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Nowcasting lightning occurrence from commonly available

meteorological parameters using machine learning techniques
Amirhossein Mostajabi 1, Declan L. Finney 2, Marcos Rubinstein3 and Farhad Rachidi1*

Lightning discharges in the atmosphere owe their existence to the combination of complex dynamic and microphysical processes.
Knowledge discovery and data mining methods can be used for seeking characteristics of data and their teleconnections in
complex data clusters. We have used machine learning techniques to successfully hindcast nearby and distant lightning hazards by
looking at single-site observations of meteorological parameters. We developed a four-parameter model based on four commonly
available surface weather variables (air pressure at station level (QFE), air temperature, relative humidity, and wind speed). The
produced warnings are validated using the data from lightning location systems. Evaluation results show that the model has
statistically considerable predictive skill for lead times up to 30min. Furthermore, the importance of the input parameters fits with
the broad physical understanding of surface processes driving thunderstorms (e.g., the surface temperature and the relative
humidity will be important factors for the instability and moisture availability of the thunderstorm environment). The model also
improves upon three competitive baselines for generating lightning warnings: (i) a simple but objective baseline forecast, based on
the persistence method, (ii) the widely-used method based on a threshold of the vertical electrostatic field magnitude at ground
level, and, finally (iii) a scheme based on CAPE threshold. Apart from discussing the prediction skill of the model, data mining
techniques are also used to compare the patterns of data distribution, both spatially and temporally among the stations. The results
encourage further analysis on how mining techniques could contribute to further our understanding of lightning dependencies on
atmospheric parameters.
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INTRODUCTION

Lightning is responsible for human injuries and fatalities, the
death of livestock, and house and forest fires.1–3 It is also a major
source of electromagnetic interference and damage to electronic
circuits, buildings, and other exposed man-made structures such
as transmission lines, wind turbines and photovoltaics. Based on
the reports for 1023 fatalities associated with natural hazard
processes in Switzerland during the period from 1946 to 2015,
more than 16% of the cases were caused by lightning, making it
the second most frequent cause of loss of life among the natural
hazards in Switzerland.4 Furthermore, lightning is reported to have
an adverse impact on the aviation industry due to hazard to
outdoor ramp operations, such as aircraft fueling, baggage
handling, food service, and tug operations. In space centers,
lightning is also a danger to fuel crews, ground operations and
rocket launch operations.5,6 Lightning is also a major cause of
damage to wind turbines, one of the fastest growing sectors of
renewable energy production, causing transient surges and
overvoltages in the power grid, inducing interference in control
systems and, most importantly, causing significant damage to the
blades and other wind turbine components.7,8 The consequences
of these events can be very costly due to energy production
losses, extra maintenance costs, or even loss of operating
equipment.9

Given its noteworthy socioeconomic impact, appreciable
attention has been given to accurate lightning prediction.
The widely accepted mechanism for charging in the thunder-

storms is the non-inductive mechanism.10,11 In this mechanism,
charge separation occurs when ice crystals and graupel particles

collide in the presence of supercooled liquid water. Charge is
transferred between the different types of particles and then the
particles separate by weight under the influence of gravity and
convective motions. Several past studies have reported on
observational findings regarding how charge structures relate to
different lightning types over a wide range of convective regimes.
For example, analyzing nine distinct mesoscale regions of severe
storms, Carey and Buffalo12 found significant and systematic
differences in the mesoscale environments of positive and
negative storms. They hypothesized that the mesoscale environ-
ment indirectly influences CG lightning polarity by directly
controlling the storm structure, dynamics, and microphysics,
which in turn control storm electrification and ground flash
polarity. Since lightning involves complex interactions between
many atmospheric and in-cloud processes, it is unsurprising that
research into that phenomenon continues to generate a wide
range of approaches for its prediction. Many studies have
implemented sophisticated electrification physics within cloud-
resolving numerical models.13–17 For example, Fierro et al.18

implemented an explicit electrification and lightning forecast
module within the Weather Research and Forecasting (WRF)
Model which includes in-cloud, non-inductive, and inductive
collisional charging, an explicit elliptic solution of the 3D
component of the ambient electric field, and two discharge
parameterizations.19 On the other hand, some studies employ a
simpler and practical approach of parameterization to allow for
useful lightning forecasts without the need for adding electrifica-
tion subroutines to cloud-resolving models.20–25 For example,
Lynn et al.26 implemented a dynamic forecast scheme for both
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cloud-to-ground (CG) and intracloud (IC) lightning flashes based
on the electrical potential energy parameter derived from the WRF
cloud-resolving model. More recently, Tippett et al.27 used the
product of convective available potential energy (CAPE) and
precipitation rate as a proxy to predict cloud-to-ground (CG)
lightning over the United States. The prediction scheme showed
significant skill for lead times up to 15 days for predicting the
number of flashes and their spatial extent as well as the lightning/
no lightning maps.
Apart from lightning diagnostic schemes producing bulk flash

metrics such as average lightning activity with useful skill up to
several days forecast, some studies have focused on assessment of
the lightning threat in the very near future and providing early
warning by nowcasting individual flashes and/or the onset of
lightning within the storm. Lightning warning systems in parks,
sport complexes, schools, local government buildings, airports,
space centers, etc. benefit from the output of such lightning
nowcasting schemes to give decision-makers enough time to
make take the necessary safety precautions for staff and visitors,
stop lightning-sensitive operations, and protect equipment. For
example, Mecikalski et al.28 introduced an integrated 0–1 h first-
flash lightning nowcasting scheme. By merging the satellite and
radar systems with numerical models, the lightning forecast is
made 30–45min before rainfall occurs. Chambra et al.29 imple-
mented a cloud-to-ground (CG) lightning probability and binary
occurrence or non-occurrence forecast in 20-km grid boxes for 2-h
periods over the continental United States. This lightning
guidance product is provided in the framework of the Localized
Aviation MOS Program (LAMP) and it is issued at hourly intervals.
Recently, Meng et al.30 developed an early lightning warning
system by integrating observational data from radar, satellites,
lightning detection systems, ground electric instruments and
sounding instruments with synoptic pattern forecasting products,
and numerical simulation of the electrification and discharge
model. The system is able to provide lightning activity potential
and warning products for the upcoming 0–1 h. Seroka et al.31 used
radar-derived parameters, namely the isothermal reflectivity and
Vertically Integrated Ice (VII), as the proxy to nowcast lighting over
the Kennedy Space Center. Despite several different approaches
applied to the important problem of lightning nowcasting and
early warning generation, the complex processes and large
number of parameters involved in the problem lends themselves
to the potential application of a machine learning approach.
Knowledge Discovery in Databases (KDD) is an interdisciplinary

area focusing on the process of discovering meaningful correla-
tions, patterns, trends, and on extracting useful knowledge by
mining large amounts of data.32 KDD has become a powerful tool
for turning data into useful, task-oriented knowledge in a wide
variety of fields such as business intelligence, marketing or
genetics and it has contributed to several of the most recent
breakthroughs.32–37 In atmospheric science, enormous prolifera-
tion of databases from remote sensing platforms and global-scale
earth system models provides a large flow of data.38 The
availability of very large volumes of such data has provided great
opportunities for the big data-spun revolution to happen in
atmospheric science.38 Machine learning algorithms such as KDD
techniques could give computers the ability to learn a skill (such
as making predictions) from sets of archived data and to apply the
skill on new data. While conventional algorithms depend on
developers entering reams of regulations and principles,39 fore-
casters and researchers have mixed machine learning with
atmospheric science aiming towards improving the communities’
prediction skills for multiple weather-related phenomena at
different scales.40 For example, Manzato et al.41 presented a
neural network ensemble forecast for hail in Northeastern Italy.
Gagne et al.42 used machine learning models to predict the
probability of a storm producing hail and the radar-estimated hail
size distribution parameters for each forecast storm. Herman

