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Accurate and efficient methods to simulate nonadiabatic and quantum nuclear effects in high-dimensional and dis-
sipative systems are crucial for the prediction of chemical dynamics in condensed phase. To facilitate effective
development, code sharing and uptake of newly developed dynamics methods, it is important that software imple-
mentations can be easily accessed and built upon. Using the Julia programming language, we have developed the
NQCDynamics.jl package which provides a framework for established and emerging methods for performing semi-
classical and mixed quantum-classical dynamics in condensed phase. The code provides several interfaces to existing
atomistic simulation frameworks, electronic structure codes, and machine learning representations. In addition to the
existing methods, the package provides infrastructure for developing and deploying new dynamics methods which we
hope will benefit reproducibility and code sharing in the field of condensed phase quantum dynamics. Herein, we
present our code design choices and the specific Julia programming features from which they benefit. We further
demonstrate the capabilities of the package on two examples of chemical dynamics in condensed phase: the population
dynamics of the spin-boson model as described by a wide variety of semi-classical and mixed quantum-classical nona-
diabatic methods and the reactive scattering of H2 on Ag(111) using the Molecular Dynamics with Electronic Friction
method. Together, they exemplify the broad scope of the package to study effective model Hamiltonians and realistic
atomistic systems.

I. INTRODUCTION

Classical molecular dynamics (MD) simulations are cru-
cial to understanding dynamical processes and chemical reac-
tions in molecules and materials. However, the assumptions
that underpin classical MD simulations are regularly violated.
This is, for example, the case when nonadiabatic and quantum
nuclear effects cannot be neglected, i.e. when the time scales
of electronic and nuclear dynamics do not clearly separate or
when the motion of atoms cannot be approximated as being
classical. These effects are important for a broad range of
processes in condensed phase ranging from chemical reaction
dynamics at metal surfaces to photocatalysis and nonequilib-
rium processes in materials.

The development of accurate simulation methods that are
able to capture nonadiabatic and/or quantum effects in dy-
namics of hundreds or thousands of atoms and electrons or
in open quantum systems represents a true frontier with im-
portant emerging applications in areas such as strong light-
matter coupling and quantum transport.1–3 While signifi-
cant advances in the development of full unitary quantum
dynamics methods have recently been reported,4–6 a full
quantum dynamical description for high-dimensional con-
densed phase systems remains mostly out of reach. A va-
riety of mixed quantum-classical and semiclassical dynam-
ics methods have been developed over the years that re-
tain an (approximate) description of quantum effects while
providing improved computational scaling properties. Ex-
amples include: Ehrenfest dynamics,7–9 molecular dy-
namics with surface hopping,10–16 mixed quantum-classical
Liouville dynamics,17–20 the quantum-classical path inte-

gral method,21,22 and semiclassical mapping Hamiltonian
methods.23–38 Most of these methods were conceived with
a relatively small number of electronic states in mind, but
some have been extended and modified to tackle the contin-
uum of states encountered in metallic environments. In partic-
ular, these include surface hopping methods,39–42 molecular
dynamics with electronic friction,43–47 and mapping variable
techniques.48

Despite the plethora of proposed methods, exploring their
capabilities for application cases can be challenging as soft-
ware implementations are often not publicly available. Only
when methods grow in popularity do efficient open-source im-
plementations start to appear and become maintained by ac-
tive user communities. Just to name some examples, this has
been the case for fewest-switches surface hopping methods
for molecular systems49 as implemented in Newton-X50,51 or
SHARC52,53 and for path-integral molecular dynamics meth-
ods as implemented in i-PI.54 However, many recently devel-
oped nonadiabatic and quantum-classical dynamics (NQCD)
methods have not yet reached this stage of maturity in their
development. A possible solution to bridge the gap between
early inception of new approximate NQCD methods and their
realisation for applications is to develop open-source imple-
mentations during their development, as recently suggested
in a Faraday Discussion.55 While this has become common
practice in many other communities (e.g. in machine learn-
ing for chemical physics applications56), rarely are proof-of-
principle implementations of new dynamics methods released
together with the publications that first report them. Doing so
would allow greater insight into the inception of the method
and its numerical properties and would support reproducibil-
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ity and user uptake. Furthermore, few standardised bench-
mark model problems exist with which new NQCD methods
can be assessed. The potential success of such an effort has
recently been shown for a number of projects in other fields
and a similar opportunity exists in the development of NQCD
methods.

In this article, we present an open-source software pack-
age, NQCDynamics.jl, that provides a framework for per-
forming NQCD with a diverse range of methods, and toolsets
for developing new simulation methods. The package aims
to provide an open-source environment that can satisfy both
the needs of prototype method development and performance-
sensitive method deployment for production simulations. Our
aim is to support open-source availability of newly developed
simulation methods and to enable the transparent compari-
son and benchmarking of methods against each other. We
achieve this by developing the code in the Julia programming
language and by providing a range of existing NQCD meth-
ods. The code features a range of interfaces to employ model
Hamiltonians, on-the-fly ab-initio electronic structure calcu-
lations, or high-dimensional atomistic machine learning mod-
els, which we demonstrate with two example problems. In
Sec. II we introduce the Julia programming language, and de-
scribe the features of the package in Sec. III. Secs. IV and V
discuss results for two example applications together with a
concise description of the relevant theory. Sec. IV presents
nonequilibrium population dynamics of the spin boson model,
whereas Sec. V focuses on the reactive scattering of H2 on an
Ag(111) surface. The final section, Sec. VI, discusses our
vision for the software package and planned future develop-
ments.

II. THE JULIA PROGRAMMING LANGUAGE

Before introducing the package, we will briefly introduce
the Julia language and highlight the characteristics that make
it an excellent choice for a software project suitable for both
method prototyping and production simulations. Julia

57 is a
modern language designed to combine user productivity with
efficient code. This is achieved by providing a user friendly
interface through the dynamic type system, while achieving
high performance with effective type inference and just-in-

time compilation.57 On the surface, the syntax looks much
like other dynamic languages such as Python, but the compiler
is able to produce optimised assembly code that can achieve
comparable performance to static languages such as C and
Fortran.57–60

Aside from performance, a key requirement of scientific
software is its ease of transferability and reuse. Julia’s built-
in package manager Pkg allows for automated installation of
project dependencies which facilitates code sharing and al-
lows for seamless integration of cutting edge developments.
Through BinaryBuilder.jl it is even possible to include bi-
nary dependencies from other languages without requiring the
user to manually compile extra libraries. This is particularly
relevant when considering the vast amounts of existing scien-
tific software written in other languages.

Compared to most languages Julia is relatively young,
launching in only 2012, though it has grown quickly and
presents itself as a strong option for scientific computing
projects. Julia is not completely new to the realm of molec-
ular simulation; of particular note are the DFTK.jl package61

and the Fermi.jl package.62
DFTK.jl is a plane-wave den-

sity functional theory code and Fermi.jl is a wave-function-
based quantum chemistry code. DFTK.jl has already been
used to investigate new developments in the self-consistent
field procedure.63,64 The success of DFTK.jl has shown that
Julia is not only viable, but effective at tackling chemical
problems and producing high-performance software.

III. PACKAGE OVERVIEW

The goal of the package is to provide an environment where
researchers can develop new methods for NQCD simulations,
compare them to existing implementations, and scale them up
to full production simulations on atomistic systems. This sec-
tion describes the code design choices to fulfill these require-
ments.

To support new users and developers it is important to pro-
vide comprehensive, yet concise documentation. This is of-
ten a challenge, particularly for research code that undergoes
constant development by a small team. Using automated build
procedures we provide a stable and a development version of
the documentation that builds whenever new versions are pub-
lished. By frequently re-building the documentation, it is eas-
ier to incorporate additions and to ensure that new features are
adequately documented. Further, examples within the docu-
mentation are executed during the build procedure, acting as
additional tests and ensuring the reader is able to follow along
without issue.

