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Hypothesis

Introduction

Sleep is a phenomenon of astounding complexity, which 
makes it difficult to understand and even define unequivo-
cally (Deboer 2013; Vyazovskiy and Harris 2013). It can 
be viewed as behavior, a brain state, and a process, which 
are intricately interrelated, and manifest themselves at 
many distinct spatiotemporal scales. Sleep is regulated by 
circadian time (Fisher and others 2013), preceding sleep-
wake history (Achermann and others 1993), and while 
asleep, the brain switches periodically between two mark-
edly different states—non–rapid eye movement (NREM) 
sleep and (REM) sleep (Saper and others 2010), which are 
distinguished by specific types of brain activity (Zamboni 
and others 1999; Buzsaki and others 2013). Specifically, a 
closer look at NREM sleep, also called slow-wave sleep, 
reveals that it is characterized by a regular occurrence of 
local and global slow cortical oscillations, visible at the 
level of the EEG as slow waves (Destexhe and others 
1999; Massimini and others 2004; Vyazovskiy and Harris 
2013). Throughout NREM sleep, especially during its 
lighter stages and toward a transition into REM sleep, 
another type of activity is apparent, so-called sleep spin-
dles. These involve the thalamus and through dynamic 
corticothalamic interactions emerge quasi-independently 
at specific brain locations and never across the whole 

brain at once (Andrillon and others 2011; Bonjean and 
others 2011; De Gennaro and Ferrara 2003; Vyazovskiy 
and others 2004b). In contrast, during REM sleep, the 
brain is about as active as it is in waking, although some 
notable differences with respect to the regional patterns of 
activation have been found in humans (Maquet and others 
2005). The EEG in both humans and animals is dominated 
by theta- and faster rhythms (Cantero and others 2003; 
Huber and others 2000; Nishida and others 2009; 
Vyazovskiy and others 2004a), which arise from bidirec-
tional interactions of cortical, hippocampal, and subcorti-
cal networks (Brown and others 2012; Buzsáki 2006). Are 
all these sleep-related phenomena (Fig. 1) related to each 
other and what is the functional meaning of the overall 
complexity of the sleep process?

In this review article, we advance a hypothesis that 
attempts to reconcile numerous phenomena associated 
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with sleep at many spatial and temporal levels with the 
proposed “recovery” function of sleep. Our hypothesis is 
grounded on the observation that sleep is homeostatically 
regulated (Borbely 1982). The main postulate of sleep 
homeostasis is “the longer we are active, the deeper is our 
sleep” (Daan and others 1984). In other words, it implies 
that the need for sleep (“sleep pressure”) increases in pro-
portion to the preceding duration of waking, and then dis-
sipates during the ensuing sleep in proportion to its 
duration and intensity. The homeostatic regulation of 

sleep is manifested in systematic changes of the main 
defining characteristic of NREM sleep–EEG slow-wave 
activity (SWA, 0.5–4.0 Hz), which is high at the begin-
ning of a sleep period and gradually decreases during the 
course of sleep, whereas prolonged waking is invariably 
followed by a proportional increase in sleep SWA (Cirelli 
and Tononi 2008; Franken and others 2001; Tobler 2005; 
Vyazovskiy and Harris 2013; Vyazovskiy and others 
2006; Vyazovskiy and Tobler 2005). It was proposed that 
NREM sleep occurs in a local, use-dependent manner and 

Figure 1.  The temporal complexity of sleep. (A) The daily profile of locomotor activity in one individual mouse during 24 hours 
(LD 12:12, bars on the top). Note that most activity occurs during the dark period, whereas during the light period the animal 
is predominantly immobile, and likely asleep. (B) The typical homeostatic profile of cortical local field potential (LFP) slow wave 
activity (SWA, 0.5–4 Hz) in non–rapid eye movement (NREM) sleep during a 6-hour period of the light period. Note that SWA 
is initially high and declines progressively across the period of sleep. (C) Cortical SWA during five consecutive NREM sleep 
episodes, each lasting ~5 minutes. Note that NREM sleep is interrupted regularly by shorter episodes of REM sleep. (D) The 
LFP recorded from the frontal cortex in a rat during a typical episode of NREM sleep (blue) followed by REM sleep episode 
(red). NREM sleep is characterized by high-amplitude LFP slow (0.5–4 Hz) waves, which are replaced by regular theta (6–9 Hz) 
activity of a lower amplitude during subsequent REM sleep. (E) Representative traces of the LFP shown at higher resolution in 
NREM sleep (blue), dominated by high-amplitude slow waves, and REM sleep (red), rich of theta-activity and faster rhythms. (F) 
A closer look at the LFP signals in NREM sleep (left), where two slow waves are visible and a spindle (~7–15 Hz) in between, and 
in REM sleep, where regular theta-oscillation (black) is apparent. Bars below depict an expected corresponding pattern of cortical 
neuronal activity (each vertical line is a spike).
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is ultimately a property of cortical networks (Krueger and 
Obal 1993; Krueger and others 2008). There is substan-
tial evidence showing that sleep is implicated in a variety 
of restorative processes at molecular, cellular and net-
work levels and in synaptic plasticity (Abel and others 
2013; Cirelli and Tononi 2008; Scharf and others 2008; 
Vyazovskiy and Harris 2013), which we altogether refer 
to as “recovery.” It is likely that the recovery functions of 
NREM sleep are related to the occurrence of the thalamo-
cortical slow oscillation (Buzsáki 2006; Crunelli and 
Hughes 2009; Steriade and others 2001). The purpose of 
a down-state of the slow oscillation could be to provide 
restoration with respect to energy homeostasis, cellular 
maintenance/repair, or biosynthetic processes 
(Mackiewicz and others 2007; Maret and others 2007; 
Scharf and others 2008; Vyazovskiy and Harris 2013; 
Wisor 2012). At the same time, the role of an up-state was 
proposed to provide an opportunity for selective interac-
tions between functionally interconnected neurons within 
cortical and subcortical networks, thereby facilitating 
information transfer and serving plastic processes or 
memory consolidation (Battaglia and others 2004; 
Destexhe and others 2007; Diekelmann and Born 2010; 
Tononi and Cirelli 2006). There are two fundamental 
questions that need to be addressed, and which will be the 
focus of this article. First, how is it ensured that the brain 
receives the appropriate amount of recovery according to 
its needs? Second, what is the role of periodic excursions 
into an activated sleep state—REM sleep?

