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Abstract. The problem of finding a d-simplex of maximum volume in an arbitrary d-
dimensional V -polytope, for arbitrary d, was shown by Gritzmann et al. [GKL] in 1995 to
be NP-hard. They conjectured that the corresponding problem for H -polytopes is also NP-
hard. This paper presents a unified way of proving the NP-hardness of both these problems.
The approach also yields NP-hardness proofs for the problems of finding d-simplices of
minimum volume containing d-dimensional V - or H -polytopes. The polytopes that play
the key role in the hardness proofs are truncations of simplices. A construction is presented
which associates a truncated simplex to a given directed graph, and the hardness results
follow from the hardness of detecting whether a directed graph has a partition into directed
triangles.

1. Introduction

This paper examines the computational difficulty of finding a simplex of maximum vol-
ume contained in a given convex polytope or finding a simplex of minimum volume
containing a given polytope. These are basic problems in computational convexity, an
area of mathematics that is concerned with the algorithmic aspects of polytopes and
more general convex bodies. Because of various applications to the sciences and other
areas of mathematics, the emphasis here is on the case where the dimension is variable.
The paper [GKL] contains many results about largest simplices in polytopes. In partic-
ular, it includes an NP-hardness result for one of the versions of the largest contained
simplex problem considered here, and a conjecture of NP-hardness for another version.
The present paper presents a unified way of proving NP-hardness for both versions of
the largest contained simplex problem, as well as the analogous results for the smallest
containing simplex problem. For a survey of known results about these and related con-
tainment problems in computational convexity, including some applications, see [GK2].
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Another application of smallest containing simplices, which is not mentioned in [GK2],
is the so-called unmixing problem. In this situation, one has a collection of data points
in a high-dimensional space, and there is reason to think that, except for noise, the data
points are all convex combinations of some unknown number m of unknown points,
called endmembers. Thus the cloud of data points should ideally have the shape of an
(m − 1)-dimensional simplex, with the endmembers being the vertices of the simplex.
The unmixing problem is to determine the endmembers from the data points. The solution
process involves fitting an (m − 1)-dimensional subspace to the data points, projecting
the data points to that subspace, and then finding an (m − 1)-dimensional simplex in
the subspace that somehow approximates the shape of the projection of the data cloud.
There are statistical tests one can apply to determine which guess for the value of m
produces the most plausible results for a given data set. The simplex one chooses should
in some sense be the “best” approximation of the cloud of projected data points, and a
reasonable choice is a simplex of minimum volume containing the points. Since this is
difficult to find in general, heuristic procedures are used to find simplices whose volume
is close to minimal. The unmixing problem occurs in various fields. For example, the
data points can represent the concentrations of various substances in seafloor sediment
[Re] or the atmosphere [Wo], or the reflectances in various wavelengths of points on the
surface of the earth [BG], [Go].

This paper is organized as follows. Section 2 presents some definitions and gives a
precise statement of the main results of the paper. Section 3 gives an informal description
of the construction used in the proofs, and some of the main steps of the arguments.
Section 4 collects some background results, most of which have been proved elsewhere,
that are used throughout the paper. The polytopes that play the key role in the hardness
proofs are truncated simplices. We define truncated simplices in Section 5 and prove some
basic facts about largest full-dimensional simplices in truncated simplices. Section 6
precisely describes the main construction, which, given a directed graph, produces a
truncated simplex T such that the volume of the largest full-dimensional simplices in T
reflects some aspects of the structure of the given graph. Section 7 contains some results
that relate the largest contained simplices for a polytope with the smallest containing
“simplicial cylinders” for the polar polytope. In Section 8 we use all these ingredients
to prove the main NP-hardness results.

2. Definitions and Statements of Main Results

Everything in this paper takes place in real Euclidean space Rd for some d in the set N of
positive integers. We think of elements of Rd as column vectors and denote them by bold
letters, e.g., x = (x1, x2, . . . , xd)

T ∈ Rd . For 1 ≤ i ≤ d, let ei denote the vector whose
i th entry is 1 and all of whose other entries are 0 (the dimension of the ambient space
will always be clear from context). The Euclidean norm of a vector x will be denoted
‖x‖. Let Bd := {x ∈ Rd : ‖x‖ ≤ 1} denote the closed unit ball of Rd . The subscript
will be omitted if there is no risk of confusion. For n ∈ N, define [n] := {1, . . . , n}. For
a, b ∈ N, let K a×b denote the set of a × b matrices with entries in a set K . For a matrix
M , let MT denote the transpose of M and M−T denote the transpose of M−1. For n ∈ N,
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let In denote the n ×n identity matrix and Jn denote the n ×n matrix all of whose entries
are 1. The subscripts will be omitted if there is no risk of confusion.

For X ⊂ Rd , the standard notations conv(X), aff(X), and lin(X) will be used to
represent, respectively, the convex hull, affine hull, and linear hull of X . If V ∈ Rd×n , and
Y ⊂ Rd is the set of points that appear as columns of V , then define conv(V ) := conv(Y ),
aff(V ) := aff(Y ), and lin(V ) = lin(Y ). A j -flat in Rd is the affine hull of j + 1 affinely
independent points of Rd . If X ⊂ Rd is a compact convex set and aff(X) is a j-flat, then
the set X is said to be j-dimensional and we write dim(X) = j . Define dim(∅) = −1. For
a j-dimensional compact convex set X , let vol(X) denote the j-dimensional Lebesgue
measure of X . Let relint(X) denote the relative interior of X , i.e., the interior of X
considered as a subset of the topological space aff(X). For X, Y ∈ Rd , define

dist(X, Y ) := inf
x∈X,y∈Y

‖x − y‖.

For X, Y ⊂ Rd and α ∈ R, define

X + Y := {x + y: x ∈ X, y ∈ Y }
and

αX := {αx: x ∈ X}.
For any X ⊂ Rd , X� denotes the polar set of X , i.e.,

X� := {y ∈ Rd : yTx ≤ 1 for all x ∈ X}.
If j, d ∈ N with j ≤ d , a j -simplex in Rd is the convex hull of j + 1 affinely

independent points of Rd . Relative to some fixed polytope P , a j-simplex S ⊂ P is
largest if it has maximum volume among all j-simplices contained in P . The simplex S
is bound to P if all of the vertices of S are also vertices of P .

If j, d ∈ N with j ≤ d , a j -simplicial cylinder C in Rd is a set of the form C = S+ L ,
where S is a j-simplex with 0 ∈ aff(S) and L = aff(S)⊥. The cross-sectional volume of
C , denoted vol(C), is defined to be the j-dimensional volume of S. Relative to some fixed
polytope P , a j-simplicial cylinder C ⊃ P is smallest if it has minimum cross-sectional
volume among all j-simplicial cylinders containing P . Note that a d-simplicial cylinder
in Rd is just a d-simplex.

We assume all the standard notions having to do with NP-hardness (see, for example,
[GJ]). Our model of computation is the standard binary Turing machine. The containment
problems we consider are naturally thought of as optimization problems, but we use
the standard technique of phrasing them as decision problems when considering NP-
hardness questions. For example, instead of asking for a largest simplex in a polytope,
we append a number λ to the input and ask if there is a simplex of volume at least λ.

Since the problems considered here involve polytopes of arbitrary dimension, it is
necessary to distinguish two different ways of encoding a polytope as the input to a Turing
machine. A V -polytope is a polytope given by a list of its vertices, and an H-polytope
is one given by a list of its facet-defining linear inequalities. For a particular polytope
the size of its encodings as a V -polytope and as an H -polytope can be quite different.
For example, the d-dimensional cube has 2d vertices and only 2d facets. This difference
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in size causes some problems to be NP-hard for V -polytopes but not for H -polytopes,
or vice versa. We consider only rational V -polytopes and H -polytopes, that is, all the
coordinates of the vertices or coefficients of the inequalities must be rational numbers.
This is because rational numbers are easy to encode as input to a Turing machine.
We also work with squared volumes instead of volumes, since the squared volume of
a rational simplex is rational, and with squared cross-sectional volumes of simplicial
cylinders. Our restriction to rational polytopes does not allow us to include all possible
types of polytopes (see, for example, [Zi] for “nonrational” polytopes), but is sufficient
for showing that problems are hard.