To further reduce the complexity of the codebase, we can
rely upon external packages to provide specialised functional-
ity. This has benefits for initial development, maintainability
and documentation since we are not responsible for managing
external dependencies, and get immediate access to their fea-
tures. Often, this also has drawbacks since it can complicate
the build procedure, acting as a barrier toward new develop-
ers. Fortunately, Julia’s built-in package manager makes it
simple to include both Julia packages and binary dependen-
cies without complicating the installation process. The full
set of dependencies is specified in the Project.toml file as
is standard in Julia packages, and these are automatically in-
stalled along with the package.

While minimising the barrier to entry, it is also important
to ensure the package has enough scope for further contribu-
tions. To achieve this, a flexible interface was created that
does not unnecessarily restrict the possibilities of future work.
We utilise Julia’s multiple dispatch to simplify the addition of
new functionality. Multiple dispatch allows the developer to
define a new type, then add methods specialised for that type.
With this, the developer is able to take advantage of the exist-
ing framework and to modify any functions that require dif-
ferent behaviour. This procedure is exemplified by our central
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Simulation{Method}(atoms, model; kwargs...)

FSSH

NRPMD

Ehrenfest

MDEF

Classical

Langevin

eCMM

Methods

Atoms

Models Keywords

Simulation cell

Temperature

Method parameters

Analytic model

ASE calculator

ML model

Atomic masses

Chemical symbols

FIG. 1. The user inputs required to define the parameters for a simu-
lation.

parameter type: Simulation (Fig. 1).
The Simulation holds the static parameters of the system

such as the atom types, temperature and simulation cell. Fur-
ther, its type parameter (Method in Fig. 1) acts as a label that
determines the dynamics method. These Methods are regular
Julia structs65 and can be defined to contain any extra pa-
rameters. In this way, the Simulation type has a basic struc-
ture for shared functionality between dynamics methods, but
allows for arbitrary extension through the Method parameter.
By defining a new Method, multiple dispatch can be used to
modify and implement functions to perform new dynamics
methods.

Another goal of the package is to facilitate easier compar-
ison with existing methods. Currently, this is challenging as
implementations for many prototype dynamics methods are
not publicly available and can be difficult to obtain. We pro-
vide implementations of many methods, along with detailed
descriptions of the implementation specifics. In this way, the
package can be used as a resource for obtaining benchmark
data and as an educational resource that provides extra com-
putational details, so that those details do not have to be cov-
ered in the supporting information of publications.

Finally, the prototype implementations must be easily trans-
ferable for both model Hamiltonians and realistic atomistic
systems. Generally, there is a disconnect between research
codes and large production applications that can lead to a
duplication of effort when the developer must re-implement
functionality in a more efficient or scalable format. The key
difference between simple models and atomistic problems lies
in the evaluation of the electronic Hamiltonian. The underly-
ing dynamics to propagate the motion of atoms is identical.
We can take advantage of this similarity by abstracting the dy-
namics from the electronic problem, exposing a simple inter-
face for defining the Hamiltonian. This interface is packaged
separately as NQCModels.jl and included as a dependency.
By separating the interface, the models can be accessed indi-
vidually and integrated into other codes.

NQCD simulations involve the calculation of observables
over many trajectories. The initial coordinates for each tra-
jectory are sampled from an appropriate distribution, before
propagating the coordinates and momenta in time. During the
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FIG. 2. Schematic diagram showing how the internal structure of
the code relates to the workflow of a simulation. The ovals denote
separate Julia packages, whilst boxes with rounded ends denote sub-
modules within NQCDynamics.jl. The diamond boxes are functions
exposed by NQCDynamics.jl. The arrows show how the outputs of
each code section flow forward to produce the final output of the
simulation.

propagation, at each timestep, the electronic Hamiltonian is
evaluated as a function of the nuclear coordinates. The follow-
ing sections discuss how each of these aspects is handled by
NQCDynamics.jl by following the simulation workflow pre-
sented in Fig. 2.

A. Preparing initial conditions

Before performing dynamics simulations, it is impor-
tant to ensure the initial nuclear and electronic distribu-
tions are sampled correctly, otherwise the trajectories be-
come meaningless. Within NQCDynamics.jl, the submodule
InitialConditions provides the functionality to generate
these initial distributions. For simulations where the initial nu-
clear distribution is at thermal equilibrium we provide Monte
Carlo sampling and dynamics using a Langevin thermostat.66

Both of these methods have also been implemented in the
path-integral form, which exploits the ring polymer normal
mode representation to more efficiently sample the ring poly-
mer phase space.66–69 For non-equilibrium nuclear distribu-
tions, we have implemented Einstein-Brillouin-Keller (EBK)
quantisation for diatomic molecules,70 which generates semi-
classical distributions with given vibrational and rotational
quantum numbers and provides initial conditions for diatomic
gas-surface scattering dynamics. In addition to these meth-
ods, we provide simple analytic distributions built on top of
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Distributions.jl.71 These include the Boltzmann velocity
distribution, Wigner distributions for the quantum harmonic
oscillator, and a ring polymer in a harmonic potential. The
above methods are used to sample the nuclear degrees of free-
dom separately from the electronic variables. For all meth-
ods, the electronic variables are sampled analytically or set to
represent a specific initial state. Currently, we provide only
for initial conditions where the nuclear and electronic dis-
tributions are separable, allowing for individual sampling of
each subsystem. In summary, the currently available sampling
methods to create initial conditions include:

• Einstein-Brillouin-Keller quantisation70

• Langevin molecular dynamics (BAOAB algorithm)66,72,73

• Path integral Langevin dynamics (BCOCB algorithm)68,69

• Metropolis-Hastings Monte Carlo66

• Path integral Monte Carlo66

B. Performing dynamics

Each of the trajectory-based dynamics methods can be for-
mulated as a set of coupled differential equations. Given
the variety of differential equations that we must solve, it
is easiest to use an established library for solving them,
rather than implementing new algorithms and integrators for
every dynamics method. This becomes especially relevant
when developing new methods where, initially, the specific
properties of the integration algorithm are not yet a prior-
ity. In Julia, the DifferentialEquations.jl package74

provides a variety of algorithms for the numerical integra-
tion of differential equations. We have hence chosen to use
DifferentialEquations.jl as the main driver for our dy-
namics simulations. With this choice, we need only define
a function that evaluates the time-derivative of each of the
dynamical variables that we can pass to any of the available
solvers (defined in DynamicsMethods, Fig 2). Listing 1 shows
the implementation of this function for the eCMM method
(Sec. IV A 5).

1 function motion!(

2 du, u, sim::AbstractSimulation{<:eCMM}, t

3 )

4 # Create references to output variables

5 dr = get_positions(du)

6 dv = get_velocities(du)

7

8 # Create references to input variables

9 r = get_positions(u)

10 v = get_velocities(u)

11

12 # Set nuclear velocity

13 velocity!(dr, v, r, sim, t)

14 # Set nuclear acceleration

15 acceleration!(dv, u, sim)

16 # Set time-derivative of mapping variables

17 set_mapping_force!(du, u, sim)

18 end

Listing 1: The function passed to the solver that governs the
eCMM dynamics. The first parameter du is filled with the
time-derivative of the dynamical variables u.

In some cases, such as when using ring polymer methods,
there are specialised algorithms available that allow for larger
timesteps and improved performance.68,69 Although not im-
mediately available from DifferentialEquations.jl, the
implementation of additional integration algorithms is well
documented in the online manual and, once implemented,
they can be directly compared to the library of existing
algorithms. We have taken this approach to implement
versions of the MInt28 and BCOCB68,69 algorithms within
DifferentialEquations.jl to efficiently integrate mapping
variable and ring polymer dynamics, respectively.

As shown in Fig. 2, two functions are used to launch dy-
namics simulations: run_trajectory and run_ensemble.
The former is used to perform a single trajectory at a time,
whereas the latter can be used to perform multiple trajecto-
ries in parallel. The choice between the two ties directly into
the output quantities from the dynamics (Fig. 2). In the sin-
gle trajectory case, quantities of interest (positions, momenta,
etc.) can be output at specified intervals. This functionality
is also available from the ensemble interface, but there is the
further option to request more complex observables, such as
scattering probabilities or time-correlation functions. In do-
ing so, it is possible to reduce the output as the trajectories
finish, saving memory and reducing the burden of handling
large amounts of data.

