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Brief Communication

NR2A- and NR2B-containing NMDA receptors
in the prelimbic medial prefrontal cortex differentially
mediate trace, delay, and contextual fear conditioning

Marieke R. Gilmartin,' Janine L. Kwapis, and Fred ). Helmstetter
Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA

Activation of N-methyl-D-aspartate receptors (NMDAR) in the prelimbic medial prefrontal cortex (PL mPFC)is necessary for
the acquisition of both trace and contextual fear memories, but it is not known how specific NR2 subunits support each as-
sociation. The NR2B subunit confers unique properties to the NMDAR and may differentially regulate these two fear mem-
ories. Here we show that NR2A-containing NMDARs mediate trace, delay, and contextual fear memories, but NR2B-
containing NMDARs are required only for trace conditioning, consistent with a role for PL mPFC in working memory.

The medial prefrontal cortex (mPFC) is important for the forma-
tion and regulation of fear memories. For example, the prelimbic
(PL) area of the mPFC is necessary for the acquisition of trace fear
conditioning, in which a neutral conditional stimulus (CS) and
an aversive unconditional stimulus (UCS) are separated by a stim-
ulus-free “trace” interval of several seconds. Pharmacological inac-
tivation of PL with the GABA, agonist muscimol or blockade of the
MAPK signaling pathway with U0126 prior to training impairs the
formation of this memory (Runyan et al. 2004; Gilmartin and
Helmstetter 2010; Guimaraisetal. 2011). In contrast, PL isnot nec-
essary for standard delay conditioning, in which the CS and UCS
are not separated in time (Morgan and LeDoux 1995; Quirk et al.
2000; Corcoran and Quirk 2007; Gilmartin and Helmstetter
2010). These findings lend support to the idea that PL mPFC may
serve to bridge the trace interval during trace fear conditioning,
providing a representation of the CS for association with the UCS
(Baeg et al. 2001; Knight et al. 2004; Gilmartin and McEchron
2005b). The contribution of PL is not limited, however, to trace
conditioning, and is also necessary for contextual fear condition-
ing acquired simultaneously with either trace or delay condition-
ing (Gilmartin and Helmstetter 2010). Little is known about the
molecular mechanisms supporting fear memory formation in
mPFC and whether different processes mediate trace and contextu-
al fearmemory. We have previously shown that NMDA receptorac-
tivation is necessary for both trace and background contextual fear
conditioning (Gilmartin and Helmstetter 2010). NMDA receptors
are heteromeric complexes of typically two NR1 and two NR2 sub-
units, and the specific NR2 subunit confers unique properties to
the NMDA receptor (Cull-Candy etal. 2001). The NR1/NR2B com-
plexes have a slow deactivation on the order of seconds, which is
amenable to temporal associations or persistent firing characteris-
tics ofrecurrentcircuits (Wang 1999; Wangetal. 2008). In contrast,
NR1/NR2A complexes have arapid deactivation, and represent the
predominant NMDAR complex at most mature synapses in the
forebrain (Cull-Candy et al. 2001). NR2A-containing receptors
may have a more general role in synaptic activity when compared
with NR2B-containing receptors (Walker and Davis 2008). Thus,
we predict that NR2A-containing receptors in PL are necessary
for trace and contextual associations and NR2B-containing recep-
tors are necessary only for trace conditioning. Support for this
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hypothesis comes from arecent study by Radulovicand colleagues
showing that NR2B and NR2A subunits differentially regulate trace
and contextual fear conditioning in the dorsal hippocampus (Gao
et al. 2010). NRZA-containing NMDARs are necessary for both
trace and contextual memory, but NR2B-containing receptor ac-
tivation specifically regulates trace conditioning. However, the
mechanisms supporting memory formation in mPFC may be dis-
tinct from those observed in the hippocampus. Zhuo and col-
leagues found that hippocampal NR2B-containing NMDARs are
notnecessary for contextual fear conditioning, but in anterior cin-
gulate cortex (ACC), blockade of NR2B impaired contextual fear
memory (Zhao et al. 2005). Furthermore, in the amygdala, injec-
tion of an NR2B antagonist impaired the formation of both delay
and contextual fear conditioning (Rodrigues et al. 2001; Walker
and Davis 2008). These findings suggest that the contribution of
NMDAR subunits to CS and contextual fear memory is region-
specific. To better understand memory-related plasticity in pre-
frontal cortex it is important to determine the roles of PL NR2
subunits in trace and contextual fear conditioning. Here we exam-
ined the contribution of NR2B- and NRZA-containing NMDARs to
the formation of trace and contextual memory in PL using pre-
training injections of the specific NR2B antagonist Ro25-6981 or
the NR2A-preferring antagonist NVP-AAMO77.

