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Abstract

Given a need for nowcasting, we consider how nowcasts canbleeachieved, the use
and timing of information, including disaggregation ovariables and common features,
and the role of automatic model selection for nowcastingsimgsdisaggregates. We focus
on the impact of location shifts on nowcast failure and nastiog during breaks, using
impulse saturation, its relation to intercept correctiang to robust methods to avoid sys-
tematic nowcast failure. We propose a nowcasting stratagiding models of allV dis-
aggregate series by automatic methods, forecasting eaegble each period, then testing
for shifts in available measures, switching to robust faste of missing series when breaks
are detected.
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1 Introduction

Given the need for nowcasts, an issue discussed extengiv€liements and Hendry (2003)
and Castle, Fawcett and Hendry (2009d), we first consideedtian 2 how they might best
be produced. Section 3 then discusses the aggregationagglegate information, building
on Hendry and Hubrich (2009). Since large numbers of timesere involved, and random
subsets are missing intermittently, section 4 discussegthential role of automatic model
selection for nowcasting all the disaggregates. Our agpreaeks to handle all the available
information allowing for multiple past breaks at unknowreda and contemporaneous location
shifts, so inherently involves more variables than obgerma in the proposed models. To
do so, we extend the approach described in Castle, DoormikHamdry (2009a), based on
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Autometricswith impulse saturation: see Doornik (2009), Hendry, Jelearand Santos (2008),
and Johansen and Nielsen (2009). Section 5 describes hew idheas can be combined for
nowcasting the disaggregates. We then address how to henudigon shifts in section 6:

subsections 6.1 and 6.2 respectively discuss robust ntiwgasd nowcasting during a break,
leading to the description of the proposed nowcastingegyein section 7. Section 8 concludes.

2 Producing ‘good’ nowcasts

A timely data source that provided an accurate ‘measure’ rgigaired aggregate variable is
clearly preferable to seeking ‘good forecasts’ of it. Néleless, as there will usually be a role
for forecasting ‘preliminary estimates’, the best use oébasting methods is important, albeit
that it is an empirical issue as to which methods might bet*bB®wcasting is partly a ‘signal
extraction’ problem for missing data entering the aggregaut if the first announcements can
be systematically improved by forecasting them eitheratliyeor via the disaggregates, then the
guality of the resulting data are bound to be better. Fouddnmental problems inhibit achieving
that outcome.

First, the objective functions of the users of a nowcasteutput are almost always un-
known. A convenient approximation is to assume a quadrass, lin which case the aim of
nowcasting becomes to find a forecast,_; of the aggregatg, which solves:

argmin Er [yr — rir_s] ? 1)

Yr|iT—5

whereypr_; = gT,(;(fT,(;), andgr_s (+) is the relevant function of the available measured

information seth,(;, which estimates the actual informatidfy;_s;, on whichy; depends via
yr = fr(Zr_s). We have dated information 85— § for 6 > 0, since some evidence must be
unavailable afl” to necessitate nowcasting. To proceed, we will assume ihatdes indeed
provide the objective function, as it is difficult to see whther direction of asymmetry should
dominate. R

The second difficulty is that the information to be includad’-_s is also unknown, and
could comprise the history of the series alone (via a uraariime-series model), survey in-
formation, current and past data on other related time sepist information about revisions
etc. We will address this issue below by proposing autonmatidel selection either directly
for the aggregate itself, or for nowcasting the disaggeegjatiowing for all the available infor-
mation, multiple past breaks and contemporaneous locahdts as in Castlet al. (2009a),
then relating the aggregate to its own past and all the disggtes as in Hendry and Hubrich
(2009). Section 3 considers relating aggregates to diseggtgs, an@d4 discusses automatic
model selection.

