
NS Simulator for Beginners

Synthesis Lectures on
Communication Networks

Editor
Jean Walrand, University of California, Berkeley

Synthesis Lectures on Communication Networks is an ongoing series of 50- to 100-page publications

on topics on the design, implementation, and management of communication networks. Each

lecture is a self-contained presentation of one topic by a leading expert. The topics range from

algorithms to hardware implementations and cover a broad spectrum of issues from security to

multiple-access protocols. The series addresses technologies from sensor networks to

reconfigurable optical networks.

The series is designed to:

• Provide the best available presentations of important aspects of communication networks.

• Help engineers and advanced students keep up with recent developments in a rapidly

evolving technology.

• Facilitate the development of courses in this field.

NS Simulator for Beginners
Eitan Altman and Tania Jiménez

2011

Network Games: Theory, Models, and Dynamics
Ishai Menache and Asuman Ozdaglar

2011

An Introduction to Models of Online Peer-to-Peer Social Networking
George Kesidis

2010

Stochastic Network Optimization with Application to Communication and Queueing
Systems
Michael J. Neely

2010

iii

Scheduling and Congestion Control for Wireless and Processing Networks
Libin Jiang and Jean Walrand

2010

Performance Modeling of Communication Networks with Markov Chains
Jeonghoon Mo

2010

Communication Networks: A Concise Introduction
Jean Walrand and Shyam Parekh

2010

Path Problems in Networks
John S. Baras and George Theodorakopoulos

2010

Performance Modeling, Loss Networks, and Statistical Multiplexing
Ravi R. Mazumdar

2009

Network Simulation
Richard M. Fujimoto, Kalyan S. Perumalla, and George F. Riley

2006

Copyright © 2012 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in

printed reviews, without the prior permission of the publisher.

NS Simulator for Beginners

Eitan Altman and Tania Jiménez

www.morganclaypool.com

ISBN: 9781608456925 paperback

ISBN: 9781608456932 ebook

DOI 10.2200/S00397ED1V01Y201112CNT010

A Publication in the Morgan & Claypool Publishers series

SYNTHESIS LECTURES ON COMMUNICATION NETWORKS

Lecture #10

Series Editor: Jean Walrand, University of California, Berkeley

Series ISSN

Synthesis Lectures on Communication Networks

Print 1935-4185 Electronic 1935-4193

www.morganclaypool.com

NS Simulator for Beginners

Eitan Altman
INRIA, Sophia Antipolis, France

Tania Jiménez
LIA, University of Avignon, France

SYNTHESIS LECTURES ON COMMUNICATION NETWORKS #10

C
M
&

cLaypoolMorgan publishers&

ABSTRACT
NS-2 is an open-source discrete event network simulator which is widely used by both the research

community as well as by the people involved in the standardization protocols of IETF. The goal of

this book is twofold: on one hand to learn how to use the NS-2 simulator, and on the other hand,

to become acquainted with and to understand the operation of some of the simulated objects using

NS-2 simulations.The book is intended to help students, engineers or researchers who need not have

much background in programming or who want to learn through simple examples how to analyse

some simulated objects using NS-2. Simulations may differ from each other in many aspects: the

applications, topologies, parameters of network objects (links, nodes) and protocols used, etc. The

first chapter §1 is a general introduction to the book, where the importance of NS-2 as a tool for a

good comprehension of networks and protocols is stated. In the next chapters (§4, §5, §6, §7, §8 and

§9) we present special topics as TCP, RED, etc., using NS-2 as a tool for better understanding the

protocols. We provide in the appendices a review of Random Variables §A and Confidence Intervals

§B, as well as a first sketch for using the new NS-3 simulator §C.

KEYWORDS
NS-2 simulator, TCP simulation, simulation traces, network simulation, tcl

vii

To our children Einat and Daniel.

