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Abstract: Self-attention networks have revolutionized the field of natural language processing and
have also made impressive progress in image analysis tasks. Corrnet3D proposes the idea of first
obtaining the point cloud correspondence in point cloud registration. Inspired by these successes,
we propose an unsupervised network for non-rigid point cloud registration, namely NrtNet, which
is the first network using a transformer for unsupervised large deformation non-rigid point cloud
registration. Specifically, NrtNet consists of a feature extraction module, a correspondence matrix
generation module, and a reconstruction module. Feeding a pair of point clouds, our model first
learns the point-by-point features and feeds them to the transformer-based correspondence matrix
generation module, which utilizes the transformer to learn the correspondence probability between
pairs of point sets, and then the correspondence probability matrix conducts normalization to obtain
the correct point set corresponding matrix. We then permute the point clouds and learn the relative
drift of the point pairs to reconstruct the point clouds for registration. Extensive experiments on
synthetic and real datasets of non-rigid 3D shapes show that NrtNet outperforms state-of-the-art
methods, including methods that use grids as input and methods that directly compute point drift.

Keywords: NrtNet; self-attentive; transformer; unsupervised; non-rigid point cloud; registration

1. Introduction

The 3D object has better flexibility, and with the continuous development of 3D
sensing technology in recent years, the 3D point cloud has been widely used in various
fields, such as virtual reality [1], autonomous driving [2], and augmented reality [3]. Since
LIDAR scanned point clouds do not correspond with each other, this great inconveniences
downstream tasks of point cloud classification [4,5], segmentation [6,7], registration [8,9],
and reconstruction [10,11].

Non-rigid point cloud registration can be divided into similar registration [12,13]
and affine registration [14,15]. Similar registration is mostly based on ICP to improve the
registration of point clouds by changing the optimization objective function and increasing
the correspondence, while affine registration ensures that the parallelism between the
lines remains unchanged during the transformation process. Corrnet3D [16] proposes an
alignment idea of finding the correspondence between the point clouds first, and then
reconstructing the point clouds, which gives us inspiration. However, most of these
methods require large-scale labeled data. Labeled data requires a lot of time and cost,
which also promotes the development of unsupervised methods. In our work, we focus on
unsupervised large deformation non-rigid point cloud registration, which means that only
3D point cloud data is required as input.

Figure 1 illustrates our idea that if we can align two sets of point clouds A and B,
the registration process between the point clouds becomes easy. We permutate the point
clouds by a transformer because the transformer is better at handling natural language

Sensors 2022, 22, 5128. https://doi.org/10.3390/s22145128 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22145128
https://doi.org/10.3390/s22145128
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5715-3380
https://orcid.org/0000-0001-9129-534X
https://doi.org/10.3390/s22145128
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22145128?type=check_update&version=1


Sensors 2022, 22, 5128 2 of 16

correspondences [17,18]. We design a reconstruction module to reconstruct Are order ∈ Rn×3

to B, which is more meaningful than reconstructing directly from A to B.

Figure 1. The idea of our proposed NrtNet. The point cloud is first rearranged using transformer,
and then the permuted point cloud is reconstructed to achieve the registration.

Based on the above idea, we propose an unsupervised transformer-based registration
network (NrtNet) for large deformation non-rigid point clouds. We propose a transformer-
based permutation process. Specifically, this permutation process uses the encoder and
decoder of the transformer to generate a point set correspondence matrix, which represents
the correspondence between the source point cloud A and target point cloud B. During the
training process, the global features of the target point cloud and the permutation source
point cloud Are order are fed to the reconstruction module to obtain the reconstructed point
cloud. The reconstruction module drives the learning of the correspondence matrix and
the relative drift by optimizing the reconstruction error and additional regularization terms
to achieve registration.

In general, our main contributions are:

• We propose a transformer-based point cloud correspondence learning framework
for learning dense correspondences between point clouds, and we are the first to
introduce a transformer into the field of non-rigid point cloud registration.

