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Deep learning has recently been widely applied to many applications across different domains, e.g., image
classification and audio recognition. However, the quality of Deep Neural Networks (DNNs) still raises con-
cerns in the practical operational environment, which calls for systematic testing, especially in safety-critical
scenarios. Inspired by software testing, a number of structural coverage criteria are designed and proposed
to measure the test adequacy of DNNs. However, due to the blackbox nature of DNN, the existing structural
coverage criteria are difficult to interpret, making it hard to understand the underlying principles of these
criteria. The relationship between the structural coverage and the decision logic of DNNs is unknown. More-
over, recent studies have further revealed the non-existence of correlation between the structural coverage
and DNN defect detection, which further posts concerns on what a suitable DNN testing criterion should be.
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In this article, we propose the interpretable coverage criteria through constructing the decision structure
of a DNN. Mirroring the control flow graph of the traditional program, we first extract a decision graph
from a DNN based on its interpretation, where a path of the decision graph represents a decision logic of
the DNN. Based on the control flow and data flow of the decision graph, we propose two variants of path
coverage to measure the adequacy of the test cases in exercising the decision logic. The higher the path
coverage, the more diverse decision logic the DNN is expected to be explored. Our large-scale evaluation
results demonstrate that: The path in the decision graph is effective in characterizing the decision of the DNN,
and the proposed coverage criteria are also sensitive with errors, including natural errors and adversarial
examples, and strongly correlate with the output impartiality.

CCS Concepts: • Software and its engineering → Software testing and debugging; • Computing

methodologies→ Neural networks;

Additional Key Words and Phrases: Deep learning testing, testing coverage criteria, model interpretation
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1 INTRODUCTION

Deep Learning (DL) has achieved tremendous success and demonstrated its great potential
in solving complex tasks in many cutting-edge real-world applications such as image classifi-
cation [12], speech recognition [44], natural language processing [9], and software engineering
tasks (e.g., commit message generation [22], vulnerability detection [19] and clone detection [21]).
We have also seen an increasing demand to apply DL in some safety-critical areas, such as au-
tonomous driving [7], healthcare [4], and security applications [29]. However, Deep Neural Net-

works (DNNs) have been demonstrated with quality issues, e.g., to be vulnerable to adversarial
attacks in spite of having achieved high accuracy [5]. We have already witnessed real-world cases
caused by quality issues of DNNs, e.g., Tesla/Uber accidents [47] and incorrect diagnosis in health-
care [4]. The systematic assessment of the quality of DNNs is urgently needed, especially in safety-
and security-critical scenarios.

Even until recently, the common way of quality evaluation of DNNs still mostly relies on train-
validation-test splits to calculate the accuracy, which may over-estimate the performance of the
model [41]. This motivates the software engineering community to propose a variety of novel
approaches and tools for systematically testing the quality of the DL software (i.e., the DNN).
However, due to the fundamental difference between the traditional code-based software and the
DL software (see Figure 1(a)), the software testing techniques (e.g., code coverage) could not be
directly applied in DL software, making testing of the DL software a new challenge.

To this end, inspired by the white-box testing of the traditional software, a number of approaches
towards testing of DL systems have been recently proposed [28]. Specifically, some structural cov-
erage criteria are proposed to measure the test adequacy of the test suite via analyzing the internal
neuron activities, e.g., Neuron Coverage (NC) [39], its variants (e.g., KMNC, NBC, SNAC) [31],
the combinatorial testing based criteria [30, 42], the Surprise Adequacy [23], and so on. Based
on the coverage criteria, automated testing techniques (e.g., DeepXplore [39], DeepTest [46], and
DeepHunter [51]) are further developed to generate test cases for maximizing the coverage.

DNN testing aims to cover diverse internal decision logics of DNN such that more bugs (i.e.,
incorrect decisions) could be detected [42, 54]. Due to the black-box nature and complexity of
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Fig. 1. (a) Difference between traditional software and DL software. (b) Paths in the DL software.

DNNs, it is unknown and hard to understand the underlying principles of existing coverage cri-
teria [28]. Specifically, for traditional software, the defects reside on particular instances of the
program’s control and data flow [33]. Thus, the code-based coverage criteria (e.g., statement cov-
erage, branch coverage) are meaningful and essential, as covering more statements or branches is
more likely to capture diverse behavior (i.e., program logic) in terms of the control and data flow.
However, unlike the traditional software, the decision logic of DNN is opaque to humans, making
it hard to understand the relationship between the decision logic and existing coverage criteria.
For example, it is not clear whether (de-)activating more neurons (i.e., NC) is better to capture
more diverse behaviors of the DNN. Thus, one may wonder what is the semantics and meaning
behind existing coverage criteria.

Some recent research [10, 20, 28, 52] started to perform a more in-depth investigation of existing
coverage criteria and have demonstrated their limitations in different perspectives. Harel-Canada
et al. have shown that NC is neither positively nor strongly correlated with defect detection, nat-
uralness, and output impartiality [20]. For example, their experimental results have shown that
only a few inputs could already achieve 100% NC [42]. Li et al. demonstrated that the existing
testing criteria are not effective or sensitive in distinguishing same-size test sets of natural exam-
ples, including different levels of misclassification rates [28]. Dong et al. further showed that there
is a limited correlation between the coverage criteria and the robustness of the DNN [10]. These
results force us to rethink what could be a better coverage criterion of DNN and how could we
design more interpretable coverage criteria.

Motivated by the aforementioned challenges and limitations, in this article, we propose coverage
criteria from the new angle, called Neuron Path Coverage (NPC). We argue that a better coverage
criterion should be more relevant to the decision logic of the DNN. To this end, NPC is designed
to be interpretable1 (i.e., easily understandable) and can better characterize the decision structure
of the DNN. In traditional software, a path in the control flow graph could represent the program
logic of the software (e.g., login, logout, invalid user input checking). Inspired by this, we extract
Critical Decision Paths (CDPs) from the DNN, which represent the internal decision of the DNN
on given inputs. For example, in Figure 1(b), the DNN makes the decision along the corresponding
CDPs (e.g., the yellow path or the red path), which is to classify the input as a dog or a cat. Based
on the interpretation technique [3], we extract critical neurons in each layer, which dominate the
decision of the DNN on the target input. The critical neurons between the layers form the CDP.
Compared with the existing neuron-based coverage metric (e.g., NC [39], k-multisection Neuron
Coverage [31], IDC [15]), CDP considers not only the critical neurons in one layer but also the
relationships among layers. Moreover, the CDP is clearly related to decision-making.

1We say that NPC is interpretable, as it is designed to identify the key neurons that contribute more on the decision of the
model based on the interpretation technique, i.e., Layer-wise Relevance Propagation (LRP) [3].
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We then recover the learned decision logic of the DNN by extracting CDPs from all training
samples. Intuitively, the CDP can be regarded as the control flow of the DNN that shows the
important decision logic. Hence, the objective of DL testing is to generate diverse test inputs that
can trigger different decision logic (i.e., trigger different control/data flow of the DNN). We first
construct a Decision Graph (DG) to represent the overall decision logics based on the training
data. Since the number of training samples may be very large, we propose the path abstraction
technique to build the abstract CDP. The abstract state represents the common decision logic that
is shared by some inputs. Based on the DG, we define two variants of path-based coverage criteria,
named Structure-based Neuron Path Coverage (SNPC) and Activation-based Neuron Path

Coverage (ANPC). Specifically, SNPC is designed based on the control-flow of the DNN (i.e.,
neurons in the path), while ANPC is designed based on the data-flow of the DNN (i.e., neuron
activation values in the path). An input can increase the coverage if it can trigger a different CDP
or the similar CDP but with different activation values.

To demonstrate the effectiveness of our technique, we evaluate NPC on four widely used
datasets. Specifically, we first evaluate the accuracy of the extracted paths, i.e., whether they are
critical and useful in explaining the decision of the DNN. Our results show that the CDPs are crit-
ical for the prediction of inputs. After masking the outputs along the CDPs, the prediction results
are changed greatly (e.g., 98.9% inconsistency rate on average). Moreover, the CDP is accurate to
distinguish decision behaviors between different inputs in the same class. Then, we evaluate the
usefulness of the proposed coverage criteria, and the results show that NPC could distinguish the
same-size test sets including a different number of natural errors. In addition, NPC is positively
correlated with the output impartiality [20], i.e., test set with high output bias has lower cover-
age. We also evaluate the efficiency of the coverage calculation, and the results show that the time
overhead is not very expensive, although NPC adopts the interpretation analysis.

In summary, this article makes the following main contributions:

• We propose a method to construct a decision structure of the DNN based on the CDP extrac-
tion and abstraction.
• Based on the decision structure, we propose two variants of coverage criteria that are more

relevant to the decision-making logic of the DNN.
• We conduct the comprehensive evaluation and demonstrate the effectiveness of the proposed

approach. Our results show that the CDP is closely relevant to the decision-making; The
proposed coverage criteria (i.e., SNPC and ANPC) are positively correlated with the detection
of natural errors and output impartiality, respectively.

2 BACKGROUND AND MOTIVATION

In this section, we briefly introduce software testing, the challenges of DL testing, and the inter-
pretation technique LRP.

2.1 Traditional Software Testing

Software testing has been widely studied in the past decades to evaluate the quality of the software.
A central question of software testing is “what is a test criterion?” which defines what constitutes
an adequate test [56]. In traditional software, the program logic is usually described by the pro-
grammer and can be represented as the control flow graph (see Figure 1(a)). Based on the clear
and easy-to-understand logic representation in the program, different coverage criteria have been
proposed to measure the test adequacy, e.g., statement coverage, branch coverage, and path cover-
age. These criteria are related to the program logic, and the underlying principles are also intuitive:
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more program logic or behaviors could be explored by increasing the coverage (e.g., executing new
statements or paths of the program).

