
NoXperanto: Crowdsourced Polyglot Persistence
Antonio Maccioni, Orlando Cassano, Yongming Luo, Juan Castrejón, and Genoveva Vargas-Solar

Abstract—This paper proposes NOXPERANTO, a novel
crowdsourcing approach to address querying over data
collections managed by polyglot persistence settings. The main
contribution of NOXPERANTO is the ability to solve complex
queries involving different data stores by exploiting queries
from expert users (i.e. a crowd of database administrators, data
engineers, domain experts, etc.), assuming that these users can
submit meaningful queries. NOXPERANTO exploits the results
of “meaningful queries” in order to facilitate the forthcoming
query answering processes. In particular, queries results are
used to: (i) help non-expert users in using the multi-database
environment and (ii) improve performances of the multi-database
environment, which not only uses disk and memory resources,
but heavily rely on network bandwidth. NOXPERANTO employs
a layer to keep track of the information produced by the crowd
modeled as a Property Graph and managed in a Graph Database
Management System (GDBMS).

Index Terms—Polyglot persistence, crowdsourcing, multi-
databases, big data, property graph, graph databases.

I. INTRODUCTION

B IG datasets are not uniform collections of homogeneous
data and, for this reason, they are not logically stored

in one single database. In addition, the size of big datasets
is such that it is not possible to adopt data cleaning, dataset
preparation and integration using classic methods. Otherwise,
data would never be ready for being analyzed and exploited
in reasonable time.

Often, these datasets are sharded across distributed persis-
tence supports that adopt different access and management
policies, different degrees of availability, fault tolerance and
consistency.

Polyglot Persistence [1] is a brand new term to indicate
the combination of approaches that cope with a variety
of persistence systems and that are used for “integrating”
heterogeneous datasets.

As part of the emerging polyglot persistence movement [1],
the simultaneous use of multiple SQL, NoSQL and NewSQL
data stores is gradually becoming a common practice in

Manuscript received on May 3, 2014; accepted for publication on June 10,
2014, published on November 15, 2014.

Antonio Maccioni is with the Università Roma Tre, Rome, Italy (e-mail:
maccioni@dia.uniroma3.it).

Orlando Cassano is with the Université Libre de Bruxelles, Brussels,
Belgium (e-mail: orlando.cassano@cetic.be).

Yongming Luo is with the Eindhoven University of Technology, the
Netherlands (e-mail: y.luo@tue.nl).

Juan Castrejón is with the Université de Grenoble, Grenoble, France (e-
mail: juan.castrejon@imag.fr).

Genoveva Vargas-Solar (corresponding author) is with the Centre national
de la recherche scientifique (CNRS), LIG-LAFMIA labs, Saint Martin
d’Hères, France (e-mail: genoveva.vargas-solar@imag.fr).

modern application development [2], [3]. They enable the
integration of these data stores for managing big datasets in
a scalable and loosely coupled way. This approach seems to
be a pertinent strategy to deal with big datasets integration.
Nonetheless, the combination of these heterogeneous data
stores, flexible schemas and non-standard APIs, represent an
added complexity for application developers. For instance,
considering that data are spread across multiple data stores,
each of which possibly relies on distinct data models (graph,
document, etc.), developers must be familiar with a high
number of implementation details, in order to effectively work
with and maintain the overall data entities.

Providing an integrated view of the underlying data
collections for enabling querying, is still an open issue,
often solved at the application code level. Given that there
is no uniformization of schemas and there is a lack of
meta-information available about the data (i.e. mappings,
meta-data, semantic equivalences, data similarities), query
results are not integrated collections of data, often, they are
bags of non related data collections. It follows that, the quality
of querying in such polyglot systems is poor.

Contribution. This paper proposes NOXPERANTO, a novel
crowdsourcing1 approach to address querying over data
collections managed by polyglot persistence settings.

We avoid the pursue of uniformity, but rather, we preserve
the variety of original systems and languages. The main
contribution of NOXPERANTO is the ability to solve complex
queries involving different data stores by exploiting queries
from expert users (i.e. a crowd of database administrators, data
engineers, domain experts, etc.), assuming that these users can
submit meaningful queries.