REM Sleep: Its Regulation and 
Proposed Functions

At quasi-regular intervals, NREM sleep episodes termi-
nate and the brain transitions into another sleep state, 
which is called REM sleep or paradoxical sleep (Dement 
1958; Jones 2004; Jouvet 1965; McCarley and Hobson 
1975). The defining features of REM sleep are skeletal 
muscle atonia, rapid eye movements, the presence of 
EEG theta (~6–9 Hz) waves originating from the hippo-
campus, and the ponto-geniculo-occipital (PGO) waves 
(Callaway and others 1987; Datta 2010; Karashima and 
others 2010; Siegel 2011). In physiological conditions, 
REM sleep episodes are generally shorter than episodes 
of NREM sleep, and the NREM-REM sleep cycle repeats 
itself several times before the animal wakes up 
(Achermann and others 1993; Benington and Heller 
1994; Trachsel and others 1991; Franken 2002; Zamboni 
and others 1999; Vyazovskiy and Tobler 2012).

REM sleep has always been a “difficult” case with 
respect to its regulation and function (Siegel 2011). Early 
theories pertaining to the regulation of REM sleep sug-
gested that the regular occurrence of REM sleep episodes 
is an expression of a so-called basic rest-activity cycle 

(Kleitman 1982). Alternatively, state-dependent theories 
of REM sleep regulation suggested that the need (or pres-
sure) for REM sleep increases during waking, NREM 
sleep, or both (Benington and Heller 1994). Specifically, 
because the duration of a REM sleep episode correlates 
significantly with the duration of the following NREM 
sleep episode, it was proposed that REM sleep “compen-
sates for some process that takes place during NREM 
sleep” (Barbato and Wehr 1998; Benington and Heller 
1994). However, selective or total sleep deprivation 
experiments suggested that preceding long-term and 
short-term history of waking and sleep also plays a role 
(Endo and others 1997; Franken 2002; Ocampo-Garces 
and Vivaldi 2002). Interestingly, REM sleep expression is 
not only determined by preceding history but is also sub-
ject to circadian rhythmicity (Dijk and Czeisler 1995; 
Kantor and others 2009). Moreover, in both humans and 
animals the amount as well as spontaneous EEG activity 
in REM sleep were shown to be under genetic control 
(Buckelmuller and others 2006; Franken and others 1998; 
Millstein and others 2011).

The biological function of REM sleep still remains a 
mystery (Siegel 2011), although several theories have 
been advanced (Hobson 2009; Horne 2000; Horne 2013; 
Roffwarg and others 1966; Siegel 2005). According to 
one theory, when the brain is isolated from external inputs 
during REM sleep, random patterns of activation can be 
generated that are useful for elimination of “parasitic 
modes” of activity (Crick and Mitchison 1983). It was 
also suggested that REM sleep is necessary for brain 
development (Roffwarg and others 1966) or may serve 
the function of periodically activating the brain during 
sleep without awakening the subject and disturbing the 
continuity of sleep (Horne 2013; Vertes and Eastman 
2000). In addition, there is evidence that REM sleep plays 
a role in memory formation (Karni and others 1994; 
Perogamvros and others 2013; Rasch and Born 2013; 
Smith 1985; Stickgold 1998; Watts and others 2012), 
neuronal plasticity and excitability (Grosmark and others 
2012; Poe and others 2010; Ribeiro and Nicolelis 2004), 
and in processing of emotional information (Baran and 
others 2012; Gujar and others 2011).

Subcortical regions involved in the regulation of 
NREM and REM sleep have been elucidated to a large 
extent (Fort and others 2009; Saper and others 2010; 
Szymusiak and McGinty 2008). According to the recipro-
cal interaction model, a brainstem circuitry of mutually 
inhibiting cholinergic and monoaminergic nuclei can 
account for the NREM-REM cycle (Hobson and others 
1975). More recently, a role for mutually inhibiting 
GABAergic neurons contained within REM-on and 
REM-off brainstem regions has been postulated (Boissard 
and others 2002; Lu and others 2006; Sapin and others 
2009; Sastre and others 1996; Vanini and others 2007; Xi 
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and others 1999). These REM sleep-regulatory regions 
appear to be under the control of the hypothalamus 
(Mignot and others 2002; Saper and others 2005). 
Specifically, the onset of REM sleep may be regulated by 
hypothalamic GABA neurons through the recruitment of 
the extended ventrolateral preoptic area (eVLPO) (Lu 
and others 2002). In addition, a subset of melanin-con-
centrating hormone (MCH) neurons in the lateral hypo-
thalamus are active at REM onset and fire exclusively 
during REM sleep (Hassani and others 2009), whereas 
MCH-negative GABA neurons in the lateral hypothala-
mus increase firing as NREM progresses to REM sleep 
(Hassani and others 2010). Exit from REM sleep seems 
to be regulated by waking-promoting systems such as the 
pontine and medullary monoaminergic neurons, tuber-
omammilary histaminergic neurons, and the hypotha-
lamic orexin/hypocretin neurons (Fort and others 2009).