2.2 Challenges and Motivation

Deep Neural Networks (DNNs) consist of multiple layers of neurons, which perform the non-
linear calculation for feature extraction and transformation. Similar to traditional software testing,
the goal of DL testing is to test the decision logic of the DNN such that the incorrect prediction
could be detected [42]. However, unlike the control flow graph of the program, the logic of the
DNN is opaque to humans, making it hard to design suitable coverage criteria. Neuron outputs
of the DNN could reveal the behavior of the DNN, thus some neuron outputs-based coverage
criteria [23, 31, 39] are proposed. However, it is not immediately clear how the neuron outputs
reflect the internal decision logic, making it hard to understand its underlying principles and the
meaningfulness of existing coverage criteria [28].

The value range of neuron outputs is huge, and it is often impractical to enumerate all possi-
bilities. For efficiency, existing coverage criteria adopt different strategies to reduce the testing
space. For example, NC [39] only considers two states (i.e., activated/inactivated) for the output of
each neuron. k-multisection neuron coverage [31] discretizes the output value to k buckets. Sur-
prise metrics [23] select one of the layers to calculate the surprise score. The limitation is that it
is unclear about the relationship between the coverage criteria and the decision logic of the DNN
(e.g., whether a new decision-making behavior could be triggered by activating one neuron in NC).
Consequently, if the coverage criteria are too coarse, then some decision logic can be missed. For
example, since NC is too coarse, several inputs can achieve very high neuron coverage [20, 42].
If the coverage criteria are too fine-grained, then a huge number of inputs are needed. It is be-
cause many of them would trigger very similar decision logic with little difference. The further re-
sults [10, 20, 28, 42] have also demonstrated the limitation of the existing coverage criteria, which
call for new testing criteria design. Overall, this work is motivated by the recent findings [20, 28, 42]
on the limitation of the existing coverage criteria: ① the existing coverage criteria lack the inter-
pretability and are unaware of the decision logic [28, 42], ② the existing coverage criteria are not
sensitive to the defect detection including both of adversarial examples and natural errors [20, 28],
and ③ the existing coverage is not positively correlated with the output diversity [20].

Motivation: Similar to the traditional software testing, a better coverage criterion for DL
testing should be interpretable and more closely related to the decision logic of the DNN,
which is what the existing coverage criteria lack. When new inputs increase the coverage, it
is expected that new decision logic would be exercised and covered.

2.3 Layer-wise Relevance Propagation (LRP)

Definition 1. A Deep Neural Network (DNN) f consists of multiple layers 〈l1, . . . , ln〉, where
l1 is the input layer, ln is the output layer, and l2, . . . , ln−1 are hidden layers. The inputs of each
layer are from outputs of the previous layer.

In this work, we mainly focus on the classifier f : X → Y , where X is a set of inputs and Y
is a set of classes. Given an input x ∈ X , f (x ) = arg maxy On , where On is a |Y |-dimensional
vector, which is the output of the output layer ln . The input is classified as the class y, and we use
дf (x ) = On (y) to represent the output value (e.g., the logits) for the class y. Due to the complex
non-linear calculation in the DNN, it is usually hard to understand the decision.

Layer-wise Relevance Propagation (LRP) [3] is an effective way to interpret the decision by
calculating the key features in the input. Given a d-dimensional input x and the classifier f , x is
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Fig. 2. Visualization of the LRP process [3].

classified as the class y. To interpret the decision, LRP calculates the relevance (or contribution) of
each dimension (i.e., pixel) in the input. Specifically, the classifier f outputs дf (x ) on the class y
and LRP calculates the relevance of each input dimension:

дf (x ) =
d∑

i=1

Rl1
i ,

where Rl1
i represents the relevance of the dimension i in the input layer l1 (e.g., the pixel in an

image). The sum of the relevance scores is equal to the output value дf (x ), which means that

each dimension can contribute to the final decision of predicting y (i.e., дf (x )). Intuitively, Rl1
i <

0 contributes evidence against the presence of the class that is to be classified, while Rl1
i > 0

contributes evidence for its presence [3].
The relevance is calculated by a layer-by-layer backward propagation (from the output layer ln

to the input layer l1) such that:

дf (x ) = Rln
y =

∑
i ∈ln−1

Rln−1
i = . . . =

∑
i ∈l1

Rl1
i ,

where Rl
i represents the relevance of the neuron i at the layer l . The relevance calculation starts

from the output neuron y at the last layer ln (i.e., Rln
y ) until the relevance Rl1

i of the input layer is
calculated. At each layer, the sum of the relevance of all neurons is equal to the output дf (x ). To
be more specific, each relevance is calculated based on the following relation:

R (lm+1 )
j =

∑
i ∈(lm )

R (lm,lm+1 )
i←j ,R (lm )

i =
∑

j ∈(lm+1 )

R (lm,lm+1 )
i←j ,

where R (lm+1 )
j represents the relevance of the neuron j at the layer lm+1, R (lm,lm+1 )

i←j represents the
relevance of the neuron i at the layer lm , where the output of the neuron i is the input of the neuron
j at the layer lm+1. The relevance calculation starts from the output neuron at the last layer ln is

R (ln )
y = дf (x ) until the relevance R (1)

i of the first layer (i.e., the input layer) is calculated.
Figure 2 shows the LRP calculation process on an image. In the left box, we show the “black-box”

prediction where the image is classified as a dog and outputs дf (x ). To interpret why it is classified
as the dog, LRP calculates the relevance layer-by-layer starting from the outputдf (x ) (shown in the
right box). Finally, neurons/pixels that have more impact on the prediction are identified. Note that
different colors represent the different relevance scores of the corresponding neurons. Here, we
use the red colored squares to represent the neurons that are more critical for extracting features
of dogs.
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Fig. 3. Overview of this work.

3 METHODOLOGY

3.1 Overview

To design coverage criteria that are related to the decision logic of DNN, it is necessary to un-
derstand the decision-making of the black-box DNN (we say DNN is black-box, since it is usually
uninterpretable). Fortunately, some recent progress has been made on the interpretation of ma-
chine learning models [3, 14, 49], which can be used for the interpretable coverage criterion.

In this work, we applied the Layer-wise Relevance Propagation (LRP) [3] to reveal the internal
decision of an input. LRP is an effective approach that interprets the classification decisions by the
decomposition of nonlinear classifiers (e.g., DNNs) such that the key features in the input (e.g.,
pixels in the images) could be identified. In particular, given an input, LRP calculates the relevance
of neurons in each layer starting from the last layer to the input layer in terms of the prediction
result. The relevance represents the effect of neurons in the decision. Based on the relevance, we
define the Critical Decision Path (CDP) that is a set of critical neurons (i.e., with larger relevance
in each layer) for the decision. Consider the left figure in Figure 1(b) as an example: The yellow path
and the red path represent different decision logic for the prediction of dogs and cats, respectively.
Our evaluation results show that similar inputs (e.g., dogs) tend to share a similar CDP (i.e., their
decision logic is similar), while different inputs (e.g., dogs and cats) have different CDPs.

Inspired by the path coverage criterion in software testing, we propose the Neuron Path Cov-

erage (NPC). For example, in the control flow graph of Figure 1(a), it returns the maximum value
of the inputs x and y. The two paths show the clear logic of the program: The left path represents
that x is the larger one, while the right path represents that y is the larger one. Similarly, the ex-
tracted CDPs are used to show the logic of the DNN. For ease of understanding, we show a dummy
graph in the right figure of Figure 1(b); if the input executes the yellow path, then it is classified
as the cat, otherwise, a dog.

Figure 3 shows a detailed workflow of our work. The decision logic of the DNN is determined by
the training data, given the target DNN, we first individually extract the CDP for each training data
(Section 3.2). The extracted CDPs represent the decision logic that is learned from the training data.
Given an input, we measure the coverage by calculating the distance between the CDP of a given
input and CDPs of training data (i.e., the difference of the decision logic). However, calculating the
distance with all training samples is computationally expensive. To improve the efficiency, we per-
form the intra-class path clustering and abstraction on the CDPs of training samples (Section 3.3).
Specifically, the assumption is that the samples with similar decision logic may have similar CDP.
Thus, for the inputs predicted as the same class, we group their CDPs into k clusters. It means
that inputs with similar decision logic are clustered into one group. For example, similar cats are
clustered together (e.g., the yellow cats and brown cats in Figure 3). For each cluster, we further
propose the path abstraction that merges CDPs of inputs (in the cluster) into an abstract CDP. The
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abstract CDP represents the decision logic for all inputs in this cluster. Finally, the number of paths
is greatly reduced. Based on the abstract CDPs, we propose the distance-based coverage criteria
(Section 3.4), which measure to what extent a new decision logic is covered by the given test suite.
Specifically, we first identify the abstract CDP of the given input and then propose two coverage
criteria. From the control flow perspective, we calculate the similarity between the new CDP and
the abstract CDP of the corresponding cluster. From the data-flow perspective, we take the acti-
vation value of neurons in the abstract CDP into consideration and calculate the distance (along
the abstract CDP) between the input and training samples in the cluster. The similarity and dis-
tance reveal how different the decision behavior of the new input is. Similar to Reference [23], we
divided the similarity/distance tom buckets and calculate how many buckets are covered by a given
test suite. To adopt the coverage criteria in testing DNNs, we need to select the optimal hyperpa-
rameters for the CDP extraction and abstraction. We propose a method to select the parameters
by evaluating the accuracy of the CDPs on affecting the decision.