Crowds have been revealed to be effective to solve queries
over a single database [4], but they have never been used to
query a multi-database system, where the required expertise
(about schemas, models, data formats and instances of the
database) cannot be superficial. In fact, from the structure of
the queries, we can infer who is expert.

NOXPERANTO exploits the results of such “meaningful
queries” in order to facilitate the forthcoming query
answering processes. In particular, the results of queries
are used to: (i) help non-expert users in using the
multi-database environment and (ii) improve performances of
the multi-database environment, which not only uses disk and
memory resources, but heavily rely on network bandwidth.

1The modality to fulfil a target by relying on the contributions coming from
a large group of people.

43 Polibits (50) 2014ISSN 1870-9044; pp. 43–48

NOXPERANTO employs a layer to keep track of the
information produced by the crowd. This is modeled as a
Property Graph and thus, it is persisted by a Graph Database
Management System (GDBMS).

Outline. The remainder of the paper is organized as follows.
While Section III introduces the concepts that we need
throughout the paper, Section II discusses works that are
related to our. Section IV explains our approach in detail.
Section V describes implementation issues. Section VI
concludes the paper with future perspectives of research.

II. RELATED WORKS

Most information systems are supported by distributed and
heterogeneous data sources: multi-databases, data warehouses
and Web portals. Such systems are, in fact, mediation
infrastructures that emerged more than 20 years ago to enable
transparent access to multiple data sources through querying,
analysis, navigation and management facilities.

With the advent of NoSQL stores and polyglot persistence
approaches, problems of data integration emerge with some
specifities: the high heterogeneity of data models (e.g., NoSQL
underlying data models are not standardized), the absence
of semantic descriptions, the volume of data to integrate,
just to name a few. Transformation and other well-known
techniques to bridge different databases seem hard to employ
at large scale [5]; they would bring data duplication that is
unfeasible when the data size is huge. In order to deal with
heterogeneity, the majority of information systems define an
integrated schema. However, the integration process, generally
controlled by the administrator of the system, is hardly
suited for managing data in highly distributed and evolving
environments such as the Web. Hardly coupled multi-sources
storing huge datasets with semantic information (e.g. global
schemas, mappings, rewritting rules) can be restrictive and
expensive for applications that require simplicity, performance
and large-scale dynamicity.

Advances in polyglot persistence querying are addressing
the integration of heterogeneous data by providing pivot
querying languages like UnQL that provide some operators
for integrating graph, document, key value and relational
data. There exists equivalent works which consider a unified
language, proposing some SQL extension [6], [7], [8], [9],
[10], or consider a metamodel approache such as the Apache’s
MetaModel project2.

To overcome existing problems of data integration, we
propose a solution to exploit a crowd of experts in a transparent
way. Experts are all the users who are able to submit
meaningful queries. We do not assume having a unified
query language, but rather we follow the idea of the polyglot
persistence movement to support multiple languages.

The idea of using crowdsourcing for answering queries
over a database has been covered in previous works [7], [8],

2http://metamodel.eobjects.org/

KNOWS
age : “7 months”

KNOWS
age : “3 months”

KNOWS
age : “7 months”

SUPERVISES
age : “2 year”

KNOWS
age : “3 months”

MET
date : “2013-09-03”

MET
date : “2013-09-01”

MET
date : “2013-10-10”

name : “Yongming”
surname : “Luo”

Country : “China”

name : “Orlando”
surname : “Cassano”
Country : “Belgium”

name : “Antonio”
surname : “Maccioni”

Country : “Italy”

name : “Genoveva”
surname : “Vargas-Solar”

Country : “Mexico”

name : “Juan”
surname : “Castrejòn”

Country : “Mexico”

Fig. 1. An example of property graph.

[11], [9], [4], [10], [12]. In particular, CrowdDB [4] integrates
human inputs within a query plan that contains operations
that usual database systems cannot always answer correctly
(i.e. matching, ranking, etc.). RandomDB [12] answers non
deterministic queries using social network crowds with the
aim to replace existing random number generators.

III. QUERYING A POLYGLOT MULTI-STORE

This section introduces basic concepts that are needed to
introduce our approach in the next section.

