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A Monte Carlo method for the calculation of thermodynamic properties 
in the isothermal-isobaric ensemble is described. Application is made to 
the calculation of excess thermodynamic properties (enthalpy, volume and 
Gibbs free energy) of binary mixtures of Lennard-Iones 12-6 liquids. 
Comparison is made with the predictions of a number of theories of liquid 
mixtures ; the so-called van der Waals one-fluid model and the variational 
theory of Mansoori and Leland are both found to give excellent results. The 
accuracy attainable in estimates of the excess properties is discussed in terms 
of statistical fluctuations in various calculated quantities and the advantages 
and disadvantages of the method are examined in relation to calculations by 
the more familiar constant-volume method. 

1. INTRODUCTION 

Computer  experiments on model systems [1] have in recent years provided 
much valuable information on the thermodynamic,  structural and transport 
properties of classical dense fluids. The  success of these methods rests primarily 
on the fact that a model containing a relatively small number  of particles (usually 
several hundred) is in general found to be sufficient to simulate the behaviour of 
a macroscopic system. Two  distinct techniques of computer  simulation have 
been developed ; these are known as the method of molecular dynamics and the 
Monte  Carlo method. In molecular dynamics the equations of motion of a system 
of interacting particles are solved and equilibrium properties are determined from 
time-averages taken over a sufficiently long time interval. T h e  Monte  Carlo 
procedure requires the generation of a series of configurations of the particles of 
the model in a way which ensures that the configurations are distributed in phase 
space according to some prescribed probability density. Th e  mean value of any 
configurational property determined from a sufficiently large number  of con- 
figurations provides an estimate of the ensemble-average value of that quantity ; 
the nature of the ensemble average depends upon the chosen probability density. 
These  machine calculations provide what is essentially exact information on the 
consequences of a given intermolecular force law. Application has been made 
to hard spheres and hard disks, to particles interacting through a Lennard-Jones  
12-6 potential function and other continuous potentials of interest in the study of 
simple fluids, and to systems of charged particles. 

The  major advantage of molecular dynamics over the Monte  Carlo method is 
that it allows the study of t ime-dependent  phenomena. On the other hand the 
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42 I .R .  McDonald 

Monte Carlo method has a flexibility which gives it a special value in certain 
applications. In particular, as Wood [2] has pointed out, the method may in 
principle be adapted to the calculation of average quantities in any of the standard 
statistical mechanical ensembles. However, this possibility has not been exploited 
to any great extent and applications of the Monte Carlo method which have been 
described in the literature have for the most part been confined to calculations in 
the usual Gibbs petit-canonical, constant volume or NvT-ensemble. Some 
calculations for hard disks and hard spheres in the isothermal-isobaric or NpT- 
ensemble [2-4] and for a lattice gas in the grand canonical ensemble [5] have also 
been published. All other calculations, including those for smooth potentials, 
have been made in the NvT-ensemble, excepting only the preliminary report of 
the present investigation which was given some time ago [6] and some very recent 
work on the phase transitions of the 12-6 and coulombic systems [7]. 

The purpose of the work described here is to extend the Monte Carlo method 
to the calculation in the NpT-ensemble of equilibrium properties of systems of 
molecules interacting through the Lennard-Jones 12-6 potential function. 
Application is made to binary mixtures of 12-6 fluids in the liquid range of density 
and temperature. The equilibrium properties of the one-component 12-6 fluid 
have been very extensively studied both by molecular dynamics [8, 9] and by the 
conventional Monte Carlo NvT-method [10-13] and further calculations by the 
NpT-method would seem to be superfluous. In any case the NpT-method does 
not appear to have any marked advantages when applied to pure fluids. The 
problem of mixtures, however, is quite different. A preliminary account has 
appeared [14] of calculations for mixtures of 12-6 fluids by the NvT-method 
and resuks for mixtures of hard spheres were reported some years ago [15, 16]. 
Otherwise there has been little published work on the application of computer 
simulation to such systems. Furthermore, the NpT-ensemble is a natural choice 
for the study of liquid mixtures, particularly of the excess properties, because 
experimental data are recorded at effectively constant (usually near-zero) pressure 
and theories of mixtures are commonly formulated under the assumption of 
constant-pressure mixing. Data obtained by the NvT-method may be processed 
in such a way as to provide information on changes in thermodynamic properties 
on mixing at constant pressure, a possibility which has been well exploited by 
Singer and Singer [14], but the calculations are lengthy and represent an additional 
source of error. The NpT-method has disadvantages of its own but it does have 
the merit of yielding the required results in an appealingly direct manner. 