3.2 Path Extraction

In this section, we will introduce how to extract the critical decision path for a given input.
As described in Section 2.3, the relevance Rl

i represents the contribution to the final decision.
The larger relevance the relevance Rl

i , the more contribution the neuron i at the layer l . Since
the DNN prediction is based on the features extracted and transformed layer-by-layer, we use the
critical neurons with large relevance in each layer to represent the internal decision of the DNN.
Then, we define the critical decision path along all layers of the DNN as follows:

Definition 2 (Critical Decision Path). Given an input x and the DNN f consisting of n layers, we
define its α-Critical Decision Path (α-CDP) as a sequence of neurons sets p = 〈s1, . . . , sn−1〉,
where si is a set of critical neurons that have the largest relevance values at the layer li and

(∀j ∈ si .R
li

j > 0) ∧ ���
∑
j ∈si

Rli

j > α · дf (x )��� ,
where α is a parameter that controls the number of the selected critical neurons at each layer.

The neuron is critical if it provides a positive contribution to the decision (i.e., the positive
relevance). We first sort neurons of each layer by the relevance values, and the CDP is composed
of the most critical neurons at each layer. As a layer may have multiple critical neurons, we use
the parameter α to prioritize the more critical ones. The smaller the α , the fewer critical neurons
are selected at each layer. Other neurons that are not selected in the CDP are called Non-Critical

Decision Path (NCDP).
We define the width of the CDP as the average ratio of neurons selected at each layer. It is

worth mentioning that, for different inputs, the width of the CDP may be different even with
the same value for the parameter α . For each input, we select the CDP that has a large effect on
the prediction while the NCDP (i.e., other neurons) has little impact. Furthermore, the width of the
CDP (i.e., the selected neurons) should be as small as possible such that it can represent different
decision logic accurately. Considering an extreme case like that, we could use all neurons of the
network as the CDP, which does not lose any information. However, it cannot distinguish the
decision logic between different inputs, because all inputs have the same CDP (i.e., the DNN). Our
evaluation demonstrated that CDPs with a suitable width could better reveal different predictions,
i.e., inputs predicted to be the same class share similar CDPs, while inputs predicted to be different
classes have different CDPs.
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3.3 Path Abstraction

The decision logic of the DNN is determined by the training data, thus, we recover its main decision
logic that is learned from the training data. Given a classifier f and its training dataT , we construct
the CDP for each sample in T , which are used to estimate the learned logic of the DNN roughly.
However, analyzing all CDPs of T may introduce high computational costs especially when the
size of T is large. Moreover, some training data may share similar decision behaviors. To reduce
the computational cost, we introduce a two-stage method to calculate the abstract CDPs.

Intra-class Path Clustering. The assumption is that the inputs that are predicted to be the same
class should have similar CDPs, because the DNN has similar decisions on these inputs. Thus,
our basic idea is to generate representative CDPs, which could characterize the common decision
pattern on these inputs.

In particular, suppose the classifier f performs a classification task with a set of classes Y , we
group the training samples on the predicted class y ∈ Y , i.e.,Ty = {x ∈ T | f (x ) = y}. For each class
y, although the decision logic on the inputsTy is similar, they may still have some slight difference.
For example, the decision of the yellow cats may be slightly different from the brown cats. To
capture more fine-grained decision logic in each class y, we cluster CDPs of the samples inTy into
k groups. We apply the K-Means clustering algorithm in this article. Specifically, for each sample,
we obtain a vector that represents the status of all neurons of the DNN. If a neuron is included
in the CDP, then its status is marked as 1 in the vector, otherwise, it is marked as 0. Note that all
vectors have the same size such that they can be clustered. C

y
j ⊆ Ty denotes the training samples

in the jth cluster. The samples in the same cluster have more similar decision-making logic than
samples in other clusters.

Path Merging. For CDPs in each cluster, we then propose the path abstraction by merging them
into an abstract path. Specifically, for C

y
j in the jth cluster, we calculate an abstract CDP p̂ =

〈ŝ1, . . . , ŝn−1〉 by merging neurons in each layer: ∀i ∈ {1, . . . ,n − 1} : ŝi =
⋃

x ∈Cy
j
sx

i . For each

neuron t ∈ ŝi , we calculate its weight as:

wt =
|{x |x ∈ Cy

j ∧ t ∈ sx
i }|

|Cy
j |

,

where sx
i is the set of critical neurons at the layer i in the CDP of the input x .

Intuitively, for a set of inputs, the abstract CDP is the union of their critical neurons at each
layer. The weight of each neuron wt represents the ratio of CDPs that the neuron t belongs to.
The larger the weight, the more critical this neuron is (i.e., it is critical for more CDPs of training
samples in this cluster). After merging the paths, the abstract CDP could be much larger than the
CDP of one input. There are some neurons in the abstract CDP, which may have small weight.
Statistically, neurons with smaller weights may be less important for interpreting the decision on
the set of inputs. Thus, we further introduce the parameter β to select the critical neurons whose

weights are above the threshold and obtain the abstract CDP p̂β =
〈
ŝ1,β , . . . , ŝn−1,β

〉
, where

ŝi,β = {t |t ∈ ŝi ∧wt > β }.

Based on the abstract CDPs, we characterize the decision logic of a DNN as a decision graph,
which is similar to the control flow of programs.

Definition 3 (Decision Graph). The Decision Graph (DG) of a classifier f is composed of a set
of abstract CDPs G = {(p̂1,1

β
, . . . , p̂1,k

β
), . . . , (p̂n,1

β
, . . . , p̂n,k

β
)}, where n is the number of the classes,
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k is the number of the clusters for each class, and p̂i, j
β

represents the corresponding abstract CDP

with regards to the jth cluster of the class i .

3.4 Neuron Path Coverage

The decision graph represents the main logic of the DNN learned from its training data. Given a
new input, it is expected that the input could be predicted correctly via the learned decision logic.
DL testing aims to identify failed inputs that are possibly caused by triggering either unknown logic
or incorrect logic. Specifically, unknown logic means that the CDP of the input has low similarity
with abstract CDPs in the DG, i.e., the DNN may not be able to learn the logic with the training
data. Incorrect logic means that the input exercises the incorrect CDP, e.g., one dog may have a
similar CDP with a cat. We propose the path coverage to measure the adequacy of a given test
suite. Intuitively, the more paths covered, the more logic explored.

Specifically, inspired by the traditional software testing, we consider the control flow and data
flow of the DNN and propose two variants of path-based coverage criteria: the Structure-based

Neuron Path Coverage (SNPC) and the Activation-based Neuron Path Coverage (ANPC).
SNPC mainly considers the control flow, i.e., the path structure while ANPC considers the data
flow, i.e., the neuron outputs in the path.

Theoretically, like paths in traditional programs, the number of the paths in DNN could be infi-
nite. To mitigate this problem, we follow the strategy of Reference [23] by calculating the distance
and use bucketing to discretize the space of the distance.

3.4.1 Structure-based Neuron Path Coverage. Given an input x with the CDPpx , we first identify

the clusters based on the predicted result f (x ). Suppose Gf (x ) = {p̂f (x ),1
β

, . . . , p̂
f (x ),k
β

} is the set of

abstract paths that are extracted from clusters of the class f (x ). We measure the similarity between
px and each of the abstract paths inGf (x ) , which represents the difference of the decision behavior
of the given input x with the existing abstract paths. Then, we divide the similarity into multiple
buckets and calculate the coverage, i.e., how many buckets are covered.

Given two paths px and p̂, we calculate the similarity layer-by-layer. For a layer l , the similarity
is:

Jpl
x ,p̂

l =
sx

l
∩ ŝl

sx
l
∪ ŝl
, (1)

where sx
l

and ŝl are the neurons in the lth layer of px and p̂, respectively.
Then, we divide the continuous space of the similarity (i.e., [0,1]) into m equal buckets B =

{b1, . . . ,bm }. For an input x and a target abstract path p̂, the covered bucket at layer l is denoted
as:

bl
x,p̂
= bi if Jpl

x ,p̂
l ∈
( i − 1

m
,
i

m

]
.

Given a test suite X , we define the Structure-based Neuron Path Coverage as follows:

SNPC (X ) =
|{bl

x,p̂
|∀x ∈ X ,∀p̂ ∈ Gf (x ),∀l ∈ f }|

n · k · |p̂ | ·m , (2)

where p̂ is the corresponding abstract CDP, |p̂ | is the total number of layers, n is the number of the
total classes, k is the number of clusters in the class f (x ), andm is the number of buckets.

Specifically, for each layer of the abstract path, we divide the neuron similarity [0, 1] (i.e., Jaccard
similarity) between two layers into m buckets. Finally, there are a total of n · k · |p̂ | ·m buckets,
where n · k is the total number of abstract CDPs and |p̂ | is the number of layers. SNPC calculates
how many buckets can be covered by a test suite X . For a test case x ∈ X and a layer l , we
calculate the layer similarity between the CDP of x and the corresponding abstract CDP p̂. The

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 47. Pub. date: April 2022.



NPC: Neuron Path Coverage via Characterizing Decision Logic of DNNs 47:11

similarity falls into a specific bucket bl
x,p̂

. We identify all buckets covered by the test suite X , i.e.,

{bl
x,p̂
|∀x ∈ X ,∀p̂ ∈ Gf (x ),∀l ∈ f }, and calculate the coverage.