et al.43 explored the internals of some regression and tree-based
models and what physical and statistical insights they reveal
about forecasting extreme precipitation from a global, convection-
parameterized model. Lagerquist et al.42 described a machine
learning system that forecasts the probability of damaging
straight-line wind for each storm cell in the continental United
States. Karstens et al.44 developed a human–machine mix for
forecasting severe convective events. As an application in
lightning nowcasting and early warning systems, this paper
examines how the mining of basic atmospheric datasets can be
used to explore correlation patterns between lightning incidence
and atmospheric data and, thus, for nowcasting of lightning
activity. To achieve this, a machine-learning-based model is
trained to nowcast whether or not there would be any lightning
incidence inside a specific region up to 30min in advance, given
the real-time measured values of four meteorological parameters
which are relevant to the mechanisms of electric charge
generation in thunderstorms,10,45,46 namely the air pressure at
station level (QFE), the air temperature 2 m above ground, the
relative humidity, and the wind speed.
Although the selected meteorological parameters do not

necessarily represent upper level meteorology within the thunder-
storm charging zone, they are indicators of low-level factors
involved in thunderstorms. In addition, they can also be more
reliably and continuously measured than many upper-atmosphere
parameters that could be more closely linked to lightning
generation.
Some lightning predictive schemes use operational radars and

satellites to detect storm initiation and development, perhaps also
aided by Convective-Allowing Models, and can provide calibrated
thunder guidance up to at least a day in advance. For example, the
High-Resolution Ensemble Forecast (HREF) Calibrated Thunder
guidance produces probabilities that represent the likelihood of at
least one cloud-to-ground (CG) lightning strike within 12 miles
(20 km) of a point location over a 4-h forecast period.47 This
guidance generates forecasts over the Continental United States
using a rolling 4-h window out to 48 h. Using commonly available
surface data makes the warning system in this study independent
of external sources of data such as numerical model outputs,
satellite and radar. In this regard, the proposed approach could
benefit the current lightning predictive schemes. Two potential
contributions are: (i) While satellites can provide broad nowcasting
information for people, the ML approach provides an opportunity
for much more localized forecasting and alerts, and this could be
facilitated for users through a web interface where they can
upload their own data. Furthermore, the method can provide
information in areas where radars are not present, where weather
forecaster resources are limited, or where nowcasting is not in
operation, for instance in isolated areas in low-income countries in
Asia, South America, and Africa.48 In fact, the method can be
applied to any weather station (with extended data records to
ensure appropriate training samples) to give localized forecasting,
independent of the availability of other resources. (ii) The input
data are not subjected to the typical scan cycles, limited forecast
steps, or processing and post-processing delays. Indeed, the
predictors used are commonly available in real time and they have
high temporal resolutions. Given this, the proposed ML model is
able to provide early lightning warnings with short lead-time
ranges (0–30min), as opposed to methods that have forecast
periods measured in hours. Such warnings could contribute to the
reduction of air traffic congestion at airports and to the decrease
in disruptions to energy generation from wind turbines farms.
In supervised learning, algorithms are designed to learn from a

given dataset with an already known output (training set). After
the learning phase, predictions are made on new datasets (testing
sets). In this study, we implemented the proposed nowcasting
scheme using data from 12 meteorological stations in Switzerland
between 2006 and 2017 (see Table S1 for the list of the selected
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stations). The stations were selected based on two criteria, namely
(i) the availability of both meteorological and lightning activity
data during the study period, and (ii) the fact that they are well
distributed among different ranges of altitude and terrain
topographies. Among the stations, six are located in an urban
area inside cities with altitudes ranging between 273 and 776 m
above sea level and one is the weather station at the Geneva
airport. Five out of the 12 stations are located in mountainous
regions with 3 of them having an altitude of more than 1000 m
above sea level. A common feature of the stations in Switzerland is
the presence of nearby topography, which increases the prob-
ability of storms being initiated near them. While this makes the
results presented here directly relevant to locations that
experience topographically induced thunderstorms, further work
is needed to evaluate the skill of the approach in environments
with different triggering mechanisms.
At each of these single-site meteorological stations, we first

formed a tabular database with each row containing the
observations during a specific time window with a granularity of
10-min. In each row, the corresponding meteorological measure-
ments are used as the predictors (also called features) and the
recorded lightning activity is used as the response. Once the
database was formed, pattern recognition and data mining
algorithms were employed to identify regularities between
predictors and responses using a portion of the data which, as
mentioned above, is called the training set. The model could then
use the explored correlations for nowcasting the long-range
lightning threat (within a circular area of 30 km radius around the
meteorological station) for the unseen cases (testing set). The
model predictions and observations are then compared to
evaluate the model’s prediction skill. The evaluation results are
presented by means of four common indices in forecasting rare
events described in Table 1, namely the Probability of Detection
(POD), False Alarm Ratio (FAR), Critical Success Index (CSI), and
Heidke Skill Score (HSS).
Detailed information on the data acquisition, database forma-

tion, training and testing procedures, performance evaluation
process, and the selection and generation of the applied machine
learning algorithm in this study are presented in Methods.

RESULTS

Machine Learning Model performance for long-range lightning
activity at 12 stations in Switzerland
The database consists of the observations of four meteorological
parameters with a granularity of 10 min recorded at 12 selected
meteorological stations in Switzerland over a time period ranging
from 2006 to 2017. In order to see how far in advance the
lightning alarms could be generated, three ranges for lead time
were investigated: (i) 0–10min, which corresponds to imminent
lightning activity, (ii) 10–20min, and (iii) 20–30min. At each
station, the data are labeled according to the presence or absence
of long-range lightning activity (within 30 km distance from the
station) and with respect to the three aforementioned lead-time
ranges to form Subsets 1–12 (see Table S3 for the list of studied
subsets and Methods for the description of the data gathering).
The list of stations with their geographical information is

presented in Table S1. Among the selected stations, the Säntis and
Monte San Salvatore stations have been of great interest for
lightning studies in the literature.49–52 The atmospheric data at
these two stations were gathered in Subsets 1 and 2. Figure 1
shows the visualization of the data at the Säntis and Monte San
Salvatore stations (Subsets 1 and 2, respectively) for the
0–10minute lead-time range where the inter-relation between
the considered parameters is illustrated. A recorded observation at
the start of a 10-min interval is labeled according to long-range
lightning activity in that interval as either a ‘lighting-inactive’ Ta
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sample (without any long-range lightning activity) or a ‘lighting-
active’ sample (with at least one long-range lightning activity
recorded). Figure 1 shows the probability density estimates of the
surface pressure and surface temperature for lighting-inactive and
lighting-active samples in Subsets 1 and 2 using a kernel
smoothing function. Although the visualized data suggest the
existence of different distribution patterns among the two classes,
they seem to be mixed together at both stations, which makes it
difficult to explicitly extract any classification criteria. Alternatively,
the developed machine learning model (the ML model) is used to
recognize the patterns. The machine success is evaluated in two
ways: (i) By measuring how accurately it can classify the data into
two distinct classes (lighting-inactive or lighting-active), and, (ii) by
investigating how it can improve upon three competitive base-
lines, namely the persistence forecasting method, the electrostatic
field method, and a scheme based on CAPE threshold.
To generate forecasts based on the data, the PERSISTENCE

