting as opposed to forecasting. This implies that theerror variance,V

[
ṽ∗i,T
]

is essentially
equal to that of the uncorrected error variance,V [ṽi,T ] asµp,T is nearly a fixed constant for each
i whenJ is large. This is in contrast to a standard intercept correction that sets the forecast back
on track and doubles the error variance.

Hence, if a number of known disaggregates break atT , then the forecasts for the unknown
disaggregates should be adjusted; otherwise the regular forecasts are used. In practice, the
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disaggregates should be split into blocks corresponding togroups of variables such as industrial
production, prices, financial variables, interest rates, labour variables, housing market variables,
etc. Ideally, the blocks would capture sets of variables with close linkages, such that a break
in one series is likely to spread through to the other series.The blocks also need to combine
releases with different timings, such that the strategy of using contemporaneous information
could be applied within block. The blocks can be determined by the presence of common
trends or cycles for subsets of disaggregates captured by factors estimated using static principal
components as discussed above. Blocks of disaggregates that exhibit common trends or cycles
are more likely to be susceptible to common breaks, althoughthis is by no means guaranteed.
p would refer to the number of series with significant impulsesat T within each block, so the
intercept correction is applied to each block separately.Ex post, the cause of the break should
be investigated when resources permit, but this may not be feasible in a nowcasting context.

7.1 Differencing

After the break has occurred, if there is evidence that the break will persist, so a location shift
has occurred, this will be detectable from theJ observed disaggregates atT+1. The differenced
VEqCM forecast discussed in section 6.1 will be robust once the break has occurred, soỹ∗i,T+1|T

should be based on the differenced model (17) or (19). Unlikeintercept correction, this method
does not impose the magnitude of the break on the disaggregate forecast, but the forecast will
be robust to breaks after the break has occurred. Two observations are required at a minimum
to determine whether the break is a permanent location shiftor a transitory break. As data for
theJ known disaggregates are available atT , once observationT + 1 is available, those two
observations can help to distinguish between the two hypotheses, enabling robust nowcasts for
the unknown disaggregates one period after the break. This requires that the sameJ set of
components are available atT andT + 1. Otherwise evidence is only available atT + 2 and
judgment is required to determine whether the break is thought to be permanent or transitory at
T andT + 1.

8 Conclusion

Nowcasting is an essential component of macroeconomic policy analysis. Current-dated esti-
mates form the inputs for longer term forecasting, so a reconstruction of incomplete current data
are almost always required. All forms of forecasting rely tosome extent on judgment, equally
so for nowcasting. We have proposed a computationally feasible method for doing so, allow-
ing for structural breaks of the location shift form both in-sample and at the forecast origin,
covariate information and a subset of observed disaggregates, using automatic model selection
methods that can handle more variables than observations. The approach of forecasting the
disaggregate series and aggregating uses a larger information set than forecasting the aggregate
directly and enables rapid detection of breaks, switching to robust forecasting methods when
breaks are detected.

However, there are caveats to the proposed approach. There is a signal extraction problem as
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structural breaks and measurement errors at the forecast origin are observationally equivalent,
an issue that remains to be resolved. A large cross-section dimension and higher-frequency
data can help to disentangle the two explanations, and we propose a conservative strategy for
detecting breaks, so the forecasts will only be adapted if there is strong evidence that a break
has occurred. The approach relies on there being some proportion of the disaggregates,J ,
that are timely and contain a signal about theN − J unknown disaggregates, but this seems a
reasonable assumption given the high correlations betweendisaggregates, especially within the
blocks sharing common features estimated by principal component analysis. Finally, data are
released at varying times throughout the month, but this canbe accommodated in our approach,
so the method ensures that the largest available information set is used at each nowcast origin.
The proposed strategy should be operationally feasible in areal-time context but awaits future
empirical applications.
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