We take the similarities with all p̂ into consideration for a more fine-grained coverage analysis.
This is because one test sample could be relevant with multiple abstract paths in the same class.
For example, one abstract path may represent dogs with white color, while another abstract path
may represent dogs with long ears. Thus, comparing the similarity between the CDP of a test input
and different abstract CDPs could measure the input on different feature levels (i.e., with different
abstract CDPs).

The higher the coverage criteria, the more diverse logic the DNN has been explored. However,
SNPC only considers the control flow, which might be coarse in some cases. To be more fine-
grained, we therefore propose another variant of path coverage that adopts the concrete activation
values of neurons in the path (i.e., data flow).

3.4.2 Activation-based Neuron Path Coverage. In SNPC, we adopt the Jaccard similarity to cal-
culate the structural similarity between the CDP of the input x and the abstract CDP of a cluster.
To be more fine-grained, we consider the data flow of the CDP, i.e., the activation values of neu-
rons in the CDP, and calculate the distance between the values of two CDPs. Specifically, given an
input x and a cluster j, we first select the closest training sample x ′ from the cluster j, which has
highest similarity with x :

x ′ = arg max
x ′ ∈C f (x )

j

Jpx ,px ′ ,

where Jpx ,px ′ is the Jaccard similarity between CDPs of x and x ′. Then, we calculate the distance
between the activation values of x and x ′ along the abstract CDP in the cluster. Intuitively, the
larger the distance, the more different decision behaviors are triggered by the new input x , i.e.,
compared with the samples in cluster j, more behavior is covered by the new input. For the input
x , we use A(x , p̂l ) to denote the activation values of neurons in the lth layer of the abstract path p̂.
The distance at the lth layer between x and x ′ is defined as:

Dl
x,x ′ = | |A(x , p̂l ) −A(x ′, p̂l ) | |.

Similar to Reference [23], we introduce an upper boundU and divide the distance [0,U ] intom
buckets: B = {b1, . . . ,bm }. Given an input x and an abstract path p̂ in the corresponding cluster,
we define dl

x,p̂
as the covered bucket, i.e., the layer distance Dl

x,x ′ falls into a bucket:

dl
x,p̂
= bi if Dl

x,x ′ ∈
(
U · i − 1

m
,U · i

m

]
.

Given a test suite X , we define the Activation-based Neuron Path Coverage (ANPC) as:

ANPC (X ) =
|{dl

x,p̂
|∀x ∈ X ,∀p̂ ∈ Gf (x ),∀l ∈ f }|

n · k · |p̂ | ·m . (3)

From the definitions, we can see that the key difference between SNPC and ANPC is that SNPC
calculates the distance (i.e.,bl

x,p̂j
) based on the path structure similarity, while ANPC calculates the

distance (i.e., dl
x,p̂

) based on the neuron activation distance. With the coverage criteria, we could

measure the adequacy of the test suite with regards to the decision behaviors.

3.4.3 Hyperparameter Tuning. In the two coverage criteria, we have three hyperparameters,
i.e., α , β , and k , which determine the precision of the (abstract) CDPs with regards to representing
the decision logic. To adopt the proposed coverage criteria in DL testing, the hyperparameter
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tuning is required. We propose a strategy to evaluate the precision of the CDPs (under a set of
hyperparameters) on representing the decision logic as follows:

(1) For each training data, we extract its CDP and the NCDP. The expectation is that the CDP
has large impact on the decision of the data, while the NCDP has less impact on the decision.
Moreover, the width of the CDP should be as small as possible such that only critical neurons
are selected. Specifically, we, respectively, dropout the outputs of neurons (i.e., mask the
results as zero) in the CDP and the NCDP, and evaluate whether the prediction result is
changed (i.e., inconsistent). We evaluate the inconsistency rate on all training data on some
hyperparameters and select the best ones that satisfy our assumption.

(2) Similarly, we evaluate the precision of abstract CDPs. For the abstract CDP of a cluster, we
calculate the inconsistency rate on all training data of the cluster. For each data, we dropout
the same neurons that belong to the abstract CDP. The inconsistency rate is expected to be
high by masking the neurons of the abstract CDP and low by masking the neurons of the
abstract NCDP.

In our article, the value ranges of the three hyperparameters α , β, and k are {0.7, 0.8, 0.9, 1.0},
{0.6, 0.7, 0.8, 0.9}, and {1, 4, 7}, respectively.

4 EVALUATION

4.1 Setup

To evaluate the effectiveness of our approach, we have implemented the coverage criteria based on
the PyTorch framework. We design experiments to demonstrate the usefulness of our method in
mitigating these challenges. Specifically, we aim to investigate and answer the following research
questions:

• RQ1: How does the CDP affect the decision of the DNN? The CDP only selects the critical
neurons in each layer. We design the experiment to evaluate whether such neurons are critical
for DNN decisions.
• RQ2: How accurate is the abstract CDP in revealing internal decisions? Since the abstract

CDP is extracted from CDPs of training samples in the corresponding cluster, we aim to
evaluate whether the abstract CDP is still accurate in representing the DNN decision on
these training samples in the cluster.
• RQ3: Is NPC sensitive with errors including natural errors and adversarial examples? We in-

vestigate whether the proposed coverage criteria are sensitive in distinguishing the decision
difference between erroneous samples and benign samples.
• RQ4: Is NPC correlated to the output impartiality? A test suite should exercise diverse be-

haviors and should not prefer only a few output values [28]. We investigate whether the
coverage criteria can reveal the impartiality of the test suite, i.e., the test suite with diverse
behaviors should have high coverage, while the test suite with biased behavior should have
low coverage.
• RQ5: How efficient is the calculation of NPC? Since NPC extracts decision behaviors based

on the interpretation method, we investigate whether the interpretation analysis could intro-
duce much time overhead for the coverage calculation.

4.2 Subject Datasets and DNNs

We selected three widely used datasets in the image classification domain and trained four models
with competitive test accuracy, which are widely used in previous works [23, 31, 39].
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• MNIST [26] is for handwritten digit image recognition (i.e., handwritten digits from 0 to 9),
containing 60, 000 training data and 10, 000 test data. We select the five-layer Convolutional
Neural Network [23] (named SADL-1) and achieve an accuracy of 99.1%.
• CIFAR-10 [24] is a collection of images for general-purpose image classification, including

50, 000 training data and 10, 000 test data in 10 different classes (e.g., airplanes, cars, birds,
and cats). We select two models, i.e., the 12-layer Convolutional Neural Network [23] (named
SADL-2) and VGG16, which achieved the accuracy of 90.36% and 89.17%, respectively.
• SVHN [36] dataset is house numbers in Google Street View images, including 73,257 training

data and 26,032 test data. We select the model AlexNet, which has an accuracy of 94.31%.
• ImageNet is a large-scale visual recognition challenge (ILSVRC) dataset. The ImageNet

contains a large number of training data (i.e., over one million) and test data (i.e., 50,000) with
1,000 classes, each of which is of size 224 × 224 × 3. To reduce the complexity of training
and CDP evaluation, we select the first 10 classes to train a classifier with the model VGG16
that performs the classification on the 10 categories. The model is trained with an accuracy
of 76.81%.

4.3 Baselines

We select the state-of-the-art coverage criteria as the baselines for the evaluation, i.e., Neuron

Coverage (NC) [39],k-Multisection Neuron Coverage (KMNC) [31], Neuron Boundary Cov-

erage (NBC) [31], Likelihood-based Surprise Coverage (LSC) [31], Distance-based Surprise

Coverage (DSC) [23], and Importance-Driven Coverage (IDC) [15]. Due to the original IDC
only supporting Keras models, we implemented a PyTorch version of IDC for the comparison.

To be comprehensive, for NC, we set the threshold as 0, 0.2, 0.5, and 0.75 following Reference
[20]. For KMNC and NBC, we follow the configuration of References [31, 51] and set the k value
as 1,000 and 10. For LSC and DSC, we follow the configuration of Reference [23], set the upper
bound 2,000 and 2.0, respectively, and set the number of buckets as 1,000. For the layer selection,
we select the same layer in SADL-1 and SADL-2, which is used in Reference [23]. For VGG16 in
CIFAR and ImageNet, we select the last layer, since it achieved the best result. For IDC, we follow
the same configuration as Reference [15] and select the penultimate layer for each model. In the
selected layer, we choose the top 12 important neurons. For SNPC and ANPC, we set the number
of buckets as 200 and the upper bound as 2.0.