Fifty-eight adult male Long-Evans rats (325-400 g, Harlan,
IN) were housed individually and received food and water ad libi-
tum. All procedures were approved by the Institutional Animal
Care and Use Committee and were in accordance with the NIH
Guidelines for the Care and Use of Experimental Animals. Under
isoflurane anesthesia in 100% oxygen (induction, 4%; mainte-
nance, 1%-2%), guide cannulae (26 ga) were stereotaxically low-
ered bilaterally in PL at a 15° angle to vertical: AP +3.2 mm, ML
+1.6 mm, DV —3.2 mm from the skull. Cannulae were secured
to the skull with dental acrylic, and 33-ga dummy cannulae were
screwed into the guide cannulae to prevent clogging. Following
recovery from surgery (12-15 d), rats received 3 d of acclimation
to transport and gentle restraint for microinjections as previously
described (Gilmartin and Helmstetter 2010). On the third acclima-
tion day, rats received mock injections, in which the dummy can-
nulae were removed and the injection cannulae were briefly
lowered to the PL, but no injections were delivered. On the day of
conditioning, rats received microinjections (0.3 pL/hemisphere
at a rate of 0.5 pL/min) of the specific antagonist of NR2B-con-
taining NMDARs, Ro25-6981 (2 pg/pL, R7150 Sigma-Aldrich),
the NR2A-preferring antagonist, NVP-AAMO77 (1 pg/pL, P1999
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Figure 1. Placement of injector tips bilaterally in PL mPFC. Diagrams
were adapted from Paxinos and Watson 2007 (with permission from
Elsevier © 2007). The number of rats in each group (trace, delay) is
shown next to each drug.

Sigma-Aldrich), or vehicle (10% DMSO in dH20) 15 min prior to
training (see Fig. 1 for the number of subjects in each of the six
groups). These doses were chosen based on effective doses in vivo
in hippocampus, amygdala, and ACC (Zhao et al. 2005; Walker
and Davis 2008; Gao et al. 2010).

Conditioning occurred in a set of four Plexiglas and stainless-
steel conditioning chambers, each housed in a sound-attenuating
outer chamber and illuminated with a white incandescent house
lamp (see Gilmartin et al. 2012 for specific details of the condition-
ing and testing apparatus). After a 6-min baseline period, rats re-
ceived six trace conditioning trials or four delay conditioning
trials, in which a 10-sec white noise CS (72 dB) was paired with a
1-sec footshock UCS (1 mA). For trace fear conditioning, the CS
offset and UCS onset were separated by an empty 20-sec trace inter-
val and the intertrial interval (ITI) for this session was 240 + 20 sec
(total session duration, 33 min). For delay conditioning, the UCS
was delivered at the offset of the CS and the ITI was 110 + 20 sec
(total session duration, 17 min). Six-trial trace conditioning and
four-trial delay conditioning produce similar levels of conditional
fear to the CS (Kwapis et al. 2011). During training, rats learned
to associate both the auditory CS and the training context with
the occurrence of the UCS. One rat in the Trace Ro25 group failed
to respond to half of the UCS presentations during training
and was excluded from analyses. The following day, rats were test-
ed drug-free for memory of each association. Contextual fear
memory was assessed by measuring conditional freezing during
re-exposure to the original training chamber. Conditional freezing
to the CS was tested 2-3 h later in a novel testing chamber in a
separate room and differed from the training chamber in illu-
mination, texture, and odor. The CS retention test consisted of a
2-min baseline period followed by eight 30-sec CS presentations
(ITI 60 sec).

Freezing was defined as the cessation of all movement except
that needed for respiration and was used as the measure of condi-
tional fear during all training and testing sessions (Fanselow and
Bolles 1979). Freezing was scored automatically in real-time using
FreezeScan 1.0 detection software (Clever Sys, Inc.). All statistical
analyses were performed with Statistica version 9 (Statsoft, Inc.).
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Each training group was analyzed separately and differences in
freezing between each drug and vehicle controls were analyzed
using one-way ANOVAs (context retention) or mixed model
ANOVAs (acquisition, CS retention), which included the following
factors: a repeated measure of Period (for acquisition: Baseline,
Trial; for CS retention: Baseline, CS1-4) and a between factor of
Drug. The average of the first four CS presentations was analyzed
to avoid extinction-related CS freezing. Fisher LSD post-hoc tests
were used to make pairwise comparisons on significant main ef-
fects and interactions. An « level of 0.05 was required for signifi-
cance in all analyses.