If f, g: N → N, we say that f (d) = 	(g(d)) if there is some real number c1 > 0
such that f (k) ≥ c1g(k) for all k ∈ N. We say that f (d) = O(g(d)) if there is some
real number c2 > 0 such that f (k) ≤ c2g(k) for all k ∈ N. If f (d) = 	(g(d)) and
f (d) = O(g(d)), then we say that f (d) = �(g(d)).

The main result of this paper is that the following four decision problems are all
NP-hard when the function f : N → N satisfies the following conditions: f (d) ≤ d for
all d ∈ N, there is some k ∈ N such that f (d) = 	(d1/k), and f (d) is computable in
time polynomial in d .

HLGSTSIMPLEX f

Instance: d ∈ N, a d-dimensional rational H -polytope P ⊂ Rd , and λ ∈ Q with λ > 0.
Question: Is there an f (d)-simplex S ⊂ P with vol2(S) ≥ λ?

VLGSTSIMPLEX f

Instance: d ∈ N, a d-dimensional rational V -polytope P ⊂ Rd , and λ ∈ Q with λ > 0.
Question: Is there an f (d)-simplex S ⊂ P with vol2(S) ≥ λ?

HSMLSTSIMPCYL f

Instance: d ∈ N, a d-dimensional rational H -polytope P ⊂ Rd , and λ ∈ Q with λ > 0.
Question: Is there an f (d)-simplicial cylinder C ⊃ P with vol2(C) ≤ λ?

VSMLSTSIMPCYL f

Instance: d ∈ N, a d-dimensional rational V -polytope P ⊂ Rd , and λ ∈ Q with λ > 0.
Question: Is there an f (d)-simplicial cylinder C ⊃ P with vol2(C) ≤ λ?

Our assumption that f (d) = 	(d1/k) for some k is the most general under which
we have been able to prove NP-hardness for these problems. The most important case
where these results apply is when f (d) = d. At the other extreme, when f (d) is bounded
by a constant, the problem VLGSTSIMPLEX f can actually be solved in polynomial time
(by evaluating the volumes of all possible bound simplices). In contrast, even in the
case where f (d) = 1 for all d and the only polytopes considered are parallelotopes,
the problem HLGSTSIMPLEX f is NP-hard—this was shown in [GK1]. We would like
to know how fast f (d) must grow in order for VLGSTSIMPLEX f to be NP-hard. For
example, if f (d) = �(log(d)), then there is no obvious polynomial-time algorithm, but
we also have no proof of NP-hardness.
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The problems VLGSTSIMPLEX f and HLGSTSIMPLEX f are known to be in NP. The
problems HSMLSTSIMPCYL f and VSMLSTSIMPCYL f , however, are not known to be in
NP.

The hardness result for VLGSTSIMPLEX f for the above class of functions f was first
proven in [GKL]. The authors conjectured the hardness of HLGSTSIMPLEX f , in particular
in the case f (d) = d . Another proof of the hardness of VLGSTSIMPLEX f , under the
additional assumption that f (d) < d for all d ∈ N, can be found in [Pa2]. In that paper
it is shown that with that additional assumption on f , the problem VLGSTSIMPLEX f

remains NP-hard even if the input V -polytope is required to be an affine crosspolytope.
In light of the above hardness results, it is natural to study the possible accuracy of

polynomial-time approximation algorithms for finding largest contained simplices or
smallest containing simplicial cylinders. The paper [BGK2] studies polynomial-time
approximation of largest simplices in general convex bodies, not just polytopes. The au-
thors use a more general model of computation where the convex bodies are specified by
certain oracles. Their inapproximability results do not apply to the problems considered
here, since presenting a polytope as a V - or H -polytope gives more information about it
than presenting it via the oracles they use. However, the approximation algorithm in their
paper does apply. It gives a polynomial-time algorithm for finding largest j-simplices in
d-polytopes that finds simplices whose squared volume is within a factor of O((cd)2 j ) of
optimal, for some constant c. The paper [BGK1] applies similar methods to the problem
of finding smallest simplicial cylinders containing general convex bodies. On the negative
side, the paper [Pa2] shows that, if f (d) < d for all d, no polynomial-time algorithm can
approximately solve the optimization version of VLGSTSIMPLEX f , even just for cross-
polytopes, within a factor of less than 1.09. It also contains a simple polynomial-time
algorithm for finding approximately largest j-simplices in d-dimensional V -polytopes.
The algorithm finds simplices whose squared volume is within a factor of O((cj) j ) of
optimal, for some constant c.

We note that finding largest d-dimensional simplices in d-cubes subsumes the famous
problem on the existence of Hadamard matrices [HKL]. However, the problem of finding
smallest d-simplices containing d-parallelotopes has been completely solved (see [La]
and [LZM]). There has also been work done on finding largest contained simplices and
smallest containing simplices for polytopes of fixed low dimension. Klee [Kl] showed
for any d that if S is a d-simplex of minimum volume enclosing a d-dimensional convex
body C , then the centroid of each facet of S belongs to C . In [KL] Klee and Laskowski
used this to devise an O(n log2(n))-time algorithm for finding the triangles of minimum
area containing a given convex n-gon. This was improved to O(n) by O’Rourke et al.
[OAMB]. Chandran and Mount [CM] found a connection between the largest triangles
contained in a convex n-gon and the smallest triangles containing the n-gon. They used
this to come up with an O(n)-time algorithm that finds both largest contained triangles
and smallest containing triangles for n-gons. Vegter and Yap [VY] found some conditions
that must be satisfied by minimum volume tetrahedra containing 3-polytopes. Zhou and
Suri [ZS] have a �(n4)-time algorithm for finding a tetrahedron of minimum volume
enclosing a polytope P ⊂ R3 with n vertices. They also have an O(n + 1/ε6)-time
algorithm that produces a tetrahedron whose volume is within a factor of 1 + ε of
optimal, for any ε > 0.
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3. Description of Construction

In this section we give an informal description of the construction used in the rest of the
paper, and some of the main steps in proving the hardness results.

The polytopes that play the pivotal role in the construction are truncated d-simplices.
A truncated d-simplex is formed from a d-simplex by cutting along a hyperplane near
each vertex. For any distinct vertices vi , vj of the original simplex, there is a unique
vertex wij of the truncated simplex that is near vi and on the line segment between vi

and vj (the notation wij is used in this section only).
The construction starts with a directed graph G on the vertex set {1, . . . , n} for some

n, and an (n −1)-simplex S. The choice of S is a technical detail—it ensures that certain
quantities that must be input to a Turing machine are rational, and that we can easily
compute the size of a ball around the origin that will fit inside the truncated simplex we
end up with. The construction produces a truncated (n−1)-simplex P that is a truncation
of S. Let ε be some small positive number. The idea is that if (i, j) is an edge of G, then
the vertex wij is defined by

‖vi − wij‖
‖vi − vj‖ = ε,

and if (i, j) is not an edge of G, wij is defined by

‖vi − wij‖
‖vi − vj‖ = 2ε.

See Fig. 1 for an example with n = 3.
Let T be a bound largest (n − 1)-simplex in P , and suppose ε is “sufficiently small.”

Two important facts about T are intuitively fairly clear, although somewhat tedious
to prove. These two facts are the content of Theorem 5.6. The first is that for each
i ∈ {1, . . . , n}, T has exactly one vertex that is equal to wij for some j . If this were not
true, T would have two vertices that were equal to wab, wac for some a and some b �= c.
Since ε is small, these two vertices would be extremely close together, and the volume
of T would thus be very small.

The second part of Theorem 5.6 states that for each i ∈ {1, . . . , n}, T has a vertex
that is equal to wij for some j such that (i, j) is an edge of G, unless there is no such

G

1

2 3

v1

v3v2

w13

w12

w23 w32

w21 w31

P

Fig. 1. An example of the construction.
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w13

w12

v1

F

Fig. 2. The second part of Theorem 5.6.

j . The idea of the proof of this, focusing on i = 1, can be seen in Fig. 2. The two
highlighted triangles share a facet F opposite v1. Because ε is small, this facet must
be very close to horizontal. Since ε and 2ε have a ratio that is different enough from
1, the hyperplane defined by w12 and w13 is far from horizontal. Therefore, the vertex
w12, which corresponds to an edge present in G, is further away from F than w13, which
corresponds to an edge absent from G. Thus the triangle including w13 cannot be largest.