• Our network eliminates the reliance on ground truth and achieves unsupervised
learning of non-rigid point cloud registration in an end-to-end manner, and has a
better registration effect for different objects.

• Experiments demonstrate that NrtNet has significant advantages in non-rigid point
cloud registration. In particular, it is superior to methods that directly compute the
drift of coherent points between point clouds and methods that use a grid as input.

2. Related Work

In this section, we introduce the application of point clouds in deep learning, the
study of non-rigid point cloud registration, and the development of transformer-based
deep learning.

2.1. Deep Learning on Point Cloud

Compared with well-developed image-based deep learning methods, point cloud-
based deep learning methods are more challenging and still in the developing stage due
to the irregularity and disorder of point clouds. Three-dimensional data can be displayed
in various forms, such as 2D multi-views, unstructured point clouds, voxelized volumes,
etc. Voxelization methods convert 3D data into regular volume occupancy voxels, resulting
in structured volumes that are well suited for 3D CNNs. Early point cloud tasks used
end-to-end 3D convolutional networks [19–21]. Due to the sparse volume of 3D data and
expensive 3D convolutions, voxelized representations are limited by resolution, and [22,23]
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effectively solve the voxelized resolution problem. Qi et al. [24] projected 3D data into
multiple 2D views and used the popular 2D CNN to process it.

PointNet [25] learns features directly from the point cloud, maps the point cloud to
higher dimensions before aggregation, and takes symmetry operations in higher dimen-
sions. Mapping to higher dimensions generates redundant information, which can be
captured by maximization operations to avoid geometric information loss. PointNet only
uses MLP and max-pooling and does not have the ability to capture local structural defects,
which PointNet++ [26] improves upon. DGCNN [27] designs an EdgeConv that can effi-
ciently extract features of local shapes of point clouds while still maintaining alignment
invariance. Later, researchers investigated the use of merged features to represent the
overall features and pointwise features [26] or more sophisticated RNN-based methods to
extract features [28,29]. MortonNet [30] extracts more effective features based on learning
an ordered sequence of point clouds. FoldingNet [31] learns to deform predefined 2D
regular meshes into 3D shapes, AtlasNet [32] and 3D-Coded [33] are also based on the
deformation of their networks, and they use fixed template deformations to reconstruct the
point cloud or mesh.

2.2. Non-Rigid Point Cloud Registration

The development of registration optimization algorithms has attracted the attention
of many researchers, and these algorithms are used to refine geometric transformations
during iterations. The Iterative Closest Point (ICP) algorithm [34] is a classic case in rigid
registration. The ICP initializes the estimation of the rigidity function and then iteratively
selects the corresponding point to revise the transformation. However, ICP is not able to
handle non-rigid point cloud variations efficiently due to the influence of initial values.
Non-rigid point cloud registration can be divided into parametric registration and non-
parametric registration by target transformation. The TPS-RSM algorithm [35] in parametric
registration estimates the parameters of the non-rigid transformation with the penalty of
the second derivative.

For classical nonparametric methods, coherent point drift (CPD) [36] introduces a
process of fitting a Gaussian mixed likelihood that aligns the source point set with the target
point set. Ma et al. [37] proposed the importance of exploiting local and global structures
in non-rigid point set registration. CPD-Net [38] uses deep neural networks to fit functions
that can adapt to geometric transformations of varying complexity. DispVoxNets [39]
converts point clouds to voxels for nonlinear deformation in a supervised manner. PR-
Net [40] introduces point-set shape features that determine the correlation between the
source and target point set to predict the transformation, allowing source and target point
sets to be statistically aligned. CorrNet3D [27] uses a new efficient de-smoothing module to
optimize the point set pairs with better results. Ma et al. [41] used a robust transformation
estimation method based on streamwise regularization for non-rigid point set registration,
and the spatial transformation between two point sets is estimated by iteratively recovering
the point correspondence. However, all extant methods do not perform well for point cloud
registration with large deformations, and most of them rely on ground truth. These methods
also work poorly for data with non-corresponding point sets. Our method eliminates the
reliance on ground truth and has better registration results for large deformations and
non-corresponding data sets.