ix

Contents

Preface . xiii

1 Introduction .1

1.1 NS-2 as a tool for designing Internet protocols . 1

1.2 NS-2, NS-3 and other simulators . 2

1.3 Further background on NS-2 simulator . 5

1.4 Tcl and Otcl programming . 6

2 NS-2 Simulator Preliminaries . 13

2.1 Initialization and termination . 13

2.2 Definition of a network of links and nodes . 14

2.3 Agents and applications . 17

2.3.1 FTP over TCP . 17

2.3.2 CBR over UDP . 18

2.3.3 UDP with other traffic sources . 19

2.4 Scheduling events in NS-2 . 19

2.5 Visualisation using nam . 22

2.6 Tracing . 24

2.6.1 Tracing objects . 24

2.6.2 Structure of trace files . 24

2.6.3 Tracing a subset of events . 26

2.7 Random Variables . 26

2.7.1 Seeds and generators . 26

2.7.2 Creating Random Variables in NS-2 . 27

3 How to work with trace files . 31

3.1 Processing data files with awk . 31

3.2 Using grep . 33

3.3 Processing data files with perl . 33

3.4 Plotting with gnuplot . 35

3.5 Plotting with xgraph . 36

3.6 Extracting information within a tcl script . 37

x

4 Description and simulation of TCP/IP . 39

4.1 Description of TCP . 39

4.1.1 Objectives of TCP and window flow control . 39

4.1.2 Acknowledgements . 39

4.1.3 Dynamic congestion window . 41

4.1.4 Losses and a dynamic threshold Wth . 41

4.1.5 Initiating a connection . 41

4.2 Tracing and analysis of Example ex1.tcl . 42

4.3 TCP over noisy links and queue monitoring . 43

4.4 Creating many connections with random features . 48

4.5 Short TCP connections . 51

4.6 Advanced monitoring tools . 59

4.7 Exercises . 63

5 Routing and network dynamics . 65

5.1 Unicast routing . 65

5.2 Network dynamics . 68

5.3 Multicast protocols . 68

5.3.1 The Dense mode . 69

5.3.2 Routing based on a RV point . 69

5.4 Simulating multicast routing . 70

5.4.1 DM mode . 73

5.4.2 Routing with a centralized RV point . 73

5.5 Observations on the simulation of pimdm.tcl . 75

5.6 Exercises . 76

6 RED: Random Early Discard . 77

6.1 Description of RED . 77

6.2 Setting RED parameters in NS-2 . 78

6.3 Simulation examples . 79

6.3.1 Drop tail buffer . 79

6.3.2 RED buffer with automatic parameter configuration 84

6.3.3 RED buffer with other parameters . 88

6.4 Monitoring flows . 88

6.5 Exercises . 94

xi

7 Differentiated Services . 95

7.1 Description of assured forwarding Diffserv . 95

7.2 MRED routers . 96

7.2.1 General description . 96

7.2.2 Configuration of MRED in NS-2 . 96

7.2.3 TCL querying . 97

7.3 Defining policies . 98

7.3.1 Description . 98

7.3.2 Configuration . 99

7.3.3 TCL querying . 99

7.4 Simulation of diffserv: protection of vulnerable packets . 100

7.4.1 The simulated scenario . 100

7.5 Simulation results . 108

7.6 Discussions and conclusions . 109

7.7 Exercises . 110

8 Mobile Networks and Wireless Local Area Networks . 111

8.1 The routing algorithms . 112

8.1.1 Destination Sequenced Distance Vector - DSDV 112

8.1.2 Ad-hoc On Demand Distance Vector - AODV . 112

8.1.3 Dynamic Source Routing - DSR . 113

8.1.4 Temporally Ordered Routing Algorithm - TORA 114

8.2 Simulating mobile networks . 115

8.2.1 Simulation scenario . 115

8.2.2 Writing the tcl script . 115

8.3 Trace format . 117

8.4 Analysis of simulation results . 121

8.5 Comparison with other ad-hoc routing . 122

8.5.1 TCP over DSR . 122

8.5.2 TCP over AODV . 123

8.5.3 TCP over TORA . 124

8.5.4 Some comments . 125

8.6 The interaction of TCP with the MAC protocol . 125

8.6.1 Background . 125

8.6.2 The simulated scenario . 126

8.6.3 Simulation results . 129

8.7 Exercises . 132

xii

9 Classical queueing models . 133

9.1 Simulating an M/M/1, M/D/1 and D/M/1 queues . 133

9.2 Finite queue . 136

9.3 Exercises . 137

10 Tcl and C++ linkage . 139

A Appendix I: Random variables: background . 145

B Appendix II: Confidence intervals . 149

C Appendix III: A small overview on NS-3 . 151

C.1 Initialization and termination in NS-3 . 151

C.2 Definition of a network topology in NS-3 . 151

C.3 Transport Protocols and Applications in NS-3 . 152

C.4 Scheduling events in NS-3 . 153

C.5 Tracing in NS-3 . 153

C.6 Creating Random Variables in NS-3 . 153

C.7 Short overview of TCP in NS-3 . 154

C.8 Simulating classical queueing models in NS-3 . 158

Bibliography . 163

Authors’ Biographies . 169

xiii

Preface
The NS-2 simulator covers a very large number of applications, of protocols, of network types,

of network elements and of traffic models. We call these “simulated objects". The goal of this

book is twofold: on one hand to learn how to use the NS-2 simulator, and on the other hand, to

become acquainted with and to understand the operation of some of the simulated objects using

NS-2 simulations. This book provides therefore not only some basics and description of the NS-2

simulator, but also a description of the simulated objects. Finally, we focus on the analysis of the

behavior of the simulated objects using NS-2 simulations.

The book is intended to help students, engineers or researchers who need not have much

background in programming or who want to learn through simple examples how to analyse some

simulated objects using NS-2. For that purpose, we provide a large number of scripts that can be

used by the reader so as to start programming immediately. For readers who are interested to learn

from examples, we should mention that a very large number of examples are already available in the

software package of the NS-2 simulator1. Other tutorials containing many examples are available

electronically: Marc Greis’s tutorial2 and the tutorial by Jae Chung and Mark Claypool3.

For a much deeper study of the NS-2 simulator, one should refer to the NS-2 manual which

is maintained up-to-date at http://www.isi.edu/nsnam/ns/, or to http://www.nsnam.org/

docs/release/manual/singlehtml/index.html for the NS-3 manual.

We present in this book many simple (but hopefully useful) scenarios for simulations. Sim-

ulations may differ from each other in many aspects: the applications, topologies, parameters of

network objects (links, nodes) and protocols used, etc. We do not aim at being exhaustive; instead,

we present what we consider to be “typical" examples. If one needs a more exhaustive description of

NS-2, one may find it very useful to consult the manual. An alternative simple way to know about

other possibilities for choosing network elements, network protocols or their parameters, application

parameters, etc., is to look directly at the library files that define them4. For example, the definitions

of mobile nodes could be found in the file ns-mobilenode.tcl, those describing queueing disciplines

and parameters in the file ns-queue.tcl, etc. Default parameters can be found at the file ns-default.tcl.

Note: to know which default object is related to which command, one may need to check the file

ns-lib.tcl as we shall see in an example in Section 2.2.