Recent advances in the statistical thermodynamics of liquid mixtures [17-23] 
make this an appropriate time to report on Monte Carlo investigations of such 
systems. A number of theories for the calculation of excess thermodynamic 
properties have been proposed and it is desirable to test these not only against 
experimental data on real systems, in which case the comparison is confused by 
uncertainties in the intermolecular potentials, but also against the exact results 
obtained by computer simulation. A small number of the results tabulated 
below have already been used for this purpose by several authors [19-23]. It 
should be noted here that the method of molecular dynamics is less useful than 
the Monte Carlo method in the calculation of excess properties because the 
molecular dynamics ' experiment ' does not proceed under isothermal conditions 
and the time-averaged temperature cannot bc specified in advance except within 
rather wide limits. 
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Np T-ensemble Monte Carlo calculations for binary liquid mixtures 43 

The purpose of the present paper is to describe the application of the NpT- 
method to the study of systems of particles interacting through the 12-6 potential. 
The computational problems which are involved and the accuracy which may be 
attained in the calculation of various thermodynamic properties are discussed and 
the advantages and disadvantages of the method are assessed in comparison with 
Monte Carlo calculations at constant volume. In order to illustrate the use of 
the NpT-method the excess thermodynamic properties of binary liquid mixtures 
of Ar, Kr, CH4, N~, 0 2 and CO are computed and compared with the results of 
various theories. A systematic study of the effect on the thermodynamic properties 
and structure which results from changes in pressure, temperature and composition 
and in intermolecular potential parameters is now in progress and the results will 
be reported in a later publication. 

2. THE NpT-ENSEMBLE 
Some important relations for the NpT-ensemble are recalled here for the sake 

of easy reference. Detailed accounts may be found in the book by Hill [24] and 
the review article by Wood [2]. The latter contains a discussion of the Nv T- and 
NpT-ensembles with special reference to Monte Carlo calculations and the 
development given below is largely based on Wood's formulation of the problem. 

The configurational Gibbs free energy of a system of N particles at a tempera- 
ture T and pressure p may be written in the form 

with 
G(N, p, T) = - fl-1 In A (1) 

A=A(27rmfl/h2)aNl~(1/N!) f o d v e x p ( - ~ p v )  f ,  drUexp(--flq~(rN)), (2) 

where A is a multiplicative factor the form of which is of no concern here [2] ; 
@ is the total potential energy of a configuration denoted symbolically by rN; 
and the integral over the variable v is to be evaluated for a constant shape of the 
volume enclosing the particles. 

The NpT-ensemble average of a function.f(r G v) is given by 

dv exp ( - ~ p v )  drU f(r N, v) exp (--fl*(r:~')) 
0 * I v  <f(rN, v))-- (3) 

dv exp ( - ~pv) dr N exp ( - flq~(rN)) 
0 v 

In the Monte Carlo calculation the particles are confined to a cube of fluctuating 
edge L. This makes it convenient to introduce the scaled coordinates 

r i = L-lri, (4) 

so that the integrals over the particle coordinates in equation (3) become integrals 
over the unit cube co. Equation (3) may then be written as 

F dv exp (-f lpv)v N daUf([Lot] N, v) exp (-flqb([La] N, L)) 
(f([La] N, v ) ) =  o o, (5) 

fodvexp(-- pv)vUf daNexp(--  ([La]U,L)) 
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44 I .R.  McDonald 

which represents an average in the (3N+ 1)-dimensional space of the variables 
{% al, �9 �9 an} with a probability density proportional to the pseudo-Boltzmann 
weight factor 

exp ( - flpv - fiaP([LQt] N, L) + N In v). (6) 

The details of the Monte Carlo procedure designed to calculate averages such 
as (5) are as follows. Let the total potential energy of a given configuration of N 
particles within a cube of volume v' be dp'. A trial configuration is generated 
according to the rules 

a i -->~i + AR ~, (7) 

L -->L +/zR ~ (8) 

where the particle i is chosen either cyclically or at random, the quantities Rx% 
Ru% R~ ~' and R L are chosen randomly and uniformly within the interval ( -  1, + 1), 
h is a displacement parameter and /z is a volume change parameter. Let the 
total potential energy of the new configuration be @" and let the new volume of 
the cube be v". The quantity 

W =  ( ap" - @') + p ( v " -  v') - Nf i  -1 In (v"/v') (9) 

is calculated and the new configuration is chosen to replace the old one with a 
probability P given by 

P = I ,  if W~<0; ~ (10) 

P = e x p ( - f l W ) ,  if W>0. J 
Repetition of this procedure gives rise to a chain of configurations which are 
distributed in phase space with a probability density proportional to the pseudo- 
Boltzmann weight factor (6). (In forming the. chain a configuration is counted 
again if the trial configuration generated from it is rejected.) Estimates of the 
molar configurational internal energy U and molar volume V may therefore be 
obtained from the mean values of qb and v calculated for a sufficiently long chain. 
The specific heat and compressibility may be obtained from the mean-square 
fluctuations in, respectively, (dp+pv) and v by the application of well-known 
fluctuation theorems for the N p T - e n s e m b l e  [24] but the results are subject to 
large errors. The mean value of the total intermolecular virial function W may 
be used to determine the equilibrium pressure ( p )  from the virial theorem. If 
the calculations are to be consistent the quantity ( p )  should be equal to the value 
of the chain parameter PMc ; the requirement that ( p )  ~PMc provides a useful 
check on the reliability of the computations. 