2.3. Deep Learning Based on Transformer

CNN is a standard network model in computer vision [42], with the introduction
of AlexNet [43], CNN began to become the dominant network model. Transformer and
Self-Attention models revolutionized natural language processing [44,45], and some studies
used Self-attention and Transformer to replace some or all of the spatial convolutional
layers in the popular ResNet [46]. The encoder-decoder design in Transformer has recently
been applied to object detection and instance segmentation tasks [47], and ViT [48] directly
applies transformer to non-overlapping medium-sized image blocks for image classification.
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AiR [49] is the first transformer-based image registration method. Point Transformer [50]
is the first to introduce a transformer into the 3D point cloud domain, proposes a highly
expressive point transform layer, and uses transformer to construct a high-performance
point transform network for point cloud classification and dense prediction. Point Cloud
Transformer [51] proposes a new transformer-based point cloud learning framework PCT,
and uses implicit Laplace operators and normalized refinement to offset attention. Our
method uses the transformer to derive correspondences between points to improve the
effectiveness of the final registration.

3. Framework
3.1. Overview

As shown in Figure 2, NrtNet is composed of three modules: the feature extraction
module, the transformer module, and the point cloud reconstruction module. Firstly, in
order to get the point cloud features, the source point cloud A ∈ Rn×3 and the target
point cloud B ∈ Rn×3 are fed into the point cloud feature extraction module to generate
point cloud features Fa ∈ Rn×d and Fb ∈ Rn×d, where d is the feature dimension, the
pointwise feature of the point cloud is obtained by setting d to the same dimension as
the number of point clouds. After that, the pointwise features Fa and Fb are fed into the
transformer module, which finds the correspondence between the source and target point
clouds. The point set correspondence matrix P ∈ Rn×n is obtained to represent the point
set correspondence, the parameter pij = 1 of P represents the i-th point ai of the source
point cloud and the j-th point bj of the target point cloud. The transformer module is
composed of a transformer encoder and a transformer decoder. The source point cloud A is
permuted using P to obtain Are order ∈ Rn×3. Finally, the global features of the target point
cloud Vb ∈ Rd and the permuted source point cloud Are order are fed into the reconstruction
module to obtain Alast, which is similar to the target point cloud B. The global features Vb
are aggregated from the pointwise features. As in most papers, we optimize our model
parameters by minimizing the similarity between the reconstructed point cloud and the
target point cloud. To better learn the correspondence between point sets, we regularize
the point cloud correspondence matrix and then minimize it to obtain the optimal point set
correspondence. We can express it as follows:

Moptimal = argmin
(
‖B− Alast‖2

F + ‖A− Blast‖2
F + G(P)

)
, (1)

where Alast ∈ Rn×3 and Blast ∈ Rn×3 are the point clouds after the registration, and ‖.‖F
represents the Frobenius parametric matrix. G(P) is a regularization operation on the
corresponding matrix.

Figure 2. NrtNet is an unsupervised, end-to-end network for non-rigid point cloud registration. The
source point cloud A ∈ Rn×3 and the target point cloud B ∈ Rn×3 are fed into the feature extraction
module and the transformer module to generate the point set correspondence matrix P ∈ Rn×n.
Then, the permuted point cloud is fed into the reconstruction module to generate the exact same
point cloud Alast as B, which achieves the purpose of registration.
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3.2. Feature Extraction Module