The parallelism available in the ensemble mode is provided
by DifferentialEquations.jl and allows trajectories to be
performed simultaneously using both shared memory and dis-
tributed memory parallelism. For large scale simulations on
high performance computing facilities, the distributed form
allows the user to leverage multi-node clusters to perform a
large number of trajectories. To demonstrate the effectiveness
of the parallelism we have included a scaling study (Fig. 3)
carried out on a system equipped with Dell PowerEdge C6420
compute nodes with 48 cores each. These results were ob-
tained by measuring the time taken to perform 100N trajecto-
ries using N compute cores. The simulations were carried out



5

as described in Sec. IV to obtain the eCMM result for model
B. When using the simulation time span in Sec. IV, tmax = 20,
the efficiency begins to deteriorate when using more than 48
cores (1 node). However, when increasing the simulation time
span to tmax = 200, we see that the efficiency remains high
across multiple nodes. This suggests that we are capable of
achieving almost perfect scaling up to 768 cores (16 nodes),
assuming that the time taken to simulate each trajectory is
long enough to render the parallel overhead negligible.

Processors

1 3 12 48 192 768

E
ff
ic
ie
n
cy

0.0

0.5

1.0

t
max

= 20

t
max

= 200

FIG. 3. The efficiency (t(1)/t(N) where t(N) is the time taken to
perform 100N trajectories with N processors) obtained for eCMM
trajectories using the EnsembleDistributed method for ensemble
level parallelism. tmax denotes to the time span over which the tra-
jectory was propagated (in atomic units). The dots show the mean
value obtained from two samples.

Inside the DynamicsMethods submodule, the following dy-
namics methods are currently implemented:

• Classical molecular dynamics66

• Molecular dynamics with electronic friction (MDEF)43,44

• Ehrenfest molecular dynamics7–9

• Fewest-switches surface hopping49

• Ring polymer molecular dynamics (RPMD)75,76

• Nonadiabatic RPMD (NRPMD)35–38

• Centroid ring polymer surface hopping (RPSH)14,15

• Centroid ring polymer Ehrenfest dynamics77

• Extended classical mapping model (eCMM)30,78

• Generalized spin mapping approach79,80

C. Defining the Hamiltonian with NQCModels.jl

The final part of Fig. 2 that has not yet been described is the
NQCModels.jl package. This package is responsible for pro-
viding the dynamics code with the potential energy surfaces
that define the system interactions. In the case of analytic di-
abatic models, among others, these include Tully’s two-state
scattering models,49 Coronado and Miller’s three-state Morse
potentials,81 and the spin-boson model.82 However, the pack-
age can also define or interface with high-dimensional atom-
istic models and ab initio Hamiltonians. We accomplish this
by exposing a minimal set of functions that are required to

NQCModels.jl

Parent package containing basic

definitions with simple interfaces

and models.

NNInterfaces.jl CubeLDFAModel.jl

Analytic models

ASE interface

JuLIP.jl interface

New models!

FIG. 4. Package layout diagram for NQCModels.jl. The blue box
displays some of the models and interfaces included in the package,
including ASE83 and JuLIP.jl.84 The bottom row shows some of the
add-on packages used to obtain the results in Sec. V.

take the nuclear positions and return the electronic quantities.
The developer is free to wrap any code within these functions
to perform the necessary computations. The flexible inter-
face provided by NQCModels.jl is largely responsible for the
system-size agnostic structure of the dynamics code.

The modular design that Julia affords means that these
models can be used separately from the dynamics code if de-
sired, e.g. to compute energy values or to be incorporated into
other codes. Fig. 4 shows the layout of the NQCModels.jl

package. The top row shows the basic models and inter-
faces included in the package itself. The bottom row shows
some of the child packages that implement the interface to
provide add-on models. These extra models are tailored for
specific applications and are packaged separately. For ex-
ample, NNInterfaces.jl provides the H2 on Ag(111) neural
network model used in Sec. V. The advantage of this format is
that NQCModels.jl can remain lightweight, with minimal de-
pendencies, and add-on packages have more freedom as they
operate separately from the main package.

One of the included interfaces is to the Atomic Simulation
Environment (ASE)83 written in Python that provides a library
of calculators that give energies and forces using a variety of
electronic structure programs. Using PyCall.jl we are able
to directly access Python from within Julia. With this, we
have implemented a simple wrapper for ASE calculators that
allows us to access the values provided by ASE with minimal
overhead. In principle, this interface can be used with any
ASE calculator as easily as in native Python.83 This provides
capabilities to perform on-the-fly dynamics with a vast array
of electronic structure and quantum chemistry codes that have
existing calculator instances within ASE. It also provides ac-
cess to atomistic machine learning (ML) packages via ASE,
such as QUIP/GAP85,86 and SchNetPack.87,88 Both packages
provide an ASE calculator instance that can be exposed to
NQCDynamics.jl via our interface.

For atomistic molecular dynamics simulations, ML has
become a key tool to facilitate dynamics of large systems
or dynamics over long time-scales.89,90 More recently, ML
models of excited-state properties and whole Hamiltonians
have become available91–93 There has been substantial recent
progress in machine learning with Julia.94–96 For example the
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ACE.jl package97,98 provides for the parametrization of in-
teratomic potentials based on the Atomic Cluster Expansion.
Nevertheless, most existing atomistic ML models are devel-
oped and trained using other languages. Through Julia’s lan-
guage interoperability features,57 we connect to these mod-
els with minimal difficulty. The H2 on Ag(111) model in
NNInterfaces.jl (Sec. V) relies upon a Fortran library.99

By directly calling the functions compiled into this library us-
ing ccall,100 we are able to access the potential, forces, and
electronic friction tensor from the same interface as the ana-
lytic models.

D. Example script

Now that we have introduced the fundamentals of the pack-
age, we can introduce a basic script that shows how each of
the components work together. The example script (Listing 2)
performs a single trajectory with classical molecular dynam-
ics in a 1D harmonic potential. The structure of this script is
typical for all dynamics simulations using NQCDynamics.jl.

1 using NQCDynamics # Import all exported symbols

2

3 atoms = Atoms([:H, :C]) # Atoms in the system

4 model = Harmonic() # External potential

5

6 # Combine simulation parameters

7 sim = Simulation{Classical}(atoms, model)

8

9 # Initialise starting position and velocity

10 velocity = zeros(1, 2) # all zero with size=(1,2)

11 position = rand(1, 2) # random with size=(1,2)

12

13 # Combine variables into single entity

14 z = DynamicsVariables(sim, velocity, position)

15

16 using Unitful # Import package for specifying units

17 tspan = (0.0, 10.0u"fs") # Simulation timespan

18

19 # Run a single trajectory

20 trajectory = run_trajectory(z, tspan, sim;

21 dt=0.1, output=(:position, :velocity))

Listing 2: Example script for classical molecular dynamics
with two atoms in a 1D harmonic potential.

In Listing 2, line 1 imports the package. using

NQCDynamics brings both the module name and all exported
symbols into the global namespace.101 Line 3 creates the
atoms which tells the simulation which particles are in the
system. Line 4 creates the model. In this example, Harmonic
is a 1D harmonic potential, but can be replaced by any type
that implements the NQCModels.jl interface. Line 7 shows
the creation of the simulation, which is the central parameter
type for all simulations (Fig. 1). This contains all of the static
parameters of the system, which in this case, are the atoms and
the model that defines their interactions. The Method type pa-
rameter, here Classical, is how the user chooses the dynam-
ics method they will use, this can be any of the implemented

dynamics methods. After creating the simulation, the dynam-
ical variables are created. For classical dynamics, these are
the positions and momenta but will contain electronic vari-
ables when performing nonadiabatic dynamics. The veloci-
ties and positions are provided as matrices with the number
of degrees of freedom per atom along the first dimension and
the number of atoms along the second dimension. The sim-
ulation time span is defined on line 17 to be 10 fs. By de-
fault, all quantities are assumed to be in atomic units, how-
ever, Unitful.jl102 can be used to attach alternative units
which are converted internally. Finally, the simulation is per-
formed using run_trajectory. After execution, the output
trajectory is a table containing the values for the positions
and velocities at each timestep. The interface described here
is similar for all dynamics methods, making it easy to switch
between and compare different methods. Interfacing with the
package via a Julia script means that the user has the ability to
use any Julia functionality to manipulate inputs and outputs.
This affords great flexibility when considering future devel-
opments.

