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Brief Communication 

NR2A- and NR2B-containing NMDA receptors 
in the prelimbic medial prefrontal cortex differentially 
mediate trace, delay, and contextual fear conditioning 

Marieke R. Gilmartin,l janine L. Kwapis, and Fred j. Helmstetter 

Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 532 11 , USA 

Activation of N-methyl-D-aspartate receptors (NMDAR) in the prelimbic medial prefrontal cortex (PL mPFC) is necessary for 

the acquisition of both trace and contextual fear memories, but it is not known how specific NR2 subunits support each as­

sociation. The NR2Bsubunit confers unique properties to the NMDAR and may differentially regulate these two fear mem­

ories. Here we show that NR2A-containing NMDARs mediate trace, delay, and contextual fear memories, but NR2B­

containing NMDARs are required only for trace conditioning, consistent with a role for Pl mPFC in working memory. 

The medial prefrontal cortex (m PFC) is important fo r the fo rma­

tion an d regulation of fea r m em ori es. For example, the prelimbic 

(PL) area of the m PFC is necessary fo r the acq uisition of trace fea r 

con ditioning, in which a neu tral conditional stimulus (CS) and 

an ave rsive uncon dition al stimulus (UCS) are separated by a stim­

ulus-free "trace" in terval of several seconds. Pharmacological inac­

tivation of PL with the GABAA agonist muscimol or blockade of th e 

MAPK sign aling pathway with U0126 prio r to t raining impairs th e 

fo rmation of this mem ory (Runyan et al. 2004; Gilmart in and 

Helmstetter 2010; Guimarais et al. 2011). ln con trast, PL is n ot n ec­

essary fo r stan dard delay con ditioning, in which th e CS an d UCS 

are no t separated in time (Morgan an d LeDoux 1995; Quirk et al. 

2000; Corcoran and Quirk 2007; Gilmartin an d Helmstetter 

2010). Th ese findings lend su pport to the idea that PL m PFC m ay 

serve to bridge the trace interva l during t race fea r con ditioning, 

providing a represen tation of the CS fo r association with th e UCS 

(Baeg et al. 2001; Knight et al. 2004; Gilmartin and McEch ron 

2005b). Th e con tri bution of PL is not limi ted, h owever, to trace 

con ditioning, and is also necessary fo r contextual fea r condition­

ing acq uired simultan eously with either trace or delay condition­

ing (Gilmartin and Helmstetter 2010). Li ttle is known abou t the 

m olecular mech anisms supporting fea r m em ory formation in 

m PFC an d whether diffe ren t processes mediate trace an d con textu­

al fea r mem ory. We h ave previously sh own th at NMDA receptor ac­

tivation is n ecessary fo r both trace and background con textua l fea r 

con ditioning (Gilmartin and Helmstetter 2010). NMDA receptors 

are h eteromeri c complexes of typically two NR1 and two NR2 sub­

units, an d the specific NR2 subunit con fe rs unique propert ies to 

th e NMDA receptor (Cull -Candy et al. 2(01). Th e NR1/ NR2Bcom ­

pIe xes have a slow deactiva tion on the order of seconds, which is 

amenable to temporal association s or persistent firing ch aracteris­

tics of recurrent circuits (Wan g 1999; Wan get al. 2008). In cont rast, 

NR1 / NR2A complexes have a rapid deacti vation , an d represent th e 

predominan t NMDAR complex at most mature syn apses in th e 

fo rebrain (Cull-Candy et al. 2(01). NR2A-con ta ining receptors 

m ay h ave a m ore general role in syna ptic acti vity wh en compared 

with NR2B-containing receptors (Walker and Davis 2008). Thus, 

we predict that NR2A-containing receptors in PL are n ecessary 

fo r trace an d contextual associations an d NR2B-containing recep­

to rs are n ecessary only fo r trace con ditioning. Support fo r this 
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hypothesis comes from a recent study by Radulovic and co lleagues 