The third, and most serious, problem is obtainipg-_s. At first sight, it may be thought
that the conditional expectati@[yT|fT_5] of yr given fT_5 should be the solution to (1),
namely the minimum mean-square error predictor. UnfottelpzE,|[-] is not known aff” either,
since the statistical process generat{ng} is also never known, and in economics is always
wide-sense non-stationary, namely its distribution clearayer time from both stochastic trends
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and location shifts, reflected in our notatign (). Thus, the form of the optimal predictor

yrr—s IS never known. WorséT_(;[yﬂfT_(;], which might be available, need not be a good
forecast device when location shifts occur, as it is categlapver the wrong distribution: see

e.g., Castle, Doornik, Hendry and Nymoen (2009b). Thusr¢laézed mean square forecast
error MSFE) given (1) is:

—~ 2
Er [fT (Zr—s) — gr—s (jT—(S)] (2)
leading to the following abbreviated taxonomy of forecasbesurir_s = yr — Yrir—s:

urr—s = fr(Zr—s) — gr—s <u/7\T76>
= fr (Zr_s) — fr—s (Zr_s)—distribution shift {6)

+fr—s (Zr_s) — gr—s (Zr_s) —model mis-specificatior§4)
‘975 (Zr—s) — gr—s (Jr—s) —reduced informatior§@.1)
+97-5 (Jr-s5) — 915 (ij(s) —measurement error (3)

Clements and Hendry (1998, 1999) provide a framework fotyairay the properties of
forecasting models in wide-sense non-stationary prosesgeen the device being used does
not coincide with the generating mechanism of the proceks{énts and Hendry, 2008, pro-
vide a non-technical explanation). To summarize, theyarpl
(a) the recurrent episodes of systematic mis-forecastiaightave occurred historically;

(b) show thakex antewell-specified models need not forecast better than badygied; since
(c) causally-relevant variables need not improve for@cgsiver irrelevant variables;

(d) the benefits of many of the empirical practices of foreas such as intercept corrections;
(e) show why pooling across a range of methods and modelsecharteficial (see e.g., Hendry
and Clements, 2004), but need not be unless carefully waidgert(see Hendry and Reade,
2008);

() why forecasting devices that are robust to locationtstdb not experience systematic fore-
cast failure; and so

(g) dominate in forecasting competitions (such as Makiiglakd Hibon, 2000: see Fildes and
Ord, 2002, and Clements and Hendry, 2001); hence

(h) why so-called ‘naive devices’ (simple adaptive devidesdamped trend, differenced mod-
els, and exponentially weighted moving averages—EWMAsS)xzaperform; whereas

() equilibrium-correction models can experience systiéniarecast failure (see Hendry, 2006).
Despite its non-specific assumptions, therefore, a thefoigrecasting which allows for unan-
ticipated structural breaks in an evolving economic meidmarfor which the forecasting model
is mis-specified in unknown ways can provide a useful basisnterpreting, and potentially
circumventing, systematic forecast failure in economidsese implications seem to carry over
to nowcasting, so section 6 considers the issue of breakaircontext.

Fourthly, the disaggregates that have been measurédaat partial inputs to calculating
yr are themselves subject to unknown inaccuracies and futmigions. This is more difficult
to handle, but Castlet al. (2009d) seek to address the impact of measurement errong in t
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context of the much simpler EWMA model, which applies to ad@n walk that is subject to
measurement errors.

All these considerations seem to apply to nowcasting aneggde either directly or via its
disaggregates.

3 Aggregation

The variable of interesty;, say GDP, is an aggregate variable, comprising= Zf\il WYt
wherey;, are the disaggregates ang are the weights, which could be changing over time.
Data are released with varying time delays, such that atfirmeme components gf- will be
observed and some will be unavailable uftif- §. Fory; r, thei = 1,...,.J, components are
known at7 and thei = J + 1,..., N, components are unknown &t The two sets are not
uniquely defined, so an individual element can switch backfarth between the sets through
time depending on how the information is accrued an not fixed. Hence, a forecasting
strategy needs to be flexible enough to allow for changesadrtithing of releases. As some
components o are unknown af” a nowcast is computed. There are three alternative methods,
see Hendry and Hubrich (2009):

| Forecast the aggregate using only aggregate informasimmge of which perforce must
be lagged one period:
@\TlT—(S* =f (Y%,l, Zg“f&*) )
whereY)_, = yr_1,...,y0, @ndZ) ;. = z7_4,..., 2o is a vector of conditioning
variables such as surveys or leading indicators, which neayptre recent than the latest
aggregate observation, with < § < 1.