3. COMPUTATIONAL DETAILS AND RESULTS 

The calculations reported here have been made for samples of 108 particles. 
The usual boundary conditions are used in which the basic cube is surrounded 
by periodic images of itself, each containing the same number of particles in the 
same relative positions. All contributions to dp and tI~ which arise from inter- 
actions between pairs of particles separated by a distance less than �89 (one-half 
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Np T-ensemble Monte Carlo calculations for binary liquid mixtures 45 

of the current cube-length) are calculated explicitly and contributions from 
particles separated by a greater distance are obtained by integration over a uniform 
particle density. The maximum number of pair interactions which have to be 
evaluated explicitly in the calculation of �9 (or ~') is therefore �89 1). I f  the 
total potential energy O' and virial iF' of a configuration are known, together with 
all individual pair terms, then the calculation of O" and tF" for a trial configuration 
may be made in two stages. Firstly, the interactions of the displaced particle 
with all other particles must be recalculated. This involves a maximum of 
( N - 1 )  interactions because the remaining � 8 9  terms are unaltered. 
Secondly, the changes resulting from the alteration in volume from v' to v" must 
be determined. In general this can be done only by recalculating all 1N(N-1)  
interactions but for potentials of the Lennard-Jones type the same results may 
be obtained by a straightforward scaling procedure. In the particular case of 
the 12-6 potential the changes in �9 and tF which result solely from the change in 
volume are given by 

O " -  O ' =  @ ' ( 2 y - y  2 -  1)+'F'(y/6-y2/6), (11) 

V " -  q3' = qb'(12y z -  12y)+W'(Zy2-y - 1), (12) 

where y = (v'/v") z. An equivalent simplification of the problem is found for the 
coulomb potential but calculations based, say, on a Kihara potential would be 
considerably more lengthy. Use of the scaled coordinates 0t i means that the 
numerical values of the coordinates do not change when the volume is altered. 

Liquid ~/k(K) o(A) 

Ar 119"8 3-405 
Kr 167"0 3"633 

CH4 152-0 3-74 
N2 101"3 3"612 
O3 I19"8 3'36 
CO 104'2 3'62 

Table 1. Intermolecular potential parameters for pure liquids. 

Results have been obtained for models chosen to simulate a number of simple 
liquid mixtures:  A r + K r  at 115.8 K, A r + C H  4 and C O + C H  4 at 91.0 K, and 
Ar + N2, Ar + CO and 0 2 + N 2 at 83.8 K. These are systems for which a great 
deal of theoretical and experimental work has been reported [23, 25]. All calcula- 
tions have been carried out at zero pressure, i.e. with PMc = 0. The system Ar + Kr  
has been studied over a range of composition but for the other systems only the 
case of the equimolar mixture has been considered. The interaction parameters 
used for the pure components, shown in table 1, are those deduced by Streett and 
Staveley [26] from experimental data on liquid densities. The cross-interaction 
parameters are calculated from the combining rules 

~ = 1(~ 0"22) (Berthelot rule), (13) 

Ex2 = ~(~nE22) 1/2, (14) 

where the choice ~:= 1 (the Lorentz rule) is made. 
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Np T-ensemble Monte Carlo calculations for binary liquid mixtures 47 

The values obtained for the enthalpy H (which in this work is equal to U) 
and V and for the contributions made to qb and tF by 1-1, 1-2 and 2-2 pair inter- 
actions are shown in table 2. Also listed there are the total numbers of con- 
figurations, o r  chain lengths, t, on which the estimates of the NpT-ensemble 
averages are based. The  quoted values of t do not include those configurations 
which were first generated in order to bring the model system near to equilibrium ; 
a minimum of 5 • 105 such equilibration steps were taken for each system studied. 
The  quoted statistical errors are the standard errors in the mean determined from 
sub-averages over groups of 105 configurations, an accepted procedure in Monte 
Carlo calculations [2] ; these sub-averages will be referred to in the discussion as 
' l o c a l '  averages. The statistical errors display a moderately consistent pattern, 
amounting to approximately 0.3 per cent or less in H and 0.2 per cent or less in V. 
The relative errors in the individual (qb~j) (i, j =  1, 2) are significantly greater than 
those in the total potential energy and very large errors are found in the (tFij).  
The error in ( tF) ,  however, is small in every case because the constraint that 
(P)'~PMc is imposed; for pMC=0 it follows that fi(tF)/N~3. The agreement 
between ( p )  and PMc is good and the same is found to be true for other (un- 
published) calculations at higher pressures. 