Although great efforts have been devoted to delineat-
ing the brain systems that are necessary and sufficient for 
the regular transitions from NREM sleep to REM sleep 
(Fig. 2), fundamental questions remain: Why should 
REM sleep exist in the first place, and why it is occurring 
regularly throughout the sleep period?

“Recovery” and “Selection” during 
Sleep

We argue that the roles of REM and NREM sleep as well 
as their interactions can only be understood by consider-
ing the microstructure of brain activity on a fine temporal 

and spatial scale, in relation to the global temporal evolu-
tion of sleep stages and the slow homeostatic process 
(Fig. 1). If we look closely at the cortical activity during 
NREM sleep, it is apparent that it occurs in discrete steps. 
This is reflected in a sequential occurrence of EEG slow 
waves, which arise from oscillations between active (up, 
ON) and inactive (down, OFF) states of individual neu-
rons (Buzsaki and others 2012; Steriade and others 2001; 
Vyazovskiy and others 2009). Crucially, individual slow 
waves appear to be idiosyncratic and dynamic entities, as 
they do not occur everywhere at the same time, but are 
often local, have a unique site of origin, involve specific 
cortical areas, have a variable “shape,” and follow a 
unique route of propagation (Massimini and others 2004; 
Nir and others 2011; Riedner and others 2007; Riedner 
and others 2011; Sirota and Buzsaki 2005; Timofeev 
2013; Vyazovskiy and others 2007a; Vyazovskiy and oth-
ers 2007b; Vyazovskiy and others 2011). What is the 
functional meaning behind the rich diversity among indi-
vidual slow waves and what determines the temporal and 
spatial pattern of their occurrence?

We propose that during NREM sleep individual corti-
cal functional networks are sequentially recruited into the 
slow waves, into which any NREM sleep episode is par-
titioned (Fig. 3). Specifically, during an individual slow 
wave, a neuronal network is recruited simultaneously in 
an ON-period, where all neurons of the network engage 
in synaptic and/or spiking activity, which is followed by 
a synchronized silence (OFF-period) within the same net-
work. We posit that during physiological sleep, this pro-
cess continues until all the networks have expressed a 
certain minimal number of slow oscillations, as required 
to obtain the necessary “recovery” after their respective 
preceding activities. As mentioned above, we use the 
term “recovery” in a broad sense, including a variety of 
processes at molecular, cellular, and network levels, such 
as synaptic plasticity, regulation of neuronal excitability, 
replenishment of energy stores, cellular and subcellular 
membrane repair, and other kinds of prophylactic cellular 
maintenance (Vyazovskiy and Harris 2013). Given the 
anatomical complexity of the brain, the large number of 
highly specialized distributed networks of various con-
figurations and their different history of activity during 
preceding waking, it appears to be a formidable task to 
provide recovery to specific networks precisely accord-
ing to their need. First, newly formed neuronal networks 
that have just emerged as a result of specific novel wak-
ing experience are likely to need a very different amount 
and kind of recovery, compared with those networks that 
were “used” heavily, or remained “dormant” during the 
preceding waking period. Second, some networks may 
consist of highly heterogeneous large populations of 
polysynaptically interconnected neurons located across 
several distant cortical areas, whereas others may be 
small, mostly locally interconnected, and consist of a 

Figure 2.  The anatomical location of major subcortical 
regions involved in regulation of waking and sleep. The 
main subcortical nuclei and areas, which have been shown 
to be crucial for regulation of cortical arousal and sleep, 
are shown on a saggital section of a rodent brain, and their 
main neurotransmitters or neuromodulators. DRN = dorsal 
Raphe nucleus, serotoninergic (5-HT); LC = locus coeruleus, 
noradrenergic (NA); LDT = laterodorsal tegmentum; and 
PPT = pedunculopontine tegmentum, cholinergic (ACh); LH 
= lateral hypothalamus including hypocretin/orexin expressing 
neurons (Hcrt); PAG = periaqueductal gray, including 
dopaminergic neurons (DA); POA = preoptic area; and VLPO 
= ventrolateral preoptic area, GABAergic and containing 
galanin (Gal) expressing neurons; TMN = tuberomammillary 
nucleus, histaminergic (His).
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homogenous functionally specialized population. Finally, 
the same neurons may participate in more than one func-
tional network (and likely do so), and therefore the 
expression of the slow oscillation across many networks 
at the same time needs to be precisely coordinated.

The first question that needs to be addressed is what 
are the mechanisms responsible for synchronizing the 
periods of activity and silence between neurons within a 
given functional network? Within-network synchrony  
is important for two reasons. First, as has been recently 

suggested, synchronous occurrence of sustained uninter-
rupted down states within functionally interconnected 
cortical networks enables more efficient prophylactic cel-
lular maintenance (Vyazovskiy and Harris 2013). Second, 
synchronized coordinated increase of network activity 
during an up-state or an ON-period (Luczak and others 
2007) may provide an opportunity for communication 
between functionally connected neurons, enabling infor-
mation processing and synaptic plasticity (Sirota and 
Buzsaki 2005). This is likely necessary as synchronous 