Il Forecast those disaggregates that are unknownh at
gi,T\T—(S* :f(yg,Tf&)Zg“fé*)) Z:J+177N7
then aggregate their forecasts together with the known data

J N
yrir = E WY + E W;Y; 775"
=1 i=J+1

Typically the weights are taken as given but could also bedast; we abstract from the
issue of weights in the subsequent analysis, as with GDP data

lll Forecast the aggregate, conditioning on both aggregate disaggregate information.
There are two possible methods.

a. In order to apply standard forecasting procedures, abatbpanel is needed:

Yrir—5 = f (Y?r_&ygj_g, ZOT_(;) , Vie N,

where the conditioning information includes informaticated?” — § and previous,
resulting in aj-step ahead forecast.
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b. Alternatively, an unbalanced panel can be used, comdhigoon whatever informa-
tion is also available at”:

= _ 0 .0 0 0 0 . 70
Y7ir = / (YT_p Yiro-- 5 YirsYirir—6 - s YNT—6 ZT—&*) )

resulting in a large unbalanced panel in which there areingssbservations at the
end of the sample: see Wallis (1986) for a discussion of thgged edge’ problem.

3.1 Nowcasting aggregates from disaggregates

[I] has been the most common approach in the literature, avititus on predicting the revision
process at the aggregate level, see Lee, Olekalns and $2€l88). However, the aggregate
approach relies on a reduced information skt,; C Zy_,, whereZr_, is the full information
set including disaggregate information. As unpredictgbit relative to the information set
used, using a subset of information will result in less aatjralbeit unbiased, predictions,
see Clements and Hendry (1998, p.36). Hence, we do not @rigjiéh this analysis, instead
focusing on using the additional disaggregate informatWhen all disaggregates are observed,
Mayo and Espasa (2009) discuss how to incorporate coirtesbaad cyclical information about
disaggregates to improve the aggregate forecasts retativ@estricted estimation.

We now show analytically that when interest focuses on ptedj the aggregate, then noth-
ing is lost by doing so directly from disaggregate inforroatiwithout predicting the disaggre-
gates, i.e., method [lll]N = 2 suffices to illustrate the analysis, which generalizes tayna
components:

yr = w1t + (1 —wi) yar (4)

with weightsw, andw, = (1—w; ), where for simplicity we take the weights to be constant over
time, as in a simple sum aggregate. Assume fhat0, so the contemporaneous disaggregates
are not observed, and information is only available fflBm 1. The DGP for the disaggregates
is assumed to be:

Yip = ViXe—1 + Mt

wherex;_1 = (Y1,1-1,-- -, Yn—1: zt_l)' denotes all the available information, which includes
the lagged disaggregates, so:

Er—i[yir | xr-1] = ~ixr_y for i=1,2 (5)

Aggregating the two terms in (5), delivers:

2 2
Er—1 [yT | XTfl] = ZwiETfl [yz',T | XTfl] = <Z wi7;> Xr—1 = 'lp,XTfl (6)
i=1

i=1

say. Predictingr directly fromx,_; yields:

Er_; [yT | XT71] = 7T,XT71 (7)



Since the left-hand sides of (6) and (7) are equal:
X = 77/),XT—1 (8)

so nothing is lost by predicting, directly, instead of aggregating component predictionseon
the same information se&t-_ is used for both, i.e. there is no benefit to method [l1] ovéa]l

Hendry and Hubrich (2009) show that this analysis genasslip non-constant weights
and changing parameters, and demonstrate that foreggstimreaks equally affect combining
disaggregate forecasts to forecast an aggregate as infi@@eoasting the aggregate directly as
in (7), so there is no benefit MISFE terms from building models of disaggregates. However,
that analysis assumes that all conditioning informaticaveslable atl’ — 1, and does not make
use of the contemporaneous information availabl@ #éihat is an essential component of the
nowcasting strategy. Discarding information availablg@ as particularly costly when breaks
occur simultaneously across the disaggregates (or a 3w@ssttis information can be used to
ensure robust forecasts in the presence of breaks. Thisesngblat either [II] or [llIb] is a
preferable strategy.