The book is organized in 10 chapters and 3 appendices. The first chapter §1 is a general introduc-

tion to the book, where the importance of NS-2 as a tool for a good comprehension of networks

1It typically appears in the directory ns-2/tcl/ex, where directory "ns-2" could have other longer names that depend on the NS-2
release, e.g. "ns-2.34"

2http://www.isi.edu/nsnam/ns/tutorial/index.html
3http://nile.wpi.edu/NS/
4ns-allinone-2.34/ns-2.34/tcl/lib

http://www.isi.edu/nsnam/ns/
http://www.nsnam.org/docs/release/manual/singlehtml/index.html
http://www.nsnam.org/docs/release/manual/singlehtml/index.html
http://www.nsnam.org/docs/release/manual/singlehtml/index.html
http://www.isi.edu/nsnam/ns/tutorial/index.html
http://www.isi.edu/nsnam/ns/tutorial/index.html
http://nile.wpi.edu/NS/
ns-allinone-2.34/ns-2.34/tcl/lib

xiv PREFACE

and protocols is stated. This chapter also offers a small introduction to the Tcl programming. The

chapter §2 give the information that allows one to create a first simple NS-2 script. Chapter §3 is

about tracing in NS-2 and how to exploit the traces. In the next chapters (§4, §5, §6, §7, §8 and

§9) we present special topics as TCP, RED, etc., using NS-2 as a tool for better understanding the

protocols. In the last chapter §10 we briefly explain how to add new classes to the NS-2 architecture.

We provide in the appendices a review of Random Variables §A and Confidence Intervals §B, as

well as a first sketch for using the new NS-3 simulator §C.

For the last ten years, we have been using the first edition of this book in our courses on simulations.

We had written it for our students in ULA (University de Los Andes), Mérida, Venezuela, and have

reused this material in courses given in the University of Nice Sophia-Antipolis. Our goal has been

not only to learn how to simulate, but also to teach networking by simulating the network protocols.

We hope that this book, along with the many programs that are available for free download, will be

helpful and useful for students, researchers and engineers.

Eitan Altman and Tania Jiménez

November 2011

1

C H A P T E R 1

Introduction
NS-2 is probably the simulator that has had the largest impact on the development of the Internet.

It has served as a tool for exploring the Internet, for discovering properties of proposed protocols, for

identifying problems and for testing proposed solutions. It has also been used as a verification tool

for proposed analytical models. It has accompanied the Internet and the work of the IETF (Internet

Engineering Task Force.)1

The NS simulator has been distributed as a free and open source software. This was in line

with the spirit of the development of the Internet and its protocols. Indeed, access to the IETF work

and standards was much more open than that of the standardization committees of the competing

A.T.M. architecture, the ATM forum and the I.T.U. In particular, the contributions to the IETF

and its standards have been available on-line and free, unlike the standards of the ATM forum and

the ITU.

The open source nature of the NS simulator has allowed thousands of students, engineers and

researchers to contribute scripts and patches. This allowed NS-2 to evolve, to be always in the fore-

front with respect to IETF recommendations, and to serve as a widely available tool for innovation.

The strength of NS simulator is partly due to this wide range of volunteer based development of

scripts and of patches by many users around the world.

The development of NS-2 has been funded by the DARPA VINT (Virtual InterNetwork

Testbed) project from 1997-2000, by DARPA SAMAN (Simulation Augmented by Measurement

and Analysis for Networks) and NSF CONSER (Collaborative Simulation for Education and

Research) from 2000-2004.

1.1 NS-2 AS A TOOL FOR DESIGNING INTERNET
PROTOCOLS

Below are some examples that illustrate the involvement of the NS-2 simulator in the development

of protocols and in the work of the IETF.

In 1996, which is the year when NS-2 was released, S. Floyd published a simulation-based

comparison of various early versions of TCP [25].

RFC 24152 is concerned directly with simulation studies of the initial TCP window size, and

all simulations were done using NS-2.

1The IETF is the main standardization body for Internet protocols.
2RFCs are the official documents that the IETF issues. RFC stands for "Request For Comments."

2 1. INTRODUCTION

These, as well as much other research relevant to IETF work on TCP over satellite links, are

overviewed in RFC 2760 [7].

Ad-hoc networks: NS-2 has often been used in the design or validation of routing protocols

for ad-hoc networks.The Optimized Link State Routing Protocol (OLSR) for ad-hoc networks was

standardized in RFC 3626. It was proposed by two INRIA researchers, Clausen and Jacquet, who

developed in parallel an open source patch for NS-2 that is compatible with this RFC, and which is

available on the OLSR page, seehipercom.inria.fr/olsr, along with five other implementations

of the protocol in NS-2 by other groups.

Comparisons of various routing protocols in ad-hoc networks can be found, e.g., in [53] and

[16].The authors of the latter paper had been involved in the work of the IETF on the standardization

of the Dynamic Source Routing (DSR) routing protocol.

TCP friendly schemes: RFC 3448, 4828, and 5348 are RFCs that are concerned with the

TCP Friendly Rate Control (TFRC). Both experimentation and simulations in NS-2 were used

when developing this TCP friendly protocol.

DiffServ protocols were introduced as RFCs along with validation using NS-2 simulations

(e.g., RFC 2598 by V. Jacobson, Nichols and Poduri, 1999).

Comparison of reliable multicast protocols using the NS-2 simulator are available in [31].

It appeared in 1998, which is also the year during which the IETF adopted RFC 2357 [42] on that

same topic.

An evaluation test suite for the initial evaluation of any proposed TCP modifications has

been developed and made available [12]. The authors write “The goal of the test suite is to allow

researchers quickly and easily to evaluate their proposed TCP extensions in simulators and testbeds

using a common set of well-defined, standard test cases, in order to compare and contrast proposals

against standard TCP as well as other proposed modifications.This test suite is not intended to result

in an exhaustive evaluation of a proposed TCP modification or new congestion control mechanism.