showing th at NR2B an d NR2A su buni ts d iffe rentially regulate trace 

an d contextual fea r con ditioning in the do rsa l hippocampus (Gao 

et al. 2010). NR2A-containing NMDARs are n ecessary fo r bo th 

trace and con textual m em ory, but NR2B-con taining receptor ac­

ti va tion specifi cally regulates trace condit ioning. However, the 

mechanisms supporting mem ory fo rmation in m PFC m ay be dis­

tinct fro m th ose observed in the hippocampus. Zhuo and col­

leagues found th at hippocampal NR2B-co nta ining NMDARs are 

no t necessary fo r contextual fea r con ditioning, but in anterior cin­

gulate cortex (ACC), blockade of NR2B impaired contextual fea r 

mem ory (Zh ao et al. 2005). Furthermore, in the am ygdala, injec­

tion of an NR2B antagonist impaired the fo rmation of both delay 

an d contextual fea r conditioning (Rodri gues et al. 2001; Walker 

an d Davis 2008). Th ese fi n dings suggest th at th e con tri but ion of 

NMDAR subuni ts to CS and contextual fea r mem ory is region ­

specific. To better understand mem ory- related plasti city in pre­

frontal co rtex it is important to determine th e roles of PL NR2 

subuni ts in trace an d contextual fea r con dit ioning. Here we exam­

ined the con tri bution of NR2B- an d NR2A-containing NMDARs to 

the fo rmation of trace an d contextual mem ory in PL using pre­

training in jection s of the specific NR2B antagonist R025-6981 or 

th e NR2A-prefe rring antagonist NVP-AAM077. 

Fifty-e ight ad ul t m ale Lon g-Evan s rats (325 - 400 g, Harl an, 

IN) were h oused individually an d received food and water ad libi­

tu m . All procedures were approved by th e lnstitution al Animal 

Care an d Use Commi ttee an d were in acco rda nce with the N1H 

Guidelines fo r the Care an d Use of Experimen ta l Animals. Under 

isofluran e an esth esia in 100% oxygen (induction, 4%; m ainte­

nance, 1%- 2%), guide cannulae (26 gal were stereotaxica lly low­

ered bilaterally in PL at a 150 an gle to vertical: AP +3.2 mm, ML 

± 1.6 mm, DV - 3.2 mm from the skull. Cannulae were secured 

to th e skull with dental acryli c, an d 33-ga dummy cannulae were 

screwed in to th e gu ide cannulae to preven t clogging. Following 

recovery fro m surgery (12- 15 d), rats received 3 d of acclimation 

to tran sport an d gentle restrain t fo r micro injection s as previously 

descri bed (Gilmartin an d Helmstetter 2010). On th e third acclima­

tion day, rats received m ock injections, in which the dummy can­

nulae were rem oved and th e in jection cannulae were bri efly 

lowered to the PL, but n o in jection s were delivered. On the day of 

conditioning, rats received microin jection s (0.3 f-l L/ h emisphere 

at a rate of 0.5 f-l L/ min) of th e specific antagonist of NR2B-con ­

taining NMDARs, R025-6981 (2 f-lg/ f-l L, R7150 Sigm a-Aldri ch), 

th e NR2A-preferring an tagonist, NVP-AAM077 (1 f-lg/ f-l L, P1999 
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TRACE DELAY 

Figure 1. Placement of injector tips bilaterally in PL mPFC. Diagrams 
were adapted from Paxinos and Watson 2007 (with permission from 
Elsevier © 2007) . The number of rats in each group (trace, delay) is 
shown next to each drug. 

Sigma-Aldrich), or vehicle (100/0 DMSO in dH20) 15 min prio r to 

training (see Fig. 1 for the number of subjects in each of the six 

groups). These doses were chosen based o n effecti ve doses in vivo 

in hippocampus, amygdala, and ACC (Zhao et al. 2005; Walker 

and Davis 2008; Gao et al. 2010). 