The statistical errors in H (or U) shown in table 2 are substantially greater 
than those which would arise in NvT-calculations of U based on chains of com- 
parable length because internal energy is sensitive to small changes in volume ; 
the same comment applies to the errors in the terms (@ij) which are important 
in the calculation of the excess Gibbs free energy (see below). I f  the variation 
of U and its component terms along an isotherm were required it would clearly 
be preferable to use the NvT-method. In the study of liquid mixtures, however, 
the data usually required are the thermodynamic properties of the system at a 
specified pressure. This information may be obtained from NvT-calculations 
by generating chains at more than one density along an isotherm and making the 
appropriate interpolations. Such a procedure is wasteful of computer time and 
it is more economical and almost equally accurate to use a generalization to the 
case of mixtures of a method of parameter extrapolation which has been success- 
fully applied to the case of one-component fluids [13]. Application of this 
method, which is the basis of the work of Singer and Singer [14], allows the use 
of data obtained at a particular v, T point to determine thermodynamic properties 
at a neighbouring state point provided that the changes in volume and temperature 
are not too great. I f  parameter extrapolation is used, however, the accuracy of 
the values obtained for thermodynamic properties at the pressure of interest is 
limited by the magnitude of the error in the determination of pressure in the 
original NvT-calculation. Previous experience [13] has shown that for t =  5 x 105 
and densities and temperatures in the liquid range the statistical error in pressure 
in NvT-calculations is approximately 15-20 bar in the case of argon ; the error 
is expected to decrease roughly as t 1/2 to reach a value of 5-10 bar at chain lengths 
typical of those employed in the present work. Taking for the compressibility 
a value of 2-5 x 10 -4 bar -1 it follows that such an error in pressure gives rise to an 
error of approximately 0.1-0.3 per cent in an estimate obtained for the volume 
at a given pressure. Thus  the statistical errors associated with the NpT- and 
NvT-estimates of the volume of the mixture are likely to be of similar magnitude ; 
the same may be shown to be true of the error in internal energy. 

A careful examination of the fluctuations in various average values as a function 
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48 I . R .  McDonald 

of chain length is always a useful exercise in any Monte Carlo calculation and is 
particularly important in the present work because the quantities of interest, 
namely the excess thermodynamic properties, are themselves small and, in some 
cases, not m u c h  greater than the statistical error in the corresponding property 
of the mixture. Control charts showing the extent to which the ' local ' averages 
vary during the length of a complete run prove to be especially valuable sources 
of information. In particular it is found that fluctuations in certain quantities 
are significantly correlated with each other. There is, for example, a strong 
positive correlation between qbil and ~22 and between each of these quantities 
and v. On the other hand there is a negative (and weaker) correlation between 
@13 and v. In other words the fluctuations in v which characterize the NpT-chain 
are accompanied by an interchange of energy between like and unlike pair inter- 
actions. This has the effect of damping the fluctuations in q~, thereby reducing 
the statistical error in the estimate obtained for H. There is also a strong serial 
correlation in the fluctuations in the component properties; this suggests that 
the statistical errors in these quantities may not be very reliably estimated. The 
rate of convergence of the ' overall ' averages as a function of the parameters A 
and/~ has not been studied systematically. In applications of the NvT-method 
a rule-of-thumb used by workers in the field is to assign to the displacement 
parameter a value such that approximately one-half of all trial configurations are 
rejected. This rule is less useful in the present work because different choices 
for )t and/x may give rise to the same rate of rejection. In the calculations reported 
here the values used were in the ranges A/L=0.02-0.03 and /~/L=0.01-0.04, 
leading to rejection rates of between 50 and 65 per cent. The convergence of the 
' overall ' averages does not appear to be sensitive to the choice of ~ and/~ within 
these ranges but  the matter has not been investigated in sufficient detail to justify 
any more precise statement. 