There is a range of methods for unbalanced panels in whicavallable data are used,
including dynamic factor models, see Giannone, Reichlich @mall (2008) and Schumacher
and Breitung (2008), and mixed frequency time series mosigth as MIDAS, see Kuzin,
Marcellino and Schumacher (2009). Marcellino and Schuma@007) combine factor models
with MIDAS, and Ferrara, Guegan and Rakotomarolahy (2088)non-parametric methods,
based on nearest neighbors and on radial basis functiomagpes to nowcast unbalanced
monthly data sets. However, these methods do not take acobwtructural breaks in the
disaggregates, instead abstracting from wide-sense atarsirity. Hence, the approach we
propose is to use [ll], but augmented for structural bredkat®n, an issue to which we now
turn.

4 Automatic model selection with morevariablesthan obser-
vations

Automatic model selection for nowcasting all disaggregateowing for all the available infor-
mation, multiple past breaks and contemporaneous locahts can be undertaken following
the approach described in Castieal. (2009a), based oAutometricswith impulse saturation
(see Doornik, 2009, on the former, and Hendtyal,, 2008, and Johansen and Nielsen, 2009,
for the latter). The theory of reduction (see e.g. Hendr@®@or a recent exposition) explains
the existence of a local data generation process (LDGPhfosabset of variables, and the rela-
tionship of any model to that LDGP. The idea behind generagecific (Gets) model selection
is to locate a good approximation to that LDGP, charactdrizgeits being a congruent repre-
sentation and encompassing the evidence on the LDGP gigeudl via that embodied in other
models. To do so, one commences from the most general matteheists all the candidate
variables, their lags, functional form transformationd @ossible breaks, intrinsically leading
to having more variablesy, than observation¥'. Autometricshandles theV > T problem



by a mixture of expanding and contracting searches that sk¢he variables relevant at the
chosen significance level, set such that /N remains small (e.g., unity). Multiple breaks are
tackled conjointly by impulse saturation (IS) which addgrapulse indicator for every obser-
vation: Hendryet al.(2008) establish one feasible algorithm, and derive thiedmstribution for
anlID process, and Johansen and Nielsen (2009) generalize tidings to general dynamic
regression models (possibly with unit roots), and showttiiarte is a very small efficiency loss
under the null of no breaks wheril" is small, despite investigating the potential relevance of
T additional variables. Castkt al. (2009a) examine the ability of IS to detect multiple breaks,
and show it can find up to 20 breaks in 100 observations.

The intent of Gets is to find ‘good’ LDGP models as defined abbué as noted in (b) in
section 2, Clements and Hendry (1998, 1999) show that oneotgmnove that the pre-existing
LDGP is the best model for forecasting. We address how tolkdhdt issue in section 6 below.

5 Nowcasting the disaggregates

Nowcasts are required of thé — J unknown disaggregates. As breaks may have occurred in
the individual series over the sample period, it is impdrtanaccount for these in the now-
casting models. The in-sample general unrestricted m@lgM) for nowcasting the unknown
disaggregates is given by:

T—1
vie =0B'x1+ a1+ Z Gile=t + Vi, 9)
j=1
fort=1,...,T—1,andi = J+1,...,N. x;_; denotes all the available information including

the lagged disaggregates and additional explanatoryblagauch as survey information or
leading indicatorsf; ; denotes a set qf latent common factors (discussed in section 5.1),
andl,_, is a set ofl" — 1 individual impulses taking the value unity aand zero otherwise.
Selection is undertaken usidgitometricsand the resulting forecasts are given by:

Yir|T-1 = X+ 05 +5dr (10)

wherexs._, andf;_, denote the retained variables and factors after selectidrda_; col-
lects the retained impulses from selection of (9). LooseiSaance levels could be used to
select the forecasting model regressorscjn ,: Clements and Hendry (2005) show that all
regressors with squared non-centralities greater thay ahould be retained. However, tight
significance levels should be used to select the impulseg&s- 1) impulses will be retained
on average under the null from (9). In practiéeitometricamposes one significance level so
selection could be undertaken using a 2-step procedureBaéipg to the Frisch and Waugh
(1933) theorem, first identifying the impulses and thencalg the regressors conditional on
the impulses.



5.1 Common features

The disaggregate series are likely to have common compsr&unth as cycles and trends, as
well as idiosyncratic elements, so it can be useful to ingeltieése in the GUM: see Mayo and
Espasa (2009). A%/ is large, it may be difficult to identify (say) cointegratinglationships
across all disaggregates, but factors can proxy missingegration information. There are
many ways to obtain the factoys for i = 1,...,¢: Stock and Watson (2002) suggest using
static principal component analysis appliedto= (yi,...,yn)":

f, = A/Yd,t

where the set of factor loadings are collected i, the N x q matrix of eigenvectors corre-
sponding to the largest eigenvalues of the sample covariance mairiX here are alternative
methods of estimating the factors: e.g., Forni, Hallin,diipnd Reichlin (2005) propose a
weighted version of the static principal components edtimavhere time series are weighted
according to their signal-to-noise ratio. However, stptiacipal components capture the main
aspects of common trends and cycles, and seem sufficiertidgrurpose of nowcasting cur-
rently missing disaggregates. As the factors mainly cadturg-run relationships, the available
information on the/ known disaggregates @twill not contribute much, so the factors can be
calculated over the full sample af to 7" — 1.

In practice, we propose separating the disaggregateslmtkscorresponding to groups of
variables that exhibit common trends or cycles, as in sedtiolhe factors would be obtained
for each bIock,ff, wherei = 1,...,q denotes the factor and= 1,...,b denotes the block
ya,; Wherey, is divided intob subsets, but all factors can be included in the GUM. The key
innovation is that both individual explanatory variablesldhe factors are included jointly in
the GUM, in contrast to much of the dynamic factor modelsditere. This is feasible due to the
ability of Autometricgo handle more variables than observations, and hencecpediénearity.

If factors are helpful in explaining movements in the disaggtes, they should be retained in
the selected model (10).

5.2 Using all available information

The problem with the forecasts from (10) is that addition&dimation may be available through
the disaggregates known &t y; » for« = 1, ..., J, allowing for more rapid identification of
outliers or location shifts. Hence, we propose an augmefotedast of (10)y; 1. To motivate
the nowcast, we first outline robust forecasting before psop the nowcasting strategy.

6 Robust forecasting

To explain the principles, we draw on Hendry (2006). Consfdeecasting from a first-order
cointegrated vector equilibrium correction model (VEqCM)n I(1) variablesx; given in-
sample by:

Ax; =+ a(B'%1 — pu) + € where ¢ ~ IN, [0, 9] (11)
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soAx; and3'x; arel(0), with E [3'x;] = u, E[Ax;] = v, Bisrx1,visnx1 (but subject to the
r restrictions@’~ = 0), andu isr x 1, leavingn unrestricted intercepts in total in (11). When
the parameters of (11) are constant in-sample and knowrglawariables correctly measured,
1-step ahead forecasts coincide with the conditional égfiea E; [Axr, 1 |x7]:

AXriyr =7+ o (B'xr — p) (12)

with forecast erro€r jr = Axypy1 — AXpypqr = €ry1. Uncertain forecast origin values:
and parameter estimation lead to:

~ —~ ~ /\//\ —~
AXppr=7+a (ﬁ X7 — p,) (13)

where the latter add terms &f,(7~'), which are negligible relative to the impact of location
shifts in the DGP, the issue we now consider.