Instead, the focus is on quickly and easily generating an initial evaluation report that allows the

networking community to understand and discuss the behavioural aspects of a new proposal, in

order to guide further experimentation that will be needed to fully investigate the specific aspects of

a new proposal.” The authors proposed an NS-2 implementation of this suite. They end the paper

with the following invitation:“We incite others to contribute implementations on other simulator

platforms such as OMNeT++ and OpNet".

In [17], the authors, who study the behavior of the RED (Random Early Discard) gate-

way using NS-2 simulations, write (already in the abstract) “The ns-2 simulator is the only viable

simulation tool accepted by industry for verification purposes."

1.2 NS-2, NS-3 AND OTHER SIMULATORS

The simulator NS-2 has had a smooth transition from the NS-1 version, which had a similar

architecture; NS-2 was designed to be backward compatible with scripts written in NS-1. In contrast,

the gap between the architectures of NS-2 and NS-3 is very large and NS-3 is not backward

hipercom.inria.fr/olsr

1.2. NS-2, NS-3 AND OTHER SIMULATORS 3

compatible. This suggests that NS-2 will remain for many years a useful tool, with an advantage

of having huge amount of accessible open source software that had been developed during the last

decade and not yet ported to NS-3.

The open source nature of NS-2 and the community-based development practices of NS-2

which were one of the main sources for its rapid development, are expected to continue with the

NS-3 version. The reference [34] presents the following: “The main goal of the NS-3 project is to

produce a discrete event network simulator for Internet systems, with an emphasis on layers 2-4 of

the network stack, targeted primarily for research and educational use. The following goals are also

important:

• The project should adopt community-oriented open source development practices.

• The simulator should be distributed as free and open source software, and should leverage and

permit inclusion of other free and open source networking software.

• The simulator should be architected for scalability, extensibility, modularity, emulation, and

clarity (of design), and should be well documented.

• Core models should be well tested and validated.

• The project should develop a set of canonical simulation based experiments for use in net-

working courseware.”

We next present some references that compare the performance of several simulators. In [36]

the author writes: “From the descriptions and the conclusions drawn by the reference papers, it can

be concluded that NS-2 and OMNeT++ are the best choices for research. NS-2, is the most popular

simulator for academic research, is generally criticized for its complicated architecture. But, its large

use by the community makes up for it since there are lots of people helping each other with their

problems through the use of mailing lists and forums. OMNeT++ is gaining popularity in academic

and industrial world. Unlike NS-2, OMNeT++ has a well-designed simulation engine and supports

hierarchical modeling, so it is better for development. Also, OMNeT++’s powerful GUI gives it a

certain edge. However, OMNeT++ lacks the abundance of external models and user base NS-2 has.

OPNET Modeler is also a good, complete solution; but, it caters to industrial researchers, people

who need an extensive set of built-in reliable models for constructing credible simulations in a quick

way, rather than academic researchers."

Figure 1.1 provides the conclusions drawn in [41] from its comparison between NS-2, Opnet,

and J-Sim, simulators that are perhaps considered the leading ones.

4 1. INTRODUCTION

Name/Version OPNET Modeler 10.0.A ns-2 2.27 J-Sim (formerly JavaSim) 1.3

Availability

Support

Topology/
Scenario

Extensions
(components)

Simulation
mode

Brief summary
(with subjective
assessment)

Highly expensive, commercial software (no
publicly available trial). Available with source
code for simulation modules (except for
restricted protocols)

- excellent manual

- excellent manual

- source code and examples

- GUI, XML, import (e.g., HP OV)

- “scenario” parameters

- C/C++

- C/C++

- synchronous, single threaded, discrete event
 queue based, with zero event processing
 time, fully deterministic
- multithreaded, discrete event queue based,
 with zero event processing time
- distributed simulation: HLA (High-Level
 Arch.)

- quite slow, “heavy weight”

- expensive commercial software

- ready, high-�delity equipment and
 protocol models; a “reference” simulator

- unique (e.g., military) features; widely used
 in NATO projects

Open-source software, available with full source
code, validation tests and examples

- good manual

- publicly available mailing list

- source code and examples

- OTcl scripts (or C++)

- OTcl (higher level)

- C++ (lower level)

- synchronous, single threaded, discrete event
 queue based, with zero event processing
 time, fully deterministic

- parallel/distributed version available (Parallel
 /Distributed NS, PDNS)

- fast, quite modern, free

- OTcl binding

- simpli�ed equipment models
- many recent TCP mechanisms implemented for
 ns-2
- currently most popular in research projects

Open-source software, available with full source
code, and examples

- good manual

- publicly available mailing list

- source code and examples

- Tcl scripts (or Java) (as of 1.3)

- OTcl (or Java) (future releases)

- Java (as of 1.3)

- also OTcl for higher level (future releases)

- synchronous, single threaded, with zero event
 processing time, fully deterministic

- multithreaded, “real-time process-based”, with
 event processing time taken into account, non-
 deterministic

- scalable, modern, free

- Tcl/Jacl binding (OTcl/Jacl)

- simpli�ed equipment models

- new simulation paradigm (active components)

Figure 1.1: Comparisons between three simulators.

The authors of [40] state: “From the researchers point of view, NS-2 provides very similar

results compared to OPNET Modeler, but the freeware version of NS-2 makes it more attractive to

a researcher. However, the complete set of OPNET Modeler modules provides more features than

Ns-2, and it therefore will be more attractive to network operators." From technical point of view,

the reference shows similar performance of both simulators. Surprisingly, a few months later, some

of the authors seem to change their mind. They came out with a “clarification" [27] stating that

OPNET is better than NS-2.