In the preceding sections, we have provided motivation
for using NQCDynamics.jl and described its functional-
ity. NQCDynamics.jl is open-source and freely available
on GitHub.103 The package documentation and tutorials are
hosted online with GitHub pages and are updated with each
release.104 The documentation provides a comprehensive in-
troduction for new users along with implementation details
and code specifications useful for developers. For each of
the implemented methods, the theoretical background is intro-
duced alongside walkthrough examples that aim to reproduce
published results. In the following sections, we will present
two example use cases for NQCDynamics.jl.

IV. EXAMPLE I: NON-EQUILIBRIUM POPULATION
DYNAMICS OF THE SPIN-BOSON MODEL

In this example we will use NQCDynamics.jl to evaluate
quantum time-correlation functions82,105–107 of the form

CÂB̂(t) = Tr
[

Âe
iĤt/h̄

B̂e
−iĤt/h̄

]

, (1)

where Tr = Trn Tre is the trace over both the nuclear and elec-
tronic subsystems and Â and B̂ are arbitrary quantum opera-
tors. Ĥ is the Hamiltonian operator of the full system. De-
pending on the identity of the operators Â and B̂, these corre-
lation functions can be used to calculate reaction rates, spec-
tra, and various transport coefficients.105,106 Correlation func-
tions of this form are typically challenging to evaluate using
a quantum mechanically exact formalism but it is possible to
approximate the quantum dynamics by using mixed quantum-
classical and semiclassical dynamics.

In the following, the theory will be presented for a general
Hamiltonian with F electronic states in the diabatic represen-
tation:

Ĥ =
1
2

P̂
T

M
−1

P̂+
F

∑
n,m=1

Vnm(R̂) |n〉〈m| (2)
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Here, R̂ and P̂ are vectors of position and momentum opera-
tors and M is the diagonal mass matrix. Throughout we will
be using bold notation for vectors and matrices. Vnn(R̂) are the
diabatic potential energy surfaces and Vnm is the coupling be-
tween the two states n 6=m. In this section, we explore the case
where Â= ρ̂(R̂, P̂) |n〉〈n| and B̂= |m〉〈m| such that the correla-
tion function can be viewed as the time-dependent population
of state m starting from a given initial density ρ̂(R̂, P̂) |n〉〈n|.
This initial density is separable into the nuclear and electronic
parts, where ρ̂(R̂, P̂) is the thermal equilibrium nuclear distri-
bution of the ground state, and the electronic population starts
in state |n〉.

Cnm(t) = Tr
[

ρ̂(R̂, P̂) |n〉〈n|eiĤt/h̄ |m〉〈m|e−iĤt/h̄
]

, (3)

In the next section we will briefly introduce a set of dy-
namics methods that are implemented in the package that can
be used to approximate the population time-correlation func-
tion (Eq. 3). Each of these methods takes a trajectory based
approach, where initial conditions are sampled from a distri-
bution and propagated using the appropriate algorithm to eval-
uate the population at later time.

A. Methods

1. Fewest switches surface hopping (FSSH)

Tully’s fewest-switches surface hopping (FSSH)
method108–110 is one of the most frequently used meth-
ods, implemented in many programs, for simulating coupled
electron-nuclear dynamics in molecular systems.50–53 In
recent years, there have been several investigations focused
on testing its efficacy in the condensed phase111 and for
modelling molecules on surfaces.39,112,113 Here we will
shortly summarize how it can be used to approximate
time-correlation functions of the form introduced above.

In FSSH, the nuclei are described by the classical time-
dependent Hamiltonian:

H
FSSH(t) =

1
2

P
T

M
−1

P+
F

∑
i

δi,s(t)Ei(R) (4)

Note that the symbols have no hats as they represent classical
variables, not quantum operators. Ei(R) is the energy of the i-
th adiabatic state |Ei〉 obtained by diagonalising the electronic
Hamiltonian. The time-dependent quantity s(t) is the discrete
state variable that takes on the integer value of the currently
occupied adiabatic state. To obtain the value of s(t), the time-
dependent Schrödinger equation is propagated alongside the
classical equations of motion for the nuclei. In the adiabatic
basis, this equation can be cast in terms of the wavefuction
expansion coefficients ci as

ih̄ċi(t) = Ei(R)ci(t)− ih̄
F

∑
j=1

Ṙ ·di j(R)c j(t). (5)

where di j is the nonadiabatic coupling vector between states
i and j. The basic assumption made in FSSH is that the
nuclei move on one adiabatic potential energy surface at a
time, as illustrated by the Kronecker delta in equation 4.
After every time step, the probability to make a transition
to another state is evaluated. Such a transition is called a
hop and its success is determined by comparing the hop-
ping probability to a uniform random number. If the com-
puted hopping probability is larger than the random num-
ber, a hop takes place and the value of s(t) changes. Typi-
cally, the hopping probability is evaluated based on nonadi-
abatic couplings,53,109 but other approximate schemes have
also been proposed.114,115 We have implemented the hopping
probability according to Subotnik et al.

12 which is based on
the original notion of nonadiabatic couplings between adi-
abatic potential energy surfaces. NQCDynamics.jl imple-
ments the hopping procedure using callback functions from
DifferentialEquations.jl.74 Listing 3 shows the imple-
mentation of a general surface hopping procedure in our pack-
age. The HoppingCallback is given to the solver, which after
every timestep performs the surface hopping. This callback
approach decouples the discontinuous hopping events from
the continuous dynamics and allows users to investigate alter-
native hopping schemes by re-implementing individual func-
tions that appear in Listing 3. For example, different velocity
rescaling procedures can be implemented by modifying the
rescale_velocity! function.

1 """

2 Return true if the proposed state differs

3 from the initial state.

4 """

5 function check_hop!(u, t, integrator)::Bool

6 sim = integrator.p

7 dt = get_proposed_dt(integrator)

8 evaluate_hopping_probability!(sim, u, dt)

9 set_new_state!(sim.method, select_new_state(sim, u))

10 return sim.method.new_state != sim.method.state

11 end

12

13 """

14 If the velocity is rescaled successfully,

15 update the state variable.

16 """

17 function execute_hop!(integrator)

18 sim = integrator.p

19 if rescale_velocity!(sim, integrator.u)

20 set_state!(integrator.u, sim.method.new_state)

21 set_state!(sim.method, sim.method.new_state)

22 end

23 end

24

25 const HoppingCallback = DiscreteCallback(

26 check_hop!, execute_hop!

27 )

Listing 3: Implementation of the surface hopping procedure in
the code. The HoppingCallback will evaluate check_hop!

at every time step. If check_hop! returns true, the hop is
attempted using execute_hop!.
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Since FSSH is a mixed quantum-classical method, the most
appropriate approximation to Eq. 3 is the partially Wigner
transformed expression:116,117

C
FSSH
nm (t) =

1

(2π h̄)K

∫

dRdP

Tre

[

ρW(R,P)Pn(R,P,0)Pm(R,P, t)
]

, (6)

K is the number of nuclear degrees of freedom, ρW(R,P)
is the Wigner transformed nuclear density, and Pn(R,P, t)
are the populations of state n obtained from surface hop-
ping trajectories at time t. Recall that we are interested in
the populations of the diabatic states, though we perform
FSSH in the adiabatic representation. We calculate the dia-
batic populations using the mixed quantum classical density
approach.118,119 Numerical evaluation of Eq. 6 involves per-
forming FSSH trajectories sampled from ρW(R,P) and aver-
aging the population Pm(R,P, t) over all trajectories.