The next important fact concerns the bound largest (n − 1)-simplices in P when G
is the complete directed graph �Kn . In the case n = 3, a simple examination of all the
possibilities shows that there are two largest simplices, and they correspond to the two
different directed 3-cycles that exist in �K3 (see Fig. 3). One might at first suspect that in
the general case the largest simplices in P would correspond to directed n-cycles, but in
fact that is not true. It turns out that in the case n = 3q, the largest simplices correspond
to the ways of partitioning the graph �K3q into q vertex-disjoint directed 3-cycles. This is
Theorem 6.2. The volume of these largest simplices is a certain easily computed number
λ. This implies that, when G is an arbitrary graph with 3q vertices, the largest simplices
in P have volume equal to λ if and only if G has a partition into q vertex-disjoint
directed 3-cycles. Otherwise, the largest simplices in P have volume less than λ. This
is Theorem 6.3. Determining whether a given directed graph G with 3q vertices has a
partition into q vertex-disjoint directed 3-cycles is NP-hard (this follows easily from the
hardness of the well-known problem THREE-DIMENSIONAL MATCHING). This implies the
NP-hardness of finding largest full-dimensional simplices. The argument works for both

~K3

1

2 3

v1

v3v2

w13w12

w23 w32

w21 w31

P

Fig. 3. The largest simplices in the truncated simplex corresponding to �K3.
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the H - and V -polytope problems because truncated simplices have polynomial numbers
of both vertices and facets, in terms of the dimension.

To extend the hardness result to non-full-dimensional simplices, the main geometrical
result required is Theorem 4.4. The idea of this theorem is to start with a j-dimensional
polytope, and fatten it into a d-dimensional polytope, where d > j , by adding vertices
very close to an interior point of the original polytope. The largest j-simplices in the
resulting d-polytope are actually contained in the original j-polytope. The extension
also requires some technical results about largest simplices in the truncated simplices
corresponding to directed cycle graphs and to unions of directed graphs.

Theorem 7.2 is the main tool for extending hardness results to the dual problems
involving smallest containing simplicial cylinders. In general there is no polarity rela-
tionship between the largest j-simplices in a d-polytope P and the smallest j-simplicial
cylinders containing the polar d-polytope P�. If 0 ∈ int(P) and P has at least one largest
j-simplex whose centroid is the origin, Theorem 7.2 shows that the smallest j-simplicial
cylinders containing P� are the polars of those largest j-simplices in P whose centroids
are at the origin.

4. Background Results

In this section we collect some results, most of which have been proved elsewhere, that
will be used throughout the paper. We first present the decision problem that will be the
starting point of the transformations in our NP-hardness proofs. It is closely related to
the following well-known problem, which was proved NP-complete by Karp [Ka].

THREE-DIMENSIONAL MATCHING

Instance: A set M ⊂ W × X × Y , where W , X , and Y are disjoint sets having the same
number q of elements.

Question: Is there a subset M ′ ⊂ M such that |M ′| = q and no two elements of M ′

agree in any coordinate?

Define a labelled directed graph to be a pair G = ([n], E), where E ⊂ {(i, j) ∈
[n] × [n]: i �= j}. The elements of [n] are the vertices of G and the elements of E
are the edges of G. Note that loops and multiple edges in the same direction are not
allowed. For any n ∈ N, define two particular labelled directed graphs: the complete
graph �Kn := ([n], {(i, j) ∈ [n]×[n]: i �= j}) and the n-cycle �Cn := ([n], {(i, i +1): i ∈
[n − 1]} ∪ {(n, 1)}). For a labelled directed graph G = ([n], E), the outdegree of the
vertex i ∈ [n] is the number of distinct j ∈ [n] for which (i, j) ∈ E .

Theorem 4.1. The following decision problem is NP-complete.

PARTITION INTO DIRECTED TRIANGLES

Instance: A labelled directed graph G = ([3q], E), where q ∈ N.
Question: Does G contain q vertex-disjoint copies of �C3?
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Proof. The problem is clearly in NP, since it is trivial to verify that a proposed partition
is actually a partition. The proof of NP-hardness is by a transformation from THREE-
DIMENSIONAL MATCHING. Let M = W × X ×Y be an instance of THREE-DIMENSIONAL

MATCHING, where |W | = |X | = |Y | = q. Identify W with the integers 1, . . . , q, X
with the integers q + 1, . . . , 2q , and Y with the integers 2q + 1, . . . , 3q. Then let G be
the labelled directed graph with vertex set [3q] and edges (w, x), (x, y), (y, w) for each
(w, x, y) ∈ M . Then clearly G has q vertex-disjoint copies of �C3 if and only if there is
a subset M ′ ⊂ M of size q such that no two elements of M ′ agree in any coordinate.

A version of this problem for undirected graphs is listed in [GJ], credited to unpublished
work of Schaefer.

We will need the following two simplex volume formulae. The first is quite well
known, and the second comes from [GKL].

Theorem 4.2. Let S be a j-simplex in Rd . Let F be a facet of S and let v be the vertex
of S not contained in F . Then

vol(S) = 1

j
vol(F) dist({v}, aff(F)).

Theorem 4.3. Let V ∈ Rd×( j+1) have affinely independent columns, and let S be the
j-simplex conv(V ). If 0 ∈ aff(S), then

( j!)2 vol2(S) = det(Jj+1 + V TV ).

If 0 is a vertex of S, then

( j!)2 vol2(S) = det(W TW ),

where W ∈ Rd× j is formed from V by deleting the zero column.

The next result comes from [Pa1]. It is useful for extending hardness results for
problems involving full-dimensional contained simplices to apply to problems involving
non-full-dimensional simplices.

Theorem 4.4. Let m1, m2 ∈ N,

A1 = {x ∈ Rm1+m2 : xm1+1 = · · · = xm1+m2 = 0}
and

A2 = {x ∈ Rm1+m2 : x1 = · · · = xm1 = 0}.

For i = 1, 2, let Ci ⊂ Ai be a compact convex set with aff(Ci ) = Ai and 0 ∈ relint(Ci ).
Suppose α > 0 is the largest real number for which α(Bm1+m2 ∩ A1) ⊂ C1, and

suppose C2 ⊂ ρ(Bm1+m2 ∩ A2) for some positive ρ < α. Let j be an integer with
1 ≤ j ≤ m1. Then every largest j -simplex in conv(C1 ∪ C2) is contained in C1.



358 A. Packer

It is shown in [GKL] that for any d-polytope P and any j ∈ N with j ≤ d, there is a
largest j-simplex in P that is bound to P . This, together with the fact that the volumes of
simplices can be computed in polynomial time using Gaussian elimination to evaluate a
determinant, shows that the problems HLGSTSIMPLEX f and VLGSTSIMPLEX f are in NP.
There is no analogous result for smallest containing simplicial cylinders, and we do not
know if the problems HSMLSTSIMPCYL f and VSMLSTSIMPCYL f are in NP. We require
a slightly sharper version of the [GKL] result. The proof is a trivial modification of the
proof in [GKL], so we omit it.

Theorem 4.5. If P is a d-polytope and P contains a largest j -simplex which is not
bound to P , then P contains two bound largest j -simplices that differ by a single vertex.

If X ⊂ Rd1 , Y ⊂ Rd2 are j-flats for some j ≥ 0, then a surjective map α: X → Y is
a nonsingular affine map if for any v, w ∈ X and any c ∈ R,

α(cv + (1 − c)w) = cα(v) + (1 − c)α(w).

The following result about the invariance of volume ratios under nonsingular affine maps
is well known.

Theorem 4.6. Let j ≥ 0 and suppose V1 ∈ Rd1×( j+1), V2 ∈ Rd2×( j+1) each have
affinely independent columns. Then there is a nonsingular affine map α: aff(V1) →
aff(V2). There is some real c > 0 such that vol(α(C)) = c vol(C) for all j -dimensional
compact convex sets C ⊂ aff(V1).

The final result in this section allows us to make sure that the polytopes we create in
our hardness proofs do not have too many vertices or facets. The proof is trivial and is
omitted.