Figure 3.  Outline of the hypothesis: cortical mechanisms. We hypothesize that the cortical activity during NREM sleep (A) 
occurs in discrete steps, manifested in the occurrence of local field potential (LFP) slow waves arising from a synchronous 
involvement of specific functionally interconnected neuronal networks in an active state (high multiunit activity, MUA), followed 
by silent periods, when spiking and synaptic activity within the corresponding networks is suspended. Each LFP slow wave has a 
unique site of origin and spatial configuration determined by the size and composition of the neuronal network involved (arrows). 
Individual neurons are schematically shown as triangles, and connections within a network by lines. Note that different colors 
for the networks are used to emphasize that a unique network is recruited during each slow wave. We hypothesize that slow 
waves occur one after another throughout a NREM sleep episode (B, five consecutive episodes are shown) until all functionally 
interconnected networks have expressed a certain minimal number of slow oscillations, as dictated by their need for recovery, 
whereby the NREM sleep episode is terminated and followed by a REM sleep episode. (C) During the regular excursions into 
REM sleep, a selection process takes place, which consists in identifying those networks that have already obtained the necessary 
recovery during previous NREM sleep (shown below in gray color), to exclude them from the process of recovery in subsequent 
NREM sleep episodes.
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activation of a specific network allows the neurons, dis-
tributed across the brain and embedded in many different 
networks, to temporarily (functionally) uncouple from 
the rest of the brain. The specific mechanism by which 
the networks self-organize in time and space, and how it 
is related to their need for recovery, remains to be deter-
mined, although some possibilities can be suggested. For 
example, a population of sleep-active NOS-expressing 
cortical interneurons, which has been identified recently, 
appears to be ideally placed to link preceding sleep-wake 
history with a compensatory increase of cortical slow-
wave activity (Kilduff and others 2011; Morairty and oth-
ers 2013). On the other hand, neuroligin, which is a cell 
adhesion postsynaptic protein, critically involved in the 
formation and stabilization of neural networks, was 
shown to link preceding neuronal activity with homeo-
static sleep regulation (El Helou and others 2013), and 
may also play a role.

Our model predicts that during the course of the night 
(or day in rodents), as sleep progresses toward the final 
awakening, fewer (and more localized) networks need to 
be recruited in a synchronous slow oscillation, because 
many of them have already obtained the necessary recov-
ery (Fig. 4). It is likely that large, distributed, and/or more 
strongly interconnected networks gain priority in this 
process, whereas recovery within smaller networks scat-
tered across the brain would predominantly occur toward 
the end of the sleep period. An increased occurrence of 
local patterns of activity in the second half of sleep (Nir 
and others 2011; Terzaghi and others 2012; Vyazovskiy 
and others 2011) and a decrease in EEG synchronization 
during sleep across time (Vyazovskiy and others 2004a) 
may account for the progressive decrease of EEG slow-
wave activity during sleep documented in several species 
(Tobler 2005). Thus, we propose that NREM sleep epi-
sodes occur throughout the entire sleep period, until all 
the networks in the brain have expressed the necessary 
number of slow oscillations to obtain recovery corre-
sponding to their need. The next question is what deter-
mines whether a specific network has obtained the 
necessary recovery to enable its optimal performance 
during waking?

A strong selective pressure must have led to an emer-
gence of an efficient mechanism that ensures that recov-
ery at the level of individual networks is completed in the 
shortest time possible to avoid the dangers associated 
with sleep. We propose that in order to ensure that the 
recovery functions provided by NREM sleep are fulfilled 
in a controlled, systematic, and efficient manner, an addi-
tional regulatory process must be implemented to enable 
the selection of those circuits that have already obtained 
the necessary recovery and are ready for optimal func-
tioning during waking. In theory, one solution could be to 
simply wake up at regular intervals and attempt to initiate 

typical waking behaviors. However, this strategy is 
highly energy demanding and time consuming, as it takes 
considerable time to dissipate sleep inertia, which is asso-
ciated with suboptimal performance (Krueger and Tononi 
2011; Tassi and others 2006). Moreover, if this strategy 
were chosen, it would require that the performance is 
tested each time across a broad repertoire of typical  
 species-specific waking behaviors, and often during a 
suboptimal time of the 24-hour day. Therefore, a more 
economical and safe solution would be to perform the 
selection process of brain networks while remaining 
“offline.” It appears that regular excursions into REM 

A
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recovery progress
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Figure 4.  Spatial dynamics of LFP slow waves during NREM 
sleep. (A) Schematic diagram of the location of cortical local 
field potential (LFP) electrodes on the rat’s skull (bilateral 
frontal: blue and red, and bilateral parietal: purple and green). 
(B) The hypothetic occurrence of slow waves recorded 
simultaneously in the four cortical locations (shown on panel 
A in corresponding colors) at the beginning, in the middle, 
and at the end of a typical period of undisturbed sleep. (C) A 
representative time course of LFP slow-wave activity (SWA, 
0.5–4 Hz) in NREM sleep across sleep period. Note that 
SWA is initially high and shows a progressive decline across 
the sleep period. The corresponding hypnogram (waking: 
W, NREM sleep: N, and REM sleep: R) is shown below. 
We hypothesize that slow waves occur near-synchronously 
across distant cortical areas in early sleep but become 
more localized as sleep progresses, as most networks have 
obtained the necessary recovery. Subsequently, only a subset 
of cortical areas shows a slow wave simultaneously. This is 
overall reflected in a progressive decline of SWA across the 
sleep period. Bottom: Schematic depiction of the neuronal 
networks, which are simultaneously recruited in a slow 
oscillation in early and late sleep (colors correspond to 
cortical locations shown on panel A and slow waves show on 
panel B).
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sleep are ideally suited to enable this function, by emulat-
ing the wake-like condition while remaining functionally 
disconnected from the physical environment. A conceptu-
ally similar “sensing” mechanism has been conjectured 
recently to account for periodic brain state shifts during 
prolonged physiological wakefulness (Vyazovskiy and 
Tobler 2012). Specifically, it was suggested that regular 
brief cessations of active behaviors, i.e. episodes of quiet 
wakefulness, may be viewed as attempts to initiate 
NREM sleep. We then proposed that a reduction in the 
activity of arousal-promoting nuclei during such periods 
of immobility could lead to a disinhibition of sleep pro-
moting areas, which, if sleep pressure has attained a cer-
tain level, would facilitate an occurrence of global sleep. 
Likewise, we propose here that the overall temporal 
dynamics of NREM and REM sleep alternation—from 
sleep onset until final awakening—is ultimately deter-
mined by the balance between the processes of “recov-
ery” and “selection.”