model assumes that in every 10-min interval, the forecast is the
same as the observation in the previous interval. So, if there was
lightning in the previous 10-min period, then, according to the
PERSISTENCE model, there will be lightning in the next period too.
The persistence forecast represents a realistic and applicable
competitive option against the ML model, since the preceding
lightning activity is continuously stored by lightning location
systems around the world. If one wanted to predict whether there
will be lightning in the next 10-min interval based on the
PERSISTENCE model, it would be possible to check the online

lightning and thunderstorm detection networks and see if there
was any lightning activity recorded in the previous time interval.
Note that the prediction for the second and third lead-time ranges
was carried out using the observed lightning in the 10-min
interval prior to the forecast time, which is the same interval that
was used to forecast for the 0–10min lead time.
Electrostatic field readings have shown to be affected both

before and during the thunderstorm due to the approaching
charge centers, their rearrangement inside the thunderclouds, as
well as cloud electrification and rearrangement of space charge in
the atmosphere.53 Some previous studies have used these
variations to forecast approaching lightning activity.53–55 The
electrostatic field method (the E-FIELD model) used in this study is
based on detecting when the vertical electrostatic field (E(z))
exceeds a specific threshold to issue the warning. The correspond-
ing threshold used by the E-FIELD model for each subset and lead
time is defined in a way that the CSI is maximized. The choice of
CSI as the optimization criterion is mainly based on its inherent
consideration of both, POD and FAR and, hence, it is suitable when
a trade-off between these two is desired. Among the selected
stations, the Säntis station was the only one equipped for vertical
electrostatic field measurements. These data were available from
August 2016 to July 2018. Hence, the performance results for the
E-FIELD model are presented in Fig. 2 only for the Säntis station
and from August 2016 to December 2017 to also match with the
time period of this study.

Fig. 1 Probability density estimates of the surface pressure and surface temperature for lighting-inactive and lighting-active samples in
Subsets 1 and 2 using a kernel smoothing function. The Subsets 1 and 2 include observations of four meteorological parameters respectively
at Säntis and Monte San Salvatore stations from 2006 up to 2017 with the granularity of 10min. The corresponding lead-time range is
0–10min. Thus, a recorded observation at the start of a 10-min interval is labeled according to lightning activity in that interval as either a
‘lighting-inactive’ sample (without any long-range lightning activity) or a ‘lighting-active’ sample (with at least one long-range lightning
activity recorded)
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Not having direct measurements of the electrostatic field at
stations other than the Säntis, we considered a CAPE model in
addition to the PERSISTENCE model as the competitive schemes
for the proposed ML model. The CAPE model uses a threshold of
Convective Available Potential Energy (CAPE) to assess the risk of
lightning. Assessing the level of CAPE which is well understood to
be reflective of environments favorable to the development of
lightning,22,24,56 the CAPE model would be a more objective
comparative scheme. Similar to the E-FIELD model, the corre-
sponding threshold for each subset and lead time is defined in a
way that the CSI is maximized. The CAPE model’s performance has
been found to have low sensitivity to the selected threshold. For
example, at the Säntis and Monte San Salvatore stations, the CSI
changed respectively less than 7.5 and 5% for a ± 30% change in
the threshold value at each of the lead time ranges. As mentioned
in the Data Section, in this study, the CAPE data are retrieved from
the ERA5 hourly reanalysis data on single levels provided by the
European Centre for Medium-Range Weather Forecasts (ECMWF).
The temporal resolution of the available CAPE data was originally
1 h. To make it consistent with the granularity of the meteor-
ological parameters, which is 10min, one possibility was to
interpolate the data for missing 10-min time frames. While this
interpolation would increase the number of available samples to
be used by the CAPE Model, it might also negatively affect its
performance skill due to possible inaccurate interpolation of
samples for this highly variable and hard to measure parameter.
Consequently, the CAPE model was only tested on the 10-min

intervals for which the CAPE data were originally available without
any temporal interpolation.
The performance results for the ML model and the three

baselines are presented in Fig. 2 for the Säntis and Monte San
Salvatore stations. The four selected evaluation metrics shown in
the figure are introduced in the Methods section and a summary is
given in Table 1. Based on the results at both stations, the ML
model has consistently higher scores than the three competitive
models for all three lead-time ranges. The results from Fig. 1 show
clear differences in both the absolute recorded values and the
distribution patterns of data at the two stations. However, the
performance results for the ML model at the two stations in Fig. 2
exhibit similar evaluation results. In other words, although the
atmospheric data for both, lighting-inactive and lighting-active
classes have different ranges of values and are distributed
differently at the two stations, the ML model was able to learn
from the local patterns and predict with reasonable accuracy at
both stations. Indeed, the results for the POD index at both
stations reveal that more than 71% of the lighting-active samples
are classified accurately.
It is worth noting that the accuracy of classification is not only

important as a measure of prediction skill but it also accounts for
how successful the ML model is in finding the complex
correlations in the data. Low accuracy in the model does not
necessarily imply that there is no correlation in the data since the
low accuracy might be attributable to deficiencies in the model.
High model performance, in contrast, is an indication of a strong

Fig. 2 Evaluation of the skill of warnings of long-range lightning activity for three ranges of lead times at a, b, c Säntis (Subset 1) and a′, b′, c′

Monte San Salvatore (Subset 2) station. The results from ML model are shown as solid black columns, results from PERSISTENT model are
shown as columns filled with dot patterns, results from CAPE model are shown as columns filled with vertical lines, and results from E-FIELD
model are shown as solid gray columns (POD: Probability of Detection, FAR: False Alarm Ratio, CSI: Critical Success Index, HSS: Heidke
Skill Score)
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correlation pattern between the predictors and the response and
also of the capability of the model to recognize such patterns.
Using the feature reduction method, the impact of excluding

individual variables from the ML model input was investigated on
each metric for the two subsets. The sensitivity is calculated using
the following equation,

S ¼
mwo �mw

mw
´ 100 (1)

where S is the sensitivity of each one of the four metrics to a
specific feature, mwo and mw are, respectively, the values of the
metric with and without the feature included in the ML model. A
positive value for S means that the associated index would
increase if that feature is not included in the study. If the majority
of the indices show positive sensitivity to a particular feature, one
could get better results if the feature is excluded from the
predictors list. Looking at the sensitivity results for the long-range
activity and for the three investigated ranges of lead time, no such
feature could be found. This suggests that the best result is the
one with all meteorological variables included.
The results in Fig. 2a–c for the CAPE model show a similar

performance for all three lead-time ranges compared to the ones
for the E-FIELD model. Both models show low POD and very high
FAR values at all three lead-time ranges. On the other hand, the
results shown in Fig. 2a, for example, indicate a good prediction
skill for the PERSISTENCE model for the imminent threat warning.
This noticeable lack of skill for the E-FIELD model at such lead time
ranges has already been reported in the literature. For example,
Aranguren et al.54 analyzed the skill of a lightning warning system
based on the measurement of the electrostatic field in North-
eastern Spain. Using a threshold-based lightning warning system,
the FAR was around 90%, and the POD was between 10 and 70%
based on the low and high threshold levels. Analyzing 7 storms,
they also reported that the best achieved lead time for the
forecast was <6.5 minutes.
The results in Fig. 2 show how the model’s nowcasting skill