Theorem 4.7. Suppose P, Q ⊂ Rd are polytopes of nonzero dimension a, b, respec-
tively, where a+b = d . Suppose 0 ∈ relint(P), 0 ∈ relint(Q), and lin(P)∩lin(Q) = {0}.
If P has v vertices and f facets, and Q has w vertices and g facets, then the d-polytope
R := conv(P ∪ Q) has v + w vertices and f · g facets.

5. Truncated Simplices

In this section we define truncated simplices and prove some basic facts about largest
full-dimensional simplices in truncated simplices. For any n ∈ N, let Mn be the set of
real n × n matrices M with zero diagonal such that in each row of M the off-diagonal
elements are either all zero or all positive, and Mij < 1

2 for all i, j ∈ [n].

Definition 5.1. If d ∈ N and k ∈ Z with 0 ≤ k ≤ d + 1, a k-truncated d-simplex is a
set of the form

Trunc(V, M) := conv({(1 − Mi j )vi + Mi j vj : i, j ∈ [d + 1] with i �= j}),
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v2

v1

v3

(1�M32)v3 +M32v2

(1�M31)v3 +M31v1

(1�M13)v1 +M13v3

(1�M12)v1 +M12v2

Fig. 4. The 2-truncated 2-simplex Trunc(V, M), where the columns of V are v1, v2, v3 and the second row
of M is all zero.

where V ∈ Rn×(d+1) for some n has affinely independent columns v1, . . . , vd+1, and M ∈
Md+1 has exactly k nonzero rows. See Fig. 4. A (d+1)-truncated d-simplex is also called
simply a truncated d-simplex. For i ∈ [d + 1], the i th truncation face of Trunc(V, M) is
the set conv({(1−Mij)vi +Mijvj : j ∈ [d+1] with j �= i}), which is always either a vertex
or a facet of Trunc(V, M), depending on whether the i th row of M is zero or nonzero.
The truncation set of Trunc(V, M) is the set {i ∈ [d +1]: the i th row of M is nonzero}.

The hardness results we prove in this paper use only (d+1)-truncated d-simplices, but
many of the supporting results are stated and proved for general k-truncated d-simplices
since it is easy to do so. For some hardness results involving k-truncated d-simplices
where k < d + 1, see [Pa1].

A k-truncated d-simplex has d + 1 + k facets and d + 1 + k(d − 1) vertices. Thus
both the number of vertices and number of facets are bounded by polynomials in d. This
allows us to use truncated simplices to prove hardness of both the V -polytope versions
of our problems and the H -polytope versions.

Given any two sets X ⊂ Y and a function g: X → Y , a finite set C ⊂ X is said to be
a cyclic set of g if the restriction of g to C is a cyclic permutation of C . The function g
is said to be fixed-point-free if for all x ∈ X , g(x) �= x .

Definition 5.2. If P = Trunc(V, M) is a k-truncated d-simplex, then a d-simplex
S ⊂ P is said to be P-balanced if there is a vertex of S on each truncation face of P .
If A ⊂ [d + 1] is the truncation set of P , there is a natural bijection between the set of
fixed-point-free functions g: A → [d + 1] and the set of bound P-balanced d-simplices
in P . We denote this bijection by �P and define it by

�P(g) := conv({(1 − Mi,g(i))vi + Mi,g(i)vg(i): i ∈ A} ∪ {vi : i ∈ [d + 1]\A}).

When calculating the volume of �P(g), the cyclic sets of g play an important role,
as the following result shows.

Theorem 5.3. Let n ∈ N with n ≥ 2, let P = Trunc(V, M) be a q-truncated (n − 1)-
simplex with truncation set A ⊂ [n], and let g: A → [n] be fixed-point-free. For brevity,
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we set xi = Mi,g(i) for i ∈ A. Define Q ∈ Rn×n by

Qij =




1 if i /∈ A and j = i,

1 − xi if i ∈ A and j = i,

xi if i ∈ A and j = g(i),

0 otherwise.

Let k be the number of cyclic sets of g. Note that k can be zero if q < n. If k > 0, let
C1, . . . , Ck be the cyclic sets of g. Then

vol(�P(g))

vol(conv(V ))
= det(Q)

=
( ∏

i∈A\(C1∪···∪Ck )

(1 − xi )

)
k∏

m=1

[(∏
i∈Cm

(1 − xi )

)
−
(∏

i∈Cm

(−xi )

)]
.

Proof. Because of Theorem 4.6, the ratio

vol(�P(g))

vol(conv(V ))

is the same for all matrices V with d + 1 affinely independent columns. In particular,
we can assume that 0 ∈ aff(V ), and thus by Theorem 4.3,

((n − 1)!)2 vol2(conv(V )) = det(J + V TV ).

The vertices of �P(g) are the columns of the matrix VQT, and 0 ∈ aff(�P(g)) = aff(V ),
so

((n − 1)!)2 vol2(�P(g)) = det(J + QVTVQT)

= det(Q(J + V TV )QT)

= (det(Q))2 det(J + V TV ).

Thus
vol(�P(g))

vol(conv(V ))
= |det(Q)|.

For S ⊂ [n], we write g−1(S) = {i ∈ A: g(i) ∈ S}. For any integer r ≥ 0, let
gr denote the r -fold iteration of g. More precisely, g0: [n] → [n] is the identity, and
for r > 0, gr : g−1(domain(gr−1)) → [n] is defined by gr (i) = gr−1(g(i)). Note that
image(gr ) ⊂ image(gr−1) and domain(gr ) ⊂ domain(gr−1) for all r > 0. Our definition
also allows the possibility that for some r > 1, domain(gr ) = image(gr ) = ∅.

For any r ≥ 0, we define a matrix Q(r) by

Q(r)
i j =




1 if i /∈ A and j = i,

1 − xi if i ∈ A and j = i,

xi if i ∈ A, j = g(i), and i ∈ image(gr ),

0 otherwise.
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Note that Q(0) = Q. We claim that for all r ≥ 0, det(Q(r+1)) = det(Q(r)), and therefore
det(Q(r)) = det(Q) for all r ≥ 0. Let i ∈ image(gr )\ image(gr+1), and suppose that
for some p �= i , Q(r)

pi �= 0. Then p ∈ A, i = g(p), and p ∈ image(gr ). Therefore,
i ∈ image(gr+1), and this contradiction shows that the only nonzero entry of the i th
column of Q(r) is Q(r)

ii . So we can zero out Q(r)

i,g(i) by adding a multiple of the i th column
to the g(i)th column, and we get a matrix with the same determinant as Q(r). After
doing this for all i ∈ image(gr )\ image(gr+1), we get the matrix Q(r+1), and therefore
det(Q(r+1)) = det(Q(r)).

Now, since [n] is a finite set, there must be some integer N such that

image(gr ) = image(gN ) for all r ≥ N ,

and therefore

image(gN ) = C1 ∪ · · · ∪ Ck .

If we permute the rows of Q(N ) appropriately and permute the columns in the same
way, which does not change the determinant, then Q(N ) will be a block-diagonal matrix.
There will be a 1 by 1 block equal to 1 for each i /∈ A, and a 1 by 1 block equal to 1 − xi

for each i ∈ A\(C1 ∪ · · · ∪ Ck). Also, for each m = 1, . . . , k, there will be a |Cm | by
|Cm | block of the form

B :=




1 − xi xi

1 − xg(i) xg(i)

. . .
. . .

. . . xg|Cm |−2(i)

xg|Cm |−1(i) 1 − xg|Cm |−1(i)




,

where all the blank entries are zero, and i is some element of Cm . It now suffices to show
that

det(B) =
(∏

i∈Cm

(1 − xi )

)
−
(∏

i∈Cm

(−xi )

)
.

The definition of the determinant says that

det(B) =
∑

σ∈S|Cm |

(
sgn(σ )

|Cm |∏
j=1

Bj,σ ( j)

)
.

However, there are only two permutations σ that can possibly make a nonzero contribu-
tion to the determinant: the identity, which gives the term∏

i∈Cm

(1 − xi ),

and a certain |Cm |-cycle, which gives the term

−
∏

i∈Cm

(−xi ).
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Therefore, det(Q(N )) = det(Q) has the form claimed in the theorem. Since 0 < xi < 1
2

for all i ∈ A, det(Q) > 0, and this establishes the first equality in the theorem.