Reference [30] which is also restricted to NS-2 vs Opnet, states: “The conclusions based on

the simulation results for the different MANET scenarios are that the trend of all the metrics in both

simulators were rather consistent, although in certain experiments absolute values are quite different.

From the results obtained we can conclude that more comparisons between network simulators in

general, and between NS-2 and OPNET Modeler in particular, could be done."

Reference [58] compares the performance of OMNET++ with NS-2 and with Opnet in the

area of wireless sensor networks. The paper shows that OMNET++ has better performance than

both NS-2 and OPNET in terms of simulation time and memory. The paper does not address the

reliability of the results obtained by different simulators.

We should finally mention that the quality of the simulation is not only a function of the

simulator used but can depend on many other aspects related to the planning, the execution and the

1.3. FURTHER BACKGROUND ON NS-2 SIMULATOR 5

analysis of the simulations. Helpful insight can be found in [11]. Figure 1.2 taken from [11] shows,

in particular, problems in simulations of Mobile Ad Hoc networks.

Figure 1.2: Problems in simulations.

1.3 FURTHER BACKGROUND ON NS-2 SIMULATOR
NS-2 simulator is based on two languages: an object oriented simulator, written in C++, and a OTcl

(an object oriented extension of Tcl) interpreter, used to execute user command scripts.

NS-2 has a rich library of network and protocol objects. There are two classes of hierarchies:

the compiled C++ hierarchy and the interpreted OTcl one, with one to one correspondence between

them.

The compiled C++ hierarchy allows us to achieve efficiency in the simulation and faster

execution times. This is useful, in particular, for the detailed definition and operation of protocols.

This allows one to reduce packet and event processing time.

Then in the OTcl script provided by the user, we can define a particular network topology,

the specific protocols and applications that we wish to simulate (whose behavior is already defined

in the compiled hierarchy) and the form of the output that we wish to obtain from the simulator.

The OTcl can make use of the objects compiled in C++ through an OTcl linkage (using tclCL3)

that creates a matching of OTcl object for each of the C++. In Chapter 10 we explain how to create

new classes on these hierarchies.

NS-2 is a discrete event simulator, where the advance of time depends on the timestamp of

events which are maintained by a scheduler. An event is an object in the C++ hierarchy with an

unique ID, a scheduled time and the pointer to an object that handles the event. The scheduler

keeps an ordered data structure (there are four, but by default NS-2 uses a Calendar scheduler) of

the events to be executed and fires them one by one, invoking the handler of the event.

3TclCL is a Tcl/C++ interface[5].

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-000.jpg&w=288&h=150

6 1. INTRODUCTION

1.4 TCL AND OTCL PROGRAMMING
Tcl (Tool Command Language) is used by millions of people in the world. It is a language with

a very simple syntax and it allows a very easy integration with other languages. Tcl was created by

John Ousterhout. The characteristics of this language are the following:

• It allows a fast development

• It provide a graphic interface

• It is compatible with many platforms

• It is flexible for integration

• It is easy to use

• It is free

Here are some basics of tcl and Otcl programming:

• Assigning a value to a variable is done through the “set" command; for example: “set b 0"

assigns to the variable b the value of 0. This is equivalent to “b=0" in C, for example.

• When we wish to use the value assigned to a variable, we should use a $ sign before the variable.

For example, if we want to assign to variable x the value that variable a has, then we should

write: “set x $a".

• A mathematical operation is done using the expression command. For example, if we wish to

assign to a variable x the sum of values of some variables a and b, we should write “set x

[expr $a + $b]".

• In Tcl the variables are not typed, so a variable can be a string or an integer depending on

the value you assign to it. For example, assume that we want to print the result of the division

1/60. If we write

puts "[expr 1/60]", then the result will be 0.To have the correct result, we need to indicate

that we do not work with integers, and should thus type

puts "[expr 1.0/60.0]"

• The sign # starts a commented line that is not part of the program, so the tcl interpreter will

not execute this line.

• To create a file, one has to give it a name, say “filename", and to assign a pointer to it that

will be used within the tcl program in order to relate to it, say “file1". This is done with the

command: set file1 [open filename w].

1.4. TCL AND OTCL PROGRAMMING 7

• The command puts is used for printing an output. Note: each time the “puts" command is

used, a new line is started. To avoid a new line, one has to add -nonewline after the “puts"

command. If we want to print into a file (say the one we defined above), we type puts $file1

"text". Tabulating is done by inserting \t. For example, if a variable, say x, has the value 2

and we type puts $file1 "x t $x" then this will print a line into the file whose name is

“filename" with two elements: “x" and “2" separated by a tabulator space.

• Execution of a UNIX command: is done by typing “exec" and then the command. For example,

we may want NS-2 to initiate the display of a curve whose data are given in a two column file

named “data" within the simulation. This can be done using the xgraph command and will be

written as:
exec xgraph data &

(note that the “&" sign is used to have the command executed in the background).

• The structure of an if command is as follows:
if { expression } {

<execute some commands>

} else {

<execute some commands>

}

The if command can be nested with other “if"s and with “else"s that can appear in the

“<execute some commands>" part. Note that when testing equality, we should use “==" and

not “=". The inequality is written with !=.

• Loops have the following form:
for { set i 0 } { $i < 5 } { incr i } {

<execute some commands>

}

In this example the commands in the loop will be executed five times. After the for the "{

set i 0 } declares the variable i that will be used as the counter of the loop and initializes it

to 0.The second part between { } is the continuation condition of the loop; it says "do the loop

while the counter i is less than 5. The last part of the statement is for declaring the changing

in the counter variable; in this case we increment i one by one, but we can also decrement it

or use any mathematical expression for increment or decrement the counter instead.