6.1 Robust nowcasting

We first consider 1-step ahead forecasting, soNe&t = (yi 7, ... ,yJ,T)’ be the vector of
known disaggregates and assume a DGP given by (11). Althlmeglion shifts are the key
problem, we allow all parameters of the DGP to shiffat 1 and (11) to be mis-specified by
omission of a set of relevant variablgs }, so that:

Axp =5+ o ((85) xr-1 — pg) + Xozr + v (14)
and from then on:

Axrir =5+ og ((89)'xr — pg) + Xozr1 + Vri (15)

The forecast errors from (13) are:
- * s * * * ~ (A~ - *
Vrir =, — 7 + g ((80)xr — pg) — & (5 X — M) + Yozri1 + Vri (16)

Every possible source of forecast error occurs in (16):retettc and deterministic breaks (the
shift to * parameters), omitted variables;( ,), inconsistent parameter estimates (given the
other mis-specifications), estimation uncertainty (treparameters in (13)), mis-measurement
at the forecast originx; — X7), and innovation erroraf;_ ;).

Surprisingly, (14) is simultaneously almost the solutiorthie very problem it creates. If
one reads what that equation shows, then, contains nearly everything one ever wanted to
know for forecasting, but was afraid to ask, namely o, 3;, ui, Y and even the unknown
omitted variablez;-. When forecasting, individual parameter estimates ar@iyparstrumental
in arriving atAXr, 17, and (14) contains all the shifted parameter values as wéfleaunknown
omitted variables. Thus, consider forecastiag,; simply by:

ARy = ARy (17)



then the forecast errar,, 7 is (assuming that after one-period revisio®s, | = x7_1):

DTH\T = (vo+ o ((8B5)xr — pug) + XozZry1 + Vo)
— (7o + a5 ((Bp) xr-1 — pg) + Yozr +vr)
= og(Bo) Axy + YAzr 11 + Avryy (18)

All terms in the last line aré(—1), so will be ‘noisy’, but systematic forecast failure should
not result. Differencing/,; doubles the innovation error variance, whereas differenej, |

could well reduce the overall error. Moreover, althoug{3;) Ax is unknown,&B/A?cT is
known and will usually be a better estimate than zero, leattirthe forecasting device:

AXpir = AXp + 6B Axr (19)
or. N
A*Xpiqr = A (’A)’ +a <5 X1 — ﬁ))

which is the differenced VEqCM from (13).
Now considerAxTT = (ysi11,-- -, yn7) s the vector of unknown disaggregates. Atthe
nowcast given by (17):

ASE’THT—l - Aﬂf—l (20)
will result in the nowcast error:
Voo = (v o ((89)xk ., — m5) + Tzr + vr)
- (7 +o ((6)’x*T_2 - u) + vT_l) (21)

which is the same forecast error as (16), abstracting froranpater estimation uncertainty
and forecast origin uncertainty, apart from an additiomedreterm,v_;. Thus, at the break
point, a forecasting model will fail to reflect the break-@ss it is separately predicted—but
robust forecasting models will rapidly adapt after a peremrbreak, and the forecasts will be
unbiased af” + 1 as in (18). This suggests that robust forecasting devicelks dme useful in
nowcasting when either a break is suspected (see e.qg., ye2@h4), or is already detected
by forecast-origin impulses. We next consider whether@mporaneous information available
from the disaggregates can help to nowcast at a break origin.

6.2 Nowcasting during a break

A key problem is the rapid identification of outliers and/océation shifts in real time, to avoid
distortionary effects on nowcasts: anticipation of imnmingnusual events would be even more
helpful in avoiding large errors, but is difficult to analy2éowever, we address the former issue
briefly, building on Castle, Fawcett and Hendry (2009c). S&hauthors consider the impacts of
both external shifts, where the parameters of the modelenans unaltered, but data proper-
ties change—as in a change in collinearity—and internétissivhere the model itself alters. The
former induces an immediate and unavoidable increase iMBfE, but as the forecast origin
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moves forward (e.g., t&'+ 1 — ), updating quickly mitigates that effect. Unfortunatelpdat-

ing is not necessarily helpful when an internal break occsush as a change in the intercept.
Moreover, even when the form and timing of the break are kntmathe modeller for a scalar
process (e.g., an ogive starting@, but the parameters governing the speed and magnitude
are not, then the differenced VEqQCM performs as well as thiemated break process, both in
theory and practice.