Next we show that if the entries of M are sufficiently small, every largest full-
dimensional simplex in Trunc(V, M) must be balanced. Furthermore, if the entries of
M fall into two classes, “small entries” and “large entries,” we will show that a largest
simplex must use small entries whenever possible. First, we need two lemmas. They are
trivial calculations for which we omit the details.

Lemma 5.4. Let x ∈ R with 0 < x < 1
2 , and let m ∈ N. Then

(1 − x)2((1 − x)m−2 + xm−2) > (1 − x)m + xm

> (1 − x)m

> (1 − x)m − xm

> (1 − x)2((1 − x)m−2 − xm−2).

Lemma 5.5. Using the notation of Theorem 5.3, for any l ∈ A,

∂

∂xl
det(Q) < 0

whenever 0 < xj < 1
2 for all j ∈ A.

Theorem 5.6. Let n ∈ N with n ≥ 2 and let P = Trunc(V, M) be a q-truncated
(n − 1)-simplex with truncation set A ⊂ [n]. Suppose Mij < 2−n for all i, j ∈ [n]. Then
every bound largest (n − 1)-simplex in P is P-balanced.

Suppose further that there is some ε > 0 such that for all i, j ∈ [n], either Mij ≤ ε

or Mij ≥ 2ε. Then for every bound largest (n − 1)-simplex S = �P(g) in P and every
i ∈ A, Mi,g(i) ≤ ε unless there is no j �= i with Mi, j ≤ ε.

Proof. Let S1 be a bound (n − 1)-simplex in P that is not P-balanced. Then there
is some i ∈ [n] such that no vertex of S1 is on the i th truncation face of P . Let T =
conv({vi }∪{(1−2−n)vj +2−nvi : j ∈ [n] with j �= i}). Then T ⊂ conv(V ) is an (n−1)-
simplex similar to conv(V ), with similarity ratio 1 − 2−n , which does not intersect S1.
See Fig. 5. So

vol(S1)

vol(conv(V ))
≤ 1 − (1 − 2−n)n−1 ≤ 1 − (1 − 2−n+1)n−1.

Now let S2 = �P(g2) be a bound P-balanced (n − 1)-simplex in P . Let k be the
number of cyclic sets of g2, and if k > 0 let C1, . . . , Ck be the cyclic sets of g2. For
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S1

T

vi

Fig. 5. The nonbalanced simplex S1.

i ∈ A, write xi = Mi,g2(i). By Theorem 5.3,

vol(S2)

vol(conv(V ))

=
( ∏

i∈A\(C1∪···∪Ck )

(1 − xi )

)
k∏

m=1

[(∏
i∈Cm

(1 − xi )

)
−
(∏

i∈Cm

(−xi )

)]
,

so by Lemma 5.5,

vol(S2)

vol(conv(V ))

>

( ∏
i∈A\(C1∪···∪Ck )

(1 − 2−n)

)
k∏

m=1

[(∏
i∈Cm

(1 − 2−n)

)
−
(∏

i∈Cm

(−2−n)

)]
.

Lemma 5.4 implies that the right-hand side is minimized when all the cyclic sets are of
size 2 and there are as many of them as possible. Therefore,

vol(S2)

vol(conv(V ))
> (1 − 2−n)q−2�q/2�((1 − 2−n)2 − (−2−n)2)�q/2�

≥ ((1 − 2−n)2 − (2−n)2)q/2

= (1 − 2−n+1)q/2

≥ (1 − 2−n+1)n−1.

Now we show that vol(S2) > vol(S1). It suffices to show that

(1 − 2−n+1)n−1 ≥ 1 − (1 − 2−n+1)n−1,

or, equivalently, that

(1 − 2−(n−1))n−1 ≥ 1
2 .

This is easily checked for n = 2. For n > 2, Bernoulli’s inequality implies that

h(n) := 1 − (n − 1)2−(n−1) < (1 − 2−(n−1))n−1.
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Since h(3) = 1
2 and

d

dn
h(n) = 2−(n−1)[(n − 1) ln(2) − 1] > 0

if n > 1 + 1/ ln(2) = 2.4427 . . . , the result follows. This proves the first part of the
theorem.

Now, suppose the second part of the theorem is false. Then clearly n ≥ 3 and A �= ∅.
Because of Theorem 4.6, we may assume that the i th column of V is ei ∈ Rn−1 for
i = 1, . . . , n − 1, that the nth column is 0 ∈ Rn−1, that n ∈ A, and that there is some
bound largest (n − 1)-simplex S = �P(g) in P with Mn,g(n) ≥ 2ε but there is some
j �= n with Mn, j ≤ ε.

We recall the definition of the infinity norm on matrices and vectors. If A ∈ Rn×n ,
we define

‖A‖∞ = max
1≤i≤n

n∑
j=1

|Aij|,

and if v ∈ Rn , we define

‖v‖∞ = max
1≤i≤n

|vi |.

For the properties of these norms, see, for example, [HJ]. We recall the following prop-
erties in particular. Let A, B ∈ Rn×n and v ∈ Rn . Then

‖A + B‖∞ ≤ ‖A‖∞ + ‖B‖∞,

‖AB‖∞ ≤ ‖A‖∞‖B‖∞,

and
‖Av‖∞ ≤ ‖A‖∞‖v‖∞.

Furthermore, if ‖I − A‖∞ < 1, then A−1 exists, and A−1 = ∑∞
i=0(I − A)i .

Let R ∈ R(n−1)×(n−1) be the matrix whose i th column is the vertex of S on the i th
truncation facet of P . Then RT = I − B for some matrix B such that each row of B has
at most two nonzero elements, each of absolute value less than 2−n . So ‖I − RT‖∞ =
‖B‖∞ < 2−n+1 < 1. Thus R−T exists, and R−T = ∑∞

i=0 Bi . Therefore,

‖R−T − I‖∞ = ‖
∞∑

i=1

Bi‖∞

≤
∞∑

i=1

‖Bi‖∞

≤
∞∑

i=1

‖B‖i
∞

<

∞∑
i=1

(2−n+1)i

= 2−n+1

1 − 2−n+1
.
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0

w

v eg(n)

ej

S

Fig. 6. The simplex S.

So

‖(R−T − I )1‖∞ ≤ ‖R−T − I‖∞‖1‖∞ <
2−n+1

1 − 2−n+1
< 1.

This shows that every element of the vector y = R−T1 is positive. Let

v = Mn,g(n)eg(n), w = Mn, j ej ,

let F be the facet of S opposite v, and let

S′ = conv(F ∪ {w}).
See Fig. 6. Then since S is largest,

0 ≤ vol(S) − vol(S′) = vol(F)

n − 1
(dist({v}, aff(F)) − dist({w}, aff(F))).

By the definition of y, aff(F) = {x: xTy = 1}. Clearly, w and v are on the same side of
aff(F) as 0, so wTy < 1 and vTy < 1. Therefore,

dist({v}, aff(F)) = 1 − vTy
‖y‖

and

dist({w}, aff(F)) = 1 − wTy
‖y‖ ,

where ‖y‖ is the Euclidean norm of y. It follows that

0 ≤ ‖y‖(dist({v}, aff(F)) − dist({w}, aff(F))) = (w − v)Ty

= Mn, j yj − Mn,g(n)yg(n) ≤ εyj − 2εyg(n),

and so yj/yg(n) ≥ 2. However, since ‖y−1‖∞ = ‖(R−T − I )1‖∞ < 2−n+1/(1−2−n+1),

maxi yi

mini yi
<

1 + 2−n+1/(1 − 2−n+1)

1 − 2−n+1/(1 − 2−n+1)
= 1

1 − 2−n+2
,

which is at most 2 since n ≥ 3. This contradiction shows that the second part of the
theorem is true.
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6. Truncated Simplices and Directed Graphs

In this section we present a construction that associates a truncated simplex to a directed
graph, and show how the structure of the graph is reflected in the volume of the largest
simplices in the resulting truncated simplex.

Definition 6.1. Given a labelled directed graph G = ([n], E) with n ≥ 2, a matrix
V ∈ Rd×m with affinely independent columns, where m ≥ n, and some ε ∈ R with
0 < ε < 1

4 , define M ∈ Mm by

Mij :=




0 if i > n or j = i,

2ε if i ≤ n, j �= i, and (i, j) /∈ E,

ε if (i, j) ∈ E .