• Tcl allows to create procedures. The procedures can return some value when they contain a

"return" command. The general form of a procedure which we name “blue" is
proc blue { par1 par2 ... } {

global var1 var2

<commands>

return $something

}

8 1. INTRODUCTION

The procedure receives some parameters that can be objects, files or variables. In our case these

are named par1, par2, etc. These parameters will be used within the procedures with these

names. The procedure is called by typing blue x y ... where the values of x and y will be

used by the procedure for par1 and par2. If par1 and par2 are changed within the procedure,

this will not affect the values of x and y. On the other hand, if we wish the procedure to be

able to affect directly variables external to it, we have to declare these variables as “global".

In the above example these are var1 and var2.

In the following, we will show how to use these commands through some simple examples of

tcl.

Example 1.1 In Listing 1.1 we show an example that presents many arithmetic operations in tcl.

The pow expression give the power of variable d to j .

Listing 1.1: Tcl script for arithmetic operations.

#Create a procedure

proc test {} {

set a 12

set b 15

set c [expr $a + $b]

set d [expr [expr $a - $b] * $c]

puts "c = $c d = $d"

for {set j 0} {$j < 10} {incr j} {

if {$j < 5} {

puts "j < 5, pow = [expr pow($d, $j)]"

} else {

puts "j >= 5, mod = [expr $d % $j]"

}

}

}

#calling the procedure

test

Example 1.2 Listing 1.2 is an example of a tcl program for computing all the prime numbers up to

a given limit j. For example, to obtain all the prime numbers up to 11 type simply “ns prime.tcl

11". The prime numbers example shows how to use an if command, loops, and a procedure.

The variable argc contains the number of parameters passed to the program. The variable

argv is a vector that has the parameters passed to the program (so, argc is the length of argv),

and the command lindex allows us to take the case of the vector pointed by the second parameter.

So, the line set j [lindex $argv 0] assigns to the variable j the value of the first parameter

passed to the program which has been saved on the variable argv.

1.4. TCL AND OTCL PROGRAMMING 9

Listing 1.2: Tcl script for computing prime numbers.

#Usage: ns prime.tcl NUMBER

NUMBER is the number up to which we want to obtain the prime numbers

#

if {$argc != 1} {

Must get a single argument or program fails.

puts stderr "ERROR! ns called with wrong number of arguments !($argc)"

exit 1

} else {

set j [lindex $argv 0]

}

proc prime {j} {

Computes all the prime numbers till j

for {set a 2} {$a <= $j} {incr a} {

set b 0

for {set i 2} {$i < $a} {incr i} {

set d [expr fmod($a,$i)]

if {$d==0} {

set b 1}

}

if {$b==1} {

puts "$a is not a prime number"

} else {

puts "$a is a prime number"

}

}

}

prime $j

Example 1.3 In Listing 1.3 we use a procedure in order to compute the factorial of a number given

as a parameter to the main program.

Listing 1.3: Tcl script for computing the factorial of a number.

Usage: ns fact.tcl NUMBER

we want to find the factorial of the number NUMBER

#

if {$argc != 1} {

Must get a single argument or program fails.

puts stderr "ERROR! ns called with wrong number of arguments !($argc)"

exit 1

} else {

set f [lindex $argv 0]

}

proc Factorial {x} {

for {set result 1} {$x > 1} {set x [expr $x - 1] } {

set result [expr $result * $x]

}

return $result

10 1. INTRODUCTION

}

set res [Factorial $f]

puts "Factorial of $f is $res"

We explain briefly through an example the Object Programming paradigm in OTcl as illus-

trated in Listings 1.4 and 1.5. If you don’t know an Object Oriented language (like C++ or Java), we

recommend to look for documentation beforehand in order to learn how to program using object

oriented languages.

Example 1.4 The reserved word Class followed by the name of the class is used to declare a new

class in OTcl. The methods of the classes are declared using the word instproc preceded by the

name of the class and followed by the name of the method and its parameters. The method init

is the constructor of the class. The variable self is a pointer to the object itself, like this in C++

or Java. To declare the instance variable, OTcl uses the word instvar. The word -superclass is

used for declaring that a class inherits from another one, in the example the Integer class inherits

from the Real class.

Listing 1.4: Simple Otcl program using real and integer objects (a).

Class Real

Real instproc init {a} {

$self instvar value_

set value_ $a

}

Real instproc sum {x} {

$self instvar value_

set op "$value_ + [$x set value_] = \t"

set value_ [expr $value_ + [$x set value_]]

puts "$op $value_"

}

Real instproc multiply {x} {

$self instvar value_

set op "$value_ * [$x set value_] = \t"

set value_ [expr $value_ * [$x set value_]]

puts "$op $value_"

}

Real instproc divide {x} {

$self instvar value_

set op "$value_ / [$x set value_] = \t"

set value_ [expr $value_ / [$x set value_]]

puts "$op $value_"

}

Class Integer -superclass Real

Integer instproc divide {x} {

1.4. TCL AND OTCL PROGRAMMING 11

$self instvar value_

set op "$value_ / [$x set value_] = \t"

set d [expr $value_ / [$x set value_]]

set value_ [expr round($d)]

puts "$op $value_"

}

Listing 1.5: Simple Otcl program using real and integer objects (b).

set realA [new Real 12.3]

set realB [new Real 0.5]

$realA sum $realB

$realA multiply $realB

$realA divide $realB

set integerA [new Integer 12]

set integerB [new Integer 5]

set integerC [new Integer 7]

$integerA multiply $integerB

$integerB divide $integerC

13

C H A P T E R 2

NS-2 Simulator Preliminaries
In this Chapter we present the first steps that consist of

• Initialization and termination aspects of NS-2 simulator,

• Definition of network nodes, links, queues and topology,

• Definition of agents and applications,

• The nam visualisation tool,

• Tracing, and

• Random Variables.