4.4 RQ1: Relationship Between CDP and the DNN Decision

4.4.1 Results of Masking Neurons of CDPs/NCDPs.

Mask all neurons. To evaluate whether the CDP has a critical impact on the decision of the DNN,
we dropout the outputs of neurons in the CDP (i.e., mask them as zero) and check whether the
predicted result is inconsistent with the original result. Intuitively, we say that the CDP is accurate
to reveal the decision if (1) the predicted output is largely affected after the neurons of the CDP
are masked and (2) the predicted output is less affected after neurons in NCDP are masked. We
extract CDPs for all training data and calculate the inconsistency rate after masking neurons in
their CDPs and the corresponding NCDPs, respectively. Specifically, the inconsistency rate of the
classifier is defined as:

{x |x ∈ X ∧ f (x ) � fm (x )}
|X | ,

where X is a set of test cases, f (x ) is the prediction result of the original classifier f on the input
x , and fm (x ) is the prediction result after masking the CDP or NCDP of x . Intuitively, the higher
the inconsistency rate, the larger the impact of the masked path.
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Table 1. The Average Width (%) and Inconsistency Rate (%) after Masking Neurons in the CDP and NCDP

Dataset Model
α = 0.7 α = 0.8 α = 0.9 α = 1

Width Inc.C Inc.NC Width Inc.C Inc.NC Width Inc.C Inc.NC Width Inc.C Inc.NC

MNIST SADL-1 9.3 89.3 9.6 12.8 95.8 1.9 17.2 97 0 33.3 98.9 1.8

CIFAR
SADL-2 20.9 100 0 27.2 100 0 36.3 100 0 63.4 100 0
VGG16 10.2 100 12.1 13.3 100 1.5 17.9 100 0.1 33.8 100 0

SVHN AlexNet 23.0 100 2.1 29.6 100 1.2 38.2 100 0.2 64.6 100 0
ImageNet VGG16 41.1 99.3 12.5 51.9 99.8 13.9 65.9 99.9 13.2 98.8 99.8 0.2

Table 1 shows the average inconsistency rate by masking all neurons in the CDPs/NCDPs of all
training data. The inconsistency rate shows the percentage of samples, whose prediction results
are changed after the masking. To extract the path, we configure the parameter α (see Definition 2)
with different values, i.e., 0.7, 0.8, 0.9, and 1. Under each configuration, we show the average width
of the CDP (Column Width), which is the average ratio of neurons at each layer of the CDP, and
the inconsistency rate after masking CDP (Column Inc.C) and masking NCDP (Column Inc.NC).

The results show that the width of the CDP increases as the parameter α increases. For example,
when α is 0.8, the average width on VGG-16 is 13.3%, indicating that 13.3% critical neurons are
selected at each layer. When α is 1, the width becomes much larger (i.e., 33.8%). Furthermore, we
found that almost all predicted results are changed when the CDPs are masked (e.g., for SADL-2
and VGG16, the inconsistency rate is 100% for all configurations), which demonstrates that the
CDP is very critical for the decision. Conversely, when we mask other neurons that are not in
the CDP (i.e., the NCDP), the inconsistency is very low (0% to 3%). In particular, when α is small,
the width is small (i.e., less neurons are selected) and the performance is relatively low. For example,
whenα is 0.7, the inconsistency rate of masking CDP on SADL-1 is 89.3%, which is lower than 98.9%
(α = 1). The inconsistency rate of masking NCDP in CIFAR-VGG16 is much higher (12.1%) than
other configurations regarding α , which shows that there are some critical neurons (in NCDP) that
are missed. Based on the results in Table 1, in the following experiments, we set α as 0.8, 0.7, 0.9, 0.7,
and 0.7 for MNIST-SADL-1, CIFAR-SADL-2, CIFAR-VGG16, SVHN-AlexNet, and Imagenet-VGG16,
respectively. We also evaluate the CDPs on test data and the results show the similar trends.

Mask parts of neurons of CDPs. To further evaluate the impact of CDP, we conduct a fine-grained
evaluation that only masks a small part of neurons based on their relevance. Specifically, for a
given CDP, we sort the neurons at each layer of the CDP and then split these sorted neurons into
five equal buckets that have different relevance values, i.e., the top 20% neurons with high rele-
vance, the 20%–40% neurons, the 40%–80% neurons, and the last 20% neurons (i.e., 80%–100%) with
low relevance. We get five sub-CDPs that contain neurons with different relevance values. Then,
we mask each of the sub-CDPs and calculate the inconsistency rate. Table 2 shows the inconsis-
tency rate by only masking parts of the CDP. Overall, we could find that the neurons with higher
relevance can have a larger impact on the prediction. After we mask the most important part (i.e.,
the top 20% neurons), the largest inconsistency rate is caused, which indicates that these neurons
have larger impact. When the last 20% neurons are masked, the inconsistency rate is the smallest.

We also observe that the results depend on the tasks and models. For example, on CIFAR-VGG16,
after masking the top 20% neurons of CDPs, most inputs are inconsistent with the original predic-
tion (97.94%), which shows that these neurons are quite important for the prediction. However,
for the model SADL-2, only 9.13% inputs are inconsistent after masking the top 20% neurons of
the CDPs. Referring to the results in Table 1, after masking all neurons in the CDP (α = 0.7), the
inconsistency rate on SADL-2 becomes 100%. It means that all neurons of the CDPs on SADL-2
are important for the prediction. Considering the results of CIFAR-VGG16 and ImageNet-VGG16,
although the same model architecture is used, their results are not consistent, indicating that the
CDPs are different on different datasets.
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Table 2. The Average Inconsistency Rate (%) after Masking Parts

of Neurons in the CDP

Dataset Model
Inconsistency Rate

20% 20%–40% 40%–60% 60%–80% 80%–100%

MNIST SADL-1 99.13 97.53 92.46 79.73 49.02

CIFAR
SADL-2 9.13 7.65 3.29 2.39 0.58
VGG16 97.94 84.13 62.42 43.21 22.64

SVHN AlexNet 99.96 99.45 78.7 42.86 15.95
ImageNet VGG16 73.22 27.02 15.07 9.91 6.21

Table 3. The Average Similarity of CDPs within a Class or between Different Classes

α
SADL-1 SADL-2 VGG16(CIFAR-10) AlexNet VGG16(ImageNet)

Width Intra Inter Width Intra Inter Width Intra Inter Width Intra Inter Width Intra Inter

0.7 9.30% 57.7% 34.7% 20.9% 48.6% 23.2% 10.2% 86.5% 22.2% 23.0% 47.8% 30.0% 41.1% 54.9% 32.2%
0.8 12.80% 62.8% 39.1% 27.2% 56.5% 41.8% 13.3% 60.9% 26.0% 29.6% 54.5% 36.5% 51.9% 60.8% 41.6%
0.9 17.20% 67.6% 45.3% 36.3% 64.4% 38.0% 17.9% 67.1% 32.0% 38.2% 63.2% 46.1% 65.9% 70.9% 55.8%
1 33.30% 74.5% 56.3% 63.4% 86.5% 62.0% 33.8% 78.3% 56.1% 64.6% 78.3% 75.4% 98.8% 99.9% 97.9%

4.4.2 Results on Effect of the Width. The width of the CDP may affect its accuracy in represent-
ing the decision logic. If the width is too large, then the CDP contains some non-critical neurons
that may also be included in other CDP, making it hard to distinguish them. We investigate the
similarity between different classes. Specifically, for each class, we randomly select 100 test data
that is correctly predicted as the target class. Then, we calculate the average similarity of CDPs in
the same class or between different classes as follows:

Intra = avд({sim(x
y
i ,x

y
j ) |y ∈ Y ∧ i � j ∧ xy

i ∈ X
y ∧ xy

j ∈ X
y }),

Inter = avд({sim(x
ym

i ,x
yn

j ) |ym ∈ Y ∧ yn ∈ Y ∧m � n ∧ xym

i ∈ Xym ∧ xyn

j ∈ X
yn }),

where Y is the set of all classes, Xy is a set of test data (its size is 100) in the class y, sim(x ,y) =∑
l∈f J

pl
x ,pl

y

|f | represents the similarity between CDPs of x and y (see Equation (1)). Intuitively, the
similarity between CDPs of the same class should be greater than the similarity between CDPs of
two different classes.

Table 3 shows the average similarity between two CDPs in the same class (i.e., Column Intra)
and in different classes (i.e., Column Inter) on the training data. The results show that the average
similarity increases with the increase of the width, which further demonstrates that, if the CDP is
too wide, then it is not accurate to show the decision difference on two inputs. If the width of the
CDP is too small, then it may miss some critical neurons (see Table 1).

Answer to RQ1: CDPs are critical for the prediction, while NCDPs are not critical, which
reveals that the CDPs are more relevant to the internal decision logic of the DNN.

4.5 RQ2: Effectiveness of Path Abstraction

Setup. Since the abstract path represents the decision logic of training samples in the correspond-
ing cluster, we first investigate whether the abstract path is still critical for the prediction of inputs
in the cluster. Similar to RQ1, we mask the abstract CDP/NCDP and see the average inconsistency
rate of training inputs in the cluster. Then, we evaluate whether the path abstraction could identify
similar decision logic by measuring the similarity with or without clustering. Specifically, for each
cluster that contains a set of training samples X , we can calculate its abstract CDP based on all
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Table 4. The Average Width and Inconsistency Rate (%) after Masking Neurons

in the Abstract CDP and NCDP

(k , β )
SADL-1 SADL-2 VGG16(CIFAR-10) AlexNet VGG16(ImageNet)

Wid. Inc.C Inc.NC Wid. Inc.C Inc.NC Wid. Inc.C Inc.NC Wid. Inc.C Inc.NC Wid. Inc.C Inc.NC

(1, 0.6) 16.9 93.6 2.3 13.9 99.9 2.4 15.5 99.8 4.3 17.3 99.4 4.9 41.5 99.8 1.7
(1, 0.7) 14.6 89.2 8.4 9.4 99.8 2.4 13.1 99.3 4.3 13.6 99.1 13.9 34.4 99.8 1.7
(1, 0.8) 12.5 78.8 29.9 6.4 99.2 2.4 10.8 98.8 4.3 9.8 96.3 16.3 26.4 99.8 1.7
(1, 0.9) 10.4 73.6 59.8 4.1 90.9 2.4 7.9 100 10.1 5.7 50.9 37.6 17.7 99.8 1.7