Then we define T (V, G, ε) to be the n-truncated (m − 1)-simplex Trunc(V, M). See
Fig. 7.

In the above definition, if ε < 2−m−1, then Theorem 5.6 applies to P = T (V, G, ε).
In this case we get that every bound largest (m − 1)-simplex S in P is P-balanced,
and, furthermore, if S = �P(g) and i ∈ [n], then (i, g(i)) is an edge of G unless i has
outdegree 0 in G.

Note that if 0 < ε1 < ε2 < 1
4 , then T (V, G, ε1) ⊃ T (V, G, ε2) for any V, G. Also,

if G1 = ([n], E1) and G2 = ([n], E2) are two labelled directed graphs with the same
number of vertices, and E1 ⊂ E2, then T (V, G1, ε) ⊂ T (V, G2, ε) for any V, ε.

Theorem 6.2. Let q ∈ N and V ∈ Rd×m be a matrix with affinely independent columns,
where m ≥ 3q . Let P = T (V, �K3q , ε) for some ε ∈ R with 0 < ε < 2−m−1. Then the
set of largest (m − 1)-simplices in P is

{�P(g) | g: [3q] → [m] has q cyclic 3-sets}.
In particular, a largest (m − 1)-simplex S in P satisfies

vol(S)

vol(conv(V ))
= ((1 − ε)3 + ε3)q .

G

1

2 3

T (V;G; �)

v1

v3v2

Fig. 7. The construction in Definition 6.1.



Hardness of Largest Contained and Smallest Containing Simplices 367

Proof. Let S be any bound largest (m − 1)-simplex in P . Then by the first part of
Theorem 5.6, S is P-balanced. Since the truncation set of P is [3q], we have that
S = �P(g) for some fixed-point-free g: [3q] → [m]. Since every vertex of �K3q has
nonzero outdegree, the second part of Theorem 5.6 implies that (i, g(i)) ∈ E for any
i ∈ [3q]. So by Theorem 5.3,

vol(S)

vol(conv(V ))
= (1 − ε)3q−|C1|−···−|Ck |

k∏
m=1

[(1 − ε)|Cm | − (−ε)|Cm |],

where C1, . . . , Ck are the cyclic sets of g. Lemma 5.4 implies that the right-hand side
is maximized whenever all the cyclic sets are of size 3 and there are as many of them
as possible, i.e., there are q of them. This shows that the set of bound largest (m − 1)-
simplices in P has the form claimed in the theorem. Now, if there were any largest
(m − 1)-simplices in P that were not bound, then by Theorem 4.5 there would be two
bound largest (m − 1)-simplices in P that differ by a single vertex. Equivalently, there
would be two functions g1, g2: [3q] → [m], each with q cyclic sets of size 3, such that
g1 and g2 agree on all but one of the elements of [3q]. This clearly cannot happen.

Theorem 6.3. Let G = ([3q], E) for some q ∈ N be a labelled directed graph. Let
V ∈ Rd×m have affinely independent columns, where m ≥ 3q, and let ε ∈ R with
0 < ε < 2−m−1. Let S be a largest (m − 1)-simplex in T (V, G, ε). Then

vol(S)

vol(conv(V ))
≤ ((1 − ε)3 + ε3)q ,

with equality if and only if G has a partition into directed triangles.

Proof. Since T (V, G, ε) ⊂ T (V, �K3q , ε), S is contained in T (V, �K3q , ε). Therefore,
the inequality follows from Theorem 6.2.

Suppose G has a partition into directed triangles. Then there is some function g: [3q]
→ [3q] with q cyclic 3-sets such that (i, g(i)) ∈ E for all i ∈ [3q]. Let

S1 := �T (V,G,ε)(g) ⊂ T (V, G, ε).

Since (i, g(i)) ∈ E for all i ∈ [3q],

S1 = �T (V, �K3q ,ε)(g).

By Theorem 6.2, S1 is largest in T (V, �K3q , ε). Therefore it is largest in T (V, G, ε) as
well, and the equality in this theorem holds.

Now suppose equality holds, and let S2 be any largest (m −1)-simplex in T (V, G, ε).
Then S2 ⊂ T (V, �K3q , ε), and since it has the appropriate volume, it is a largest (m − 1)-
simplex in T (V, �K3q , ε). So S2 = �T (V, �K3q ,ε)(g) for some g: [3q] → [3q] with q cyclic
3-sets. Since S2 ⊂ T (V, G, ε), it follows that (i, g(i)) ∈ E for all i ∈ [3q], and these
edges form a partition of G into directed triangles.
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Theorem 6.4. Let n ∈ N with n ≥ 2, let V ∈ Rd×m have affinely independent columns,
where m ≥ n, and let ε ∈ R with 0 < ε < 2−m−1. Let S be a largest (m − 1)-simplex in
P = T (V, �Cn, ε). Then

vol(S)

vol(conv(V ))
= (1 − ε)n − (−ε)n.

Proof. By the first part of Theorem 5.6, S must be P-balanced, and thus S = �P(g) for
some fixed-point-free g: [n] → [m]. Since every vertex of �Cn has nonzero outdegree,
the second part of Theorem 5.6 implies that (i, g(i)) must be an edge of �Cn for all
i ∈ [n]. Therefore g has a single cyclic set, of size n, and the result follows from
Theorem 5.3.

Definition 6.5. Let G1 = ([n1], E1), G2 = ([n2], E2) be labelled directed graphs.
Then we define G1 ∪G2 to be the labelled directed graph ([n1 +n2], E1 ∪ϕ(E2)), where
ϕ: [n2] × [n2] → [n1 + n2] × [n1 + n2] by ϕ((i, j)) = (i + n1, j + n1).

Theorem 6.6. For each i = 1, 2, let Gi = ([ni ], Ei ) be a labelled directed graph such
that every vertex has outdegree at least 1, and let Vi ∈ Rdi ×mi have affinely independent
columns, where mi ≥ ni . Let V3 ∈ Rd3×m3 have affinely independent columns, where
m3 ≥ n1 + n2. Let r = max(m1, m2, m3) and let ε ∈ R with 0 < ε < 2−r−1.

For each i = 1, 2, let Si be a largest (mi − 1)-simplex in Pi = T (Vi , Gi , ε). Let S3

be a largest (m3 − 1)-simplex in P3 = T (V3, G1 ∪ G2, ε). Then

vol(S3)

vol(conv(V3))
= vol(S1) vol(S2)

vol(conv(V1)) vol(conv(V2))
.

Proof. Let Q3 be any bound P3-balanced (m3 − 1)-simplex in P3, so Q3 = �P3(g)

for some fixed-point-free g: [n1 + n2] → [m3]. Since every vertex of G1 ∪ G2 has
outdegree at least 1, (i, g(i)) is an edge of G1 ∪ G2 for every i ∈ [n1 + n2]. In particular,
g([n1]) ⊂ [n1] and g([n1 + n2]\[n1]) ⊂ [n1 + n2]\[n1], so every cyclic set of g is
contained in [n1] or in [n1 + n2]\[n1]. Let C1, . . . , Ck be the cyclic sets of g that are
contained in [n1], and let Ck+1, . . . , Cp be the cyclic sets of g that are contained in
[n1 + n2]\[n1]. Define g1: [n1] → [n1] by g1(i) = g(i) and g2: [n2] → [n2] by
g2(i) = g(n1 + i) − n1. Then the cyclic sets of g1 are C1, . . . , Ck , and the cyclic sets
of g2 are D1 := {i − n1: i ∈ Ck+1}, . . . , Dp−k := {i − n1: i ∈ Cp}. For i = 1, 2, let
Qi = �Pi (gi ).

By Theorem 5.3,

vol(Q1)

vol(conv(V1))

=
( ∏

i∈[n1]\(C1∪···∪Ck )

(1 − ε)

)
k∏

m=1

[(∏
i∈Cm

(1 − ε)

)
−
(∏

i∈Cm

(−ε)

)]
,
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vol(Q2)

vol(conv(V2))

=

 ∏

i∈[n2]\(D1∪···∪Dp−k )

(1 − ε)


 p−k∏

m=1

[(∏
i∈Dm

(1 − ε)

)
−
(∏

i∈Dm

(−ε)

)]
,

and

vol(Q3)

vol(conv(V3))

=

 ∏

i∈[n1+n2]\(C1∪···∪Cp)

(1 − ε)


 p∏

m=1

[(∏
i∈Cm

(1 − ε)

)
−
(∏

i∈Cm

(−ε)

)]
.