changes when a longer forecast time is required. This is important
to give sufficient time for the safety actions to be undertaken.
Comparing results in Fig. 2a′, c′ shows that the PERSISTENCE
model is more sensitive to the increase of lead time compared to
the CAPE and the ML models. The results from the PERSISTENCE
model show 12% drops in each, POD, CSI, and HSS, and a 12%
increase in FAR compared to the 0–10min lead time, whereas the
performance of the CAPE and the ML models is not affected by an
increase in the lead time. In other words, the results in Fig. 2
suggest that, although looking at the preceding lightning activity
records (i.e. what is done by the PERSISTENCE model) is good
enough to warn for the very near future lightning threat
(0–10minute lead time), this would not be reliable in most of
the applications where longer forecast times are needed. On the
other hand, the ML model ensures that the accuracy of its
warnings up to 30minutes in advance will be maintained.
While nowcasting rare events, special emphasis needs to be

given to the no-event cases, which dominate the dataset. Since
no-event instances represent the majority of the samples, lacking
the skill to correctly classify them would lead to a large number of
false alarms. According to the results for FAR in all subsets of Fig.
2, the ML model is seen to perform much better than the other
models concerning the correct rejection of no-events.
Although the sensitivity analysis described in Eq. 1 gives

insights into each predictor’s importance in the ML model
performance, its value often varies from one metric to the other,
which makes it difficult to rank the predictors in the sense of their
overall importance. To bridge the gap, the predictors importance
estimates calculated by the ML model could be used to rank the
predictors. As explained in Methods, the learning process was
done by growing an ensemble of decision trees. To grow each of
these trees, the ML model starts from the root and creates

decision nodes and branches by calculating the split gains. The
model would then be able to estimate the predictor importance
by summing the changes in the risk due to splits on every
predictor and dividing the sum by the number of branch nodes.
The predictors importance associated with each split is computed
as the difference between the risk for the parent node and the
total risk for the two children.57 To compare the predictor rankings
due to their importance at different stations, the importance
estimate of each predictor is computed relative to the sum of the
estimates for all predictors in that study, calculated as

impi %ð Þ ¼
impi

P4
j¼1 impj

´ 100 i ¼ 1; ¼ ; 4 (2)

where impi is the absolute value of the importance estimate for
predictor i. These predictors importance estimates are reported in
Fig. 3 for studies at each station. All statistics and results presented
in this figure are presented for a lead time of 0–10min. One
should note here that the predictors importance does not relate to
the model accuracy and it just relates to the importance of each
predictor in making a prediction, not whether or not the
prediction is accurate.
The result in Fig. 3 indicates that at most of the stations, for the

prediction of the long-range lightning activity, the variation of
the surface pressure, relative humidity, and surface temperature
were more important than the wind speed. The dependence of
the long-range model performance on these parameters can be
explained as follows: the impact of the surface temperature can be
attributed to the fact that anomalously high local temperatures
are more likely to be associated with instability. This parameter
could also be important due to the arrival of the gust front (cooler
temperatures), or higher CAPE at the meso-scale. High relative
humidity suggests a higher chance of having sufficient moisture
supply to generate deep convection, as well as being related to
instability of the environment. The surface pressure identifies local
troughs propagating through. Alternatively, the increases or
decreases of pressure perturbations could be associated with
the propagation of a gust front. Results indicate that the wind
speed was also found to be useful by the classifier. In the long-
range, it might be important due to the fact that large organized
systems may induce strong winds far from the charging regions of
the storms. The fact that the predictors importance estimates
change from one station to the other might indicate that the
models for individual stations may offer new insights into the
relevant processes locally.

Fig. 3 Predictors importance estimates for long-range lightning
activities. The result includes both studies at individual stations and
over all stations. The data from individual stations are standardized
according to their local mean and deviation before they are
included in the overall study. The presented results correspond to
the lead time of 0–10min
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Distribution patterns of data among different stations
As stated in the Introduction, the involved stations are selected
from regions with different topographies and altitudes. In order to
see how these differences affect the distribution patterns of data
among the stations, the probability density functions (PDFs) of
each parameter in the lighting-active class for all 12 stations are
compared in Fig. 4. The PDFs are plotted using each of the data
Subsets 3–14 and with a lead time of 0–10min. The reason for
choosing these data subsets is that each one of them includes
data from an individual station and it has the same temporal
coverage as the others (2006–2017). The choice of a lead time
range of 0–10minutes accounts for the imminent lightning
activity at each interval. One should note here that in order for
the results to be comparable between stations, the data in the
subsets were standardized. The standardizing function shifts the
mean of each predictor to zero and scales the predictors by their
standard deviations. The distribution patterns of the lighting-
active samples for all 12 stations are also visually illustrated in Figs
S1–S4. Looking at the PDF plots and the distribution patterns for
all stations suggests the existence of two groups: (i) Group A,
including 10 stations with their altitude lower than 1050m above
sea level, and (ii) Group B, which includes the remaining two
stations with higher altitudes (Säntis and La Dôle). Figure 4 shows
that the probability density of surface pressure and relative
humidity are different in the stations belonging to Group A and
Group B. These differences in the densities can be clearly seen in
the distribution patterns shown in Figs S1–S4, where the lighting-

active class data in Group B are clustered around higher pressure
and higher relative humidity when compared to Group A. Looking
at Table S1, one can find the potential reason for this difference in
the patterns. Säntis and La Dôle are the sites with the highest
elevations in the dataset and are approximately 2000m and
1100m higher than the bulk of the other sites. The altitude
differences have a considerable effect on pressure, temperature
and wind speed and, therefore, we have performed a more
detailed investigation on these sites.
To better understand these differences, the principle compo-

nent analysis (PCA) is used to explain the distribution patterns of
individual features in different subsets. PCA is a data mining tool
that transforms a number of interrelated variables into a new set
of uncorrelated variables called principle components (PCs), while
retaining as much as possible of the variation that exists in the
original data.58,59 The first principal component retains most of
the variations in the data, and each succeeding component
accounts for as much of the remaining variability as possible. The
Singular Value Decomposition (SVD) algorithm is used to perform
the PCA analysis on data from individual stations (Subsets 1–12).
At each station, the first two Principal Components (PC1 and PC2)
are kept. Figure S5 shows the percentage of total variance
explained by each of these two leading PCs. Furthermore, the
contribution of each original variable to each principal component
is defined by sets of coefficients. Figure 5 shows the loadings of
each variable on the first two components (PC1 and PC2) for all
12 stations. In each subplot, the two stations with the highest

Fig. 4 Comparison of probability density functions (PDFs) of each parameter in lighting-active class samples of Group A and Group B. The
corresponding lead-time range is 0–10min. For the sake of comparison, the parameters values at each station are standardized based on the
local mean and standard deviation values. The standardizing function puts mean of each parameter at zero and scales the parameters by their
standard deviations
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distance from the center of the main cluster are defined using
cluster analysis and marked as red dots. Looking at the four
subplots, it can be seen that, in all cases, black and red dots
correspond exactly to stations of Groups A and B, respectively. In
other words, Group B stations show quite different PC1 and PC2
coefficients in all variables compared to Group A. The results
suggest different patterns of distribution between the two groups
and they confirm what was visually concluded earlier from Fig. 4,
Figs S1–S4.