For the feature extraction module, instead of using the traditional PointNet and
PointNet++, we use a DGCNN with shared parameters to map points A and B to high-
dimensional features. DGCNN uses edge convolution, EdgeConv to dynamically build
graph structures on each layer of the network, using each point as a centroid to charac-
terize its edge with each neighboring point feature, and then aggregates these features
to obtain a new representation of that point. Firstly, DGCNN defines the edge feature
representation as:

eij = h
(
xi, xi − xj

)
(2)

where h is that the edge convolution operation considers both the global information xi ,
and the local neighborhood information xi − xj, and xi ∈ R1×d is the feature extracted by
the i-th point fed into the edge convolution. Then, aggregating the edge features to obtain
the feature el+1

ij over the l-th layer is expressed as:

el+1
ij = χxj∈Ωi h

(
(xi, xi − xj)

)
(3)

where χ indicates that the aggregation operation consists of the MLP and max-pooling, Ω
denotes the set of point-set pairs formed between the remaining points centered at point
xi and the center point. After the multi-layer edge convolution, MLP and max-pooling
operations, we can extract the pointwise features Fa ∈ Rn×d and Fb ∈ Rn×d. The pointwise
features are fed into a max-avg-pooling layer to get the global feature Va ∈ Rd and Vb ∈ Rd,
which prepares for the later reconstruction.

3.3. Transformer Module

Because of the effectiveness of the transformer for word correspondence in NLP, we
use the transformer to correspond to the point set. As shown in Figure 3, the transformer
module consists of three parts: the transformer encoder, the transformer decoder, and
a smooth module. The transformer module inputs the features of the source and target
point clouds to learn the point set correspondence matrix P ∈ Rn×n, which can explicitly
represent the correspondence between any two points in A and B. The pij = 1 in the matrix
represents the i-th point ai of the source point cloud A and the j-th point bj of the target
point cloud B are corresponding. This matrix is an inverted matrix. There are only two
cases of correspondence between source and target point clouds, so this matrix should
have only 0 or 1. The points in the source point cloud should correspond to the points in
the target point cloud one by one, and each row and column of the matrix should have
only one 1. The transformer module uses the transformer to find the similarity between
point clouds, i.e., the probability matrix of the point clouds Prand, which represents the
probability of correspondence between the point clouds. Finally, a smoothing process is
applied to this probability matrix to obtain an exact inverted binary matrix P.

The transformer encoder that references Point Transformer [50] is shown in Figure 4.
The feature f l

i ∈ Rl×d of the i-th point is fed into the standard scalar dot product attention
layer. The standard scalar dot product attention layer is expressed as:

yi = ∑
f a
i ∈Fa

so f tmax
(

γ
(

ϕ( f a
i )

T − ψ( f a
j )
)
+ δ
)

α
(

f a
j

)
(4)

where ϕ, ψ, α is the feature transform layer MLP, δ is a position encoder. γ is a mapping
function. γ as a vector to represent the global features of the point cloud. The mapping
function γ consists of an MLP, two linear layers, and a Relu activation function. Attention
vectors are generated for later feature aggregation, feature transformation of ϕ minus ψ
to obtain the vector relationship between them. Finally, the transformation features yi are
obtained by a softmax regularization function.
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Figure 3. Transformer module. The probability matrix Prand can be obtained by feeding the high-
dimensional features of the point cloud Fa ∈ Rn×d and Fb ∈ Rn×d into the transformer encoder and
transformer decoder, respectively. Then, the probability matrix Prand is fed into the smooth module
to obtain the inverted exact correspondence matrix P.

Due to the disordered nature of point clouds and their irregular embedding in the
entire vector space, self-supervision is performed using the position of the point cloud
itself. The positional encoding δ is added to the transformed feature α. In this way, the
transformation feature is expressed as:

yi = ∑
f a
i ∈Fa(i)

so f tmax
(

γ
(

ϕ( f a
i )

T − ψ( f a
j )
)
+ δ
)
·
(

α( f a
j ) + δ

)
, (5)

where Fa(i) ∈ Fa is the feature of k neighboring points around the sought point f a
i ∈ Rl×d.