Property Graph. Graph data models are able to generalize
other data models:

– relational data: both schema and instance of relational
data can be modeled with graphs [13];

– XML data: XML document is modeled as a tree and a
tree is an acyclic, undirected graph;

– document stores: each document consists of nested key-
value pairs (therefore a tree), so a document store can be
modeled as a set of trees;

– key-value stores: they corresponds to a set of nodes of
the property graph.

NOXPERANTO does not generalize, nor integrates, other
models; rather, it adopts a graph data model in order to link
more easily the parts of the entities that are spread across
different databases. In particular, we use the property graph
model [14]. Briefly, a property graph is a multi-graph (a graph
where two nodes can be connected by more than one edge)
where every node and every edge has associated a set of
properties. A property is a key-value pair, denoted in the
format of < key, value >.

An instance of property graph is reported in Figure 1.
This represents people (i.e. the nodes) and their relationships.
For example the node representing a person whose name is
Genoveva supervises the node representing the person whose

44Polibits (50) 2014 ISSN 1870-9044

Antonio Maccioni, Orlando Cassano, Yongming Luo, Juan Castrejón, Genoveva Vargas-Solar

http://metamodel.eobjects.org/

query Q

Layer

Actor BirthYear Nationality

Carrie-Anne Moss 1967 Canada

Keanu Reeves 1964 Canada

Al Pacino 1940 United States

Graph DatabaseDocument Store Relational Database

movieBlog

Fig. 2. The movie blog environment.

name is Juan. In this case ¡name : Genoveva¿ is a property
where name is the key and Genoveva is the value.

Though the property graph is directed, we simplify it
using the undirected version. The property graph is the
“de-facto” standard model adopted by the GDBMSs (i.e.
Neo4J, OrientDB, etc.). We will see in the Section V more
details about it, since we make use of a GDBMS.

Running Example. To facilitate the understanding of the
approach, let us consider the following running example. We
have an infrastructure of databases, called movieBlog, behind
a big blog website talking about movies. Information about
entities such as the movies are splitted into different databases.
The infrastructure consists in a multi-database, where we have
a document store containing blog entries, a relational database
storing information about actors, and a graph database keeping
track of the movies’ cast. Figure 2 depicts our scenario.

The definition of the databases of our running example are
in Figure 3.

[DEFINITIONS]
define "blogEntries" as document
define "movies" as graph
define "actors" as table

Fig. 3. The database definition of the databases in Figure 2.

The example defines three databases of different kind:
a relational database (i.e. table actors), a graph database
(i.e. graph movies) and a document store (i.e. document
blogEntries). The keys of these databases are the attributes
Actor, id and id, respectively for the databases actors, movies
and blogEntries.

Polyglot Environment. Databases contain entities (e.g., a
tuple in a relational database or a document in a document

store). Every entity can be referred with a key (e.g., a primary
key in a relational database or a document id in a document
store). Queries are expressions that aim at retrieving: (i) an
entity, (ii) a part of an entity or (iii) a combination of entities.
Without referring to a particular language or algebra, we can
refer to these tasks with general operator of selection (σ),
projection (π) and join (./), respectively.

A σ query over a polyglot environment still involves
separate answering processes, where database instances are
independent from each other. In this case, the query can
be dispatched to all the underlying databases, after an
eventual syntactic translation of the query expression. A π
is straightforward since it operates locally by extracting a
sub-part of a result. While the semantics of σ and π in a
polyglot environment are well-defined, the semantics of the
./ needs to be clarified. In fact, if we join heterogeneous
databases we can hardly rely upon a single algebra. We
define such semantics as follows. Let us suppose to have two
entities ei and ej belonging, respectively, to two heterogeneous
databases. Among the others, the two entities have attributes
ai and aj , respectively. Let us also suppose that there exists a
comparing operator 3. A join ei ./ei.ai3ej .aj

ej is the union
between the information content of ei and the content of ej
iff the predicate ei.ai3ej .aj is satisfied.

Clearly, we can develop a join operator in a polyglot
environment at a code-level exploiting existing join algorithms
(e.g., nested-loop style join). In this context, such operations
are very expensive as we cannot rely upon the optimizations
of the DBMSs but we are compelled to load all the data in
memory and, sometimes, to transfer them over a network.

Next section explains how NOXPERANTO is able to answer
queries using a crowd of experts and, in particular, it will focus
on how the join operators can be computed efficiently.