At the end of the experiment, rats were deeply anesthetized
with 5% isoflurane, transcardially perfused with 0.9% saline
followed by 10% buffered formalin. After cryoprotection with
20% sucrose/formalin, brains were frozen, sectioned coronally,
mounted on glass slides, and stained with Cresyl violet. All rats
had accurate cannula placement in the PL of the mPFC (Fig. 1).

Pre-training drug infusion did not impair the acquisition of
conditional freezing responses during training. Figure 2 shows
the freezing during each pairing for all groups (90-sec period start-
ingatCSonset). Ratsinjected with the NR2B antagonist Ro25 prior
to trace conditioning showed similar acquisition to vehicle (VEH)
control rats (Fig. 2A). Analysis of freezing across trials revealed a
significant effect of Trial, Fs 126 = 27.286, P < 0.0001, but no
main effect of Drug or Drug x Trial interaction (P's > 0.05). Rats
injected with the NR2A antagonist NVP prior to trace conditioning
appeared to show reduced freezing on some trials compared with
VEH controls, but this reduction was not statistically reliable.
Analysis of freezing revealed a significant effect of Trial, Fg 06 =
13.506, P < 0.0001, but no main effect of Drug or Drug x Trial in-
teraction (P’s > 0.05). Similarly for delay conditioning, neither
drug impaired the acquisition of conditional freezing (s>
0.05) (Fig. 2B). Ratsin each drug and training condition also exhib-
ited similar post-shock freezing (60 sec) across trials (data not
shown, all P’s > 0.05), indicating similar shock reactivity in each
drug group. Because CS freezing is not independent of contextual
freezing during the training session, we examined the acquisition
of contextual freezing in the 30 sec preceding each CS (data not
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Figure 2. Acquisition of conditional fear. All rats acquired conditional
freezing during training. Graphs show the mean percent time each
group spent freezing during the training session for trace conditioning
(A) or delay conditioning (B). After the 6-min baseline period, each
point represents 90 sec starting at CS onset of each trial. Although rats in-
jected with the NR2A antagonist NVP prior to training tended to freeze
less in general compared with control rats, this did not represent a signifi-
cant reduction in freezing (P > 0.10 for both trace and delay groups).
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shown). No differences were observed across trials between rats in-
jected with the NR2B antagonist and vehicle rats in either trace or
delay groups (P’s > 0.05). Rats injected with the NR2A-preferring
NMDAR antagonist showed a Drug x Trial interaction in trace
(F(s,80 = 2.417, P < 0.043) and delay (F3,45) = 4.083, P < 0.012)
groups. Post-hoc analysis revealed that trace NVP rats froze sig-
nificantly less than controls in the 30 sec before the fourth trial
(P < 0.05). Delay NVP rats froze significantly more than controls
in the 30 sec before the second trial (P < 0.05). No differences
were observed on any other trial. This suggests that the NR2A
antagonist NVP may have a subtle effect on contextual learning
during training.

Ratswere tested for retention of conditional fear to the CS and
context the following day. The NR2A-preferring antagonist NVP
administered before training impaired both CS and contextual
fear memory at test in trace conditioned rats (Fig. 3A,B). Analysis
of freezing during baseline and the mean of the first four CSs
revealed a significant Drug x Period interaction, F; 16, = 11.282,
P = 0.0040. Post-hoc analyses showed that NVP rats froze signifi-
cantly less during the CS compared with controls (P < 0.05).
NVP rats also froze significantly less than controls during the con-
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Figure 3. Selectiverole for NR2B-containing NMDA receptors trace fear
conditioning. Graphs show the mean percent time each group spent freez-
ing during the CS retention test (4, C) and context retention test (B, D) for
trace and delay rats. Bars represent the average freezing during the 2-
min baseline and the average freezing during the first four 30-sec CS pre-
sentations. The freezing during each CS is shown in the insets. While
NR2A-containing NMDA receptors are necessary forboth tone and contex-
tual memory in trace fear conditioning, NR2B-containing NMDA receptors
areimportantfor CS, butnot for contextual fear memory. NR2A-containing
NMDA receptors may also contribute to stimulus salience processing by PL,
as blocking these receptorsimpairs delay conditioning. (*) P < 0.05 relative
to VEH.
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texttest, Fi1,16) = 6.086, P = 0.0253. In contrast to the NR2A antag-
onist, pre-training injection of the NR2B antagonist Ro25 impaired
CS but not contextual memory in trace rats. Analysis of the CS test
revealed a significant Drug x Period interaction, F(; 16 = 7.095,
P=0.0145, and post-hoc analysis showed that Ro25 rats froze
less than controls during the CS (P < 0.05). Contextual fear re-
sponses were intactin Ro25 rats (F << 1.164, P > 0.05). Theseresults
suggest a differential role in trace CS and contextual learning
by NMDARs based on their subunit composition.