Neuroanatomical Substrate of REM 
“Selection” Mechanism: The Two 
Systems

Based on this hypothesis, we predict the existence of two 
systems in the brain, which provide the neurophysiologi-
cal substrate for the hypothetical selection mechanism 
provided during REM sleep. The “core” part enables 
offline representation of various waking behaviors. This 
could be achieved by a recruitment of specific cortico-
subcortical circuits, to internally generate various pseudo-
random behavioral patterns based on the past experiences 
of the individual. This notion is largely consistent with 
the tenets of the neural emulation theory, according to 
which inner models of the body and the environment can 
be run offline to produce “imagery, estimate outcomes of 
different actions, and evaluate and develop motor plans” 
(Churchland 2002; Grush 2004). Several cortical and 
subcortical areas such as the posterior parietal cortex, 
basal ganglia, and the cerebellum, have been proposed to 
participate in neural emulators, involved in the sensorim-
otor coordination (Churchland 2002). Consistent with our 
hypothesis, multiple cortical and subcortical areas, 
including higher order sensory and motor regions as well 
as limbic areas, are about as active during REM sleep as 
during waking, albeit with some differences (Dang-Vu 
and others 2010). Moreover, dynamic interactions 
between sensorimotor and higher-order associative areas, 
including the default-mode network, characterize REM 
sleep (Chow and others 2013). Obviously, the actual 
behaviors must be prevented during the process of selec-
tion, and so muscle atonia occurs during REM sleep to 
prevent them. Indeed, if muscle atonia during REM sleep 
is prevented by brainstem lesions, animals exhibit a 

variety of movements, such as head raising or locomotion 
(Henley and Morrison 1974; Mouret and others 1967). 
The suppression of muscle tone during the selection pro-
cess may be also essential to prevent the sensory input 
from muscle proprioceptors, which could interfere with 
the internal dynamics while the neural emulator is at 
work. The suppression of noradrenergic activity, typical 
for REM sleep, may be a necessary prerequisite for dis-
abling the voluntary muscle control (Burgess and Peever 
2013). It is tempting to speculate that in order to generate 
purely offline states during the REM selection process, 
other senses, such as temperature sensitivity or pain per-
ception, must also be depressed. This is consistent with 
the typical reduced thermoregulation in REM sleep 
(Parmeggiani 2003), and with reduced pain sensitivity on 
abrupt awakening from REM sleep, as compared to 
awakenings from stage 2 slow wave sleep (Daya and 
Bentley 2010).

The second part of the proposed mechanism, which 
we tentatively call an “integrator,” is predicted based on 
the necessity to determine if most or all brain networks 
have already obtained the necessary recovery and to 
“decide” whether the animal is ready to wake up or needs 
to enter another NREM sleep episode. We speculate that 
the hypothetical circuit responsible for this function must 
comprise of a network that is capable of integrating corti-
cal inputs, modulating the major subcortical sleep regula-
tory nuclei, and dynamically regulating global cortical 
states (Fig. 5). Although the exact mechanism by which 
the “integrator” enables communications between rele-
vant cortical and subcortical areas remains to be identi-
fied, we suggest that the thalamus is well positioned to be 
involved.

It has been shown in both animals and humans that the 
transition from NREM to REM sleep is marked by the 
occurrence of sleep spindles. Spindles are periodically 
recurring bursts of thalamocortical activity occurring at a 
characteristic frequency of about 7 to 15 Hz within a 
burst (Luthi 2013). Notably, spindles occur throughout 
the episode of NREM sleep, often in a local manner (Nir 
and others 2011), but they are especially apparent at the 
NREM-REM transition (Vyazovskiy and others 2004b). 
Nucleus reticularis of the thalamus (TRN) has been 
implicated in the generation of sleep spindles (Astori and 
others 2011; Contreras and others 1993; Crunelli and 
Hughes 2009; Steriade 2006), and it has been shown that 
thalamic spindles survive decortication (Contreras and 
others 1996). Although the occurrence of spindles has 
been associated with synaptic plasticity and memory con-
solidation, their precise role remains unclear (Luthi 2013; 
Sejnowski and Destexhe 2000). It has been recently pro-
posed that local occurrence of spindles during NREM 
sleep constrains and facilitates specific intracerebral 
communications (Nir and others 2011). We suggest that 
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Figure 5.  Complementary cohorts of inhibitory GABA neurons in the thalamus. In (A) the location of known subcortical 
regulators of sleep and wake and the position of reticular (TRN) and non-reticular (nonTRN) inhibitory thalamic neurons 
(purple and brown, respectively) in the mouse brain is schematically drawn. The location of sleep-on GABAergic neurons is 
indicated by a filled green circle; nuclei responsible for cortical activation are represented by filled gray circles. The location of 
neurons encoding circadian cues is represented as open gray circles. In (B): inhibitory neurons in the TRN are interneurons 
with projections restricted to the thalamic compartment. Inhibitory neurons that do not form the TRN are heterogeneous: 
they consist of local interneurons and projecting inhibitory neurons with targets within and outside the thalamus and complex 
afferents and neuromodulator expression; their anatomical position may condense to form nuclei or be interspersed with 
other neuron types. Within the thalamus, they can act on the intralaminar and midline thalamic relay nuclei thereby affecting 
global cortical states. In (C): the main differences in afferents and efferents of the two cohorts of thalamic inhibitory neurons in 
schematically presented. The GABA neurons in the nonTRN differ from their TRN counterparts in their reciprocal projections 
to cholinergic nuclei in the tegmentum (LDT and PPT), monoaminergic areas (including DRN and PAG) and the suprachiasmatic 
nucleus (SCN), incoming afferents from cortical areas, noradrenergic neurons in the LC, hypocretin/orexin neurons in the lateral 
hypothalamus and melanopsin-expressing ipRGCs in the retina and projections to hypothalamic areas including the preoptic area 
(POA, VLPO). Insets show predominant LFP wave-forms generated in the cortex (slow wave), the hippocampus (theta-waves), 
and the TRN (spindles). APT = anterior pretectum; DRN = dorsal Raphe nucleus; Hcrt = hypocretin/orexin neurons; IGL = 
intergeniculate leaflet; ipRGCs = intrinsically photosensitive retinal ganglion cells; LC = locus coeruleus; LDT = laterodorsal 
tegmentum; LH = lateral hypothalamus; PAG = periaqueductal gray; POA = preoptic area; PPT = pedunculopontine tegmentum; 
SCN = suprachiasmiatic nucleus; TMN = tubermamillary nucleus; TRN = thalamic reticular nucleus; vLGN = ventrolateral 
geniculate nucleus; VLPO = ventrolateral preoptic area; ZI = zona incerta.
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localized occurrence of sleep spindles throughout NREM 
sleep episodes may reflect “tagging” of those networks 
that have presumably obtained the necessary recovery, 
for their inclusion in the selection process during subse-
quent REM sleep. We propose that after a certain critical 
number of tagged networks have been accumulated, the 
selection process is triggered, as reflected in an overall 
increased spindling at the NREM-REM sleep transition.