2. Ring polymer surface hopping (RPSH)

For FSSH, we are using the Wigner distribution to ini-
tialise the nuclear configurations. However, the Wigner dis-
tribution is difficult to sample for realistic systems,120,121 and
the classical propagation does not conserve the initial dis-
tribution, leading to zero point energy leakage.122 A possi-
ble solution to these problems is to use ring polymer sur-
face hopping (RPSH).14,15 Ring polymer molecular dynam-
ics (RPMD) uses the imaginary-time path integral formalism
to map the quantum distribution of the nuclei onto the ex-
tended phase space of a classical ring polymer to approximate
the simulation of real-time correlation functions.75,76 The ring
polymer is comprised of multiple replicas of the nuclei, each
joined by harmonic springs with stiffness depending on the
temperature and mass of the particle. At low temperatures and
light particle masses, the springs become softer, leading to a
swelling of the ring polymer and a particle that incorporates
quantum effects such as zero point energy and, to a more lim-
ited extent, tunneling. At high temperatures, the stiff springs
cause the polymer beads to coalesce, becoming equivalent to a
classical particle. The key advantage of ring polymer dynam-
ics is that the quantum Boltzmann distribution is conserved.

RPSH is an ad hoc combination of trajectory surface hop-
ping and RPMD. The algorithm follows FSSH, except the
classical nuclear dynamics are replaced by the ring polymer
dynamics. However, the additional complexity of the ring
polymer leads to some ambiguity in the implementation of
the propagation of the electronic quantities and the rescaling
of the momenta. Two options for treating this ambiguity ex-
ist: the bead and centroid approximations.14 The bead approx-
imation involves evaluating the electronic quantities for every
bead and using each contribution to propagate the electronic
quantities. The centroid approximation simply replaces the
classical particle in the FSSH algorithm with the ring poly-
mer centroid. When rescaling the momenta, the bead approx-
imation conserves energy for the entire ring polymer, whereas

the centroid approximation conserves energy only for the cen-
troid. The method we use here is the centroid approximation
since it is more convenient and previous results have shown
little difference in results between both approaches.15

As with FSSH, the nuclear dynamics follow a classical
Hamiltonian:

H
RPSH(t) =

N

∑
α=1

[

1
2

P
T
α M

−1
Pα

+
1
2

ω2
N(Rα −Rα+1)

T
M(Rα −Rα+1)

+
F

∑
i

δi,s(t)Ei(Rα)

]

. (7)

This Hamiltonian matches equation 4, with the addition of N

replicas, where each replica α is joined to the adjacent α + 1
with a harmonic spring. Since this is a ring polymer, the in-
dices are cyclic and the final replica is connected to the first.
The spring frequency is directly proportional to the tempera-
ture as ωN = N/h̄β where β = (kBT )−1. Other than the nu-
clear dynamics, RPSH proceeds exactly as FSSH in the ap-
proximation of equation 3, with the exception that the initial
distribution is taken as the thermal ring polymer distribution
ρRP(R,P).

C
RPSH
nm (t) =

1

(2π h̄)NK

∫

dRdP

×Tre

[

ρRP(R,P)Pn(R̄, P̄,0)Pm(R̄, P̄, t)
]

(8)

As with all of the methods, this integral is evaluated by sim-
ulating an ensemble of trajectories and averaging the popula-
tions. The populations Pn(R̄, P̄) are obtained as for FSSH,
except that the ring polymer centroids replace the classical
nuclei.

3. Ehrenfest molecular dynamics

As an alternative to surface hopping dynamics, a mean-field
approach can be taken such that the force is averaged over all
states, weighted by the electronic populations.7–9 The Ehren-
fest Hamiltonian can be written as

H
E(t) =

1
2

P
T

M
−1

P+
F

∑
i

∣

∣ci(t)
∣

∣

2
Ei(R). (9)

Note that here, in contrast to FSSH and RPSH, the time-
dependence of the classical Hamiltonian comes directly from
the electronic coefficients ci(t), rather than from an auxiliary
state variable. As with the surface hopping methods however,
the electronic Schrödinger equation must be integrated along-
side the Hamiltonian dynamics with Eq. 5. Since Ehrenfest
is another mixed quantum-classical method, it approximates
Eq. 3 exactly as FSSH and we can use Eq. 6. The evaluation
of the populations Pn(R,P) is simplified here and comes di-
rectly from the electronic coefficients ci(t) after conversion to
the diabatic representation.
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4. Ehrenfest ring polymer molecular dynamics

As with FSSH, the same discussion surrounding the choice
of initial nuclear distribution applies and the drawbacks of
the Wigner distribution are still present. Similarly, we can
introduce an ad hoc ring polymer formalism here to tackle
the same problem.77 We can directly follow the RPSH treat-
ment for the electronic degrees of freedom (propagating the
electronic equation of motion for the centroid), but obtain the
nuclear forces from the Ehrenfest approach as described by
the Hamiltonian:

H
ERP(t) =

N

∑
α=1

[

1
2

P
T
α M

−1
Pα

+
1
2

ω2
N(Rα −Rα+1)

T
M(Rα −Rα+1)

+
F

∑
i

∣

∣ci(t)
∣

∣

2
Ei(Rα)

]

. (10)

The dynamics of this Hamiltonian can be seen as a straight-
forward replacement of the classical nuclei of Ehrenfest dy-
namics with the classical ring polymer.

5. Extended classical mapping model (eCMM)

The classical mapping methods introduced in the follow-
ing sections take a different approach to the mixed quantum-
classical methods discussed previously. These methods seek
to treat the nuclear and electronic degrees of freedom on
equal footing by mapping the discrete electronic states onto
continuous degrees of freedom, then taking the semiclassi-
cal limit. Many of the existing approaches are based upon
the work of Meyer and Miller23 and later Stock and Thoss24

where the electronic degrees of freedom become the Meyer-
Miller-Stock-Thoss mapping variables. More recently, a uni-
fied framework has been introduced26 from which many ex-
isting mapping methods can be derived, including the Meyer-
Miller Hamiltonian.

From the unified framework, the extended classical map-
ping model30,78,123 uses the Meyer-Miller Hamiltonian:

H
eCMM =

1
2

P
T

M
−1

P

+
F

∑
n,m=1

[

1
2
(xnxm + pn pm)− γδnm

]

Vnm(R) (11)

Here, xn and pn are the electronic mapping variables for state
n and γ is a parameter that can take any value greater than
−1/F.

The eCMM population correlation function is

C
eCMM
nm (t) =

1

(2π h̄)N

∫

dRdP

∫

S(x,p)
F dxdp

×ρW(R,P)

[

1
2
(x2

n(0)+ p
2
n(0))− γ

]

×
[

1+F

2(1+Fγ)2 (x
2
m(t)+ p

2
m(t))−

1− γ

1+Fγ

]

(12)

where
∫

S(x,p) denotes integration over the constraint space

S(x,p) =
F

∑
n=1

[

1
2
(x2

n + p
2
n)

]

= 1+Fγ. (13)

To evaluate this integral, the nuclear degrees of freedom are
sampled from the Wigner distribution ρW(R,P) and the elec-
tronic degrees of freedom are sampled such that the constraint
in Eq. 13 is satisfied. This is equivalent to sampling on the sur-
face of a 2F dimensional hypersphere with radius

√
2+ 2Fγ .

Trajectories are then obtained using Eq. 11 to calculate the
correlation at time t. Although not presented in this arti-
cle, the similar spin mapping methods introduced by Rune-
son and Richardson 79,80 have been compared to the eCMM
method123 and are equivalent for certain choices of γ .

6. Nonadiabatic ring polymer molecular dynamics (NRPMD)

As with FSSH, an RPMD extension to classical mapping
dynamics has been proposed, referred to as nonadiabatic ring
polymer molecular dynamics (NRPMD).35–37 NRPMD uses
the Meyer-Miller representation for the electronic degrees of
freedom and the ring polymer path-integral discretisation for
the nuclear degrees of freedom. However, unlike the surface
hopping alternative, NRPMD has rigorous mathematical jus-
tification through its links to the recently derived nonadiabatic
Matsubara dynamics.38 This formal theoretical footing helps
to justify its implementation and removes some of the ambi-
guities encountered in methods such as RPSH.