Some simple examples will be given that will enable us to make the first steps with the NS-2

simulator.

2.1 INITIALIZATION AND TERMINATION
A Tcl script in NS-2 simulation starts with the command:

set ns [new Simulator]

This line declares a new variable ns using the setTcl command. You can call this variable whatever

you wish, but, in general, people declare it as ns because it is an instance of the Simulator class, so

an object.The code [new Simulator] is indeed the instantiation of the class Simulator using the

reserved word new. So, using this new variable nswe can use all the methods of the class Simulator

that we will see below.

In order to have output files with data on the simulation (trace files) or files used for visuali-

sation (nam files), we need to create the files using the “open" command:

#Open the Trace file

set tracefile1 [open out.tr w]

$ns trace-all $tracefile1

#Open the NAM trace file

set namfile [open out.nam w]

$ns namtrace-all $namfile

14 2. NS-2 SIMULATOR PRELIMINARIES

The code above creates a data trace file called “out.tr" and a nam visualisation trace file (for

the NAM tool) called “out.nam". Within the tcl script, these files are not called explicitly by their

names (out.tr and out.nam), but instead by pointers that are declared above and called “tracefile1"

and “namfile," respectively.

The first and fourth lines in the example are only comments; they are not simulation com-

mands. Note that these lines begin with a # symbol.The second line opens the file “out.tr" to be used

for writing, declared with the letter “w". The third line uses a simulator method called trace-all

that has as parameter the name of the file where the traces will be written. With this simulator

command we will trace all the events in a specific format that we will explain later in this chapter.

The last line tells the simulator to record all simulation traces in NAM input format.

Note: the commands trace-all and namtrace-all may result in the creation of huge files. If we

wish to save space, other trace commands should be used so as to trace only a subset of the simulated

events which may be needed. Such commands are described in Section 2.6.

The termination of the program is made using a “finish" procedure.

#Define a ’finish ’ procedure

proc finish {} {

global ns tracefile1 namfile

$ns flush -trace

close $tracefile1

close $namfile

exec nam out.nam &

exit 0

}

The word proc declares a procedure in this case called finish and without arguments. The

word global is used to specify that we are using variables declared outside the procedure. The

simulator method “flush-trace” will dump the traces on the respective files. The tcl command

“close” closes the trace files defined before and exec executes the nam program for visualisation.

Note that we pass the real name of the file of traces to nam and not to the pointer namfile because

it is an external command. The command exit will end the application and return the number 0

as status to the system. Zero is the default for a clean exit. Other values can be used to say that it is

an exit because something fails.

At the end of the NS-2 program we should call the procedure “finish" and specify at what

time the termination should occur. For example,
$ns at 125.0 "finish"

will be used to call “finish" at time 125 sec. Indeed, the at method of the simulator allows us to

schedule events explicitly.

The simulation can then begin using the command
$ns run

2.2 DEFINITION OF A NETWORK OF LINKS AND NODES
The way to define a node is

2.2. DEFINITION OF A NETWORK OF LINKS AND NODES 15

set n0 [$ns node]

We have created a node that is pointed by the variable n0. When we refer to that node in the

script, we shall thus write $n0.

Once we define several nodes, we can define the links that connect them. An example of a

definition of a link is:

$ns duplex-link $n0 $n2 10Mb 10ms DropTail

which means that nodes $n0 and $n2 are connected using a bi-directional link that has 10ms of

propagation delay and capacity of 10 Mb/sec for each direction.

To define a directional link instead of a bi-directional one,we replace “duplex-link" by“simplex-

link".

In NS-2, an output queue of a node is implemented as a part of each link whose input is that

node.The definition of the link then includes the way to handle overflow at that queue. In our case, if

the buffer capacity of the output queue is exceeded then the last packet to arrive is dropped (DropTail

option). Many alternative options exist, such as the RED (Random Early Discard) mechanism, the

FQ (Fair Queueing), the DRR (Deficit Round Robin), the Stochastic Fair Queueing (SFQ) and

the CBQ (which includes a priority and a round-robin scheduler); we shall return later to the RED

mechanism in more detail.

Of course, we should also define the buffer capacity of the queue related to each link. An

example would be:

#Set Queue Size of link (n0-n2) to 20

$ns queue-limit $n0 $n2 20

A simplex link has the form presented in Figure 2.1. A queue overflow is implemented by

sending dropped packets to a Null Agent. The TTL object computes the Time To Live parameter1

for each received packet. A duplex link is constructed from two parallel simplex links.

Queue

Agent/Null

Delay TTL

drop

n0 n1

Figure 2.1: A simplex link.

Example 2.1 As an example of a simple network, consider the one depicted in Figure 2.2; this

network is defined through the script given in Listing 2.1.

1Packets have some associated tags which are updated in the network and that indicate how long they can still stay in the network
before reaching the destination. When this time expires, then the packet is dropped.

16 2. NS-2 SIMULATOR PRELIMINARIES

$n0

10ms

$n2

$n5

$n4

$n1

2Mbps

10ms
2Mbps

$n3

300kbps

300kbps
40ms

30ms

100ms

100ms 500kbps

500kbps

Figure 2.2: Example of a simple network.

Listing 2.1: “Definition nodes links and assigning queue size".