Conditioning occurred in a set of four Plexiglas and sta inless­

steel conditioning chambers, each housed in a sound-attenuating 

outer chamber and illuminated with a white incandescent h ouse 

lamp (see Gilmartin et al. 2012 for specifi c details of the condition­

ing and testing apparatus). After a 6-min baseline period, rats re­

ceived six trace conditio ning trials or four delay conditio ning 

trials, in which a 10-sec white n oise CS (72 dB) was paired with a 

I -sec footshock UCS (1 m Al. For trace fear conditio ning, the CS 

offset and UCS on set were separated by an empty 20-sec trace inter­

val and the intertrial interva l (ITI) for this session was 240 ± 20 sec 

(total session duration, 33 min). For delay conditioning, the UCS 

was delivered at the offset of the CS and the ITI was 110 ± 20 sec 

(total session duration, 17 min). Six-trial trace conditioning and 

four-trial delay conditioning produce similar levels of conditional 

fear to the CS (Kwapis et al. 2011). During training, rats learned 

to associate both the auditory CS and the training context with 

the occurren ce of the UCS. One rat in the Trace Ro25 group failed 

to respond to half of the UCS presentatio ns during training 

and was excluded from analyses. The following day, rats were test­

ed drug-free for m em ory of each association. Contextual fear 

m em ory was assessed by m easuring conditional freezing during 

re-exposure to the original training chamber. Conditional freezing 

to the CS was tested 2-3 h later in a novel testing chamber in a 

separate room and differed from the training chamber in illu ­

mination , texture, and odor. The CS retention test consisted of a 

2-min baseline period followed by eight 30-sec CS presentation s 

(lTI 60 sec). 

Freezing was defined as the cessation of all m ovem ent except 

that n eeded for respiratio n and was used as the m easure of condi­

tional fear during all training and testing sessions (Fan selow and 

Bolles 1979). Freezing was scored automatically in real-tim e using 

FreezeScan 1.0 detection software (Clever Sys, Inc.). All statistica l 

analyses were performed with Statistica version 9 (Statsoft, Inc.). 
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Each training grou p was analyzed separately and differences in 

freezing between each drug and vehicle controls were analyzed 

using one-way ANOVAs (context retention ) o r mixed m odel 

ANOVAs(acquisitio n , CS retention ), which included the following 

factors: a repeated m easure of Period (for acquisition: Baseline, 

Trial; for CS retentio n: Baseline, CSl -4) and a between factor of 

Dru g. Th e average of the first four CS presentations was analyzed 

to avoid extinction-related CS freezing. Fish er LSD post-hoe tests 

were used to make pairwise comparison s on signifi cant main ef­

fects and interaction s. An cr level of 0.05 was required for signifi­

cance in all analyses. 

At the end of the experiment, rats were deeply anesthetized 

with 5% isofluran e, transcardially perfused with 0.9% sa line 

followed by 10% buffered formalin. After cryoprotection with 

20% sucrose/ formalin, brains were frozen, section ed coronall y, 

m ounted on glass slides, and sta ined with Cresyl violet. All rats 

had accurate cannula placem ent in the PL of the mPFC (Fig. 1). 

Pre-training drug infusio n did n ot impair the acquisition of 

conditional freezing respon ses during training. Figure 2 sh ows 

the freezing during each pairing for all groups (90-sec period start­

ingatCSonset). Ratsinjected with the NR2B antagonist Ro25 prior 

to trace conditioning sh owed similar acquisition to vehicle (VEH) 

control rats (Fig. 2A). Analysis of freezing across trials revealed a 

signifi cant effect of Trial, F (6 .126) = 27.286, P < 0.0001, but n o 

main effect of Dru g or Drug x Trial interaction (P's > 0.05). Rats 

injected with the NR2A antagonistNVP prior to trace conditioning 

appeared to show reduced freezing on som e trials compared with 

VE H controls, but this reduction was n ot statistically reliable. 

Analysis of freezing revealed a signifi cant effect of Trial, F (6.96) = 

13.506, P < 0.0001, but no main effect of Drug or Drug x Trial in ­

teraction (P's > 0.05). Similarly for delay conditioning, n either 

drug impaired the acquisition of conditional freezing (P's > 
0.05) (Fig. 2B). Ratsin each drug and training condition also exhib­

ited similar post-shock freezing (60 sec) across trials (data n ot 

sh own, all P's > 0.05), indicating similar shock reacti vity in each 

drug group. Because CS freezing is n ot independent of contextual 

freezing during the training session, we examined the acquisition 

of contextual freezing in the 30 sec preceding each CS (data n ot 
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Figure 2. Acquisition of conditional fea r. All rats acquired conditional 
freezing during training. Graphs show the mean percent time each 
group spent freezing during the training session for trace conditioning 
(A) or delay conditioning (8) . After the 6-min baseline period, each 
point represents 90 sec starting at CS onset of each trial. Although rats in­
jected with the NR2A antagonist NVP prior to training tended to freeze 
less in general compared with control rats, this did not represent a signifi­
cant reduction in freezing (P > 0.'0 for both trace and delay groups). 
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sh own ). No differen ces were observed across trials between rats in­