Self-attention is applied to each data point in the local domain. In 3D point cloud alignment,
the 3D point cloud itself comes with position information, and the trainable parametric
position encoder can be expressed as:

δ = θ
(

pj − pi
)

, (6)

where pi represent the i-th point, pj represents the j-th point around the i-th point, and θ
has the same structure as γ. This position encoder has good effect enhancement for both
attention generation and feature transformation.

Figure 4. Transformer Encoder. ϕ, ψ is a linear layer, α is an mlp and they are all feature transform
layers, δ is a linear layer which is a position encoder and γ is a mapping function.

As shown in Figure 5, the transformed features are fed into the transformer decoder
and smoothing module to generate the point set correspondence matrix P. First, the
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global features need to be obtained by point-by-point features. The global feature can be
expressed as:

faa =
d

∑
i=1

f a
trans i

2 , fbb =
d

∑
j=1

f b
trans j

2
(7)

each transformed feature f a
trans i is summed to obtain a one-dimensional global feature faa,

so that we can find the global features Faa ∈ Rn×1 and Fbb ∈ Rn×1 of the source and target
point clouds. To obtain the probability matrix, we first obtain the distances of Faa and Fbb.
The distance formula can be expressed as:

Pdis = (Faa · I)T + Fbb · I − 2(Faa · Fbb)
T , (8)

where I is a 1× n unit column vector. Equation (8) returns an n× n point set corresponding
distance matrix. The larger the distance, the smaller the probability they correspond to. The
probability matrix Prand corresponding to its point set is obtained by inverting the distance
matrix. The probability matrix can be expressed as:

Prand =
1

Pdis
, (9)

since there are only two cases for the correspondence of point sets, the probability matrix
cannot effectively represent the correspondence between point sets. It can only represent the
corresponding probability between point sets. We need to smooth this matrix, and we refer
to Corrnet3D. Each row of the probability matrix should follow a normal distribution with
mean µi and variance σi, i.e., prand ij ∼ N

(
µi, σ2

i
)
. In order to better filter the incorrect point

set correspondence, we normalize this normal distribution zij = (prand ij − µi)/σi , zij obeys
the standard normal distribution zij ∼ N(0, 1). Finally, we select the corresponding point
set according to the threshold τ. The number corresponding to the correct point set is znum.
For the points close to the middle, it should find a larger number of corresponding points,
and znum should also obey the normal distribution. It obeys the three-sigma rule. The
probability of the value in [µZnum − 3σZnum , µZnum + 3σZnum ] is 0.9973, which is almost 1. The
softmax operation on znum can be calculated to obtain the correct point set corresponding
matrix P.

Figure 5. Transformer decoder and the smooth module. These two modules convert the transformed
features obtained from the transformer encoder into an exact point set correspondence matrix.

3.4. The Reconstruction Module

When the correct correspondence labels between point cloud A and B are given, the
shape feature relationship between them can be learned well, and thus it is easy to learn
the amount of drift between point sets. FoldingNet [31] and AtlasNet [32] reconstruct the
global features by stitching point on top of the 2D grid. CPD-Net [38] learns point-to-point
drift by concatenating point and global features. As shown in Figure 6, the reconstruction
module based on point correspondence is proposed.
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Point clouds A and B are permuted by the point set correspondence matrix P. A and
B after permuting can be expressed as:

Are order = PT A , Bre order = PB (10)

The permuted source point cloud Are order correspond to the point of B one by one, so
that the large deformation registration can be learned, which CPD-Net cannot learn. The
relative drifts between Are order and B are learned by using the global features. As shown
in Figure 6, Are order and the global feature Vb ∈ Rd are concatenated, and then the drift
of each point is learned through three MLPs. The reconstructed point cloud Alast is the
source point cloud A plus the drift. The module is able to efficiently learn the drift between
points for the purpose of registration. The reconstruction module learns a displacement
field function to estimate the geometric transformations and is able to predict the geometric
transformations of the alignment between positional objects.