4. EXCESS THERMODYNAMIC PROPERTIES 

The molar excess enthalpy H E and excess volume V E may be obtained directly 
from the data given in table 2 if the properties of the pure components are known. 
In the early stages of this work it was proposed to carry out separate NpT-calcula- 
tions for both pure components and for the mixture but it is clear that more accurate 
values of the excess properties may be obtained by calculating the properties of the 
pure liquids from curves fitted to the large quantity of Monte Carlo data now 
available for the one-component 12-6 fluid and this approach is the one adopted 
here. The equations used for the zero-pressure internal energy U(p=0)  and 
volume V(p= 0) are [27]: 

U(p = O)/NA~ = - 8.69614 + 3.04195(kT/c) + 0.785383(kT/~) 2, (15) 

NAaa/V(p=O)= l.O6804-O.164783(kT/E)-O.206539(kT/~) ~, (16) 

where NA is the Avogadro number. 
The calculation of the molar excess Gibbs free energy G E is made in a less 

direct manner. Adapting the procedure used by Singer and Singer [14] to the 
case of the NpT-ensemble G E is calculated as the sum 

G E = AG I + AG II + AG III. (17) 
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Np T-ensemble Monte Carlo calculations for binary liquM mixtures 49 

The superscripts I, I I  and I I I  in equation (17) refer to the successive steps in the 
following process : firstly, the values Eli, aii ( i= 1, 2) for appropriate amounts of 
the two components are changed to the common values %el, %~f which are con- 
veniently set equal to EI~, a12 ; secondly, the two identical liquids resulting from 
step I are mixed to form a reference liquid ; and, thirdly, the 1-1, 1-2 and 2-2 
interaction parameters are changed from %a, ~ to the required values ~n, EI~, 
E~, an, al~, 0-~. The quantity AG ~ may be calculated from a knowledge of the 
Gibbs free energy of the pure components and the reference liquid ; step I I  is 
an ideal mixing process and therefore AG H is zero ; and AG H~ may be evaluated 
from the equation 

/~ Xmlx 

~O I~]'= J xredX (8G(N, p, T ; X)ISX) (18) 

where Xmix, Xre f are used to denote the arrays of interaction parameters in the 
final mixture and the reference liquid, respectively, the latter being regarded as a 
mixture of identical components. Thus 

X~f___(%~f, % a ;  e~a, %~ ; %a, %a), (19) 

Xlnix-----(Ell,  0-11 ; EI$, 0-1~ ; E~2, 0"22)" (20 )  

From equations (1), (2) and (3) it follows that 

OG(N, p, T ; X)/OX = - (flA)-a(OA/OX) '~ 

Jr = (~r  ; x ) / ~ x 5  

and therefore 

~G(N, p, T ; q j ) / ~  = (r  

~G(N, p, T ; 0",j)/~aij = - ("Fij>/0-1r 

(21) 

(22) 

(23) 

The quantities (@ij)/~ij and (tFij)/aij are expected to change only slowly with 
changes in q~ and crij ; over small ranges of the interaction parameters they may 
be assumed to vary linearly with, respectively, Eii and aii. If  this approximation 
is used over the entire range between Xre f and Xmi x then, in the special case when 
E r e f  = El2 and %el= O'12 , equation (18) becomes 

AGH~ = (Na/2N){[ ( @n) /an + x~(@~f)'/E~2](~n- ~1~) 

- [ 0 ' 1 1 > / - , ,  + Xl2(~Fref) /~176 - -  012) 
(24) 

where (qbra), (Wref) are the equilibrium potential energy and virial of the N 
molecules of the reference liquid at the temperature and pressure of interest. 
Trial calculations for the equimolar mixture Ar+  Kr based on separate Monte 
Carlo chains for parameter values intermediate between X~e~ and Xmi ~ show that 
the error introduced by the use of the linear approximation over the whole range 
is negligible. The evaluation of G E also requires a knowledge of the zero-pressure 

M.P. n 
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50 I . R .  McDona ld  

Gibbs  free energy G(p  = 0) of the pure liquids (including the reference system) 
and for this the following equation based on Monte  Carlo data [27] is used : 

G(p = O) /N•kT= - 8 . 6 9 6 1 4 ( , / k T ) -  0.304195 In (kT/~) 
- O.785383(kT/E)-  3 In or+ C, (25) 

where C is a constant. 