At this point, another anatomically distinct thalamic 
subsystem likely takes over the dominant role in coordi-
nating the selection process. Specifically, we suggest that 
this consists of a complementary cohort of inhibitory tha-
lamic GABA neurons (nonTRN-GABA neurons) (Bartho 
and others 2002; Bokor and others 2005; Delogu and oth-
ers 2012). The nonTRN-GABA neurons of the thalamus 
are a heterogeneous group, characterized by a broad 
range of connections within and outside the thalamus, 
making it an attractive candidate for the role of conveying 
a cortically generated signal from the “core” of the selec-
tion mechanism to brainstem and hypothalamic regula-
tors of NREM and REM sleep. It has been shown that 
some nonTRN-GABA neurons receive descending pro-
jections from prefrontal, infralimbic, and visual cortical 
areas (Vidal and others 2005; Vrang and others 2003) and 
form reciprocal connections with REM-on cholinergic 
and REM-off monoaminergic nuclei in the brainstem 
(Morin 2013; Morin and Blanchard 2005; Terenzi and 
others 1995). A conspicuous fraction of nonTRN-GABA 
neurons are located in the lateral geniculate nuclei, from 
where they send descending axons to the anterior hypo-
thalamus and innervate sleep-on GABA nuclei in the 
median preoptic area and the eVLPO (Morin and 
Blanchard 1999). NonTRN-GABA neurons of the MCH 
subtype in the zona incerta (ZI) also provide an important 
GABA inhibition to the REM-off nuclei (Clement and 
others 2012). A recent study utilized an optogenetic 
approach, in which REM sleep episodes were prolonged 
by stimulation of hypothalamic MCH neurons (Jego and 
others 2013). Other nonTRN-GABA neurons control 
state-dependent gating of the higher order intralaminar 
and midline thalamic nuclei (Albrecht and others 1996; 
Antal and others 2010; Blitz and Regehr 2005; Bokor and 
others 2005; Munsch and others 2005; Zhao and others 
2002), and thus modulate cortical state (Fig. 5).

In contrast to TRN-GABA neurons, nonTRN-GABA 
neurons display extensive connectivity with the circadian 
system. Specifically, nonTRN-GABA neurons that popu-
late the non-image forming visual system (Delogu and 
others 2012), receive light information from conventional 
and intrinsically photosensitive retinal ganglion cells 
(ipRGCs) (Hankins and others 2008; Hattar and others 
2002; Hattar and others 2006). IpRGCs detect light via an 
endogenous photoreceptor melanopsin (Opn4) and are 
required for photoentrainment of the circadian clock, the 

suppression of motor activity in nocturnal animals, and 
other physiological responses to light (Davies and others 
2010; Hatori and others 2008; Peirson and Foster 2006). 
Importantly, ipRGCs have been implicated in the regula-
tion of sleep (Altimus and others 2008; Lupi and others 
2008; Tsai and others 2009), mood, and cognition 
(LeGates and others 2012). Acute light stimulation in 
nocturnal animals results in a rapid suppression of motor 
activity and concomitant induction of NREM sleep, 
which is then followed by REM sleep (Studholme and 
others 2013). A dense plexus of ipRGC-axon terminals 
innervates those nonTRN-GABA neurons that project to 
the master circadian clock at the hypothalamic suprachi-
asmatic nucleus (SCN) and the SCN sends reciprocal 
projections back to the same area (Morin 2013). Thus, 
there is substantial neuroanatomical evidence supporting 
the hypothesis of an integrative function of nonTRN-
GABA neurons in the control of sleep.