jected with the NR2B antagonist and vehicle rats in either trace or 

delay groups (P'S > 0.05). Rats injected with the NR2A-preferring 

NMDAR antagonist sh owed a Drug x Trial interaction in trace 

(F(S,80 ) = 2.417, P < 0.043) and delay (F(3.4S) = 4.083, P < 0.012) 

grou ps. Post-hoc analysis revea led that trace NVP rats froze sig­

nifi cantly less than controls in the 30 sec before the fourth trial 

(P < 0.05). Delay NVP rats froze signifi cantly m ore than controls 

in the 30 sec before th e second trial (P < 0.05). No differences 

were observed on any oth er trial. This suggests that the NR2A 

antagonist NVP m ay h ave a subtle effect on contextual learning 

during training. 

Rats were tested for retention of conditional fear to the CS and 

context the following day. The NR2A-preferring antagonist NVP 

administered before training impaired both CS and contextual 

fea r m em ory at test in trace condition ed rats (Fig. 3A,B). An alysis 

of freezing during baseline and the mean of the first four CSs 

revealed a signifi cant Drug x Period interaction, F(l,16) = 11.282, 

P = 0.0040. Post-hoc analyses showed that NVP rats froze signifi­

cantly less during the CS compared with controls (P < 0.05). 

NVP rats also froze significantly less than contro ls during the con -

Delay Retention 

Baseline 

B 
. VEH 
o Ro25 (NR2B) 

D NVP (NR2A) 

o 
. VEH 
o Ro25 (NR2B) 

D NVP {NR2A) 

* 

Figure 3. Selective role for NR2B-containing NMDA receptors trace fear 
conditioning. Graphs show the mean percent time each group spent freez­
ing during the CS retention test (A, C) and context retention test (8, D) for 
trace and delay rats. Bars represent the average freezing during the 2-
min baseline and the average freezing during the first four 30-sec CS pre­
sentations. The freezing during each CS is shown in the insets. While 
NR2A-containing NMDA receptors are necessary for both tone and contex­
tual memory in trace fear conditioning, NR2B-conta ining NMDA receptors 
are important for CS, but not for contextual fear memory. NR2A-containing 
NM DA receptors may also contribute to stimulus sa lience processing by P L, 
as blocking these receptors impairs delay condition ing. (') P < 0.05 relative 
to VEH . 
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texttest,F(I,1 6) = 6.086, P = 0.0253. In contrasttothe NR2A antag­

onist, pre-training injection of the NR2B antagonist Ro25 impaired 

CS but n ot contextual m emory in trace rats. Analysis of the CS test 

revea led a significant Drug x Period interaction, F(l,1 6) = 7.095, 

P = 0.0145, and post-h oc analysis showed that Ro25 rats froze 

less than controls during the CS (P < 0.05). Contextual fear re­

spon ses we re intact in Ro25 rats (F < 1.164, P > 0.05). Th ese results 

suggest a differential role in trace CS and contextual learning 

by NMDARs based on their subunit composition. 

Although we have previously sh own that delay fear con ­

ditioning is unaffected by pre-training blockade of prefrontal 

NMDARs with APV (Gilmartin and Helmstetter 2010), pre­

training in jection of the NR2A-preferring antagonist NVP im­

paired CS mem ory in delay rats (Fig. 3C). Anal ysis of freezing dur­

ing the CS test revealed a signifi cant Drug x Period interaction , 

F(l,I S) = 5.464, P = 0.0337. Post-hoc analyses sh owed that NVP 

rats froze significantly less during the CS compared with controls 

(P < 0.05). Injection of the NR2B antagonist Ro25 in PL had no 

effect on delay fea r conditioning to the CS (P > 0.05). Vehicle 

controls showed unexpectedly low levels of context freezing at 

test compared with typical respon ses using this four-trial proce­

dure in previous reports (e .g., Kwa pis et al. 2009, 2011 ). NVP 

rats exhibited less freezing than controls, but a potential floor ef­

fect may have obscured an impairment. Ro25 rats sh owed in­

creased contextua l freezing relative to controls, F(l,20) = 4.862, 

P < 0.0393, which could refl ect a role for NR2B in background 

contextual associations. However, we did n ot observe enhanced 

contextual fear by Ro25 in the trace conditioned animals, which 

suggests to us that the difference in freezing between the VE H 

and Ro25 delay groups is driven by the low freezing in the controls 

rather than by specific inhibition of the NR2B subunit. The reason 

for impaired mem ory after NVP but not after APV is n ot clea r; 

however, differential effects by subunit-selecti ve antagonists vs. 