The NRPMD Hamiltonian is given by

H
NRP(t) = ∑

α





1
2

P
T
α M

−1
Pα

+
1
2

ωN(Rα −Rα+1)
T

M(Rα −Rα+1)

+
F

∑
n,m=1

[

1
2
(xn,α xm,α + pn,α pm,α)− γδnm

]

Vnm(Rα)



 (14)

which bears much resemblance to the classical Meyer-Miller
Hamiltonian in Equation 11. Usually this Hamiltonian is pre-
sented such that γ = 1/2, though it has been provided here in
a more general form to emphasise the similarity to the Meyer-
Miller Hamiltonian.
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The NRPMD population time-correlation function is

C
NRP
nm (t) =

∫

dR

∫

dP

∫

dx

∫

dp

×ρRP(R,P)Pn(x,p,0)Pm(x,p, t) (15)

with the population estimator

Pn(x,p, t) =
1
N

N

∑
α=1

[

1
2
(x2

n,α(t)+ p
2
n,α(t))− γ

]

. (16)

As with the other ring polymer methods, the initial nuclear
configuration is sampled from the thermal ring polymer dis-
tribution ρRP(R,P). The electronic variables are sampled ac-
cording to the procedure detailed in ref. 37, which differs from
the approach used above for eCMM. This methodology for
sampling the electronic variables and evaluating the popula-
tion follows the work of Chowdhury and Huo,37 though more
recently an alternative form has been presented38 that more
closely matches previous work with Meyer-Miller mapping
dynamics.32,34 When using only a single bead for NRPMD,
the method becomes equivalent to the LSCI of Gao et al.

32

with focused initial conditions.79

7. Ring polymer extended classical mapping model

Before we apply all of these methods to a model system
in the coming sections, it is interesting to consider how one
might replace the nuclear dynamics of eCMM with ring poly-
mer dynamics. Although not rigorously justified, the flexible
structure of NQCDynamics.jl allows us to explore heuristic
methods such as this and evaluate their effectiveness via nu-
merical tests.

If we assume the system is described by the NRPMD
Hamiltonian in Eq. 14, then we must adapt Eqs. 12 and 13
in line with the extended ring polymer phase space. Since
we have N copies of each mapping variable, we can simply
include the extra variables in the constraint summation such
that the total population remains conserved.

S(x,p) =
N

∑
α=1

F

∑
n=1

[

1
2
(x2

n,α + p
2
n,α)

]

= 1+NFγ. (17)

Then, in the spirit of the NRPMD population estimator
(Eq. 16), we can rewrite the correlation function with popu-
lations accumulated over all the beads.

C
RPeCMM
nm (t) =

1

(2π h̄)NK

∫

dRdP

∫

S(x,p)
F dxdp

×ρRP(R,P)
N

∑
α=1

[

1
2
(x2

n,α(0)+ p
2
n,α(0))− γ

]

×
N

∑
α=1

[

1+NF

2(1+NFγ)2 (x
2
m,α (t)+ p

2
m,α(t))−

1− γ

1+NFγ

]

(18)

B. Spin-boson model

To compare each of the methods introduced in the previ-
ous section, we will use the spin-boson model. This model is
comprised of a two-state system (F = 2) coupled to a bath of
harmonic oscillators where the couplings and bath frequencies
are characterised by a given spectral density J(ω). The model
describes a dissipative quantum system and has been widely
used as a benchmark for approximate nonadiabatic methods
due to the feasibility of computing numerically exact quantum
results.30,32,124–129 The spin-boson Hamiltonian can be written
in the form of Eq. 2 by setting

V (R̂) =

(

ε + c
T

R̂ ∆

∆ −ε − c
T

R̂

)

+
1
2

R̂
T

Ω
2
R̂ (19)

and taking the mass matrix M to be the identity matrix. In
the potential operator V , ε is the energy bias between the two
states and ∆ is the coupling between them. The couplings c

to the position operators and the diagonal matrix of oscillator
frequencies Ω = diag(ω1, . . . ,ωNb

) are obtained by discretisa-
tion of the spectral density.

In this work, we employ the Ohmic spectral density:

J(ω) =
π

2
ηωe

−ω/ωc , (20)

which can be discretised to give30

ω j =−ωc ln[1− j/(1+Nb)], (21)

c j =

√

ηωc

Nb + 1
ω j, (22)

with j = 1, . . . ,Nb. For all simulations we set Nb = 100.
Different regimes of the model can be explored by mod-

ifying the relationship between the parameters. The model
is symmetric when ε = 0 and asymmetric otherwise. The
system-bath coupling strength is determined by the reorgan-
isation energy ζ = 2ηωc. The temperature regime is charac-
terised by the relationship between β and ∆: the high temper-
ature regime is encountered when β ∆< 1 and the low temper-
ature regime when β ∆> 1. The balance between the adiabatic
and nonadiabatic regimes is determined by ωc and ∆. In the
case of ωc < ∆ the model represents the adiabatic regime, for
ωc > ∆ it represents the nonadiabatic regime. Throughout,
∆ = 1 and the parameters β and ωc alone will determine the
regime of the model. When both β and ωc are large, this is the
regime where both nuclear quantum effects and nonadiabatic
effects become significant.

For this model, the initial nuclear density is given by the
bath at thermal equilibrium:

ρ̂(R,P) = e
−β Ĥb(R,P)/Trn[e

−β Ĥb(R,P)], (23)

with the bath Hamiltonian

Ĥb(R,P) =
1
2
(PT

P+R
T Ω2

R). (24)
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It is possible to sample the corresponding Wigner and ring
polymer distributions analytically. The Wigner distribution is
a normal distribution of the form:

ρW(R,P) =
Nb

∏
j=1

α j

π
exp

[

−
2α j

ω j

(P2
j +ω2

j R
2
j)

]

(25)

with α j = tanh
(

1
2 β h̄ω j

)

.79 The ring polymer distribution can

be sampled in the ring polymer normal mode coordinates with
the expression

ρRP(R̃, P̃) =
Nb

∏
j=1

N

∏
α=1

exp
[

− β

2N
(P̃2

j,α +ω2
j,α R̃

2
j,α)

]

(26)

where ω2
j,α = ω2

j + ω2
α and ωα is the frequency of the α-

th normal mode. This can be converted back to the primi-
tive coordinates using the standard ring polymer normal mode
matrix.67

C. Simulation details

The results in the next section were obtained by perform-
ing 106 trajectories for each of the methods, sufficient for nu-
merical convergence for all methods to the relevant accuracy.
For NRPMD, the parameter γ was set equal to 1

2 as is con-

sistent with previous work35,37 and for eCMM it is set to 0
as done previously.30 A recent investigation into the value of
γ suggests the effect is minimal for reasonable values.78 For
the ring polymer simulations, 50 beads were used to obtain
converged results. However, for the ring polymer Ehrenfest
and RPSH, using only a single bead was capable of repro-
ducing the same population dynamics. We believe that this
behaviour is specific to the fact that we are using centroid ap-
proximations and that the nuclear degrees of freedom are har-
monic. The Wigner methods were integrated using the Vern7

solver,74,130 whilst the ring polymer methods used variants of
MInt28 and Tsit5

131 coupled with normal mode propagation
for the ring polymer.67–69 The fixed timestep methods used a
timestep of 5× 10−3 whereas the adaptive Vern7 used relative
and absolute tolerances of 1× 10−10.

D. Results and discussion

We have applied the methods described above to the five
spin boson models A, B, C, D and E with parameters in Ta-
ble I.32 The first four models (A-D) have been previously in-
vestigated in the benchmark study of Gao et al.

32 and the final
model (E) with elevated system-bath coupling appears in the
work of Wang et al.

125

For each method, we present two variants characterised by
the representation used to model the nuclear degrees of free-
dom, either the Wigner or ring polymer representation. We
evaluate C11(t)−C12(t) which is the time dependent popula-
tion difference between the two spin states. The numerically

TABLE I. Parameters for the five spin boson models. All quantities
are given in atomic units.

Model Description ε η ωc β
A Symmetric, high temperature 0 0.09 2.5 0.10
B Symmetric, low temperature 0 0.09 2.5 5.00
C Asymmetric, high temperature 1 0.10 1.0 0.25
D Asymmetric, low temperature 1 0.10 2.0 5.00
E Symmetric, high temperature 0 0.50 10.0 0.25

exact results for models A-D were calculated using the dis-
sipation equation of motion method and are taken from the
benchmark study of Gao et al.

32 Similarly, the exact result for
model E is taken from Ref. 125 and was calculated using the
multiconfiguration time-dependent Hartree approach.