Change of distribution patterns over time
Further analysis of the data showed that these pattern variations
are not limited to geographical characteristics. Mining the data for
all stations on an annual basis using PCA reveals that patterns of
distribution for stations belonging to Group B have changed
widely from year to year while Group A stations exhibited only a
slight change. In this regard, each of the Subsets 1 to 12 was split
into 12 segments, each assembling the data for one year between
2006 and 2017. Then, the PC1 and PC2 coefficients were plotted
and the differences in feature contributions were observed from
year to year. Figure 6 presents the results for one representative
station of each group, namely Zurich from Group A and Säntis
from Group B for a lead-time range of 0–10min. The results for the
other two lead-time ranges are presented in Fig. S6.

DISCUSSION

Early warning systems are useful to help prevent effects of
lightning strikes to critical infrastructure, sensitive equipment or

systems, and outdoor facilities. Taking advantage of both, the
large amount of available data for meteorological parameters and
advances in data mining and knowledge discovery, we used KDD
techniques to investigate the correlation between lightning and
selected meteorological parameters and thus warn against the risk
of long-range lightning activity. To do that, the machine was
programmed to automatically extract and learn hidden regula-
tions inside previously labeled data in order to predict the labels
for unseen data. These regulations could be any information in the
data that the machine could use during the training process to
learn a target function that best maps the input variables to the
output. The evaluation results for 12 locations in Switzerland
revealed that, by looking at values for four principle meteorolo-
gical parameters, the ML model was able to warn with a
reasonable accuracy of future lightning activity up to 30min in
advance and in an area of 30 km around the observation point.
For each station, the ML model has been set up to predict

lightning activity in three future forecast times: (i) the interval from
the present to 10 min into the future which corresponds to
imminent lightning activity, (ii) the interval between 10 and
20min into the future, and (iii) the interval between 20 and 30min
into the future. These lead-time ranges are likely shorter than the
lifetime of many thunderstorms, organized systems, or isolated
storms. This implies that the ML model is looking at the changes in
the local surface conditions leading to the occurrence of lightning
within the storm life cycle, and this applies to any kind of storm.
Given the fact that isolated storms (short-lived, topographically,
and diurnally forced) and propagating organized storms (longer-
lived) can both lead to lightning, a strength of the ML model is

Fig. 5 The contribution of individual variables to the first and second principle components for all 12 stations during 2006–2017. In each
subplot, data for two stations with the largest distance from the cluster center are annotated in red and the rest are presented in black. The
corresponding lead-time range is 0–10min
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that it is capable of accounting for different situations leading to
lightning generation, with the caveat that the different situations
need to be discernible in the input data.
As discussed in the Methods section, the main challenge in

developing the appropriate predictive scheme was the high
imbalance seen between lighting-inactive and lighting-active
classes. The situation gets even worse when the lead time is
increased. This high level of imbalance not only highlights the
need for special techniques in developing the machine learning
algorithm, but also requires specific considerations for model
performance evaluation. For the considered lightning prediction
application, the cost of misclassifying lightning-inactive samples is
much less than that for lighting-active ones. The average of PODs
for the studied local subsets showed that more than 76% of the
long-range lightning threats were correctly predicted by the ML
model up to 30min in advance.
Unlike some lightning warning systems that are based on data

from lightning detection networks,55,60 the ML model provides a
tool for building lightning nowcasting schemes without using
nearby or preceding lightning data as the precursor of the
imminent threat. In other words, it does not rely on the first
detection of the lightning for generating the warnings. Instead, it
uses the lightning location systems’ data for labeling the archived
data and thus training the model with historical data. Once
trained, the model does not need such data to predict lightning
occurrence risk in future time windows.
Compared to other conventional warning techniques, the

machine learning approach also offers automatic extraction of
regulations and it does not require advanced background
knowledge about the predicted task. Although the ML model
eliminates the need for manually adjusting the thresholds or
prediction criteria due to automatic detection of regulations, it is
susceptible to changes that might occur in the environment and
that may affect the extracted rules by the model during the
training process. For example, an increase in the number of tall
buildings nearby and weather and climate changes might alter
the dependencies found by the model between predictors and
response. On the other hand, the ML model could be readily
updated to the new situation with the required periodicity using
new achieved data.
Although some vulnerable sites such as airports and space

centers need to warn for total lightning activity (both CG and IC

flashes), being able to split the warnings for each type of flash
would, in general, be a desirable feature in an early lightning
warning system. The ML model presented in this study does not
differentiate between the various types of lightning flashes. The
reason is that the available data from lightning location systems
used to train the ML model have no distinction between cloud-to-
ground (CG) and intra-cloud (IC) flashes. However, one could
evaluate the skill of warnings for different types of lightning
activities by training the model separately using data from each
flash type. The application of the method to the task of forecasting
different types of lightning is beyond the scope of this work and
will be dealt with in future research.
Although no data were available for direct comparison with

other state of the art lightning warning approaches based on
radar or satellite, their performance results are reported in the
literature. For example, Seroka et al.31 investigated the use of
optimized radar-derived predictors along with IC flashes to predict
CG lightning over the Kennedy Space Center. The values obtained
for POD, FAR, CSI and the average lead-time for the two leading
predictors of CG flashes were, respectively, 78%, 35%, 55%, and
2.4 min for IC as the predictor, and 78%, 46%, 47%, and 6.4 min for
a radar reflectivity value of 25 dBZ at −20 °C as the predictor.
Taking advantage of the wide range of input data including radar
and satellite observations, ground measurements of the electric
field, data from lightning location systems, sounding instruments
with synoptic pattern forecasting products and a two-dimensional
charge-discharge model, Meng et al.61 made an integrated system
to predict lightning within the upcoming 0–60min. The now-
casting system gives the probability of lightning occurrence in
grids of 1 km × 1 km and in 15-min lead-time steps. The
probabilities above 25% lead to early warnings. The verification
results for the issued warnings during 16 thunderstorms in Beijing
and the surrounding area show that the mean values for the POD
score drop from 49 to 37%, the FAR score increases from 67 to
77% and the CSI score decreases from 24 to 16% while coming
from the minimum (0–15min) to the maximum lead-time range
(45–60min).
The primary goal of this study was to examine the effectiveness

of using single-site meteorological observations to train machine
learning algorithms for nowcasting lightning and warning against
the lightning threat. Secondarily, data mining techniques were

Fig. 6 The contribution of individual variables to the first and second principle components from 2006 to 2017 for a Zurich station (as an
example of Group A) and b Säntis station (as an example of Group B). In each subplot, the horizontal axis is the coefficients for PC1 and
vertical axis is coefficients for PC2. The corresponding lead-time range is 0–10min
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used to further investigation of possible geographical and
temporal dependencies in the data.
Explaining the reasoning behind the machine decisions to

humans can be difficult because they often do not make use of
the same intermediate abstractions that humans use.62 This kind
of issues, in turn, could be addressed by the interpretable machine
learning. Interpreting machine learning aims to increase the
model transparency and thus make it more useful and trustable by
giving explanations for model predictions. For example, applying
interpretation techniques could reveal an explanation of the
hidden trends found by the ML model once it is implemented at
stations in different climate zones. Comparing the basis for model
prediction in different stations would shed light on whether there
are different regulations that correlate meteorological parameters
to lightning activity or not. Such kind of findings would be
obviously more valuable when more relevant atmospheric
parameters to lightning initiation available in satellite and radar
data are used as the predictors. This would enable the machine
learning approach to better contribute to a further understanding
of lightning and atmospheric interactions.
The use of surface measurements as input data in this study