Although we have previously shown that delay fear con-
ditioning is unaffected by pre-training blockade of prefrontal
NMDARs with APV (Gilmartin and Helmstetter 2010), pre-
training injection of the NRZA-preferring antagonist NVP im-
paired CS memory in delay rats (Fig. 3C). Analysis of freezing dur-
ing the CS test revealed a significant Drug x Period interaction,
Fi115 = 5.464, P=0.0337. Post-hoc analyses showed that NVP
rats froze significantly less during the CS compared with controls
(P < 0.05). Injection of the NR2B antagonist Ro25 in PL had no
effect on delay fear conditioning to the CS (P> 0.05). Vehicle
controls showed unexpectedly low levels of context freezing at
test compared with typical responses using this four-trial proce-
dure in previous reports (e.g., Kwapis et al. 2009, 2011). NVP
rats exhibited less freezing than controls, but a potential floor ef-
fect may have obscured an impairment. Ro25 rats showed in-
creased contextual freezing relative to controls, F(; 50 = 4.862,
P < 0.0393, which could reflect a role for NR2B in background
contextual associations. However, we did not observe enhanced
contextual fear by Ro25 in the trace conditioned animals, which
suggests to us that the difference in freezing between the VEH
and Ro25 delay groups is driven by the low freezing in the controls
rather than by specific inhibition of the NR2B subunit. The reason
for impaired memory after NVI’ but not after APV is not clear;
however, differential effects by subunit-selective antagonists vs.
APV are not unheard of in other systems. Long-term depression
in CA1 cultures was blocked by the NR2B antagonist ifenprodil
or Ro25, but not by NVP or APV, despite similar reductions of
NMDAR-mediated EPSCs by these inhibitors (Izumi et al. 2006).
Whether such differences in that study or in our findings relate
to subunit affinity or other factors remains to be determined.

This study provides new information about the contribution
of PL mPFC to the formation of fear memory. We have previously
shown that trace CSand contextual fear memoriesrequire NMDAR
activation in PL (Gilmartin and Helmstetter 2010). Here we show
that NMDARs containing the NR2A subunit are necessary for
both cued and contextual fear conditioning, but NR2B-containing
NMDARs are necessary for the association of the CS and UCS across
an empty trace interval. This requirement in trace fear condition-
ing may reflect a role for NR1/NR2B complexes in working mem-
ory, a hallmark of prefrontal function (Fuster 2000; Kesner and
Churchwell 2011). The NR2B subunit confers a much longer deac-
tivation window to the NMDAR (Monyer et al. 1994; Cull-Candy
and Leszkiewicz 2004), which has been shown in computational
models of prefrontal circuits to support recurrent persistent activ-
ity (Wang 1999; Compte et al. 2000). In vitro, NMDAR-EPSCs at
layer V recurrent synapses in mPFC exhibited a slower decay and
better temporal summation in response to a 20-Hz stimulation
compared with visual cortex (Wang et al. 2008). Interestingly,
mPFC retains a higher proportion of NR2B subunits in adulthood,
compared with that in other cortical regions (Wang et al. 2008).
The NR2B subunit is prevalent in early development but shortly
after birth it is largely replaced with NR2A subunits (Cull-Candy
and Leszkiewicz 2004; Wang et al. 2008). NR2B overexpression
in mouse forebrain enhanced prefrontal LTP and improved work-
ing memory performance on a number of tasks (Cui et al. 2011).
While NR2B-containing NMDARs have been shown to be impor-
tant for anumber of different learning paradigms in differentbrain
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regions, the selective role for NR2B in trace CS, but not contextual
or delay fear, is consistent with a bridging role for PL mPFCin trace
conditioning.