Nevertheless, that result relies on the break being relgtpersistent, such that the changes
in parameters embedded in (15) reflect those current in tk@nviog period. For temporary
shifts, the same strategy will exacerbate the forecastgrem judgement is required as to
which forecasting method to use after any form of shift, auésthat is especially pertinent
when a ‘shift’ is merely a measurement error, an issue censttin Castlet al. (2009d).

6.3 Detecting breaksin the disaggregates

If a break occurs in more than one of the observed disaggregaies, information about the
break will be contained ip; 1, i = 1, ..., J, which can be used to improve the forecgst;_,
1=J+1,..., N, by conditioning on contemporaneous information. The §tage is to detect
whether a break has occurred in the disaggregates afftif@®nventional break detection tests
such as Andrews (1993) and Bai and Perron (1998) will haveolomo power as the break is at
the end-point of the series, but impulse saturation can bd tesdetect structural breaks’at

A model analogous to (9) can be used, but with data availgbte iI':

T
Yir = B'xi1+ p'fi1 + Z Sile;=t + vy, (22)
j=1
fori =1,...,J,andt = 1,...,T. If there is evidence of a break &t < will be significant

and the impulse will be retained. We suggest using a signifiedevel of0.5% < o < 0.1%

to detect the contemporaneous impulses. Such a consergitategy will ensure that robust
forecasts will only be used if there is strong evidence ofeakrin the nowcast period. The
forecast error for the known disaggregates will also bermttive:

eir =Y — Yirir—1, t=1,...,J,

wherey; 71 would be obtained from the forecasting model (10)¢;lf is large relative to
paste; ;, there is evidence of a break in that disaggregate modeltg¢hbreaks in the known
disaggregate series help to predict breaks in the unknogsagdregate series is a question we
address in section 7.

7 Nowcasting strategy

We can now summarize the ingredients of our proposed noimgasdtategy. 1-step ahead fore-
castsy; rir—1, are obtained for alNV disaggregates using (10). Contemporaneous information is
used to check the forecasts by testing for the significantieeafmpulse dated’ in the J known
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disaggregates using a tight significance level. If therevidemce of a break, incorporating the
information into the forecasts for th€ — J unknown disaggregates will depend on judgment
as to whether the break is also expected to occur in othegglisgate series in the same block.
This will depend on: (a) whether the significant outlier isrsed to be measurement error or a
location shift; and (b) whether is assumed to be correlaiddtive unknown disaggregatesiat
Historical data will only be partly informative as the cdattons between disaggregates usually
also change when there is a location shift: see Castéd. (2009c). Hence, we formalize the
role of judgment using the forecasting rule:

wherel, is an indicator function taking the value 1 whenJ > p for a small integek where
p= Z;’Zl 17 is the number of impulses retainedZator the .J known disaggregates, a@ngT
is an intercept corrected forecast given by:

. _ 1<
Yirir = Yirir-1 T ]; Z Sp,T (24)
j=1

This uses an average of the retained impulses, but a weightdge could be used based on
correlations between the disaggregate series.