does not put any limitation on other relevant parameters to be
used by the ML model. Large amounts of atmospheric data are
available from numerical model outputs, atmospheric soundings,
satellite and radar observations. Given this and also the fact that
lightning activity is now readily detected with high spatiotemporal
resolution by means of space-borne instruments and ground-
based lightning location systems, an extensive amount of work is
in progress by the authors to apply the machine learning
approach to provide lightning predictive schemes (i) capable of
estimating the flash rates as well as the lightning threat itself, (ii)
with large spatial coverage, and (iii) with good skill for lead times
up to 24 h. However, for the first-stage research presented in this
study, we restricted our efforts to the selection of surface data
since we wanted the scheme to be easy to implement and widely
applicable to a variety of vulnerable sites. In fact, the idea behind
the choice of input variables for this early warning scheme in this
study was to use types of predictors that are commonly available,
that have a high temporal resolution, and that are easy and fast to
retrieve in real time.
Rapid increases in total lightning activity have been demon-

strated to be a precursor for the occurrence of severe weather at
the ground.63 As a potential application, the proposed ML model
could be trained to provide an early indication of severe weather
events other than lightning at short time scales. Such a model
could be evaluated alongside the lightning jump algorithm.64

Even though we have not used real time data in this study, the
selected meteorological parameters are available from Personal
Weather Stations (PWS) with refresh rates of <2 s. Being small,
precise, and easy to install and operate, individuals often own
these devices and upload the data to an online platform aiming to
improve weather forecasting.65,66 Given the fact that these sensors
measure all four predictors needed by the ML model, it could be
easily integrated into these devices. In this regard, PWSs would be
converted to an accurate early lightning warning system at any
arbitrary point of interest while keeping their main functionality as
weather stations.

METHODS

Data gathering
The dataset used in the ML model consists of data used as predictors,
namely available meteorological data (air pressure, air temperature,
relative humidity, and wind speed) and lightning activity data as the
response. Vertical electrostatic field data measured by the E-field mill
device at one of the stations and Convective Available Potential Energy
(CAPE) are also gathered and used as predictors and competitive baselines
in this study.

The spatial and temporal coverage of the study was set according to the
availability of both atmospheric and lightning data. Furthermore, and
considering the effects of the terrain topography and topological effects
on the lightning incidence,51 the stations were selected to be properly
distributed among different ranges of altitude and terrain topographies.
The time interval of the study was set to 2006 to 2017 (12 years) and
12 stations in Switzerland were selected. Note that the vertical electrostatic
field data were only available at the Säntis station from August 2016 to July
2018. In order to use these data, the time coverage at that station was
therefore extended up to July 2018. More information about the selected
stations is presented in Table S1. The used data are described in what
follows.
In this study, data on surface air pressure at station level (QFE), air

temperature 2 m above the ground, relative air humidity, and wind speed
were obtained from the Swiss Federal Office of Meteorology and
Climatology (MeteoSwiss) online database and they were measured by
the automatic monitoring network of MeteoSwiss (SwissMetNet). Swiss-
MetNet now comprises 160 measurement sites equipped with high-
precision measurement instruments and state-of-the-art communication
technology. The measurement instruments and respective sources of
errors are listed in Table S4. All devices in SwissMetNet comply with the
standards of the Word Meteorological Organization (WMO) regarding
location selection, measurement height, and the degree of measurement
precision.67 The measurement data from each station are automatically
transmitted to the MeteoSwiss central database, where various quality
assurance checks are performed. In the MeteoSwiss data warehouse,
measurement data are processed and systematically reviewed on a
continuous basis. Measurement gaps are filled, additional parameters are
calculated and corrections are made.68 The pre-processing stages applied
to the measurement values from the station to the end user are illustrated
in SwissMetNet user guides.68,69

The minimum available granularity level of meteorological data in
SwissMetNet is 10min. As a result, the time period of the study is
quantized into 10-min intervals. For each interval, the observation records
at the starting point are assigned to the predictor fields in the database.
Raw surface data contain numerous unrelated trends that are likely to

reduce the ability of the model to find useful regulations. Hence, removing
seasonal and diurnal dependencies would help more useful meteorologi-
cal signals to stand out. Note that two different de-trending algorithms
were tested. However, they were not used since they were shown not to
provide any gain in the prediction performance.
The data from lightning location systems are used to first train the ML

model and then to validate the accuracy of lightning warnings that it
generates as well as the competitive base lines. MeteoSwiss receives
lightning localization data from the Météorage company to detect and
locate lightning discharges.70 Météorage is a part of the European
Cooperation for Lightning Detection (EUCLID), which is a network of
Lightning Location Systems (LLS) operating in western Europe. Detailed
information on the EUCLID network can be found in Azadifar et al.71 and
Schulz et al.72 The average flash detection efficiency for the used datasets
in this study is reported to be 95% for cloud-to-ground (CG) flashes and
45% for intra-cloud (IC) flashes.73 The system measures in real time the
angle of incidence and the arrival times of the radiation fields at a network
of ground-based measurement stations using LS7001 sensors from
Vaisala.74 The signals are received in the low frequency (LF) band
(1–350 kHz).74 The accuracy of the locations mainly depends on the
uncertainty of the arrival time measurements, the background noise level
in the operating frequency band, and the number and positions of the
stations used to obtain each solution. The arrival times are measured
independently at each station using an accurate time base provided by a
GPS receiver.75 The system then combines the data received from all
stations to provide a detailed analysis of individual flashes with 100ms
accuracy for the time of strike. It also provides the shape and size of the
ellipse that can be said to contain the location of the strike with a 90%
level of confidence.76 In 2017, the median accuracy of detections was
reported to be 100m in Western Europe.74 In this study, we do not aim to
warn for each individual flash, but to warn of the risk of having lightning
activity within a 10-min interval (aka a dichotomous decision basis). Thus,
we do not explicitly import the time stamp and location of each individual
recorded flash into the model. Instead, we look at total lightning activity in
each 10-min interval for which we have the meteorological observations
available. To do that, based on the distance of each recorded flash from
each MeteoSwiss station, the flashes were labeled as long-range lightning
activity if they had occurred within an area of radius 30 km surrounding
the station. The lightning activity corresponding to each 10-min interval in
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the database was assigned to “Yes” (lighting-active class) if at least one
flash was recorded in that interval and in the selected area around the
station, otherwise it was assigned to “No” (lighting-inactive class). This
labeling method also enables us to give lead times to the generated
warnings. To do that, the data from preceding observations of
meteorological parameters should be used to make the prediction for
the following intervals.
CAPE data are retrieved from the ERA5 hourly reanalysis data on single

levels provided by the European Centre for Medium-Range Weather
Forecasts (ECMWF).77 ERA5 is the fifth major global reanalysis produced by
ECMWF where, every 12 h, observations from across the world are
combined with the previously generated forecast to produce the most
accurate state of the atmosphere at a given point in time. Reanalysis
estimations are made at each grid point around the globe over a long
period of time with regular time steps and always using the same format.
The provision of such estimates makes reanalysis data convenient to work
with in this study, especially since we need the data to be uniformly
estimated during 12 years. The horizontal resolution of ERA5 data is
0.25° × 0.25° and the temporal resolution is 1 hour. According to the
ECMWF parameter database,78 CAPE is calculated by considering parcels of
air departing at different model levels below the 350 hPa level. The
maximum CAPE produced by the different parcels is the value retained.
The calculation of this assumes: (i) that the parcel of air does not mix with
surrounding air; (ii) that ascent is pseudo-adiabatic (all condensed water
falls out), and (iii) other simplifications related to the mixed-phase
condensational heating.
It can be seen that the spatial resolution roughly matches with the