Notably, most REM sleep episodes are terminated 
with a so-called brief awakening, associated with a surge 
of firing activity in the locus coeruleus (Gervasoni and 
others 1998). We suggest that an attempt to wake up after 
virtually every REM sleep episode is a manifestation of 
the neurophysiological mechanisms signaling the extent 
of the recovery process completed (Fig. 6). However, we 
suspect that it is not essential whether the actual awaken-
ing occurs from NREM or REM sleep, as long as all net-
works in the brain have benefited from the recovery 
processes in NREM sleep, and underwent selection dur-
ing REM sleep. Indeed, brief awakenings occur regularly 
throughout a NREM sleep episode and, notably, their 
incidence correlates negatively with cortical EEG slow-
wave activity in rats (Franken and others 1991; Trachsel 
and others 1991). Moreover, enhanced sleep pressure 
diminished the probability of awakening following the 
photostimulation of hypocretin neurons expressing light-
activated cation channel ChR2 in mice (Carter and others 
2009). Thus, the overall role of the integrator system that 
we postulate is to provide continuous bidirectional com-
munications between the cortex and subcortical wake- 
and sleep-regulating areas throughout both NREM and 
REM sleep, to ensure that the animal wakes up when the 
process of recovery is “deemed” completed.

“Selection” Role of REM Sleep and 
Previous REM Sleep Hypotheses

Although our hypothesis requires direct empirical testing, 
we believe that it not only provides a useful conceptual 
framework for future experiments, but also appears to be 
compatible with many earlier findings and hypotheses. 
For example, one of the well-established phenomena is 
the “competing” relationship between NREM and REM 
sleep expression across the night (Beersma and others 
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1990). Whereas the circadian influence on the expression 
of REM sleep across the night likely plays a role, forced 
desynchrony studies showed that sleep-dependent 
increases in REM sleep could be partially uncoupled 
from the time of day (Dijk and Czeisler 1995). We pro-
pose that this observation can be accounted for by a low 
need for “selection” during REM sleep, when “recovery” 
provided by NREM sleep is still too far from being com-
pleted early on in the night. This may be related to the fact 
that the duration of REM sleep episode is determined by, 
or is proportional to, the number of brain circuits that 
have already obtained the necessary recovery during 
NREM sleep. If this is the case, it would be expected that 
REM sleep episodes get longer toward the end of a sleep 
period, when most circuits have already benefited from 
NREM sleep and the need to perform their offline perfor-
mance testing before waking up becomes a high priority. 
The increasing trend in sleep spindles activity across the 
night, in parallel with decreasing sleep pressure (Dijk 
1995; Knoblauch and others 2002; Olbrich and 
Achermann 2005; Vyazovskiy and others 2004b), is also 
consistent with our hypothesis that spindles reflect the 
process of tagging cortical networks for the selection pro-
cess. On the other hand, several studies showed that 
chronic sleep restriction leads to a massive increase in 
REM sleep (Kim and others 2007; Leemburg and others 
2010; Rechtschaffen and others 1999). We suggest that in 
this case, the occurrence of NREM-like activities during 
prolonged waking (Benington and Heller 1999; 
Vyazovskiy and others 2011) likely provides only a non-
systematic, limited recovery to local networks only, while 
the selection process is prevented by actual waking 

behaviors. This necessitates longer and more frequent 
REM sleep episodes during subsequent sleep. Similar 
mechanisms can account for the occurrence of sleep-
onset rapid eye movement periods (SOREMPs), which, 
while being more typical in pathological conditions, such 
as in narcolepsy (Baumann and others 2006; Rechtschaffen 
and others 1963), can also occur in healthy individuals. 
However, a significant association was noticed between 
the number of SOREMPs and how objectively sleepy the 
subjects were (Singh and others 2006), suggesting that in 
some cases the brain may be ready for the first round of 
“selection” before full-scale “recovery” begins.

Finally, our hypothesis is also in accord with the idea 
that in early ontogeny, REM (or active) sleep may serve 
to promote brain maturation and refinement of neurocir-
cuitry (Mirmiran 1995; Mirmiran and Van Someren 1993; 
Roffwarg and others 1966). Specifically, it was suggested 
that spontaneous activity generated during “active sleep” 
in neonate rodents can contribute to the development of 
the somatosensory system (Tiriac and others 2012). The 
large quantities of REM sleep, typical for early ontogeny, 
could be expected if the proposed selection mechanism 
communicates that the brain is not yet ready for optimal 
functioning during the awake state. We suggest that at 
this stage, when the real waking experience is not yet 
available, the internal models of the body and the envi-
ronment can only be generated based on a limited set of 
preexistent hard-wired programs, which are inherently 
simple and noisy because of the immaturity of develop-
ing brain networks (both cortical and subcortical). 
Because the representation of real waking simply does 
not exist, or is limited at this stage, REM episodes could 

Figure 6.  Overall summary of the hypothesis. (A) During waking the need for “recovery” increases progressively, necessitating 
the occurrence of sleep. During sleep, the need for recovery progressively declines until fully functional waking becomes 
possible. (B) In order to ensure that sleep functions are fulfilled as quickly and efficiently as possible, within sleep the brain 
switches regularly between two states, NREM sleep and REM sleep, which have distinct and complementary roles in the whole 
process. We posit that during NREM sleep slow oscillations various recovery processes, such as cellular maintenance or synaptic 
renormalisation, take place at the level of specific functionally interconnected networks. During an activated, wake-like brain 
state—REM sleep—neural networks that have obtained the necessary recovery during preceding NREM sleep are “selected” 
to be excluded from further recovery process. The remaining networks undergo recovery processes during the following 
NREM sleep episode. The animal wakes up spontaneously when the recovery is deemed complete for most essential networks, 
rendering the brain ready for optimal functioning during wakefulness.
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in theory last indefinitely, unless interrupted by external 
stimulation or spontaneously generated bursts of activity. 
With time, as experiences accumulate and neural circuits 
become better established and more refined, as facilitated 
initially by spontaneously generated patterns of motor 
activity (Blumberg 2010; Blumberg and others 2013), it 
becomes possible to perform the selection function in a 
more efficient manner. This would lead to a reduced dura-
tion of REM sleep with age.