Figure 6. The reconstruction module concatenates the global features vb of the target point cloud to
each permuted point cloud Are order, and feeds them into the MLP to reconstruct the point cloud Alast.

3.5. Unsupervised Loss Function

The source point cloud Alast should be similar to the target point cloud B after reg-
istration. The Euclidean distance loss between Blast and A is added to the standard loss,
which can better learn the relationship between A and B. According to the similarity of the
source and target point clouds after deformation, the distance loss is expressed as:

Ldis = ‖B− Alast‖2 + ‖A− Blast‖2 (11)

Since the points in A and B should be in one-to-one correspondence, their correspon-
dence matrix should be an inverted matrix. The transpose of the inverted matrix and its
own dot product should be infinitely close to the unit matrix. Based on this property, the
matrix optimization loss formula is expressed as:

Lmat =
∥∥∥PT P− In

∥∥∥2
, (12)

where P is the correspondence matrix. In is an n× n unit matrix.
There are similar local features between the target point cloud B and the source point

cloud after the permutation Are order, and similarly the source point cloud A and the target
point cloud after the permutation Bre order also have similar local features. Based on this
property, the proximity similarity loss is expressed as:

Lpro =
n

∑
i=1

 ∑
k∈Ωa

i

∥∥bre i − bre j
∥∥2

2

‖ai − ak‖2
2

+ ∑
l∈Ωb

i

∥∥are i − are j
∥∥2

2

‖bi − bl‖2
2

 , (13)
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where Ωa
i represents the set of k indexes around the i-th point in A, bre i ⊂ Bre order and

are i ⊂ Are order are the points after rearrangement.
Finally, we aggregate these losses and the final loss is expressed as:

L = Ldis + λLmat + ηLpro , (14)

where λ and η > 0 are superparameters to regulate the balance between several losses.

4. Experiment

In this section, the experimental results of NrtNet’s non-rigid point cloud registration
are presented. Details of the dataset and laboratory parameters used for training and
testing are described in Section 4.1, and a brief introduction to the experimental evaluation
method. In Section 4.2, a comparison of rigid point cloud registration results from different
networks is discussed. In Section 4.3, the experimental results of non-rigid body methods
in rigid registration are discussed. In Section 4.4, the registration results of NrtNet on small
deformation datasets are presented. In Section 4.5, the effects of different losses on the
experiments are compared. In Section 4.6, we show the registration effect of NrtNet on real
scan data.

4.1. Experimental Setup

Dataset. We use the 200k sampled dataset from Surreal [33] as the unsupervised
training datasets, and divide these 200k datasets into 100 random pairs for registration
training. We used the 300 pairs dataset from Shrec [52] as the test dataset. We downsampled
Shrec’s dataset to 1024 grids and took the grid vertices as input to keep the variables
constant. In order to compare the robustness of different datasets, we used the dataset of
Bednarik, J et al. [53]including small deformation datasets of paper, tshirt, sweater, and
cloth to learn for different data to ensure the reliability of NrtNet.

Evaluation. We reviewed a large amount of information on whether CPD-Net [38],
DispVoxNets [39], or other articles such as PR-Net [40] have most of the evaluations as
direct comparison of CD loss or subjective comparisons of the experimental result plots
after registration. Almost none of them had registration again by finding correspondence
for point pairs like we do, so we refer to Corrnet3D’s [16] evaluation method to evaluate
the goodness of the model based on whether the point set corresponds to each other or not.
The point correspondence rate is expressed as:

Prate =
1
n
∥∥P ◦ Pgt

∥∥
1 , (15)

where ◦ is the Hadamard product and ‖·‖1 is the parametric matrix. Pgt is the ground truth
of the point set corresponding to the matrix. We set the percentage of correct correspon-
dence under different tolerances to compare the pros and cons of the method. The point
correspondence rate under different fault tolerance is expressed as:

Pcorr =
r

max
{∥∥ai − aj

∥∥
2 | ∀i, j

} , (16)

where r is the error tolerance radius.
Experimental parameters and configuration. We set the superparameter λ = 0.1 and