Clements and Hendry (1998, ch.8) outline a theory of infgrcerrections. lllustrating by
the simplest DGP for the disaggregates:

Yir = VYir-1+ vir (25)
then when,, = 0: R
gi,T|T71 = VYir—1
and when;, = 1:
Yirir = Yir|T-1+ Ky

wherep, - = > %_, <, 7, so the forecast error is given by:

E;T = Yir — gZT|T
= (@/)z' - %) Yir—1 TV — [y
= Ui, — Py (26)

wherew;,  is the forecast error from the uncorrected forecast. (24nalogous to setting
the forecast back on track but across disaggregate seriegpased to through time, hence
nowcasting as opposed to forecasting. This implies thagttue variancey [G;T} is essentially
equal to that of the uncorrected error variané@; r| asy, r is nearly a fixed constant for each
1 whenJ is large. This is in contrast to a standard intercept caoedhat sets the forecast back
on track and doubles the error variance.

Hence, if a number of known disaggregates break,ahen the forecasts for the unknown
disaggregates should be adjusted; otherwise the reguiecdsis are used. In practice, the
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disaggregates should be split into blocks correspondiggaops of variables such as industrial
production, prices, financial variables, interest ra@sour variables, housing market variables,
etc. ldeally, the blocks would capture sets of variablefwibse linkages, such that a break
in one series is likely to spread through to the other serfé® blocks also need to combine
releases with different timings, such that the strategysafigi contemporaneous information
could be applied within block. The blocks can be determingdhe presence of common
trends or cycles for subsets of disaggregates capturedtoyréeestimated using static principal
components as discussed above. Blocks of disaggregatesctiibit common trends or cycles
are more likely to be susceptible to common breaks, althdlighis by no means guaranteed.
p would refer to the number of series with significant impulag$ within each block, so the
intercept correction is applied to each block separatekypost the cause of the break should
be investigated when resources permit, but this may notdmelfle in a nowcasting context.

7.1 Differencing

After the break has occurred, if there is evidence that tkealbwill persist, so a location shift
has occurred, this will be detectable from thebserved disaggregatesiat 1. The differenced
VEQCM forecast discussed in section 6.1 will be robust oheereak has occurred, 80,1
should be based on the differenced model (17) or (19). Umitexcept correction, this method
does not impose the magnitude of the break on the disaggrématast, but the forecast will
be robust to breaks after the break has occurred. Two oligersare required at a minimum
to determine whether the break is a permanent location @héttransitory break. As data for
the J known disaggregates are available/atonce observatiofi’ + 1 is available, those two
observations can help to distinguish between the two hgset, enabling robust nowcasts for
the unknown disaggregates one period after the break. €hQisires that the samé set of
components are available Atand7" + 1. Otherwise evidence is only available’aty- 2 and
judgment is required to determine whether the break is thbiagoe permanent or transitory at
T andT + 1.

8 Conclusion

Nowcasting is an essential component of macroeconomicyahalysis. Current-dated esti-
mates form the inputs for longer term forecasting, so a rettoation of incomplete current data
are almost always required. All forms of forecasting reltmne extent on judgment, equally
so for nowcasting. We have proposed a computationallybeasnethod for doing so, allow-
ing for structural breaks of the location shift form bothsample and at the forecast origin,
covariate information and a subset of observed disaggsgasing automatic model selection
methods that can handle more variables than observatiohs.approach of forecasting the
disaggregate series and aggregating uses a larger infomsat than forecasting the aggregate
directly and enables rapid detection of breaks, switchingobust forecasting methods when
breaks are detected.

However, there are caveats to the proposed approach. Beesggnal extraction problem as
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structural breaks and measurement errors at the foredgst are observationally equivalent,
an issue that remains to be resolved. A large cross-sectimaendion and higher-frequency
data can help to disentangle the two explanations, and wmpeoa conservative strategy for
detecting breaks, so the forecasts will only be adapteckifetls strong evidence that a break
has occurred. The approach relies on there being some pimpof the disaggregates,
that are timely and contain a signal about fiie- J unknown disaggregates, but this seems a
reasonable assumption given the high correlations betdisaggregates, especially within the
blocks sharing common features estimated by principal corapt analysis. Finally, data are
released at varying times throughout the month, but thisoesaccommodated in our approach,
so the method ensures that the largest available informagbis used at each nowcast origin.
The proposed strategy should be operationally feasiblergaltime context but awaits future
empirical applications.
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