So

vol(Q3)

vol(conv(V3))
= vol(Q1) vol(Q2)

vol(conv(V1)) vol(conv(V2))
,

and clearly Q3 is largest if and only if both Q1 and Q2 are largest.

For our hardness proofs it will be necessary to know, for a given truncated simplex,
the radius of a ball that fits inside it.

Definition 6.7. For n ∈ N, define

ρn = 1

n
min

(
1

n + 1
,

n

n + 1
− 2−n−1

)
∈ Q,

and let Vn ∈ Rn×(n+1) be defined by

(Vn)i j :=




1 − 1

n + 1
if j = i + 1,

−1

n + 1
if j �= i + 1.

It is easy to see that conv(Vn) is a rational n-simplex in Rn whose centroid is the origin.
Furthermore, vol(conv(Vn)) = 1/(n!) and conv(Vn) ⊂ Bn .

Theorem 6.8. Let G = ([n], E) be a labelled directed graph with n ≥ 2. Then for any
m ∈ N with m ≥ n and any ε ∈ R with 0 < ε < 2−m−1, ρm−1B ⊂ T (Vm−1, G, ε).

Proof. Let Z = ([n], ∅) be the empty graph, and let P = T (Vm−1, Z , 2−m−1). Then
T (Vm−1, G, ε) ⊃ P , so it suffices to show that ρm−1B ⊂ P . The facet-defining half-
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0

H2

G0

H1

G2

H0

G1

(�1=3;�1=3) (2=3;�1=3)

(�1=3; 2=3)

Fig. 8. The truncated simplex T (Vm−1, Z , 2−m−1), for m = 3.

spaces of P are

G0 =
{

x: 1T
m−1x ≤ 1

m

}
,

Gi =
{

x: eT
i x ≥ −1

m

}
for i ∈ [m − 1],

H0 =
{

x: 1T
m−1x ≥ 2−m − m − 1

m

}
,

Hi =
{

x: eT
i x ≤ m − 1

m
− 2−m

}
for i ∈ [m − 1].

See Fig. 8. Now,

dist({0}, ∂G0) =
∥∥∥∥
(

1

m(m − 1)

)
1m−1

∥∥∥∥ = 1

m
√

m − 1
,

dist({0}, ∂Gi ) =
∥∥∥∥
(

− 1

m

)
ei

∥∥∥∥ = 1

m
for all i ∈ [m − 1],

dist({0}, ∂ H0) =
∥∥∥∥
(

2−m

m − 1
− 1

m

)
1m−1

∥∥∥∥ = 1√
m − 1

(
m − 1

m
− 2−m

)
,

and

dist({0}, ∂ Hi ) =
∥∥∥∥
(

m − 1

m
− 2−m

)
ei

∥∥∥∥ = m − 1

m
− 2−m for all i ∈ [m − 1].

So the minimum distance from 0 to the boundary of P is

min

(
1

m
√

m − 1
,

1

m
,

1√
m − 1

(
m − 1

m
− 2−m

)
,

m − 1

m
− 2−m

)

= 1√
m − 1

min

(
1

m
,

m − 1

m
− 2−m

)
= √

m − 1ρm−1 ≥ ρm−1,

and this completes the proof.
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7. Smallest Containing Simplicial Cylinders

In this section we prove several results that relate the volume of the largest j-simplices
in a polytope P with the cross-sectional volume of the smallest j-simplicial cylinders
containing the polar polytope P�.

Lemma 7.1. Let V ∈ Rm×n have affinely independent columns and suppose 0 ∈
aff(V ). Then for all t ∈ C,

det(Jn + t2V TV ) = t2n−2 det(Jn + V TV ).

If t �= 0, then Jn + t2V TV is invertible.

Proof. The case t = 0 is trivial, so suppose t �= 0. Let V1, V2 ∈ C(m+1)×n be the
matrices

V1 =
(

1T

V

)
, V2 =

(
1T

tV

)
.

We must have n ≤ m +1 since the columns of V are affinely independent. If n = m +1,
then

det(Jn + t2V TV ) = det(V T
2 V2) = (det(V2))

2

= (tn−1 det(V1))
2 = t2n−2 det(V T

1 V1) = t2n−2 det(Jn + V TV ).

So suppose n < m + 1. Let W ∈ R(m+1)×(m+1−n) be a matrix whose columns form an
orthonormal basis for (lin(V1))

⊥ ⊂ Rm+1. Since 0 ∈ aff(V ), the vector (1, 0, . . . , 0)T ∈
lin(V1), so the first row of W must be all zero. Therefore,

V T
2 W = tVT

1 W = 0.

Thus

det(Jn + t2V TV ) = det

(
Jn + t2V TV 0

0 Im+1−n

)

= det((V2 W )T(V2 W )) = (det(V2 W ))2.

Since the first row of W is all zero, if we start with the matrix (V1 W ), multiply the first
n columns by t , and then divide the first row by t , we get the matrix (V2 W ). Thus,

(det(V2 W ))2 = t2n−2(det(V1 W ))2

= t2n−2 det

(
Jn + V TV 0

0 Im+1−n

)
= t2n−2 det(Jn + V TV ).

By Theorem 4.3, det(Jn + V TV ) is nonzero. Therefore, whenever t ∈ C is nonzero,
Jn + t2V TV is invertible.
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Theorem 7.2. Let P be a d-polytope in Rd with 0 ∈ int(P) and let j ∈ N with
j ≤ d . Suppose the squared volume of a largest j -simplex in P is λ and the squared
cross-sectional volume of a smallest j -simplicial cylinder containing P� is µ. Then

µ ≥ ( j + 1)2( j+1)

( j!)4λ
,

with equality if and only if there is a largest j -simplex in P whose centroid is 0.

Proof. Let C ⊃ P� be a j-simplicial cylinder. Then S = C� ⊂ P is a j-simplex
and 0 ∈ relint(S). Suppose S = conv({v1, . . . , vj+1}). Define w1, . . . , wj+1 ∈ aff(S) by
requiring wT

i vk = 1 for all i �= k. Then w1, . . . , wj+1 are the vertices of the cross section
of C that contains 0. Let V be the matrix whose columns are v1, . . . , vj+1 and let W be
the matrix whose columns are w1, . . . , wj+1. Then W = VM for some M ∈ R( j+1)×( j+1)

satisfying 1T M = 1T, since the wi are in aff(S). Furthermore, W TV − Jj+1 is diagonal.
These two properties uniquely determine W .

By Lemma 7.1, the matrix Jj+1 − V TV is invertible, and

det(Jj+1 − V TV ) = (−1) j det(Jj+1 + V TV ).

Since 0 ∈ aff(S), there is a unique vector a = (a1, . . . , aj+1)
T ∈ R j+1 such that

0 = V a and 1Ta = 1. Since 0 ∈ relint(S), the entries of a are all positive. Note that
a = (J −V TV )−11. Let D be the diagonal matrix with diagonal entries 1/a1, . . . , 1/aj+1.
We claim that M = (J − V TV )−1 D. We have

1T M = 1T(J − V TV )−1 D = aT D = 1T,

which implies that J M = J . Also,

W TV − J = MTV TV − J

= MT(V TV − J )

= −D

is diagonal, so we have indeed found the correct choice of M . Therefore

( j!)2 vol2(C) = det(J + W TW )

= det(MT(J + V TV )M)

= (det(M))2 det(J + V TV )

=
(

det(D)

det(J − V TV )

)2

det(J + V TV )

= (det(D))2

det(J + V TV )

= 1

( j!)2 vol2(S)
∏ j+1

i=1 a2
i

.
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Now since the sum of the ai is 1, their arithmetic mean is 1/( j + 1). Therefore their
geometric mean is at most 1/( j + 1), with equality if and only if they are all equal, that
is, if 0 is the centroid of S. So

j+1∏
i=1

a2
i ≤ 1

( j + 1)2( j+1)
.