(a) H E (J tool -1) 

System MC Expt APM vdW1 vdW2 Pert Var PY 

A r + K r  (115.8 K) - 2 9 + 1 7  +162 - 3 0  +18 - 4 9  -31  - 4 9  
A r + C H  4(91'0K) -60_+12 +103 +223 - 5 5  -11  - 7 6  - 3 4  
CO+CH4 (91"0 K) +15-+12 +105 +96 +26 +52 +18 +30 
Ar+N2 (83-8 K) +16_+9 +51 +78 +43 +28 +25 +42 
A r + C O  (83'8 K) +37-+15 +80 +35 +22 +18 +37 
O~+N2 (83"8 K) +39-+15 +118 +52 +33 +25 

(b) V E (cm 3 tool -1) 

System MC Expt APM vdW1 vdW2 Pert Var PY 

A r + K r  (115'8 K) -0 '69+0"06 -0-52 +0-09 -0"68 -0.47 -0.73 -0"73 -0"78 
Ar+CH4(91-0K)  -0"22_+0-04 +0"17 +0"61 -0"23 -0"17 -0"36 -0"14 
CO + CH4 (91"0 K) -0-76+0"06 -0"32 -0"30 -0.71 -0 .50 -0.69 -0.75 
A r + N ,  (83"8 K) -0.25 _+0'05 -0-18 -0-02 -0 '25  -0-20 -0-30 -0 .26 
Ar + CO (83"8 K) -0-17_+0"05 +0"10 +0-05 -0"19 -0"16 -0"25 -0.17 
O~+N~(83"SK) -0.28+0"06 -0-31 +0-08 -0.28 -0 .24 -0-35 

(c) G E (J tool -1) 

System MC Expt APM vdW1 vdW2 Pert Var PY 

A r + K r ( l l S . 8 K )  + 4 6 + 7  +84 +139 +46 +61 +33 +47 +37 
Ar+CH4(91"0K) - 1 4 + 6  +74 +159 - 1 7  +9 - 2 8  - 1 2  
CO + CH4 (91"0 K) + 7 7 + 7  +115 +111 +83 +84 +67 +76 
Ar+N2 (83"8 K) +35+5  +34 +57 +39 +27 +29 +42 
A t + C O  (83.8 K) +26+5  +57 +55 +29 +20 +21 +28 
O~+N2 (83'8 K) +38+_5 +39 +80 +43 +29 +30 

Table 3. Excess thermodynamic properties of binary liquid mixtures (xl = x2 = �89 

T h e  calculated values of H E, V g and G E for each equimolar system studied 
are given in table 3 ; the composi t ion-dependence of the excess properties of the 
system Ar + Kr  is shown in figures 1 to 3. T h e  quoted statistical errors are those 
arising f rom statistical fluctuations in the calculations for the mixtures and do not 
include possible errors resulting f rom the use of equations (15), (16) and (25). 
T h e  errors in H E and V • are therefore the same as those in H and V which are 
listed in table 2. (The  comparison with the predictions of various analytical 
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Np T-ensemble Monte Carlo calculations for binary liquid mixtures 51 

theories which is made in table 3 and, in particular, in figure 1 suggests that the 
tabulated errors in H E may be too large.) The small values listed for the errors 
in G s call for some comment because G E is calculated, via equation (24), from the 
individual contributions to <~)  and <tF) for which the statistical errors, particu- 
larly in the <qLi), are known to be large. Numerically the situation is most 
easily understood by considering a specific (but typical) example. For the case 
of CO + CH 4 the contributions to AG III made by successive terms on the right- 
hand side of equation (24) are, respectively, + 265, - 344, + 3 and - 16 J mo1-1. 
(AG I for this system is + 169 J mol-t.) Two facts Should be noted. Firstly, 
the terms involving <qPij) are small and of opposite sign ; thus the large errors 
associated with these quantities do not have a serious effect on the accuracy of the 
estimate obtained for G E. As these terms are also the ones involving the 12-6 
parameters aXl and a22 it is clearly implied that mixtures of molecules differing 
only in size will have very small values of G n. Secondly, the terms involving 
<qbii), though of considerably greater magnitude than those involving <tFi~), are 
also of opposite sign and the statistical error in the sum is greatly reduced by the 
strong positive correlation between fluctuations in (I)ll and @22. Thus the relative 
errors in the individual terms in equation (24) are large but the absolute error in 
AG III itself is very much smaller. 

30 

20 

vdW2 

% 
E 

~z: -20 

-30 

vdWl 

-50 

-6o~ o'.2 o'L o'6 o'.8 iIo 
% 

Figure  1. Excess enthalpy of  the system A r + K r  at 115"8 K and zero pressure. T h e  
points represent  the Monte  Carlo results and the curves give the predictions o f  
various theories. 
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Figure  2. Excess vo lume  of  the  sys tem A r  + K r  ; for details see capt ion  to figure 1. 

