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Abstract A recent proof of NP-hardness of Euclidean sum-of-squares clustering, due to
Drineas et al. (Mach. Learn. 56:9–33, 2004), is not valid. An alternate short proof is pro-
vided.
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1 Introduction

Clustering is a powerful tool for automated analysis of data. It addresses the following gen-
eral problem: given a set of entities, find subsets, or clusters, which are homogeneous and/or
well separated. Many different criteria are used in the literature to express homogeneity
and/or separation of the clusters to be found (see Hansen and Jaumard 1997 for a survey).
One key criterion is the minimum sum of squared Euclidean distances from each entity to
the centroid of the cluster to which it belongs, which expresses both homogeneity and sep-
aration. Note that due to Huygens’ theorem this is equivalent to the sum over all clusters
of the sum of all squared distances between pairs of entities within that cluster divided by
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its cardinality. Partitioning into k clusters with this objective is known as minimum sum-
of-squares clustering (MSSC). This problem is tackled by the classical k-means heuristic
(MacQueen 1967) and numerous other algorithms.

The MSSC problem in general dimension for k ≥ 2 was often referred to in the liter-
ature as NP-hard without a correct reference (see Aloise and Hansen 2007 for a detailed
discussion). In particular, as shown in Sect. 2, a proof of Drineas et al. (2004) is invalid. An
alternate short proof, due to the second and fourth authors (Deshpande and Popat 2008), is
given in Sect. 3. Note that another longer proof was obtained independently, and almost at
the same time, by Dasgupta (2008). Moreover, a proof which is essentially the same as ours
was obtained independently and more recently by Kanade et al. (2008).

2 An incorrect reduction from the k-section problem

Drineas et al. (2004) propose a NP-hardness proof for the MSSC with k = 2 and general
dimension by a reduction from the minimum bisection problem, whose objective is to parti-
tion a graph into two equal-sized parts so as to minimize the number of edges going between
the two parts. The authors state that a proof for k > 2 is similar via a reduction to the mini-
mum k-section problem. The paper is cited in Arthur and Vassilvitskii (2007), Beringer and
Hüllermeier (2006), Cilibrasi et al. (2005), Ostrovsky et al. (2006) as giving a proof that
MSSC is NP-hard.

The polynomial transformation for performing the reduction from the bisection problem
is described as follows:

“Let G = (V ,E) be the given graph with n vertices 1, . . . , n, with n even. Let d(i)

be the degree of the ith vertex. We will map each vertex of the graph to a point with
|E| + |V | coordinates. There will be one coordinate for each edge and one coordinate
for each vertex. The vector Xi for a vertex i is defined as Xi(e) = 1 if e is adjacent to
i and 0 if e is not adjacent to i; in addition Xi(i) = M and Xi(j) = 0 for all j �= i.”

Figure 1 illustrates an example of such a transformation for a given graph. It can be checked
in the example that all partitions with non-empty clusters have the same cost value regarding
the last |V | coordinates. Correcting an error in the proof presented in Drineas et al. (2004),
we will show that this is always true for any MSSC instance constructed by the proposed
transformation.

Let us consider a bipartition of the entities into two clusters P and Q whose cardinalities
are denoted by p and q , respectively. Regarding the last |V | coordinates of the centroids
zP , zQ ∈ R

|E|+|V |, we have for i = 1, . . . , |V |

zP
|E|+i =

{
M
p

if i ∈ P,

0 otherwise,
z
Q
|E|+i =

{
M
q

if i ∈ Q,

0 otherwise.

Fig. 1 Transformation of a
graph into an MSSC instance as
defined in Drineas et al. (2004)



Mach Learn (2009) 75: 245–248 247

Therefore, the sum of squared distances of each entity to its centroid, limited to the last
|V | coordinates, is equal to

p

(
M − M

p

)2

+ q

(
M − M

q

)2

+ p(p − 1)

(
0 − M

p

)2

+ q(q − 1)

(
0 − M

q

)2

= nM2 − 4M2 + M2

(
1

p
+ 1

q

)
+ 2M2 − M2

(
1

p
+ 1

q

)

= (n − 2)M2.

In Drineas et al. (2004), the authors forget to add the squared distances of the null com-
ponents to the centroids, which are indicated in boldface in the expression. If they are not
taken into consideration, then the sum-of-squares limited to the last |V | coordinates is equal
to

nM2 + M2

(
1

p
+ 1

q

)
− 4M2,

which is minimized whenever p = q = n/2. Thus, if M is made sufficiently large, balanced
bipartitions have costs strictly smaller than unbalanced ones, since the contribution for the
cost limited to the first |E| coordinates is upper bounded. In fact, for p = q , this last value
is minimized when the solution of MSSC is the balanced bipartition that corresponds to
the minimum bisection in the original graph (see Drineas et al. 2004, p. 16). Unfortunately,
after correcting the expression of the cost regarding the last |V | coordinates, there is no
dependence on the cardinalities of the clusters. This implies that the proposed reduction
from minimum bisection is invalid.

3 A new proof by reduction from the densest cut problem

Nevertheless, there is a similar (valid) reduction that shows that the problem is in fact NP-
hard.

Theorem 1 MSSC in general dimension is NP-hard for k = 2.

Proof The reduction is from the densest cut problem, whose objective is to maximize for
a given graph G = (V ,E) the ratio |E(P,Q)|/|P | · |Q| over all bipartitions (P,Q) of the
vertices in G, where E(P,Q) denotes the edge set of the cut. The problem is equivalent
to the sparsest cut problem on the complement graph, which was shown to be NP-hard in
Matula and Shahrokhi (1990).

Given a graph G with no parallel edges, let us define a |V | by |E| matrix M as follows.
An entry (v, e) in M is equal to 0, if edge e ∈ E is not incident to vertex v ∈ V . Otherwise,
it is +1 for one endpoint of e and −1 for the other. It does not matter which endpoint
corresponds to +1 and which to −1. Thus, each column of M has exactly one entry equal
to +1 and exactly one entry equal to −1.

Now, let us suppose that the rows of M are points in R
|E| and compute the value of the

MSSC criterion for a bipartition into two clusters P and Q, with |P | = p, |Q| = q and
p + q = n. The centroid of cluster P has in its e-th coordinate a value equal to either +1/p
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or −1/p if e ∈ E(P,Q), or 0 otherwise. The same holds for the coordinates of the centroid
of cluster Q. Then, by computing the total cost of the bipartition, we have that∑

e∈E

cost of P due to the e-th coordinate + cost of Q due to the e-th coordinate

=
∑

e∈E(P,Q)

(p − 1)
1

p2
+

(
1 − 1

p

)2

+ (q − 1)
1

q2
+

(
1 − 1

q

)2

+
∑

e/∈E(P,Q)

2

=
(

2 − 1

p
− 1

q

)
|E(P,Q)| + 2|E(P,P )| + 2|E(Q,Q)|

= 2|E| − n

p · q |E(P,Q)|,

by using p + q = n. The MSSC for k = 2 minimizes the above, which means that it maxi-
mizes |E(P,Q)|/p · q and hence finds the densest cut in the given graph G. �
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