IV. NOXPERANTO

This section explains our approach in detail. We first give
an overview of the overall approach. Then, we conclude the
section describing some use case in order to point out the
advantages of the system.

A. Crowdsourcing Approach

In NOXPERANTO we aim at solving complex queries over a
system containing several heterogeneus databases. To perform
such queries we have to keep track of the relationships among
entities stored in different databases. We employ two ways to
indicate these relationships: one is explicit and the other is
implicit.

Explicit Working Mode. In the explicit manner, the user can
define how two classes of entities in different databases are
related. For example, in Figure 4 we define that an entity of the
database blogEntries is the same of an entity in the database
movies if the value of blogEntries.movie is equal to the value
of movies.titles.

45 Polibits (50) 2014ISSN 1870-9044

NoXperanto: Crowdsourced Polyglot Persistence

[DEFINITIONS]
define "comments"

on "blogEntries.movie" = "movie.titles"
as link

Fig. 4. The explicit definition of relationships.

In this case we can exploit several techniques (i.e. ontology
matching, schema matching, string matching, etc.) to find
the instances of such definitions. They work at schema level
and are very expensive to be performed at run-time. We can
mitigate this complexity by using an hybrid approach between
this explicit mode with the implicit mode that is explained
next, but this lies outside the scope of this paper.

However, in many cases the administrator does not
explicitly specify such definitions. It turns out that an
automatic discovery of the relationships might be very
useful. NOXPERANTO provides such a mechanism through
the implicit modality.

Implicit Working Mode. The implicit working mode is driven
by a crowdsourcing approach. Crowdsourcing is employed in
different contexts to solve difficult problems and to build up
knowledge bases relying on the effort of many people. Usually,
a problem is split into many sub-problems that are solved
through the so called microtasks. A microtask is a complicated
task for a computer but it is easy for a person. The final
problem is solved by considering all the microtasks that people
of the crowd have processed. Often, these people are unaware
of the problem or do not even know that they are processing
a microtask.

The implicit working mode expects the system to be able to
recognize the relationships. In this case, the system uses the
knowledge of a crowd of experts, which appears when they
submit complex queries. If those queries are also meaningful,
in the sense that they produce a non empty set of results, we
persist the relationships between entities of the two (or more)
databases in our property graph layer.

More in detail, we extract the predicate of the join
conditions from such queries to define a crowd link. For
example, let us imagine an expert submitting σid,Nationality

(actors ./Actor=id movie). In a SQL-like language, the query
will look like the following:

SELECT id, Nationality
FROM actors, movies
WHERE actors.Actor = movies.id

The result of the query is {¡Keanue Reeves, Canada¿,
¡Carrie-Anne Moss, Canada¿}, thus, it is a non empty result
set and the query is meaningful. In the answering process
we have identified some relationships between entities in
movies and entities in actors. For each of them, NOXPERANTO
persists a crowd link on the property graph layer as in Figure 5.

movies:“Keanu Reeves” actors:“Keanu Reeves”

movies:“Carrie-Anne Moss” actors:“Carrie-Anne Moss”

crowd link:
“actors.Actor=movies.id”

crowd link:
“actors.Actor=movies.id”

Fig. 5. Crowd links explicitly produced.

id:“500bb. . . ” title:“The Matrix”
crowd link:
“blogEntries.movie==movies.title”

Fig. 6. Crowd links produced in Use case 2.

B. The Approach at Work

In this section we describe a sequence of four use cases
to show the real benefits of a crowdsourcing approach in this
context. The cases alternate queries from a non expert and
expert users. For the sake of simplicity we consider a SQL-like
syntax but of course, it is just the semantics of the language
and does not refer to any relational database. We refer the
multi-database managed by NOXPERANTO with movieBlog.
In this way, we query our datasets in a transparent way. The
four cases are defined as follows:

– Use case 1: a non-expert user asks for all information
about “The Matrix”. It is a simple keyword search-like
query (either submitted by a human being or by a
programmatic access), so we cannot assume that the user
is an expert.

SELECT *
FROM movieBlog
WHERE movieBlog.title == ‘‘The Matrix’’

The result of the query is

{year=1999}

since we have found an attribute title within the databases
in movieBlog and an entity where the value of such
attribute is “The Matrix”.