For the symmetric, high temperature model A (Fig. 5, left
column), all methods are capable of reproducing the exact
population dynamics. In fact, due to the high temperature na-
ture of the model, the ring polymer dynamics requires only a
single bead to reach convergence for all methods. Since the
Wigner distribution converges to the classical Boltzmann dis-
tribution at high temperature, it is expected that the results be
identical to the ring polymer dynamics.

For the asymmetric, high temperature model C (Fig. 5, sec-
ond column), only eCMM is capable of capturing the exact
result, with both FSSH and RPSH coming close. Both Ehren-
fest variants perform worse, failing to capture the long time
population. For this model, NRPMD returns the same re-
sult as (RP)Ehrenfest. Its single bead Wigner counterpart,
LSCI, slightly overestimates the long-time population differ-
ence. For RPSH and ring polymer Ehrenfest, a single bead
was sufficient to converge the dynamics, as expected for a high
temperature model, where the methods become equivalent to
their classical counterparts. However, the two ring polymer
mapping methods (NRPMD, RPeCMM) differ significantly
from their classical variants, this is likely due to the addition
of extra electronic variables. The additional electronic vari-
ables mean that even when the ring polymer shrinks to a clas-
sical particle, the method is not equivalent to the single bead
version.

With the low temperature models (Fig. 6), the difference
between the ring polymer and Wigner methods is more pro-
nounced than in the high temperature case (Fig. 5). Using
the symmetric model B (Fig. 6, first column), RPSH and ring
polymer Ehrenfest perform worse than their Wigner counter-
parts which are able to reproduce the exact dynamics. The RP
variants exhibit dynamics with slower decoherence time. Sim-
ilarly, eCMM also reproduces the exact dynamics, but its ring
polymer version overestimates the amplitude of the Rabi os-
cillations. However, the decoherence time appears faster than
in RPSH comparable to RPEhrenfest. In contrast, LSCI un-
derestimates the amplitude while its ring polymer extension
NRPMD matches the exact result. Across all methods, the
oscillation amplitude is greater for the ring polymer variants.

Model D (Fig. 6, second column), the low temperature
asymmetric model, is the most challenging for our approxi-
mate methods. As seen across all models, the exact dynamics
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FIG. 5. Population dynamics for the high temperature models. The
first column contains the results for model A, the second column for
model C. The first row contains the results for the ring polymer meth-
ods (NRPMD, RPSH, RPEhrenfest, RPeCMM), and the second row
contains the Wigner alternatives (LSCI, FSSH, Ehrenfest, eCMM).
Refer to Table I for the model parameters.

is captured comfortably at short times, but here, the long-time
limit is out of reach for all methods except eCMM, which cap-
tures close to exact dynamics across all times. For the two low
temperature models, all ring polymer method variants overes-
timate coherence during the dynamics.

The first four models have relatively weak system-bath cou-
pling (η ≈ 0.1), whereas model E (Fig. 7) has a larger value of
η = 0.5. For this model, we see that none of the methods are
capable of recovering the exact dynamics, although eCMM
is the closest. Compared to the ring polymer methods, the
short-time dynamics of the Wigner methods is more accurate,
though a similar level of accuracy is observed at later time.
The Wigner methods all underestimate the rate of population
transfer, but the ring polymer methods (except for NRPMD)
instead overestimate the decay.

Considering that the ring polymer modifications necessar-
ily increase the computational expense of each method, sig-
nificant improvements in the dynamics are required to justify
their use. However, reviewing the results for all of the models
suggests that the ring polymer dynamics cannot be reliably
expected to immediately improve the population dynamics.
For the low temperature models, improvement is seen only
for NRPMD in model B. In all other cases, the ring polymer
modification has no effect, or leads to small changes that do
not directly improve the result.

Using the Wigner distribution reliably gives strong results
across all five models, especially in the case of eCMM. Unfor-
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FIG. 6. Population dynamics for the low temperature models. The
first column contains the results for model B, the second column for
model D. Data is presented as in Fig. 5.
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FIG. 7. Population dynamics for model E. Data is presented as in
Fig. 5.
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tunately, sampling the Wigner distribution for realistic atom-
istic systems is more challenging than the corresponding ring
polymer distribution.120,121 The high temperature results here
(Fig. 5) suggest that the ring polymer methods are adequate
substitutes in this regime, often requiring very few beads to
obtain similar results. However, at low temperature, the ring
polymer methods appear less capable of achieving the accu-
racy afforded by the Wigner methods.

In the benchmark study of Gao et al.
32 these models (A-

D) were investigated using a collection of classical mapping
methods using the Wigner distribution. The only methods
we have used that also appear in their work are Ehrenfest
and LSCI, where the results are identical. The most effective
methods in their study are the LSC methods with modified
population estimators that align very closely with the eCMM
results presented here.

The NQCDynamics.jl code allows us to study all these
method variants on equal footing and to systematically anal-
yse the impact of different approximations and parameter
choices. This will facilitate future method improvements to
achieve accurate long-term dynamics in realistic atomistic
systems.

V. EXAMPLE II: REACTIVE SCATTERING OF H2 ON
Ag(111)

In addition to the model Hamiltonian quantum dynamics
of the first example, NQCDynamics.jl also allows us to in-
vestigate full dimensional atomistic systems. This example
focuses on reproducing and augmenting the work of Zhang
et al.

132 where they investigated the effect of hot-electrons
during the reactive scattering of H2 on a Ag(111) surface.
In this system, nonadiabatic effects arise from the interac-
tion of the molecular motion with the electronic bath of the
metal substrate. Traditional adiabatic molecular dynamics
evolving on a single potential energy surface ignores these ef-
fects, however, molecular dynamics with electronic friction
(MDEF)43 has been proposed as an alternative that attempts
to approximately include these effects by introducing addi-
tional frictional forces due to the nonadiabatic interactions be-
tween adsorbate atoms and metal electrons. In the previous
study,132 the reactive scattering was investigated using ma-
chine learning to describe both the potential energy surface
and the electronic friction.132–135 After a brief overview of the
different flavours of MDEF, using these same machine learn-
ing models132,133 we investigate the dissociative chemisorp-
tion and state-to-state scattering of H2 on Ag(111).

A. Molecular Dynamics with Electronic Friction

Molecular dynamics with electronic friction (MDEF) is a
quasi-classical method that uses a Langevin equation to ap-
proximate weak nonadiabatic effects encountered at metal
surfaces.43,136 Within this theoretical framework, the coupling
between the molecular degrees of freedom and the electron-

hole pair excitations within the metal substrate is described
by means of frictional and stochastic forces.43,137 In doing so,
the dynamical effects that arise due to the complex electronic
structure of the metal are condensed into a single electronic
friction coefficient or friction tensor in the case of multidi-
mensional dynamics.43,136,137

During MDEF, the total nuclear force is given by:

MR̈ =−∇V (R)−Λ(R)Ṙ+R(t). (27)

The first term on the right hand side of Eq. 27 corresponds
to the conservative force associated with the adiabatic poten-
tial energy surface. Adiabatic molecular dynamics simula-
tions are governed solely by this unique ground-state force.
The second term describes the energy losses produced by
adsorbate-substrate interaction, with magnitude proportional
to the friction tensor Λ and the particle velocity Ṙ. The final
term is a temperature and friction-dependent stochastic ran-
dom force that satisfies the fluctuation-dissipation relation.

Light-driven molecular dynamics processes can also be
simulated using MDEF.138–140 In this context, an external
laser source is incorporated within the nuclear dynamics by
modifying the temperature in the random force term as a
function of time.138,140 The temperature is chosen to model
the electronic temperature which is often described by a sim-
ple 1D two-temperature model.141 Further improvements of
the dynamics can be also found by including the coupling
with bulk phonons through a generalised Langevin oscilla-
tor model, but the relevance of the phonon dissipation ef-
fects on the final nuclear dynamics depends on the studied
system.138,140,142 In the example case of H2 scattering dynam-
ics on a Ag(111) surface, we will explicitly ignore phonon
dissipation effects.

MDEF simulations are usually performed using one of two
methods for calculating the electronic friction tensor. The fol-
lowing sections describe the two choices and discuss the de-
tails of their implementation.