Also shown in table 3 and figures 1 to 3 are values of the excess properties 
predicted on the basis of a number of theories of mixtures. (Note that in certain 
cases the results of different theories are indistinguistiable on the scale to which 
the graphs are drawn.) The theories considered here fall into two groups. The 
first comprises the so-called n-fluid (corresponding-states) theories in which the 
properties of a mixture of 12-6 components are taken to be those of either a single 
hypothetical 12-6 substance with suitably averaged parameters ~ and 6 (one-fluid 
theories) or of an ideal mixture of such substances. Application of theories of 
this type requires a knowledge of the reduced thermodynamic properties of the 
12-6 system as a function of reduced temperature and pressure. The examples 
considered in this paper are the two-fluid version of the Average Potential Model 
(APM) of Prigogine and his collaborators [25, 28] (i.e. the ' refined version II  ' 
[25]) and the one- and two-fluid versions of the more recently developed van der 
Waals model (vdWl, vdW2) of Leland et al. [17, 18]. Numerical results are 
obtained with the help of equations (15), (16) and (25). In theories of the second 
type, which for convenience are referred to here as ab initio theories, separate 
computations must be made of the thermodynamic properties of each of the pure 
comPonents and of the mixture. The ab initio theories discussed here are the 
perturbation approach (pert) of Leonard et al. [19], the variational calculation 
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Np T-ensemble Monte Carlo calculations for binary liquid mixtures 53 

(var) of Mansoori and Leland [20] and the Percus-Yevick theory (PY) [22]. 
Results obtained by means of the variational theory are taken from the work of 
Mansoori [21] with corrections made to take account of small differences in the 
12-6 parameters. 

Figure 3. 

ii 

40 % 
E 

1% 30 

,5C ~ , K , / v d W  2 

/ ~\ ~_vdW1 
vQr 

2O 

IC 

o o~z o!~ o!6 0'8 ~o 
&,. 

Excess Gibbs  free energy of  the system A t  + Kr  ; for  details see caption to 
figure 1. 

The comparison made in table 3 and figures 1 to 3 shows that there is excellent 
agreement between the predictions of both the one-fluid version of the van der 
Waals model and the variational theory and the results of the Monte Carlo calcula- 
tions. The excess properties obtained from these two theories are everywhere in 
agreement with the Monte Carlo results within, or close to, the limits of statistical 
error in the latter. The results given by perturbation theory are slightly inferior ; 
the values obtained for both H ~ and G ~ appear to be systematically too low but I rE 
is accurately predicted. The Percus-Yevick theory also gives good results in the 
one case studied but both the Average Potential Model and, perhaps surprisingly, 
the two-fluid version of the van der Waals model are clearly unsatisfactory as 
theories of mixtures. 

The three ab initio theories are found to give very much better results for the 
properties of mixing than for the properties of the mixtures themselves. The 
variations with composition of the enthalpy and volume of the mixture Ar + Kr 
as given by the perturbation and variational theories are compared with the cor- 
responding Monte Carlo data in figures 4 and 5. Inspection of these graphs 
makes it clear that the theories give rise to systematic errors, particularly in the 
calculation of volume, but these errors largely cancel in the case of the excess 
properties. It is interesting that the slight superiority of the variational theory in 
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54 I .R .  McDonald 

the calculation of excess properties is achieved in spite of the fact that the per- 
turbation results for the total properties of the mixtures contain significantly 
smaller errors. In view of the discrepancies between the Monte Carlo calculations 
and the perturbation results the good agreement between the latter and the 
experimental values of the volume of the mixture (figure 5) must be regarded as 
fortuitous. Improved agreement between the machine calculations and the 
experimental data could be obtained by making different choices for the 12-6 
parameters for Ar and Kr. 

T 

VQf 

-8560] 

- 9 0 0 O r  
0 

Figure 4. 

o.~ - o!~ - -  o!6 o!8 ~o 
XA~ 

Enthalpy of the system Ar + Kr  ; for details see caption to figure 1. 

The results of the Monte Carlo calculations are compared with the available 
experimental data [23, 29] on excess properties in table 3 (for equimolar mixtures) 
and figures 6 and 7 (for the system Ar+  Kr). Agreement is poor but may be 
substantially improved by treating the quantity ~ in equation (14) as an adjustable 
parameter. The values which must be assigned to ~ in order to bring the calcu- 
lated G E into agreement with the experimental results are easily determined from 
the Monte Carlo data on (@1~) by making use of equation (22). The adjusted 
values of ~ (denoted by the symbol ~expt) which are obtained in this way are listed 
in table 4. The resulting changes in H E and V E are most easily determined by 
applying the van der Waals one-fluid theory ; the calculated changes may then 
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36 

55 
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Figure 5. 
and the circles give the experimental values. 
figure 1. 