– Use case 2: a domain expert perform the following query:

SELECT *
FROM movies
JOIN blogEntries

ON blogEntries.movie == movies.title

Note that the expert does not generally refer to movieBlog
but to a precise database. The result of the query is:

{year=1999,
content="A computer hacker learns from

mysterious rebels about the
true nature...’’

author="jccastrejon’’}

We can say that there is a relationship between
blogEntries.movie and movies.title. Since a non-expert
user could not write such a join with meaningful

46Polibits (50) 2014 ISSN 1870-9044

Antonio Maccioni, Orlando Cassano, Yongming Luo, Juan Castrejón, Genoveva Vargas-Solar

results, we determine that this user was an expert user.
Consequently, she can be included within our crowd. In
fact, the system stores a crowd link for each of the results
as in Figure 6. We have bridged the document store with
the graph databases at runtime.

– Use case 3: a non-expert user submits the query of Use
case 1, but in this case the result is different.

{year=1999,
content="A computer hacker learns from

mysterious rebels about the
true nature...’’

author="jccastrejon’’}

We provided information to the user that we were not
able to retrieve before. This additional information is
provided by answering a join-free query. This is due to
the information within the layer, which allows to bridge
sharded parts of the same entity.

– Use case 4: another expert user submits the query of
Use case 2. The scenario is similar to use case 2, but the
query answering is much more efficient. We do not have
to perform an expensive join operation. We can directly
exploit the presence of the crowd links to determine a
pairs of entities to form the final results.

V. IMPLEMENTATION ISSUES

This section provides and overview of the implementation
concerns that are required to develop the NOXPERANTO
approach based on the requirements outlined in the previous
sections.

Data Layer Issue. We manage the heterogeneity of multiple
data stores by relying on a data layer based on the property
graph data model (see Section III). We implemented this
layer on an emerging GDBMS, that is Neo4J.3 It provides
a REST interface so that the interaction with the applications
running in the polyglot environment is facilitated. Moreover,
this interface would provide operations to manage data entities
and links between them. For example, the specific syntactic
sugar to specify when to consider the crowd links in the query
answering.

Language Issue. Our approach does not consider a unified
query language for polyglot persistence applications, but rather
rely on the existing language support provided by scalable
data stores. Thus, we propose to provide extensions for each
of these languages, based on the general query semantics
described in Section III. In particular, these extensions rely
on the REST interface of the property graph model to manage
the link and join operations described in Section IV.

To implement these language extensions we intend to follow
a model-driven approach, as proposed in our previous work.4

In particular, the language definitions would be implemented

3http://www.neo4j.org/
4https://github.com/jccastrejon/edbt-unql/

using the Xtext framework [15], while the implementation
of the link and join operations would be conducted with the
Acceleo project,5 by relying on text templates that refer to the
graph model REST interface. The native query mechanisms
of each of the supported data stores would be used to retrieve
the data in each of the systems.

Consistency Issue. Our approach assumes an eventual
consistency model [16] in the persistence of the crowd links
among the distributed entities. As a consequence, even when a
link between data entities has been identified, users executing
the same query may not always receive the same result.
Nonetheless, each of the data stores in the environment has
its consistency semantics.

To handle this heterogeneity in the consistency semantics
we propose to extend our language support with operators
to allow the user to specify the level of consistency that he
expects from each of the supported data stores. We intend to
implement this functionality based on the operators that few
systems (e.g., Riak,6 a key-value data store) already provide
to trade availability for consistency on a per-request basis.

Crowd Management Issue. We have developed a small utility
to manage the crowd of experts. This consists, basically, on
a query parser and a small interface where the administrator
can check the current state of the crowd links.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we have presented NOXPERANTO, an
approach to solve queries over an heterogeneus environment
of databases using the knowledge of a crowd of experts.
This knowledge is extracted from the results of the queries.
In NOXPERANTO we avoid expensive pre-processing. As a
result, we are able to scale with respect to the number of the
databases within our environment.

Our future work will be devoted to finish the system,
implementing an interface for setting up the multi-database
environment and allowing the users to specify weather or not
the system has to use the crowd links. The approach opens
several research direction. In particular, we will investigate
other scenarios where the results of a query can be exploited
to facilitate forthcoming query answering.