Therefore, the smallest vol2(C) can be is

( j + 1)2( j+1)

( j!)4λ2
,

and that is attained if and only if S is largest and has its centroid at the origin.

To apply Theorem 7.2 to truncated simplices we need the following result.

Theorem 7.3. Let G = ([n], E)be a labelled directed graph such that every vertex of G
has outdegree at least 1. Let V ∈ Rd×m have affinely independent columns v1, . . . , vm ,
where m ≥ n, and let ε ∈ R with 0 < ε < 2−m−1. Let P = T (V, G, ε) and let
S = �P(g) be a bound largest (m − 1)-simplex in P . Then the centroid of S is the
centroid of conv(V ) if and only if the union of the cyclic sets of g is [n].

Proof. Let c be the centroid of S. Then since (i, g(i)) ∈ E for all i ∈ [n],

c = 1

m

((∑
i∈[n]

((1 − ε)vi + εvg(i))

)
+
( ∑

i∈[m]\[n]

vi

))
.

Clearly, c = (1/m)
∑

i∈[m] vi if and only if

∑
i∈[n]

vg(i) =
∑
i∈[n]

vi .

Because of the affine independence of the vi , this happens if and only if for each j ∈ [n],
j = g(i) for a unique i ∈ [n]. This is equivalent to saying that the union of the cyclic
sets of g is [n].

8. Hardness Results

In this section we prove the NP-hardness of the problems HLGSTSIMPLEX f , VLGST-
SIMPLEX f , HSMLSTSIMPCYL f , and VSMLSTSIMPCYL f , for a certain class of functions
f . The key step in proving NP-hardness of these problems is the following construction,
which relies heavily on properties of truncated simplices.

Definition 8.1. Let G = ([3q], E) be a labelled directed graph for some q ∈ N and let
k, m ∈ N with 3q + 1 ≤ k ≤ m.
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Let

A1 = {x ∈ Rm : xk+1 = · · · = xm = 0}
and

A2 = {x ∈ Rm : x1 = · · · = xk = 0}.
Let ι1: Rk → A1 by

ι1(x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0)

and if k < m, let ι2: Rm−k → A2 by

ι2(x1, . . . , xm−k) = (0, . . . , 0, x1, . . . , xm−k).

Let ε = 2−k−3, and let Vk be as in Definition 6.7. Let

P = T (Vk, G ∪ �Ck−3q+1, ε) ⊂ Rk .

If k = m, define RG,k,m = P . If k < m, let Vm−k and ρk be as in Definition 6.7, and
define

RG,k,m = conv(ι1(P) ∪ ι2((ρk/2) conv(Vm−k))) ⊂ Rm .

Theorem 8.2. Let everything be as in Definition 8.1. Then RG,k,m is a rational m-
polytope in Rm with 0 ∈ int(RG,k,m). It has (2k + 2)(m − k + 1) facets, and if k < m it
has k(k + 1) + (m − k + 1) vertices. If k = m it has k(k + 1) vertices.

Suppose every vertex of G has outdegree at least 1. Let

λ = ((1 − ε)3 + ε3)2q((1 − ε)k−3q+1 − (−ε)k−3q+1)2

(k!)2
∈ Q.

Then there is a k-simplex S ⊂ RG,k,m with vol2(S) ≥ λ if and only if G has a partition
into directed triangles. Furthermore, there is a k-simplicial cylinder C ⊃ (RG,k,m)�

with

vol2(C) ≤ (k + 1)2(k+1)

(k!)4λ

if and only if G has a partition into directed triangles.

Proof. Clearly, RG,k,m is a rational m-polytope in Rm . Theorem 6.8 shows that 0 ∈
int(P), and that 0 ∈ int((ρk/2) conv(Vm−k)) if k < m. Therefore 0 ∈ int(RG,k,m).
Since P is a truncated k-simplex, P has 2k + 2 facets and k(k + 1) vertices. If k < m,
(ρk/2) conv(Vm−k) is an (m − k)-simplex, so it has m − k + 1 vertices and m − k + 1
facets. Thus, if k < m, Theorem 4.7 implies that RG,k,m has k(k + 1) + (m − k + 1)

vertices and (2k + 2)(m − k + 1) facets.
Theorem 6.8 shows that ρkBk ⊂ P . If k < m, then since (ρk/2) conv(Vm−k) ⊂

(ρk/2)Bm−k and ρk/2 < ρk , Theorem 4.4 implies that every largest k-simplex S in
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RG,k,m is contained in ι1(P). This also trivially holds when k = m. Since every vertex
of G has outdegree at least 1, Theorem 6.6 implies that

vol2(S)

vol2(conv(Vk))
= vol2(S1)

vol2(conv(V3q−1))
· vol2(S2)

vol2(conv(Vk−3q))
,

where S1 is a largest (3q − 1)-simplex in T (V3q−1, G, ε) and S2 is a largest (k − 3q)-
simplex in T (Vk−3q , �Ck−3q+1, ε). By Theorem 6.4,

vol2(S2)

vol2(conv(Vk−3q))
= ((1 − ε)k−3q+1 − (−ε)k−3q+1)2.

By Theorem 6.3,

vol2(S1)

vol2(conv(V3q−1))
≤ ((1 − ε)3 + ε3)2q ,

with equality if and only if G has a partition into directed triangles. So

vol2(S)

vol2(conv(Vk))
≤ (k!)2λ,

with equality if and only if G has a partition into directed triangles. Since

vol(conv(Vk)) = 1

k!
,

we have proven the first part of the theorem.
Now, let α be the squared volume of a largest k-simplex in RG,k,m and let µ be the

squared cross-sectional volume of a smallest k-simplicial cylinder containing (RG,k,m)�.
If G does not have a partition into directed triangles, then α < λ, so by Theorem 7.2,

µ ≥ (k + 1)2(k+1)

(k!)4α
>

(k + 1)2(k+1)

(k!)4λ
.

If G does have a partition into directed triangles, then α = λ. Let S be a largest k-simplex
in RG,k,m . Then S is a largest k-simplex in ι1(P), and �−1

ι1(P)(S) has q cyclic 3-sets and

one cyclic set of size k − 3q + 1. So the union of the cyclic sets of �−1
ι1(P)(S) is [k + 1],

and by Theorem 7.3, the centroid of S is the centroid of conv(Vk), which is the origin.
So in this case, Theorem 7.2 gives

µ = (k + 1)2(k+1)

(k!)4λ
,

which completes the proof.

Theorem 8.3. Let f : N → N be a function such that f (d) ≤ d for all d , f (d) is
computable in time polynomial in d , and there is some positive integer k such that f (d) =
	(d1/k). Then the problems HLGSTSIMPLEX f , VLGSTSIMPLEX f , HSMLSTSIMPCYL f ,
and VSMLSTSIMPCYL f are all NP-hard.
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Proof. Let G = ([3q], E) be an instance of PARTITION INTO DIRECTED TRIANGLES.
We can determine in polynomial time whether there is a vertex of G with outdegree 0,
and if there is then G clearly cannot have a partition into directed triangles. So assume
that every vertex of G has outdegree at least 1.

Find the smallest m ∈ N such that f (m) ≥ 3q + 1. This can be done in polynomial
time simply by evaluating f (3q + 1), f (3q + 2), . . . , until a suitably large value is
found. By our assumptions on f , the number of evaluations required is polynomially
bounded, and each evaluation takes polynomial time.

Set

ε = 2− f (m)−3,

λ = ((1 − ε)3 + ε3)2q((1 − ε) f (m)−3q+1 − (−ε) f (m)−3q+1)2

(( f (m))!)2
∈ Q,

and

µ = ( f (m) + 1)2( f (m)+1)

(( f (m))!)4λ
∈ Q.

It is possible to construct either an H - or V -presentation of either RG, f (m),m or
(RG, f (m),m)� in polynomial time, since each polytope has a polynomial number of both
vertices and facets, and we know exactly which vertices and facets are incident. By
Theorem 8.2, we can decide whether G has a partition into directed triangles by ask-
ing whether RG, f (m),m contains an f (m)-simplex of squared volume at least λ, or by
asking whether there is an f (m)-simplicial cylinder containing (RG, f (m),m)� whose
squared cross-sectional volume is at most µ. This shows the NP-hardness of all four
problems.
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