η = 0.01. Our method was implemented in pytorch and our evaluation system was trained
and tested on an NVIDIA GTX 1080 GPU. The learning-rate was 1 × 10−4, batchsize was
two, and we trained 50 epochs on the large Surreal dataset [33] and 500 epochs on the small
deformed dataset [53].
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4.2. Experimental Evaluation of Non-Rigid Point Cloud Registration

NrtNet was compared with unsupervised FlowNet3D [54], unsupervised Corrnet3D [16],
and unsupervised CPD-Net [38]. Figure 7 and Table 1 show a quantitative comparison of
different methods, it can be seen that our method consistently outperforms other unsu-
pervised methods. In particular, we have more significant performance advantages when
comparing FlowNet3D and CPD-Net, and we also have some performance improvements
when comparing Corrnet3D. The point set correspondence rate of CPD-Net is low, and
the registration effect is poor for large deformation datasets. The point set correspondence
rate of CPD-Net is low, and the registration effect is poor for large deformation datasets.
Although FlowNet3D has a high correspondence rate, its registration effect is very depen-
dent on the dataset, and some test datasets have a good registration effect, while some test
datasets have a poor registration effect. Only NrtNet and the recently published Corrnet3D
have better registration results. Because NrtNet uses a transformer that is better than
Corrnet3D in point correspondence, it can still achieve better registration results for some
datasets with larger deformations.

Table 1. Point set correspondence rates of different methods under different fault tolerance rates in
non-rigid point cloud registration.

Method 0% Error Tolerance 10% Error Tolerance 20% Error Tolerance

CPD-Net 0.3311 6.8212 24.8963
FlowNet3D 1.2133 19.7614 41.3494
Corrnet3D 2.0494 25.68 48.8636

NrtNet 2.6889 30.0429 51.8758

Figure 7. Quantitative comparison of point set correspondence rates for non-rigid registration under
different methods.

Figure 8 shows the qualitative comparison results. NrtNet suffers less from unsu-
pervised large-deformation non-rigid point cloud registration and can generate a point
cloud with accurate correspondence. In contrast, CPD-Net and FlowNet3D are affected by
large deformation, which makes their correspondence deviate and cannot achieve effective
registration when the target point cloud varies greatly from the source point cloud. NrtNet
learns the point set correspondence between the target and source point cloud, and thus
can effectively make the registration effect better. Our network can further enhance the
robustness to the degree of deformation by learning the specific type.
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Figure 8. In a qualitative comparison between Nrtnet and other methods in a large deformed
human pose, the experiments show the effectiveness of different methods for non-rigid point cloud
registration.

4.3. Experimental Evaluation of Rigid Point Cloud Registration

We use the non-rigid registration method to register the rigid point cloud, and compare
the effect of our method with FlowNet3D, Corrnet3D, and CPD-Net on the rigid point
cloud registration. Figure 9 and Table 2 show our method and other methods compared
with different fault tolerances. It can be seen from the table that our method has the best
results under the same fault tolerance, Corrnet3D has a great improvement for FlowNet3D,
and our method also has improvement for Corrnet3D. Compared with non-rigid point
cloud registration, the unsupervised registration effect of CPD-Net in rigid point cloud
registration has little improvement, while our method NrtNet has better registration effect
and non-rigid point cloud registration in rigid point cloud registration.

Table 2. Point set correspondence rates of different methods under different fault tolerance rates in
rigid point cloud registration.