considered long-range activity (30 km) but the locations of the 12
meteorological stations do not necessarily match with the center of the
grid for which the reanalysis data are available. In this regard, at each
station, the data from 9 neighbor grids imported from the ERA5 are used
to interpolate the value of CAPE for the area of interest corresponding to
long-range activity in this study, i.e. 30 km surrounding each station. In
addition, the temporal resolution of 1 h for the reanalysis data does not
match with the one from meteorological data (i.e. 10 min). Hence, in
addition to the data with the original resolution of 1 h, another version of
data is generated where the missing values for 10-min steps are linearly
interpolated. Both versions of data are used in the study and the findings
are reported in Results.
Among the selected stations, the Säntis tower was the only one

equipped with vertical electrostatic field measurements. The mountain
summit has been used as a meteorology station since 1881. In the 1950s,
the site was selected for the installation of an 18-m tall radio and TV
transmitting antenna that was erected at its summit in 1955 and was
replaced by a taller, 84-m tower in 1976. That tower was itself replaced in
1997 by the current tower, which is 124 m tall. Since 2010, this tower is
instrumented for lightning current measurements using advanced
equipment including remote monitoring and control capabilities.79–81

An EFM-100C RS485 BOLTEK E-field mill has been installed since 15 July
2016 to measure the vertical electrostatic field in the immediate vicinity
of the Säntis tower. This electro-mechanical device measures the
amplitude of the vertical static electric field (E(z)) at the installation
point. The distance between the installed field mill and the tower base is
about 20 m. The system is set to record the field continuously with a
sampling time of 50 ms. The highest range of electric field that can be
recorded is ±20 kV/m.82

The Electric Field Mill (EFM) sensor not being located over a perfect flat
ground, the electric field measurements could be affected by the
environment. In addition to that, the surrounding objects such as buildings
and tall objects could partially shield the electric field which would
consequently affect the measured electrostatic field values. Hence, a
correction factor, k, was considered to correct the measured values due to
these possible sources of error. In this study, the correction factor was
determined by comparing the measured values of the vertical electrostatic
field with simulated results obtained using COMSOL Multiphysics software
for fair weather. The simulation model incorporates the exact terrain
topography at the mounting location of the sensor. The modified data are
then used as predictor by the E-FIELD model to provide a competitive
baseline for the ML model. The value corresponding to the maximum
recorded amplitude of the vertical electrostatic field during each 10-min
interval was considered and assigned to the electrostatic field parameter
for the corresponding interval in the database.
Once the database was formed, we partitioned the data at each station

into two parts: (i) Data Part 1, including the first four years of data (from
2006 to the end of 2009) and (ii) Data Part 2, including the data for the

remaining 8 years (from 2010 to the end of 2017). We then used the first
part to do the model search and tune the model and its hyperparameters
(Stage #1), and withheld the second part to do the final evaluation
(including both training and testing) using the information derived during
the first stage (Stage #2). Doing this greatly decreases the risk of overfitting
since the data used for the final performance evaluation (Data Part 2)
remained independent from the part that was used for model search and
tuning processes (Data Part 1). What follows describes the model selection,
generation, tuning, training, and testing procedures.

Stage #1: model selection, generation, and tuning
All gathered data subsets in this study are featured as high dimensional
and multivariant datasets. In Fig. 7, the data subset 6 using a parallel
coordinates plot can be visualized. The plot maps each row of data as a
line. The orange lines correspond to the lighting-active class and the blue
lines are the data from the lighting-inactive class. Looking at the
distribution of these two classes in each of the coordinates, the plot
shows that the two classes are highly mixed in all coordinates and no
explicit distinction could be found. Similar high complexity was found as
well in other data subsets summarized in Table S3. Further to this
complexity, after labeling each piece of data using the aforementioned
procedure in Data gathering section, the two classes turned out to be
highly imbalanced at all stations. The imbalance was expected since
lightning-active periods throughout the year are rare compared to periods
devoid of lightning. Due to this high imbalance seen in the data, an
extensive model search process was carried out to choose the most
appropriate machine learning classification model based on Data Part #1 at
each station. To do this, the TPOT Python Automated Machine Learning
tool83 was used (i) to choose the best-fit model, and (ii) to tune the
hyperparameters of the model at each station. When applied to a certain
dataset, the AutoML approaches automatically explore lots of possible
machine learning pipelines and build the one with competitive classifica-
tion accuracy for that specific task.84 The results drawn from separate runs
at each of the stations and for each of the three lead-time ranges indicated
that the best performance would be achieved using the XGBoost
algorithm. XGBoost30,85 stands for “Extreme Gradient Boosting” and it is
a variant of the gradient boosting machine which uses a more regularized
model formalization to control overfitting.
To do the classification, the XGBoost algorithm generates an ensemble

learner out of individual classification trees using a scalable tree boosting
system. Ensemble learners use multiple learning algorithms to obtain
better predictive performance than could be obtained from any of the
constituent learning algorithms alone called weak learners.86,87 Weak
learner is an algorithm that generates classifiers that can merely do better
than random guessing. In order to design an ensemble system, three
questions need to be answered: (i) How will the individual classifiers (base
classifiers) be generated? (ii) What is the number of ensemble members?
and (iii) what is the ensemble aggregation method? What follows briefly
describes the framework for ensemble learning used in this study.
In this study, we used classification trees as the weak learners.

Classification trees are decision trees which predict a response following

Fig. 7 Parallel coordinates plot from data subset 10. The mean of
each predictor is set to zero and the predictors are scaled by their
standard deviations. Each line represents a recorded observation at
the start of a 10-min interval and is labeled according to lightning
activity in that interval as either blue (without any long-range
lightning activity) or orange (with at least one long-range lightning
activity recorded)
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the decisions in the tree from the root node down to the leaf nodes where
the responses are. Figure 8 shows an individual decision tree made by the
model at an arbitrary iteration number. The flow of data points is split at
each node based on the condition at each internal node. Each data point
flows to one of the leaves following the direction on each node. When a
data point reaches a leaf, a weight is assigned to it as the prediction score.
The predictive algorithm would then combine the prediction scores that
each data point gains from the ensemble members to make the final
decision about the class to which it belongs, whether lighting-active or
lighting-inactive. For ease of presentation, the maximum depth of the tree
is limited to 3 in Fig. 8. In the real training, however, the parameters are
tuned using hyperparameter tuning skills.
Boosting is a machine learning ensemble algorithm that is based on the

idea that a weak learner can be turned into a strong learner that generates
a classifier that is arbitrarily well-correlated with the true classification.
Most boosting algorithms consist of iteratively learning weak classifiers
and adding them to a final strong classifier. At each iteration, the algorithm
attempts to construct a new model that corrects the errors of its
predecessor. Hence, the next weak learner will learn from an updated
version of residual errors.
The XGBoost algorithm is called gradient boosting since the objective

function is optimized using the gradient descent algorithm before each
new model is added. The objective function consists of two terms: The loss
function, which is put as a measure of the predictive power, and the
regularization factor, which controls the complexity of the model which
helps to avoid overfitting. At each iteration, the algorithm needs to solve
two key problems: (i) How to define the structure of the next weak learner
(decision tree) in the ensemble so that it improves the overall prediction
skill, and (ii) how to assign the prediction scores to the leaves. The
algorithm uses gradient descent to solve these two problems. To build a
tree, the algorithm greedily enumerates the features and finds the best
splitting point by calculating the split gains. After each split, it assigns the
weight to the two new leaves grown on the tree. This process continues
repeatedly until the maximum depth is reached. The algorithm then starts
pruning the tree backwards and removes nodes with a negative gain.
More information about the XGBoost algorithm including the definition

and calculation of the loss function, regularization function, and split gain
can be found in Chen and Guestrin85 and Chen and He.30