1. Local density friction approximation (LDFA)

The simplest version of MDEF uses a local density friction

approximation (LDFA) where a single friction coefficient is
associated with each adsorbate atom based on the local elec-
tron density of the bare metal substrate.136,138 During the dy-
namics, the local density is computed as a function of each ad-
sorbate coordinate Ri, which is then converted to a friction co-
efficient via a fitting of pre-computed values. Analytic expres-
sions are commonly used to fit the pre-computed values138,143

but our implementation uses a cubic spline to fit the LDFA
values reported by Gerrits and Meyer.144

With this, the friction tensor becomes diagonal:

ΛLDFA(R) = diag(η(R1), . . . ,η(RN)) (28)

In this way, the fitting function η(Ri) allows us to connect
any point visited by the adsorbate atoms with a single elec-
tronic friction coefficient used to drive the nuclear dynamics.
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LDFA friction coefficients have previously been widely used
to describe surface processes such as atomic and molecular
diffusion and laser-driven dynamics.136,138,145

2. Orbital-dependent electronic friction (ODF)

A more general formulation of the electronic friction tensor
stems from time-dependent perturbation theory based on the
Kohn-Sham Density Functional Theory wave functions. This
has previously been coined orbital-dependent electronic fric-
tion or ODF.137,146–149 ODF provides a coordinate-dependent
tensorial representation of electronic friction that has been
found to be more suitable to describe reactive dynamics of
molecules at metal surfaces.45,134,147 The ODF representation
of the electronic friction tensor (EFT) captures the intrinsic
mode anisotropy and internal coupling between different de-
grees of freedom in the molecule.132,137,146 An efficient ab ini-

tio all electron electronic structure implementation of MDEF-
ODF based on Kohn-Sham density functional theory was pre-
viously reported by Maurer et al..132,137,150

For ODF, the friction tensor Λ is dense and positive semi-
definite. Each element Λi j corresponds to a relaxation rate due
to electron-nuclear coupling along the Cartesian coordinate i

due to motion along the j direction. In general, a more conve-
nient representation in normal mode coordinates is often used
to compute the associated vibrational lifetimes or relaxation
rate components.132,137,146

3. Machine learning neural network models

Performing MDEF simulations can be challenging due
to the prohibitive computational cost associated with ab

initio electronic structure calculations. This difficulty
can be circumvented by employing machine learning
techniques.132,135,140,151 Zhang et al. have recently reported
an efficient machine learning model based on a permutation
invariant polynomial neural network, which can accurately
reproduce both potential energy surfaces and electronic fric-
tion tensors at reduced computational cost.132,151 A new fam-
ily of machine learning models are currently being developed
to produce accurate potential energy surfaces and other physi-
cal properties.133,140,142,151 In the present work, we have used
the machine learning model of Jiang and Guo 133 and the pre-
viously reported six-dimensional energy landscape and EFT
model to compute the reactive scattering of H2 on a frozen
Ag(111) surface.132,135 The efficiency of the models allows us
to perform up to 75,000 trajectories at LDFA and ODF level
for each initial condition.

B. Simulation details

As in the original paper,132 the initial conditions are sam-
pled from a nonequilibrium semiclassically quantised distri-

bution in a specific ro-vibrational quantum state. This dis-
tribution was generated using EBK quantisation implemented
in the QuantisedDiatomic submodule. The initial distribu-
tion used for all simulations contained 7.5× 104 nuclear po-
sitions and velocities consistent with the ro-vibrational state
(ν = 2, J = 0). The Ag metallic slab is modelled with a prim-
itive p(2×2) unit cell with 4 atomic layers.

All the simulations were run with a 420 fs time limit with
a time step of 0.1 fs, with the molecule initially located 8 Å
away from the metal surface. The lateral position and orien-
tation of the H2 molecule were uniformly distributed within
the simulation cell. The neural network models used for the
potential energy surface and the EFT make a frozen surface
assumption such that the metal surface is fixed with its outer-
most layer at z = 0Å. During the simulation, if the molecule
scatters to vertical distance larger than 8.1 Å from the metal
surface, the outcome is considered a scattering event. If the
H2 bond length exceeds 2.5 Å, the outcome is dissociative
chemisorption. When either of these conditions are satisfied,
the simulation is terminated. Two specific state-to-state tran-
sitions were analysed starting from the initial ro-vibrational
state (ν = 2, J = 0) with final states (ν = 1, J = 0) and
(ν = 0, J = 0). State-to-state transition probabilities were ob-
tained via the binning method, where the final image from the
scattering trajectories was re-quantised following the initial
EBK procedure.45,132

C. Results and discussion

The scattering probability results obtained with MD, LDFA
and ODF as a function of incident translational energy E trans
(Fig. 8, top panel) almost perfectly reproduce the previously
reported values132 that were calculated with a modified ver-
sion of the VENUS code.152,153 The new calculations consider
a wider range of translational energies up to 1.4 eV.

In addition to the dissociation probability, the two lower
panels of Fig. 8 show the vibrational de-excitation probabili-
ties for the reactive scattering of H2 on Ag(111). The first tran-
sition shown in the middle panel experiences a peak at 0.4 eV
for all methods, these results reproduce those in the original
paper.132 The second transition considered is an extension of
the original data, concerning the transition to the rovibrational
ground state. In this case, the highest de-excitation probability
is detected when the translational energy is 0.6 eV for all the
methods considered. When comparing the results across each
of the methods, qualitatively similar trends are seen. How-
ever, the addition of friction appears to slightly increase the
de-excitation probability and reduce the dissociation proba-
bility. This result is seen for both LDFA and ODF. For this
system, while the inclusion of friction is important to capture
the dissipative dynamics, the differences between ODF and
LDFA in predicting inelastic vibrational state-to-state scatter-
ing are more subtle.
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FIG. 8. Dissociative chemisorption (top panel) and vibrational de-
excitation probabilities (middle and botton panels) for the scattering
of H2 on Ag(111) computed with MD, LDFA, and ODF. The middle
and bottom panels show the state-to-state vibrational de-excitation
probabilities computed for (ν = 2, J = 0)→ (ν = 1, J = 0) and (ν =
2, J = 0)→ (ν = 0, J = 0) transitions, respectively.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have introduced the NQCDynamics.jl

package for performing and developing semiclassical and
mixed-quantum classical methods for nonadiabatic dynamics.
It is written in Julia, an emerging language that promises high
performance alongside an approachable development experi-
ence. The package provides a set of established and develop-
ing methods, alongside a framework for further additions. The
code interfaces to a comprehensive and extendable differential
equations solver, DifferentialEquations.jl, and thereby
externalises the general integration routines. The package, via
NQCModels.jl, interfaces to a wide variety of analytical mod-
els, ab initio calculators (through ASE) and high-dimensional
machine learning models of condensed phase systems.

To demonstrate the production and prototyping capabilities
of the package, we have provided two example studies: the
first investigates the population dynamics of four spin-boson

models with a variety of mixed quantum-classical and semi-
classical methods in different temperature regimes and for dif-
ferent state splittings. Using the code framework, we imple-
ment several ad hoc extensions of existing methods, for ex-
ample a ring polymer Ehrenfest method and a ring-polymer
extension to the eCMM method, and we analyse their per-
formance against other methods. In the second example, we
study nonadiabatic reactive state-to-state scattering of molec-
ular hydrogen at a Ag(111) surface as an example of realis-
tic atomistic dynamics based on machine learning representa-
tions.

The package will be actively maintained and we will con-
tinue to expand its library of methods, models and functional-
ity. We ourselves plan to significantly extend its capabilities
to perform approximate nonadiabatic quantum dynamics in
condensed phase and we invite others to contribute methods
and use cases. The code is open source and presents exten-
sive online documentation. Moving forward, we hope that
the package will gain recognition within the community and
become a useful resource for the development of new nonadi-
abatic dynamics methods. In particular, we want to encourage
its use to produce reference implementations of new dynamics
methods, which can be released alongside the relevant publi-
cations. This will improve code availability and method re-
producibility and is an important first step to establish general
benchmarks for approximate quantum dynamics methods in
condensed phase.
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