(4, 0.6) 16.7 94.5 2.4 14.6 99.9 2.0 15.8 99.9 4.3 18.5 99.5 4.4 54.5 100 2.9
(4, 0.7) 15.4 95 2.5 10.8 99.9 2.0 13.5 99.9 4.8 15.1 99 5.8 49 100 1.9
(4, 0.8) 14.6 94.1 3.9 7.6 99.6 2.0 11.2 99.9 4.8 11.8 96.4 16.2 40.4 100 2.67
(4, 0.9) 12.2 88.1 14.3 4.8 95.3 2.0 8.4 100 9.2 7.6 80 26.7 34.3 100 2.6

(7, 0.6) 16.9 96.3 2.6 14.9 99.9 1.5 15.9 99.8 2.8 18.4 99.4 5.6 64.2 100 4.3
(7, 0.7) 15.9 96.1 3.2 11.2 99.8 1.5 13.7 99.9 3.5 15.2 98.9 6 59.5 100 2.9
(7, 0.8) 14.6 92.5 2.9 7.9 99.7 1.5 11.4 99.9 4.4 12.1 97.6 9.7 51.8 100 3.6
(7, 0.9) 12.5 88.7 9.5 5.4 98.2 1.6 8.7 100 4.9 8 90.5 19 46.7 100 3.1

(10, 0.6) 16.9 95.3 1.7 15.2 99.9 1.1 15.9 99.9 2.0 18.5 99.4 5.2 73.2 100 4.3
(10, 0.7) 16.1 95.1 3.1 11.5 99.8 1.2 13.7 99.9 2.7 15.4 98.9 6.3 70.5 100 4.3
(10, 0.8) 14.6 93.0 4.3 8.3 99.8 1.3 11.5 99.9 3.4 12.4 98.4 8.5 58.3 100 3.9
(10, 0.9) 13.5 89.2 8.8 5.4 98.8 1.3 8.7 99.9 8.8 8.6 92.9 17.7 54.3 100 2.7

CDPs of X . To evaluate the precision of the path abstraction, for every input x ∈ X , we masked
the same neurons (i.e., the abstract CDP) and evaluate the average inconsistency rate. Note that,
in RQ1, we mask different neurons for different inputs of X based on their individual CDPs, while
we mask the same neurons (in the abstract CDP) for all inputs of X in RQ2.

4.5.1 Impact on Prediction. For the path abstraction of each DNN, we investigate a total of 16
configurations with different parameters (k, β ), where k is the number of the clusters in each class
and β is the threshold to select neurons with high weights (the first column in Table 4). Note that,
when k = 1, the abstract CDP is extracted by merging CDPs of all inputs that are predicted as the
same class.

The results in Table 4 show that, with the increase of the number of clusters, the width tends to
be slightly larger in most cases under the same threshold β (see Column Wid.), indicating that the
average weight of neurons is also larger (i.e., CDPs in each cluster share more common neurons).
We count the number of the change of Inc.C and found that 81.25% (39/48) of the Inc.C change is
increasing or unchanged when the number of clusters increases. More fine-grained clustering (i.e.,
more clusters) could merge the similar CDPs together, by which the abstract CDP is more stable
(larger average weights) and accurate (higher inconsistency rate after masking CDPs). The results
demonstrate the usefulness of clustering and merging.

Compared with the results on single CDPs (Table 1), we found that the abstract path could still
achieve competitive performance and even better than single CDPs on some models. It means that
the path abstraction can be used to select commonly important neurons for all training data in a
specific cluster (i.e., high inconsistency rate after masking CDPs and low inconsistency rate after
masking NCDPs). For example, on SADL-2, the inconsistency rates of CDP and NCDP are 98.2%
and 1.6% (k = 7), which are close to results of single CDPs (i.e., 100% and 0%), and the width is
much smaller (e.g., 5.4% for abstract CDPs and 27.2% for single CDPs). For AlexNet, using the ab-
straction in the cluster, we could select more accurate CDPs (e.g., the average width of the abstract
CDPs and the single CDPs is 18.5% and 23.0%). Finally, in the following experiments, we select the
configuration (4, 0.8), (7, 0.9), (7, 0.9), (4, 0.6), and (4, 0.7) as the parameters for SADL-1, SADL-2,
VGG-16, AlexNet, and VGG-16 (ImageNet), respectively (the bold numbers). These configurations
are selected due to the fact that we expect to select the neurons that can be representative and
critical. First, we could not leave critical neurons out, thus, we need to ensure a great inconsistent
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Table 5. The Average Similarity with and without Clustering

Model #Clus. Intra_Cla. Inter_Cla. Intra_Clus. Inter_Clus.

SADL-1 4 0.628 0.391 0.708 0.381
SADL-2 7 0.486 0.232 0.524 0.260

VGG16(CIFAR-10) 7 0.671 0.320 0.703 0.316
AlexNet 4 0.478 0.300 0.524 0.298

VGG16(ImageNet) 4 0.549 0.322 0.546 0.331

rate under the selected configurations. Second, the width of critical neurons should not be great,
because the critical neurons are expected to be representative and discriminative. If the width is
too large, then there will be a large overlap between different critical neurons.

4.5.2 Decision Revealing. Table 5 shows the results on the average similarity with and with-
out clustering. Column #Clus. shows the number of clusters configured for each model. Without
clustering, Column #Intra_Cla. shows the average similarity between CDPs that are in the same
class (i.e., the intra-class similarity). Column #Inter_Cla. shows the average similarity between
CDPs that belong to different classes (i.e., the inter-class similarity). After the clustering, we show
the average similarity between CDPs in the same cluster (i.e., intra-cluster similarity shown in
Column #Intra_Clus.) and the average similarity between CDPs in different clusters of the same
class (i.e., inter-cluster similarity shown in Column #Inter_Clus.). Note that inter-cluster similarity
only compares clusters that belong to the same class

Comparing the results between intra-class similarity (without clustering) and intra-cluster sim-
ilarity (with clustering), we found that the average similarity increases (e.g., from 0.628 to 0.708
in SADL-1). In particular, in the same class, the inter-cluster similarity is much smaller than intra-
cluster similarity although the two clusters belong to the same class (e.g., 0.708 for intra-cluster
and 0.381 for inter-cluster). Moreover, the inter-cluster similarity is even close to the inter-class
similarity. The results show that samples in the same class could have different decision logic (e.g.,
the black dogs and white dogs may be different). By the path abstraction, we generate fine-grained
CDPs that could distinguish such differences well.

Figure 4 shows some examples whose CDPs are clustered into different groups (on SADL-1).
Each row represents one cluster. We can observe that, from the human’s perception, the inputs in
the same cluster look very similar. For example, the digit “4” looks similar to the digit “9” in the
fourth cluster, and the digit “5” has a slight deflection in the first cluster. The results further show
that inputs that trigger the similar decision logic are likely to be grouped into one cluster based
on the extracted CDPs.

Answer to RQ2: Based on the aggregation (i.e., union) of all CDPs in each cluster, the abstract
CDP is still critical for predicting inputs in a cluster. Moreover, the abstract CDP is sensitive
to reveal different decision logic. Inputs in the same cluster have similar decision, and inputs
in different clusters of the same class tend to have different decision behavior.

4.6 RQ3: Sensitivity with Defect Detection

Setup. Motivated by References [20, 28], this experiment evaluates the effectiveness in detecting
defects including natural errors2 and adversarial examples. We follow the similar design in Refer-
ence [28]: First, we randomly select 1,000 benign samples (denoted as s0) from the test data. Then,
we construct several test suites by replacing a small number of samples of s0 with the same number

2In this article, “natural error” represents the natural input that is not manually crafted and is misclassified by the target
model.
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Fig. 4. Inputs sampled from clusters in the class 4 and 5.

Fig. 5. Coverage change on test suites including different number of errors.

of errors such that they have the same size. To be specific, for natural errors, we select a certain
number of inputs from the test data in each class, which are predicted incorrectly. For adversarial
examples, we adopt the PGD attack [34] to generate a large number of adversarial examples, some
of which are then randomly selected in each class. For natural errors and adversarial examples,
we generate six test suites, including different numbers of errors (i.e., 1%, 2%, 3%, 5%, 7%, 10%),
respectively. We use S to denote the set of the test suites including the initial set s0. To reduce the
randomness, we repeat the process five times and calculate the average results.

Results. Figure 5 shows the results on the test suites including a different number of errors. To
conduct the comparison between different approaches, all the coverage is normalized to [−1,1].
Specifically, for each test suite s ∈ S , we calculate its coverage change compared with the initial
test suite s0 with regard to the coverage criterion Cov , i.e., Δ = {Cov (s ) −Cov (s0) |s ∈ S }. For each
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s ∈ S , we normalize the change of the coverage as follows:

NCov (s ) =
Cov (s ) −Cov (s0)

max (Δ) −min(Δ)
. (4)

Note that the coverage change can be a negative value.
The first row shows the average results on natural errors (Nat.) and the second row shows the

results on adversarial examples (AE). The horizontal axis represents the percentage of errors,
while the vertical axis represents the normalized coverage.