" 0.'2 0'4 0'6 o!8 ~-o 
xA~ 

Volume of the system Ar + Kr ; the triangles represent the Monte Carlo results 
For other details see caption to 

H E (J mo1-1) V ~ (cm 3 mo1-1) 

S y s t e m  ~expt MC Expt MC Expt 

Ar + Kr (115"8 K) 0"989 + 29 - 0"60 - 0"52 
A r + C H 4  (91"0 K) 0.975 +57  +103 -0-11 +0"17 
C O +  CH4 (91"0 K) 0.988 +70  +105 -0"68 -0 .32  
Ar + N2 (83.8 K) 1 "001 + 34 + 51 - 0"25 - 0.18 
Ar + CO (83.8 K) 0.989 + 79 - 0.10 + 0.10 
O~+N2 (83"8 K) 0.999 +42  -0 .28  -0-31 

Table 4. Comparison of experimental values of excess thermodynamic properties with 
values calculated for the case ~ = ~expt (Xl = Xz = �89 

be added  to the Mon te  Carlo estimates of  the excess propert ies  calculated for the 
case ~ =  1 in order  to obtain values of  H E and V E cor responding  to ~ =  ~exvt. 
T h e  results are displayed in table 4 and figures 6 and 7. (Note  tha t  for the sys tem 
A r +  K r  the value obtained for ~exvt for the equimolar  mixture  is used t h roughou t  
the entire range of  composi t ion.)  I n  general there is a significant improvemen t  
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56 I .R .  McDonald 

between calculated and experimental values. Further improvement could be 
obtained by varying the arithmetic-mean rule for al~ but it is questionable whether 
any significance could be attached to the results of such manipulations. However, 
the conclusions reached here about the merits of the geometric-mean rule for e12 
are in general agreement with the results of other recent work on this topic [17-19]. 
In particular it is found that ~exvt is less than unity for all systems except Ar + N 2 ; 
even in this case it is found that ~expt exceeds unity only by a very small amount 
which could be accounted for by the combined errors in the calculations and the 
experimental results. However, the values of ~exv~ obtained here are in all cases 
greater than those recently deduced on the basis of perturbation theory [19] ; 
this arises from the fact that there are systematic differences between the Monte 
Carlo calculations and the perturbation results for G E. 

0 
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-0E 

-07 

/X 

/X 

A 

Figure  6. 
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&,. 

Excess vo lume  of  the  sys tem A r  + Kr .  T h e  open  tr iangles give the  resul ts  of  
M o n t e  Carlo calculat ions for  the  case ~ = 1 ; the  filled t r iangles are resul ts  for  the  
case ~ =  ~expt calculated in the  m a n n e r  descr ibed  in the  text.  T h e  curve shows 
the  exper imenta l  values.  Fo r  o the r  details  see capt ion  to figure 1. 

5. CONCLUSIONS 

The work described in this paper provides some indication of both the scope 
and the limitations of the NpT-method in its application to liquid mixtures. The 
most serious drawback to its use is one likely to be common to any study of mixtures 
by computer simulation, namely that the method makes a very heavy demand upon 
computing time. The NpT- and NvT-methods yield data of approximately 
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Np T-ensemble Monte Carlo calculations for binary liquid mixtures 57 

equal statistical reliability for chains of equal length but the NpT-calculations are 
slightly more complicated and the total running time is therefore some 10 per cent 
greater. However the advantage held by the NvT-method cannot always be 
fully realized. Parameter extrapolation leads to large errors if the change in 
volume exceeds approximately 2 per cent and therefore the density used in the 
NvT-calculation must be chosen so as to ensure that the equilibrium pressure is 
not too far from the required value ; this requires some prior knowledge of the 
properties of the mixture which, in general, can be obtained only from additional 
Monte Carlo runs. 

90 
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Excess Gibbs free e ne r g y  of the system Ar + Kr  ; for details see caption to 
figure 6. 

A S 0  
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~o 40 

Figure  7. 

For the specific systems studied here the main feature which emerges is the 
excellence of the predictions made by both the variational theory and the van der 
Waals one-fluid model. The magnitude of the statistical errors in the Monte 
Carlo calculations are such as to preclude at present any firm statement concerning 
the relative merits of these two theories ; it is hoped that this will become possible 
when the more systematic investigation referred to in the introduction is complete. 
Perturbation theory (in the particular form considered here) gives less accurate 
values for the excess properties but is more successful than the variational approach 
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58 I . R .  McDonald 

in reproducing the thermodynamic properties of the mixture itself. Comparison 
with experimental data leads to the now familiar conclusion that in general the 
geometric-mean rule overestimates the energy cross-interaction parameter by 
some 1-2 per cent. 

I am grateful to Dr. D. Henderson and Dr. G. Ali Mansoori for providing me 
with their theoretical results prior to publication, to Dr. K. Singer for helpful 
discussions about results obtained by the NvT-me thod ,  to the Institute of Com- 
puter Science of the University of London for a very generous allocation of com- 
puter time and to the Science Research Council for financial support. 
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