For each subset of the data, some hyperparameters of the model such as
the number of trees or iterations in the ensemble (number of learners), the
rate at which the gradient boosting learns (learning rate), and the depth of
the tree (maximum depth), were optimally selected using both manual and
AutoML approaches.
In the manual approach, the model was first initialized with a set of

hyperparameters. Second, using 4-fold cross validation,88 we repeatedly
split Data Part 1 at each station into four folds (groups) in a way that each
group contains the data from a specific year. The XGBoost model was fitted
on the data from 3 years (training set) and evaluated on the data from the
remaining one year (validation set). This process is repeated until each
group (each year of data) had been assigned once as the validation set. At

the end, the results from all four runs were summarized to give the overall
classification skill. The hyperparameters of the model at each station were
tuned in order to improve the summarized cross validation scores. The
AutoML approaches, in turn, do an intelligent search inside the
hyperparameter space sweeping a broad range of possible combinations
to find the optimized set of parameters that perform best on the given
data (Data Part 1 at each station).84

Given the large temporal coverage and high temporal resolution of the
gathered data, it is common that the data contains noise and outliers due
to for instance to measurement errors. Removing the noise and outliers
allows the learning algorithm to learn more accurate classification criteria
and helps to provide better evaluation of the classification quality. We took
advantage of the ML model evaluation results in Data Part 1 to find the
conditions when the model has poor performance by looking at a random
number of the misclassified instances. We then identified criteria that
could explain these conditions and used them to identify samples in Data
Part 2 with similar conditions to those of the outliers in Data Part 1. These
samples were then removed from Data Part 2 with the presumption that
the ML model would have no skill under those conditions. As a result of
this filtering process, at some of the stations, a small portion of data (the
size varied between 4 and 6% of the total data at each station) remained
un-fitted and, hence, excluded from the final training and testing
procedure based on Data Part 2. It is worth noting that the criteria to
identify and filter the outliers on final evaluation were derived based on
Data Part 1 and the filtering was done before the training and testing
procedure based on Data Part 2. One should also note here that since this
filtering process starts with selecting a random number of the misclassified
samples in Data Part 1, different executions may lead to different results.
More work is underway to optimize this process and to make it fully
automatic.

Stage #2: training and testing procedure
As mentioned in the previous section (Stage #1), to do the final evaluation,
the predictive ML model was trained and tested based on Data Part 2. To
do this, at each station, Data Part 2 was split into different groups in such a
way that each group contained the data from an individual year. As a
result, each observation in the dataset was assigned to an individual group
and remained there for the duration of the training and testing process.
For each unique group, the group was held out from the dataset as the test
set and the training was done using the remaining groups as the training
set. The XGBoost model with the hyperparameters already optimized
based on Data Part 1 was then fitted on the training set and evaluated on
the test set. The prediction results on the test set were evaluated using the
evaluation metrics. The process continued until each individual group had
been taken once as the test set. The evaluation results were combined
over the rounds to summarize the model prediction skill. This validation
method is similar to the k-fold cross validation whereas the folds are forced
to be the data from individual years and are not randomly selected from
the shuffled data. This splitting method would help to eliminate the

Fig. 8 Sample of a decision tree grown by the ML model in the ensemble classifier. In this example, the maximum depth of the tree is set to 3
and subset 1 is used as the training set. The prediction score at each leaf would be assigned to its associated observations. The model then
combines the prediction scores for each sample to predict its class as whether lightning active or lightning-inactive
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leakage of correlated samples from the training set into the test set due to
the high temporal correlation of lightning data. The proposed approach in
Stages #1 and #2 is summarized in Fig. 9.
In order to provide lead to the warnings, the observational data for

meteorological parameters for a given 10-min interval was used to do the
prediction for the following intervals. To achieve this, instead of feeding
the model with the labels of the same interval, the labels for the following
intervals should be used. Given the fact that both the meteorological and
lightning data were imported into the database with the granularity of ten
minutes, the lead times would also be quantized in 10-min ranges. For
example, if the model is fed with the lightning labels corresponding to the
same interval as the one for the meteorological data, then the lead time for
the warnings would be 0–10minutes, which corresponds to an imminent
warning. However, if, instead, the lightning labels for the next interval were
used, then the lead time of the prediction would be 10–20minutes.

Model evaluation metrics
Even in high activity regions, lightning strikes are rare. It is important for the
nowcasting scheme to correctly predict non-lightning events (lightning-
inactive samples) which numerically dominate lightning events. However,
while a low false alarm rate is desirable, it is not indicative of predictive skill
when true alarms are rare. In other words, in imbalanced databases, neither
the overall accuracy nor the false alarm rate may be able to correctly
evaluate the significance with which the prediction scheme performs better
than chance.89 To bridge the gap, a couple of metrics to measure the skill in
rare event forecasting are suggested in the literature which are mainly
based on the values of the contingency table.90 A sample of a contingency
table for the two-class prediction scheme is given in Table S2. The rows and
columns correspond, respectively, to the observed and predicted
alternatives. Giving a customized definition for the case of lightning
prediction studied in this paper, for example, hit is the total number of
times that at least one lightning activity (either CG or IC) occurred in a
specific area in a specific time frame as it was correctly predicted by the
predictive scheme. The specific area corresponds to the areas within the
circular distance of radius 30 km (based on the adopted definition for long-
range activity) around each of the 12 stations and the specific time frames
are 10-min time windows defined according to the desired lead time.
Similarly, correct rejection denotes the total number of times that the
predictive model responds that lightning will not occur when it indeed did
not occur. The Miss parameter gives the number of cases that the predictive
scheme actually misses the occurred events and False Alarm gives the
number of cases when the model would predict lightning when it did not
occur. Based on the four described entries in the contingency matrix, a
couple of performance parameters are adapted and defined in Table 1.
Probability of Detection (POD) is defined as the ratio of the hits to the

total number of observed events (lighting-active samples). This parameter
shows how the prediction scheme was able to correctly predict the rare
events (lighting-active samples). However, it does not provide any
information on how the model performs in the majority of cases where

no lightning has actually occurred. The False Alarm Ratio (FAR) indicates
the fraction of lightning alarms issued by the model that were actually
false. The Critical Success Index (CSI) is sensitive to both POD and FAR since
it penalizes both misses and false alarms. It can be also regarded as a
measurement of accuracy when correct rejections are removed from
consideration assuming that they are less important. Therefore, it
concentrates on the fraction of hits to the total number of both forecast
and missed events.
The Heidke Skill Score (HSS) is also used to evaluate the performance of

the model. The score ranges from −∞ for no skill to 1 for perfect skill and it
measures the performance of the prediction scheme after eliminating the
correct predictions that would have been achieved purely by random
chance. The Heidke Skill Score (HSS) is known to be usable in forecasting
rare events since it gives credit to the correct rejections in a controlled way
so that the false alarms are also considered. It is also known to take into
account the correct random forecasts of both event and non-event cases.90

The performances of the ML model and the competitive models are
evaluated using the aforementioned metrics.
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