The results show that the coverage criteria exhibit different performance on different number of
errors. In general, we could find that SNPC and ANPC tend to be more stable than other methods
in terms of the sensitivity to errors. In most cases, the trends of SNPC and ANPC are in line with
the expectations, i.e., the coverage can increase when more errors (adversarial examples or natural
errors) are introduced. NBC is the most unstable one, because it mainly focuses on the boundary
behaviors of the model. For KMNC and NC (with threshold 0.5), we observe that they perform bet-
ter in natural errors than adversarial examples. The coverage of NC and KMNC increases when the
number of natural errors increase. However, their coverage does not always increase on adversarial
examples. Particularly, KMNC decreases on AEs of CIFAR-VGG16, AlexNet, and ImageNet-VGG16.
We conjecture that KMNC mainly considers the major functionality of the DNN while ignoring
the boundary functionality, thus replacing some benign samples with the corner cases (e.g., adver-
sarial examples) could decrease the diversity of major behavior. LSC performs better in most cases
but is insensitive in AlexNet, i.e., the coverage does not change on both adversarial examples and
natural error of AlexNet, which indicates that the DNN may have a large impact on LSC. DSC is
not sensitive on natural errors, while it is better on adversarial examples. It is worth pointing out
that most coverage criteria tend to have irregular changes in AE (AlexNet), while SNPC still has
an increasing trend.

Considering IDC that is also based on LRP, we can observe that the coverage increase is not
as stable as SNPC and ANPC, e.g., on Nat.(AlexNet), AE (SADL-2), AE (AlexNet), and AE (IVGG).
Although both IDC and NPC adopt LRP to identify the critical neurons layer-by-layer, NPC is more
fine-grained than IDC, i.e., NPC performs the CDP-based clustering in each class. Thus, our results
tend to be more stable.

Moreover, we also observe that there are some correlations between these coverages. Specifi-
cally, the trend of coverage increase with regards to different coverage criteria could be similar.
For example, in Nat.(SDAL-1), LSC, DSC, ANPC, and SNPC have the similar trend. In Nat.(SADL-
2), SNPC and NC have the similar trend. Most of the coverage criteria have the similar trend in
Nat.(VGG16), Nat.(IVGG), and AE(SADL-1).

Answer to RQ3: Overall, ANPC and SNPC are more sensitive to different errors than other
coverage criteria due to the CDP awareness. Different coverage criteria could achieve similar
increasing trend, indicating that they tend to have some correlation.

4.7 RQ4: Correlation with Output Impartiality

As described in References [2, 20, 51], the test data or errors should be diverse in terms of the
output. The existing work [42] has demonstrated that the coverage (e.g., neuron coverage) can be
improved by a few samples. However, a test suite that only contains one category of samples (e.g.,
dog) is not enough to comprehensively reveal diverse defects of the DNN (e.g., the errors in other
categories). In addition, the coverage criteria are usually used to guide the test-case generation.
The coverage criteria that are sensitive to output diversity can guide the testing tools to generate
more diverse test cases belonging to different categories, while the insensitive coverage criteria
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Table 6. Correlation between Coverage Criteria and Output Impartiality

KMNC NBC NC(0.0) NC(0.2) NC(0.5) NC(0.75) LSA DSA IDC ANPC SNPC

size=100

SADL-1 −0.262 −0.262 −0.300 0.099 0.315 0.001 0.000 −0.638 -0.360 -0.244 0.723
SADL-2 −0.029 −0.029 0.553 −0.397 −0.065 −0.111 0.000 0.181 0.587 0.482 0.789
VGG16 −0.348 −0.348 0.037 −0.031 −0.210 −0.273 0.000 −0.145 0.052 0.012 −0.055
AlexNet −0.457 0.593 0.000 0.000 0.000 0.000 0.000 −0.320 0.912 0.961 0.989

Avg. −0.274 −0.011 0.072 −0.082 0.010 −0.096 0.000 −0.230 0.298 0.601 0.612

size=500

SADL-1 0.639 −0.116 0.000 0.000 0.000 0.000 0.000 −0.639 -0.707 0.340 0.870
SADL-2 0.543 0.041 0.000 0.000 0.000 0.000 0.000 0.330 0.473 0.584 0.817
VGG16 0.414 0.589 0.000 0.000 0.000 0.000 0.000 −0.255 0.210 0.141 0.821
AlexNet 0.539 0.586 0.000 0.000 0.000 0.000 0.000 −0.170 0.931 0.908 0.974

Avg. 0.534 0.275 0.000 0.000 0.000 0.000 0.000 −0.184 0.227 0.893 0.871

may generate biased test cases [51]. Hence, we evaluate the correlation between the coverage
criteria and the output diversity in this section.

Setup. We follow the same setting in Reference [20] and use the proposed tool to generate a
number of test suites, which have the same size. Specifically, it mainly contains three steps:

(1) For each dataset, we randomly select two seed test suites with different size (i.e., 100 and
500).

(2) Based on each seed test suite, we adopt the tool of Reference [20] to generate new test suites
that have the same size with the seed test suite (i.e., generate new input by perturbing each
input of the seed test suites). The tool of Reference [20] extends the existing adversarial
attacks (e.g., C&W [6] and PGD [34]) with the divergence function such that more diverse
test cases can be generated. By setting different configurations (e.g., diversity regularization
weight, confidence), multiple test suites can be generated. For each seed test suite on SADL-
1, SADL-2, VGG-16 (CIFAR-10), and AlexNet, we generate 48, 171, 167, and 168 new test
suites,3 respectively. Note that we did not include the results of ImageNet in this experiment,
because all adversarial examples generated by the tool of Reference [20] belong to the same
class, which makes all correlation scores as NaN.

(3) For a generated test suite, we calculate the coverage and the output diversity, respectively.
Finally, we calculate the Pearson correlation between them.

Specifically, we use the output impartiality metric of Reference [20] for a test suite T :

output_impartiality (T ) =

∑
t ∈Ck

Pt=Ck
loдPt=Ck

1
|c | loд

1
|c |

,

where |C | is the cardinality of classes and Pt=Ck
represents the percentage of the test cases t pre-

dicted to belong to class Ck .

Results. Table 6 shows the correlation on different models. The overall results demonstrated that,
compared with existing coverage criteria, ANPC and SNPC are more strongly correlated with the
output impartiality. In particular, we have the following findings: (1) Compared with the test suite
with smaller size (e.g., 100), the correlation can be stronger when the size of the test cases be-
comes larger (i.e., 500). For example, for the size 500, ANPC and SNPC are positively and strongly
correlated with the output impartiality in all models, while there are some negative correlations
in the size 100. KMNC is also positively correlated with output impartially when the size is 500.
(2) Considering the results of ANPC and SNPC, we found that SNPC is more strongly correlated
with output comparability. It is because ANPC is more fine-grained and could capture the minor

3The number of test suites is different because it depends on the number of configurations in Reference [20] (i.e., a new
test suite is generated by a configuration), where one variable in the configurations is the layers of the neuron network.
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Table 7. The Time Overhead of Coverage Criteria on Different Models (Seconds)

ANPC SNPC KMNC NBC LSC DSC NC(0.0) IDC

SADL-1 10.25(2.60) 8.83(2.60) 3.50 1.92 26.25 59.75 0.67 1.11
SADL-2 39.50(14.45) 47.33(14.45) 26.75 13.67 24.67 166.17 1.33 0.82

VGG16(CIFAR-10) 135.50(35.10) 91.17(35.10) 54.67 28.75 21.00 73.00 2.17 2.81
AlexNet 57.00(13.35) 29.50(13.35) 104.33 53.25 37.08 136.00 1.08 1.21

VGG16(ImageNet) 203.24(59.67) 119.75(59.67) 146.43 88.02 154.27 173.27 30.45 13.21

activation difference (i.e., coverage increase) even when they have output bias (i.e., the same pre-
diction output).

For the results that ANPC and SNPC achieve negative correlation (e.g.,−0.244 on SADL-1,−0.055
on VGG16) when the size of the test suite is 100, our in-depth analysis reveals that, for some test
suites with smaller size, the prediction outputs of the test cases are biased (e.g., these test cases are
predicted as the same class), which caused the low output impartiality. However, these samples
can still trigger different CDPs (i.e., different similarities compared with the corresponding CDP),
which lead to high coverage. Hence, the correlation is negative. When the size becomes larger (e.g.,
500), the test suite becomes more stable (i.e., the prediction results are less biased), which makes
the coverage positively correlated with the output impartiality.

We also observe that the correlation of IDC is higher than other baselines but it is still less
than ANPC and SNPC. The average correlation scores of IDC are less than ANPC and SNPC. For
example, when the size is 100, the average score of IDC is 0.298, while the average scores of ANPC
and SNPC are 0.601 and 0.612, respectively. Except for VGG16 (size = 100), all correlation scores
of SNPC are larger than IDC. The results indicate the effectiveness of our fine-grained coverage
criteria.

Answer to RQ4: Generally, ANPC and SNPC are positively correlated with the output im-
partiality. The model and the size of test suite could affect the correlation.

4.8 RQ5: Efficiency of NPC

We use the same dataset from RQ3 and compare the time overhead of calculating the coverage of
a test suite (i.e., 1,000 samples). Note that, except for NC, all other coverage criteria depend on the
training samples and there are some prepossessing process. For example, KMNC and NBC need
to profile the training data. LSC and DSC need to calculate all activation values of the training
data. ANPC and SNPC need to calculate the CDPs for all training data. IDC also requires the LRP
calculation for all training data. Since the prepossessing phase can be executed only once and it is
usually calculated offline, we ignore the time of the prepossessing and only compare the coverage
calculation time for a given test set.

Table 7 shows the results. We found that NC (with the threshold 0.0) is the most efficient one,
as it only depends on the neuron output. For ANPC and SNPC, we list the total time and the CDP
path extraction time (the number in brackets).The results show that the path extraction is efficient.
Compared with others, ANPC and SNPC take more time, since more information is required (i.e.,
the CDP calculation). IDC is more efficient, because it only calculates the distance between the
critical neuron values of the test cases and the training samples at one layer. Actually, it is a tradeoff
between effectiveness (i.e., leveraging more information) and the efficiency.