The pattern of results in this study is similar to that seen in
the hippocampus (Gao et al. 2010). Blockade of NR2B-containing
NMDARs in hippocampus impaired trace CS but not contextual
fear memory. Although hippocampal neurons do not exhibit per-
sistent firing during the trace interval (Gilmartin and McEchron
2005a), hippocampus is nonetheless important for working mem-
ory (Lee and Kesner 2002) and NR2B involvement may contribute
to temporal processing in both hippocampus and PL. In contrast to
hippocampus and PL, NR2B receptors in ACC do mediate contex-
tual fear conditioning and are necessary for cingulate LTP (Zhao
etal. 2005). NR2B activation in ACC during contextual fear condi-
tioning may represent a structure-specific role for these receptors
in pain processing during fear conditioning (Tang et al. 2005;
Wuand Zhuo 2009). Examination of the intracellular mechanisms
downstream of NR2B and NR2A activation in each structure will
thus provide insight into structure-specific mechanisms of memo-
ry formation. Along these lines, Gao et al. (2010) found that
NR2B-containing receptors in the hippocampus are primarily
extrasynaptic, whereas NR2ZA-containing receptors are primarily
synaptic, and each subunit uniquely regulated MAPK signaling
during trace conditioning. Extrasynaptic localization of NR2B-
containing receptors is typical of many forebrain structures after
NR2B-containing NMDARs at the synapse are replaced by NR2A-
containing NMDARs in early development. As mentioned earlier,
NR2B-containing NMDARs remain proportionately high in mPFC
relative to other cortical regions (Wang et al. 2008), but the distri-
bution of these receptors at the synapse is not known. This leaves
open the possibility that these receptors mediate trace condition-
ing by differentdownstream mechanismsin hippocampus and PL.
Further work will be needed to address this question. It is impor-
tant to note that the relative affinity of NVP-AAMO77 for the
NR2A subunit over the NR2B subunit is not as selective as original-
ly reported (Auberson et al. 2002; Frizelle et al. 2006), and we can-
not rule out that some of the effects of NVP-AAMO77 on trace CS
memory are NR2ZB-mediated. The recent identification of a new
noncompetitive NR2A-selective antagonist TCN201 may be useful
in addressing this issue as it continues to be further characterized
(Edman et al. 2012). Nonetheless, NVP-AAMOO07 impaired contex-
tual fear conditioning while the potent NR2B inhibitor did not,
suggesting that contextual fear conditioning is primarily mediated
by NR2A-containing receptors.

An unexpected result of this study is the impairment in delay
conditional fear by injection of the NR2A-preferring antagonist.
Lesions or temporary inactivation of PL do not impair delay con-
ditioning, which can be supported by converging CS and UCS in-
puts in lateral amygdala (Romanski et al. 1993; Morgan and
LeDoux 1995; Corcoran and Quirk 2007). Nonetheless, c-fos ex-
pression is increased in PL after delay fear conditioning (Furlong
etal. 2010) and PL units display learning-related plasticity during
training (Garcia et al. 1999; Baeg et al. 2001; Laviolette et al. 2005).
More recently, PL has been shown to regulate learning conditional
fear to a new stimulus in a blocking paradigm (Furlongetal. 2010).
This suggests that delay CS conditional fear can be acquired in the
absence of mPFC, but that the mPFC may normally regulate some
aspect of the association during memory formation. In support,
disruption of cannabinoid or dopaminergic signaling in mPFC
impairs olfactory delay fear conditional responses and selective-
ly affects the neuronal responses of amygdala-responsive pre-
frontal units (Laviolette et al. 2005; Laviolette and Grace 2006).
Prefrontal activity regulated by the basolateral amygdala may
reflect how well the CS predicts the UCS (Garcia et al. 1999).
Amygdala input to mPFC suppresses prefrontal firing, possibly
via glutamatergic action at cortical parvalbumin-containing inter-
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neurons (Garcia etal. 1999; Gabbott et al. 2006). NR2A-containing
NMDARs may mediate these signaling pathways. These interneu-
rons in mPFC express proportionately more NR2A-containing
NMDARs than principal cells (Wang and Gao 2009). Thus the ef-
fect of the NR2A antagonist on delay conditioning may represent
a disruption in amygdala-PL communication during condi-
tioning, although this remains to be determined. Together, these
lines of evidence support a role for PL in modulating delay fear
conditioning.

In conclusion, this study shows that NR2A-containing
NMDARs are important for both auditory cued and contextual
fear memory formation, suggesting that these receptors are part
of a common mechanism in PL-mediated memory formation
and may contribute to encoding the relative predictability of
the CS and contextual stimuli during fear conditioning. NR2B-
containing NMDARs are selective to trace conditioning and may
contribute to a working-memory bridging process across the trace
interval in memory formation. The differential contribution of PL
NR2A and NR2B subunits in the formation of trace and contextual
fear memory resembles that observed in the hippocampus and
is distinct from that in anterior cingulate, where NR2B-contain-
ing receptors do participate in contextual fear conditioning.
These results suggest that NR2B-containing NMDARs participate
in memory formation in a structure-specific way and highlight
the functional distinction of mPFC subregions. Examination
of intracellular signaling downstream of NMDAR activation in
mPFC will provide further insight into fear memory formation
and regulation in prefrontal circuits.
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