ACKNOWLEDGMENTS

The ideas within this paper were developed during the
EDBT Summer School 2013 in Aussois (France). The authors
of this paper are grateful to the EDBT association for the
organization of the Summer School and to all the speakers for
their helpful suggestions.

5http://www.eclipse.org/acceleo/
6http://basho.com/riak/

47 Polibits (50) 2014ISSN 1870-9044

NoXperanto: Crowdsourced Polyglot Persistence

http://www.neo4j.org/
https://github.com/jccastrejon/edbt-unql/
http://www.eclipse.org/acceleo/
http://basho.com/riak/

REFERENCES

[1] P. J. Sadalage and M. Fowler, NoSQL distilled: a brief guide to the
emerging world of polyglot persistence. Addison-Wesley, 2012.

[2] B. F. Cooper, “Spanner: Google’s globally-distributed database,” in
Proceedings of the 6th International Systems and Storage Conference.
ACM, 2013, p. 9.

[3] D. Borthakur, “Petabyte scale databases and storage systems at
facebook,” in SIGMOD Conference, 2013, pp. 1267–1268.

[4] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin,
“CrowdDB: answering queries with crowdsourcing,” in SIGMOD
Conference, 2011, pp. 61–72.

[5] R. De Virgilio, A. Maccioni, and R. Torlone, “Converting relational to
graph databases,” in GRADES, 2013.

[6] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller, “Human-
powered sorts and joins,” Proc. VLDB Endow., vol. 5, no. 1, pp. 13–24,
Sep. 2011.

[7] J. Selke, C. Lofi, and W.-T. Balke, “Pushing the boundaries of crowd-
enabled databases with query-driven schema expansion,” Proc. VLDB
Endow., vol. 5, no. 6, pp. 538–549, Feb. 2012.

[8] A. Bozzon, M. Brambilla, and S. Ceri, “Answering search queries with
CrowdSearcher,” in Proceedings of the 21st international conference on
World Wide Web, ser. WWW’12, 2012, pp. 1009–1018.

[9] G. Demartini, B. Trushkowsky, T. Kraska, and M. J. Franklin, “CrowdQ:
Crowdsourced query understanding,” in CIDR, 2013.

[10] H. Park, R. Pang, A. Parameswaran, H. Garcia-Molina, N. Polyzotis,
and J. Widom, “An overview of the deco system: data model and query
language; query processing and optimization,” SIGMOD Rec., vol. 41,
no. 4, pp. 22–27, jan 2013.

[11] J. Wang, T. Kraska, M. J. Franklin, and J. Feng, “CrowdER:
crowdsourcing entity resolution,” Proc. VLDB Endow., vol. 5, no. 11,
pp. 1483–1494, Jul. 2012.

[12] R. De Virgilio and A. Maccioni, “Generation of reliable randomness via
social phenomena,” in MEDI, 2013, pp. 65–77.

[13] R. Angles and C. Gutiérrez, “Survey of graph database models,” ACM
Comput. Surv., vol. 40, no. 1, 2008.

[14] M. A. Rodriguez and P. Neubauer, “Constructions from dots and lines,”
CoRR, vol. abs/1006.2361, 2010.

[15] M. Eysholdt and H. Behrens, “Xtext: implement your language
faster than the quick and dirty way,” in Proceedings of the ACM
international conference companion on Object oriented programming
systems languages and applications companion, ser. SPLASH’10.
New York, NY, USA: ACM, 2010, pp. 307–309. [Online]. Available:
http://doi.acm.org/10.1145/1869542.1869625

[16] D. Pritchett, “BASE: An Acid alternative,” Queue, vol. 6, no. 3,
pp. 48–55, May 2008. [Online]. Available: http://doi.acm.org/10.1145/
1394127.1394128

48Polibits (50) 2014 ISSN 1870-9044

Antonio Maccioni, Orlando Cassano, Yongming Luo, Juan Castrejón, Genoveva Vargas-Solar

http://doi.acm.org/10.1145/1869542.1869625
http://doi.acm.org/10.1145/1394127.1394128
http://doi.acm.org/10.1145/1394127.1394128