Answer to RQ5: Although ANPC and SNPC adopt the interpretation analysis, the time over-
head is not expensive. The CDP extraction is efficient and it only takes a proportion in the
total time overhead of the coverage calculation.
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5 THREATS TO VALIDITY AND DISCUSSION

Threats to Validity. The internal threats to validity lies in our implementations, including the LRP
implementation, the path extraction, the path abstraction, the coverage criteria, and the implemen-
tation in each experiment. To reduce this threat, the co-authors carefully checked the correctness
of our implementation.

The external threats to validity include the selection of the subjects and the tools used in the
evaluation. Specifically, the selection of datasets and the used models could be a threat. To reduce
this threat, we selected four widely used subjects (MNIST, CIFAR-10, SVHN, and ImageNet) and
four DNNs (SADL-1, SADL-2, VGG-16, and AlexNet), where ImageNet is a large-scale dataset.
Another threat could be the generated data, including adversarial examples, the selected natural
errors, and test suites (in RQ3, RQ4, and RQ5). To mitigate this threat, we follow the same setting in
the existing work [20, 28] and generate diverse data with multiple configurations. In addition, the
usage of the existing tool [20] can be a threat. Since our method, the used models, and the tool in
Reference [20] are developed by PyTorch, we manually re-implement the tool in References [15, 23]
by PyTorch, which may not be exactly the same as the original version. We integrate our method,
LSC, DSC, NC, KMNC, and NBC into the tool of Reference [20] to evaluate the correlation. We
carefully checked the code to mitigate the threat.

The construct threats mainly lie in the randomness, the selected baselines, and the parameters.
First, one threat is the randomness in the selection of the data. To mitigate the threat, in RQ3,
we repeat each experiment five times (e.g., the generation of adversarial examples) and calculate
the average results. In RQ4, we follow the setting of Reference [20] and generate a large number
of test suites to reduce the randomness. Second, we adopted the state-of-the-art approaches that
have been demonstrated to be insufficient in DL testing. We compare our method with them to
demonstrate the advantages of our proposed coverage criteria. Third, the hyper-parameters in our
methods and the baselines could be a threat to validity. To reduce the threat, for the baselines, we
follow the settings in the existing works [20, 23, 31]. For our method, we set multiple configurations
in terms of the hyper-parameters α , β, and the number of clusters k . However, in RQ3 and RQ4, we
select the same values of α , β, and k for all paths and classes. Actually, we can select the optimal
configurations by adopting different α , β, and k . In the future, we plan to evaluate our method
with more configurations.

Limitation. Like the coverage criteria in traditional software, we think there is no one best cov-
erage criterion, and each one has some limitations. The main advantage of NPC lies in its inter-
pretability and the clear relationship with the internal decision of the DNN. In this section, we
summarize our limitations and discuss the potential solutions in the future.

• Currently, our approach mainly considers the classification, since the current interpretation
technique (i.e., LRP) does not support the DNN with regression prediction. Even though
the used interpretation technique is orthogonal to our approach, our approach is general
as long as the critical neurons could be calculated. We believe the interpretation techniques
that work on regression tasks in the future will further solve this limitation.
• Our approach mainly works on feed-forward neural networks. For recurrent neural net-

works (RNNs), whose number of iterations is not fixed, it could be challenging for the
interpretation technique (e.g., relevance calculation in LRP). In the future, we may extend
LRP by unrolling the RNN to address this limitation.
• There is another limitation on the selection for the number of the clusters during the

path abstraction. Currently, we select the same number for all classes, which may not
be the optimal setting. In the future, we will investigate the automated selection on this
parameter.
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6 RELATED WORK

This section summarizes the related work on DL testing and adversarial attacks.

6.1 DL Testing

DeepXplore [39] proposes the first white-box coverage criteria, i.e., Neuron Coverage, which calcu-
lates the percentage of activated neurons. A differential testing approach is proposed to detect the
errors by increasing NC. DeepGauge [31] then extends NC and proposes a set of more fine-grained
coverage criteria by considering the distribution of neuron outputs from training data.

Inspired by the coverage criteria in traditional software testing, some coverage metrics [30, 32,
43] are proposed. DeepCover [43] proposes the MC/DC coverage of DNNs based on the depen-
dence between neurons in adjacent layers. DeepCT [30] adopts the combinatorial testing idea
and proposes a coverage metric that considers the combination of different neurons at each layer.
DeepMutation [32] adopts the mutation testing into DL testing and proposes a set of operators
to generate mutants of the DNN. Furthermore, Sekhon et al. [42] analyzed the limitation of ex-
iting coverage criteria and proposed a more fine-grained coverage metric that considers both of
the relationships between two adjacent layers and the combinations of values of neurons at each
layer.

Based on the neuron coverage, DeepPath [48] initially proposes the path-driven coverage crite-
ria, which considers the sequentially linked connections of the DNN. Although both DeepPath and
our method focus on path-based coverage, the approach and the underlying principles are totally
different. The path in DeepPath is the syntactic connections between neurons in different layers,
and the semantics of the path is unknown. Differently, we adopt the interpretation techniques to
define paths, in which the neurons are selected based on the relevance with the decision. Thus,
CDPs have more clear semantics, i.e., they are related to the decision logic.

The aforementioned techniques mainly consider syntactic structure of DNN, which is black-box
and hard to understand. Differently, Kim et al. [23] proposed the coverage criteria that measure the
surprise of the inputs. The assumption is that surprising inputs introduce more diverse data such
that more behaviors could be tested. Surprise metric measures the surprise score by considering
all neuron outputs of one or several layers. It is still unclear how the surprise coverage (calculated
from some layers) is related to the decision logic. Differently, our method not only selects the
critical neurons at each layer but also considers the relationships between layers.

Based on the these criteria, some automated testing techniques [11, 37, 39, 43, 46, 51, 55] are
proposed to generate test inputs towards increasing the coverage. In addition, while the coverage
criteria are widely studied, the existing work [10, 13, 20, 28, 42, 52] found some preliminary evi-
dence about the limitation of the structural criteria. For example, the coverage is too coarse and is
not correlated to the defect detection and robustness. Such findings motivate this work that pro-
poses interpretable coverage criteria by extracting the semantic structure (i.e., the decision graph).

Recently, some coverage criteria [1, 15] are also proposed based on the decision of the DNN.
The technique of Reference [1] adopts the explanation technique LIME [40] to extract a decision
tree that explains the decision of the DNN on an input. Based on the decision tree, the symbolic
execution is used to generate test cases that can maximize the path coverage on the decision tree.
Different with Reference [1], we extract the decision graph that could represent the global decision
behaviors of the DNN. Moreover, in Reference [1], it mainly focuses on the problem of fairness
evaluation, while it is hard to extract such a decision tree on the high-dimensional data such as
image domain. IDC [15] adopts the interpretation technique to select the important neurons in one
layer. Based on the training data, it then groups the activation values of important neurons into a
set of clusters and uses the clusters to measure the coverage. Similar with our technique, IDC also
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selects the critical neurons. Differently, NPC considers the relations between layers and proposes
the path-based coverage instead of only one layer. Thus, NPC does not need to select one of the
target layers. In addition, we propose two different path coverage criteria from the control flow and
data flow of the DNN. Significantly, there are also two papers (References [53] and [27]) extracting
critical neurons to represent decision behaviors. However, they focus on adversarial attacks and
there are relatively larger computation costs. Except for the testing on the trained model, some
techniques (e.g., Reference [50]) have been proposed to build the self-checking system that can
monitor DNN output and trigger an alarm if the output is likely to be incorrect after the model
is deployed. For more relevant discussions on the recent progress of machine learning testing, we
refer the interesting readers to the recent comprehensive survey of Reference [54].

6.2 Adversarial Attacks

Recently, there are many adversarial attack techniques, such as adversarial noise attacks including
FGSM [16], JSMA [38], BIM [25], DeepFool [35], and C&W [6], and natural degradation-based
adversarial attacks including ABBA [17], SPARK [18], AVA [45], and Pasadena [8]. The adversarial
examples are generated by adding visually imperceptible perturbation to an input such that the
new input is misclassified. It is worth to think and discuss about the difference between deep
learning testing and adversarial attacks. The common thing is that both the testing and attack could
test the robustness of the model by generating incorrect inputs. Differently, the adversarial attack
is ad hoc and generates the specific adversarial examples based on gradient calculation. DL testing
aims to test the DNN more systematically by exploring more decision logic of the model. Thus,
the errors generated by DL testing are expected to be more diverse (i.e., triggering different logic)
than adversarial attacks. For example, given one input, the attack techniques usually generate the
similar adversarial examples, while DL testing could generate different adversarial examples with
the guidance of the coverage criteria.

7 CONCLUSION

Motivated by the recent findings [10, 20, 28] about the limitation of the existing DL testing criteria,
this article proposes the neuron path coverage via extracting the decision structure of the targeted
DNN. For a DNN, we extract the decision logic based on the critical decision paths from the training
data. Two path-based coverage criteria are then proposed to measure whether new decision logic
is covered by the test cases. Specifically, SNPC is designed based on the control-flow of the DNN,
which measures whether different critical neurons are covered; ANPC is designed based on the
data-flow of the DNN, which measures the activation values of the critical neurons. To the best
of our knowledge, this is the first work that proposes the interpretable coverage criteria from the
control-flow and data-flow of the DNN. The evaluation results demonstrated the effectiveness of
the CDP in the decision revealing of the DNN and the usefulness of the coverage criteria.
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