Method 0% Error Tolerance 10% Error Tolerance 20% Error Tolerance

CPD-Net 0.1769 9.6191 24.286
FlowNet3D 10.8945 71.5576 90.368
Corrnet3D 12.4062 80.895 95.61

NrtNet 12.7793 85.6191 96.247

Figure 9. Quantitative comparison of point set correspondence rates for rigid registration under
different methods.
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4.4. Comparison between Different Datasets

Nrtnet was tested on the dataset of Bednarik, J et al. [53] for learning and registration
to test the stability on different datasets. The dataset was divided into a training set and
a test set in a ratio of 8:2. As shown in Figure 10, NrtNet has better registration for small
deformation datasets, not only for learning the deformation part efficiently, but also for rigid
transformations of deformed point clouds. NrtNet not only has a good registration effect
on large deformation datasets, but also has good registration effects on small deformation
datasets compared with existing methods. This makes the registration more efficient to first
obtain the point set correspondence through the transformer.

Figure 10. Registration performance of Nrtnet in small deformation dataset paper, cloth, sweater,
and t-shirt.

4.5. Comparison of Different Losses

In the experiment, we compared the difference between the Euclidean distance Ldis
and the CD Loss, and we also showed the improvement of the Euclidean distance and the
cd distance by adding optimization losses Lmat + Lpro. Figure 11 and Table 3 show the
point-set correspondence rate at different losses, and it can be seen that the loss of NrtNet
achieves the best results with the same fault tolerance. It can be seen that the improvement
of Lmat + Lpro to Ldis is very obvious by comparing Ldis and Ldis + Lmat + Lpro. When
CDloss and Ldis are compared separately, CDloss has a certain improvement. When CDloss
and CDloss +Lmat +Lpro are compared separately, Lmat +Lpro have little effect on CDloss,
and the increase in correspondence rate is minimal. Experiments show that the loss of
NrtNet can achieve the best experimental results.

Table 3. Correspondence rates of point sets for different losses under different error tolerance rates.

Loss 0% Error Tolerance 10% Error Tolerance 20% Error Tolerance

Ldis 0.0214 2.4287 16.081
CDloss 0.0879 6.3662 24.9873

CDloss + Lmat + Lpro 0.1045 6.7686 30.7441
Ldis + Lmat + Lpro 12.7793 85.6191 96.247
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Figure 11. The point set correspondence rate under different losses. The experiments qualitatively
compare the correspondence differences between NrtNet’s losses and ordinary losses.

4.6. Real Scan Data

This section shows the effect of NrtNet registration on real data. The experiments used
Shrec’s human real scan dataset [52], and since the experiments were conducted without
ground truth, it is hard to qualitatively evaluate the effects of the experiments. Figure 12
shows the final registration results of the experiments for a rational analysis of the results.
NrtNet is able to effectively align the point cloud actions and shapes, and NrtNet is able to
align any data without ground truth. As shown in Figure 12, The same color represents the
correspondence of point sets, and NrtNet has better results for the correspondence of point
set pairs. Although there are registration errors in some details, the experimental results
are already much better than traditional non-rigid registration networks. The results are
able to have better registration results for each movement.

Figure 12. The registration effect of NrtNet on the real scan data.
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5. Conclusions

We propose NrtNet, an unsupervised transformer-based registration architecture,
which can learn the correspondence between pairs of large deformed point sets to effec-
tively improve registration performance. NrtNet is much better than FlowNet3D in large
deformation point cloud registration, and also significantly outperforms the state-of-the-art
Corrnet3D. This shows that NrtNet can be used for most large deformation registration
applications. We also show registration results on real scan data in the absence of ground
truth, and still have good registration results. NrtNet has taken a long term step in large
deformation non-rigid point cloud registration and eliminates the reliance on ground truth
to conduct non-rigid point cloud registration.

In future work, NrtNet can be extended to voxels for non-rigid point cloud registration.
Our correspondence may be inappropriate for the correspondence between points that
are far apart. For this, we will sort the point cloud in future experiments and then use
the transformer to do the point set correspondence, which corresponds to the word in
NLP. Similarly, we believe that the registration effect can be improved to a certain extent
after doing so. We believe that NrtNet can bring some help to other large scene point
cloud registration, as well as human motion analysis and animal and plant growth analysis.
Meanwhile, the model size of NrtNet can be further optimized to reduce training time.
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