APV are not unheard of in other systems. Long-term depression 

in CAl cultures was blocked by the NR2B antagonist ifenprodil 

or Ro25, but n ot by NVP or APV, despite similar reduction s of 

NMDAR-mediated EPSCs by these inhibitors (Izumi et al. 2006). 

Wh ether such differences in that study o r in our findings relate 

to subunit affinity or oth er factors remains to be determined. 

This study provides new information about the contribution 

of PL mPFC to the formation of fear mem ory. We ha ve previously 

shown that trace CS and contextua l fear mem ories require NMDAR 
activation in PL (Gilmartin and Helmstetter 2010). Here we sh ow 

that NMDARs containing the NR2A subunit are necessary for 

both cued and contextua l fear conditioning, but NR2B-containing 

NMDARs are n ecessary for the association of the CS and UCS across 

an empty trace interva l. This requirement in trace fear condition­

ing may refl ect a role for NR1 jNR2B complexes in working mem­

ory, a hallmark of prefrontal function (Fuster 2000; Kesn er and 

Church well 2011). The NR2B subunit confers a much lon ger deac­

ti va tion window to the NMDAR (Monyer et al. 1994; Cull-Candy 
and Leszkiewicz 2(04), which has been shown in computational 

m odels of prefrontal circuits to support recurrent persistent activ­

ity (Wang 1999; Compte et al. 2000). In vitro, NMDAR-EPSCs at 

layer V recurrent synapses in mPFC exhibited a slower decay and 

better temporal summation in response to a 20-Hz stimulation 

compared with visual cortex (Wan g et al. 2008). Interestingly, 

mP FC retains a higher proportion of NR2B subunits in adulthood, 

compared with that in oth er cortical region s (Wan g et al. 2008). 

The NR2B subunit is prevalent in ea rly development but shortly 

after birth it is largely replaced with NR2A subunits (Cull-Candy 

and Leszkiewicz 2004; Wan g et al. 2008). NR2B overexpression 

in m ouse forebrain enhanced prefrontal LTP and improved work­

ing mem ory performance on a number of tasks (Cui et al. 2011). 

While NR2B-containing NMDARs have been sh own to be impor­

tant for a number of different lea rning paradigms in different brain 
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region s, the se lective role for NR2B in trace CS, but n ot contextua l 

or delay fear, is consistent with a bridging role for PL mP FC in trace 

conditioning. 

The pattern of results in this study is similar to that seen in 

the hippocampus (Gao et al. 2010). Blockade of NR2B-containing 

NMDARs in hippocampus impaired trace CS but n ot contextua l 

fear m em ory. Although hippocampal neuron s do not exhibit per­

sistent firing during the trace interval (Gilmartin and McEchron 

2005a), hippocampus is non eth eless important for working mem­

ory(Lee and Kesner 2002) and NR2B invo lvement may contribute 

to temporal processing in both hippocampus and PL.ln contrast to 

hippocampus and PL, NR2B receptors in ACC do mediate contex­

tual fear conditioning and are n ecessary for cingu late LTP (Zhao 

et al. 2005). NR2B activation in ACC during contextual fear condi ­

tioning may represent a structure-specific role for these receptors 

in pain processing during fear conditioning (Tan g et al. 2005; 

Wu and Zhuo 2(09). Examination of the intracellular mechanisms 

downstream of NR2B and NR2A activation in each structure will 

thus provide insight into structure-specific mechanisms of mem o­

ry formation. Along these lines, Gao et al. (2010) found that 

NR2B-containing receptors in the hippocampus are primarily 

extrasynapti c, wh ereas NR2A-containing receptors are primarily 

synapti c, and each subunit uniquely regulated MArK signaling 

during trace conditioning. Extrasynaptic localization of NR2B­

containing receptors is typical of many forebrain structures after 

NR2B-containing NMDARs at the synapse are replaced by NR2A­

containing NMDARs in early development. As mentioned ea rli er, 

NR2B-containing NMDARs remain proportionately high in mP FC 
relative to other co rtica l region s (Wan g et al. 2(08), but the distri­

bution of these receptors at the synapse is not known. This leaves 

open the possibili ty that these receptors mediate trace condition­

ing by different downstream mechanisms in hippocampus and PL. 