Is REM Sleep Necessary for the 
Selection Process?

Both human and animal studies have shown that total 
sleep deprivation as well as selective deprivation of REM 
sleep are usually followed by a compensatory increase in 
REM sleep, although the effects reported are less consis-
tent or smaller compared to the changes in NREM SWA 
(Benington and others 1994; Benington and others 1995; 
Endo and others 1997; Endo and others 1998; Franken 
2002; Franken and others 1991; Vyazovskiy and others 
2002; Werth and others 2002b). Moreover, some studies 
suggested that REM sleep can be largely eliminated phar-
macologically without apparent consequences, at least 
with respect to learning and memory (Vertes and Eastman 
2000). This raises a question as to whether REM sleep in 
general, and the proposed selection process in particular, 
is necessary at all. In our opinion, if it were redundant, it 
should be possible to eliminate REM sleep without affect-
ing other brain states. However, the EEG in both waking 
and NREM sleep has been altered in phenelzine-treated 
patients (Landolt and Gillin 2002). Also, in rats, antide-
pressants that suppressed REM sleep also reduced EEG 
spindles at NREM-REM sleep transitions (Watts and oth-
ers 2012), whereas selective REM sleep deprivation led 
to a reduction of SWA in NREM sleep (Benington and 
others 1994). Moreover, selective REM sleep deprivation 
in humans enhanced muscle atonia in NREM sleep 
(Werth and others 2002a). These studies suggest that 
REM sleep loss affects other states, although it is yet to 
be investigated whether the changes observed reflect 
physiological compensatory processes or a disruption in 
the normal regulation of brain states, which is maladap-
tive or pathological.

It cannot be excluded that the recovery and selection 
processes can occur concurrently, but only if different 
networks can undergo them independently, such as if they 
are located in different parts of the brain, or in light sleep 
stages only, toward the end of sleep period, when most 
brain networks have already recovered. Obviously, this 
imposes serious limitations on the extent to which the two 
processes can overlap in time and in space. It is likely that 
the emergence of two distinct sleep states—NREM sleep 
and REM sleep—separated from each other and from 

wakefulness, was necessary to ensure minimal interfer-
ence between the functions of recovery and selection. 
The reasoning is that if the selection function were to 
occur in NREM sleep, it would likely be happening at the 
expense of its recovery function. On the other hand, intru-
sion of either recovery or selection processes into waking 
could in mild cases result in temporarily impaired behav-
ioral performance (Vyazovskiy and others 2011), whereas 
in more severe cases could dramatically disrupt normal 
waking. It is tempting to suggest that some sleep disor-
ders, such as narcolepsy (Saper and others 2010), or para-
somnias, such as confusional arousals, REM sleep 
behavior disorder, sleep walking, or dream intrusions 
(Collerton and others 2005; Mahowald and others 2011; 
Terzaghi and others 2009; Terzaghi and others 2012), 
may ultimately arise from a breakdown of the proposed 
selection process. We would like to stress again that in 
such cases both NREM and REM sleep would be affected. 
Moreover, the manner in which this breakdown would be 
manifested can potentially take many different forms, 
from hallucinations, dreams enactment, and lack of mus-
cle atonia during REM sleep in fatal familial insomnia 
(Montagna and Lugaresi 2002), to altered representation 
of oneself and the outside world in psychiatric disorders 
(Benca 1996; Peterson and Benca 2006; Wulff and others 
2010).

Summary

In this Hypothesis article, we proposed a novel concep-
tual framework, according to which the phenomena 
occurring during sleep at many different spatial and tem-
poral scales are causally interrelated (Fig. 6). We propose 
that after intense waking activity, all or most neurons in 
the neocortex need to express the slow oscillation to 
obtain “recovery” from preceding waking activity. During 
the up state of the slow oscillation, information transfer 
and synaptic plasticity, such as synaptic renormalization, 
take place within specific functionally interconnected 
neuronal networks. In turn, the down state allows for var-
ious cellular maintenance processes to occur. We hypoth-
esize that within an individual NREM sleep episode, slow 
waves occur one after another until all functionally inter-
connected neuronal networks express a certain minimal 
number of uninterrupted slow oscillations, as dictated by 
their need for “recovery.” This would terminate the epi-
sode of NREM sleep. Regular excursions into REM sleep 
play the role of a selection mechanism that determines 
which brain networks have already recovered and are 
ready for optimal functioning during waking. We hypoth-
esize that the alternation of NREM and REM sleep epi-
sodes occurs throughout the entire sleep period, until all 
cortical networks have recovered from preceding waking 
(NREM sleep), and are selected to be excluded from 
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further recovery based on their offline performance 
(REM sleep). Thus, we propose that while the overall 
role of sleep is to ensure an optimal behavioral perfor-
mance during subsequent waking, different kinds of 
sleep provide a distinct complementary contribution. 
Such an elaborate process is necessary given the com-
plexity of the anatomical brain circuitry, the heterogene-
ity and functional specialization of the cortical networks, 
and to ensure that the process of recovery provided to 
specific brain networks is tailored to their preceding 
activity. This two-stage process, while providing an 
enormous evolutionary advantage and flexibility, likely 
appears prone to malfunction. We suggest that its break-
down may be a fundamental mechanism underlying 
many pathological conditions, from parasomnias to 
psychoses.
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