Further work will be n eeded to address this question. It is impor­

tant to n ote that the relative affinity of NVP-AAM077 for the 

NR2A subunit over the NR2B subunit is n ot as selecti ve as original ­

ly reported (Auberson et al. 2002; Frizelle et al. 2(06), and we can­

not rul e out that some of the effects of NVP-AAM077 on trace CS 

mem ory are NR2B-mediated. Th e recent identifi cation of a n ew 

noncompetitive NR2A-selective antagonistTCN201 may be useful 

in addressing this issue as it continues to be further characterized 

(Edman et al. 2012). Non eth eless, NVP-AAM007 impaired contex­

tual fear conditioning while the potent NR2B inhibitor did n ot, 

suggesting that contextual fear conditioning is primarily mediated 

by NR2A-containing receptors. 

An unexpected result of this study is the impairment in delay 

conditional fear by injection of the NR2A- preferring antagonist. 

Lesions or temporary inactivation of PL do n ot impair delay con­

ditioning, which can be supported by con verging CS and UCS in­

puts in lateral amygdala (Romanski et al. 1993; Morgan and 

LeDoux 1995; Corcoran and Quirk 2(07). Non etheless, c-fos ex­

pression is increased in PL after delay fear conditioning (Furlong 

et al. 2010) and PL units display learning- related plasti city during 

training (Garcia et al. 1999; Baeg et al. 2001; Laviolette et al. 2005). 

More recently, PL has been sh own to regulate learning conditional 

fear to a new stimulus in a blocking paradigm (Furlon get al. 2010). 

This suggests that delay CS conditional fear can be acquired in the 

absence of mP FC, but that the mP FC may normally regulate some 

aspect of the association during m em ory formation. In support, 

disruption of cannabinoid or dopaminergic signaling in mP FC 

impairs olfactory delay fear conditional respon ses and selective­

ly affects the n euronal respon ses of amygdala-responsive pre­

frontal units (Laviolette et al. 2005; Laviolette and Grace 2006). 

Prefrontal activity regulated by the basolateral amygdala may 

reflect h ow well the CS pred icts the UCS (Garcia et al. 1999). 

Am ygdala input to mP FC suppresses prefrontal firin g, poss ibly 

via glutamatergic action at corti cal parva lbumin-containing inter-
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n euron s (Garcia et al. 1999; Gabbott et al. 2006). NR2A-containing 

NMDARs may mediate these signaling pathways. These interneu­

rons in mPFC express proportionately m ore NR2A-containing 

NMDARs than principal cells (Wan g and Gao 2009). Thus the ef­

fect of the NR2A antagonist on delay conditioning may represent 

a disruption in amygdala-PL communication during condi­

tioning, although this remains to be determined. Togeth er, these 

lines of eviden ce support a role for PL in modulating delay fear 

conditioning. 

In conclusion, this study shows that NR2A-containing 

NMDARs are important for both auditory cued and contextual 

fear mem ory formation, suggesting that these receptors are part 

of a common m echanism in PL-mediated mem ory formation 

and may contribute to en coding the relative pred ictabili ty of 

the CS and contextua l stimuli during fear conditioning. NR2B­

containing NMDARs are selecti ve to trace conditioning and may 

contribute to a working-mem ory bridging process across the trace 

interva l in mem ory formation. Th e differential contribution of PL 

NR2A and NR2B subunits in the formation of trace and contextual 

fear mem ory resembles that observed in the hippocampus and 

is distinct from that in anterior cingulate, wh ere NR2B-contain­

ing receptors do participate in contextual fear conditioning. 

These resu lts suggest that NR2B-containing NMDARs participate 

in mem ory formation in a structure-specific way and highlight 

the functional distinction of mP FC subregions. Examination 

of intracellular signaling downstream of NMDAR activation in 

mP FC will provide further insight into fear mem ory formation 

and regulation in prefrontal circuits. 
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