#Create six nodes

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

set n4 [$ns node]

set n5 [$ns node]

#Create links between the nodes

$ns duplex -link $n0 $n2 2Mb 10ms DropTail

$ns duplex -link $n1 $n2 2Mb 10ms DropTail

$ns simplex -link $n2 $n3 0.3Mb 100ms DropTail

$ns simplex -link $n3 $n2 0.3Mb 100ms DropTail

$ns duplex -link $n3 $n4 0.5Mb 40ms DropTail

$ns duplex -link $n3 $n5 0.5Mb 30ms DropTail

#Set Queue Size of link (n2-n3) to 20

$ns queue -limit $n2 $n3 20

Note that we defined the buffer capacity corresponding to one link only (between n2 and n3).

The queues corresponding to all other links have the default value of 50. This default value can be

found at ns-default.tcl2 in the command

Queue set limit_ 50

How could we find this default? By first checking the file ns-lib.tcl where we find the queue-limit

procedure

Simulator instproc queue-limit { n1 n2 limit } {

$self instvar link_

[$link_([$n1 id]:[$n2 id]) queue] set limit_ $limit

}

2In ns-allinone-2.XXX/ns-2.XXX/tcl/lib, where XXX stands for the version number, e.g., 34.

2.3. AGENTS AND APPLICATIONS 17

in which we see that the queue limit is indeed a method of the simulator that needs three parameters:

the two nodes that define the link and the queue limit. There we see that the limit number is given

by the variable limit_.

2.3 AGENTS AND APPLICATIONS
Having defined the topology (nodes and links), we should now make traffic flow through them. To

that end, we need to define routing (in particular, sources and destinations), the agents (protocols)

and applications that use them.

In the previous example, we may wish to run an FTP (File Transfer Protocol)[49] application

between node $n0 and $n4, and a CBR (Constant Bit Rate) application between node $n1 and

$n5. The Internet protocol used by FTP is TCP/IP (TCP for Transport Control Protocol/Internet

Protocol) and the one used by CBR is UDP (User Datagram Protocol). We should first define in

Listing 2.2 a TCP agent between the source node $n0 and the destination node $n4 and then the

FTP application that uses it. We then define in Listing 2.3 the UDP agent between the source node

$n1 and the destination node $n5 and the CBR application that uses it.

2.3.1 FTP OVER TCP
TCP is a dynamic reliable congestion control protocol which will be explained in detail in Chapter

4. It uses acknowledgements created by the destination to know whether packets are well received,

lost packets are interpreted as congestion signals; TCP thus requires bidirectional links for the

acknowledgements in order to return information to the source.

There are many variants of the TCP protocol, such as Tahoe, Reno, Newreno, Vegas.The type

of agent appears in the first line:

set tcp [new Agent/TCP]

This commands also gives a pointer called "tcp" here to the TCP agent, which is an object in NS-2.

The command $ns attach-agent $n0 $tcp defines the source node of the TCP connec-

tion. The command set sink [new Agent/TCPSink] defines the behavior of the destination

node of TCP and assigns to it a pointer called sink. We note that in TCP the destination node has

an active role in the protocol of generating acknowledgements in order to guarantee that all packets

arrive at the destination.

The command$ns attach-agent $n4 $sinkdefines the destination node.The command

$ns connect $tcp $sink finally makes the TCP connection between the source and destination

nodes.

TCP has many parameters with initial fixed default values that can be changed if mentioned

explicitly. For example, the default TCP packet size has a size of 1000 bytes. This can be changed

to another value, say 552 bytes, using the command $tcp set packetSize_ 552.

When we have several flows, we may wish to distinguish them so that we can identify them

with different colors in the visualisation part.This is done by the command $tcp set fid_ 1 that

18 2. NS-2 SIMULATOR PRELIMINARIES

assigns to the TCP connection a flow identification of “1"; we shall later give the flow identification

of “2" to the UDP connection.

Once the TCP connection is defined, the FTP application is defined over it. This is done in

the last three lines in Listing 2.2.

Note that both the TCP agent as well as the FTP application are given pointers: we called

the one for the TCP agent “tcp" (but could have used any other name) and the one for FTP we

called “ftp".

Listing 2.2: The definition of an FTP application using a TCP agent.

#Setup a TCP connection

set tcp [new Agent/TCP]

$ns attach -agent $n0 $tcp

set sink [new Agent/TCPSink]

$ns attach -agent $n4 $sink

$ns connect $tcp $sink

$tcp set fid_ 1

$tcp set packetSize_ 552

#Setup a FTP over TCP connection

set ftp [new Application/FTP]

$ftp attach -agent $tcp

2.3.2 CBR OVER UDP
Next we define the UDP connection and the CBR application over it, see Listing 2.3. A UDP source

(Agent/UDP) and destination (Agent/Null) is defined in a similar way as in the case of TCP. For

the CBR application that uses UDP, the Listing 2.3 shows also how to define the transmission rate

and packet size.

Listing 2.3: The definition of a CBR application using a UDP agent.

#Setup a UDP connection

set udp [new Agent/UDP]

$ns attach -agent $n1 $udp

set null [new Agent/Null]

$ns attach -agent $n5 $null

$ns connect $udp $null

$udp set fid_ 2

#Setup a CBR over UDP connection

set cbr [new Application/Traffic/CBR]

$cbr attach -agent $udp

$cbr set packetSize_ 1000

$cbr set rate_ 0.01Mb

$cbr set random_ false

Instead of defining the rate, in the command $cbr set rate_ 0.01Mb, one can define the

time interval between transmission of packets using the command

2.4. SCHEDULING EVENTS IN NS-2 19

$cbr set interval_ 0.005

Other characteristics of CBR are random_ which is a flag indicating whether or not to

introduce random “noise" in the scheduled transmission times. It is “off " by default, and can be set

to be “on" by typing

$cbr set random_ 1

The packet size can be set to some value (in bytes) using

$cbr set packetSize_ <packet size>

2.3.3 UDP WITH OTHER TRAFFIC SOURCES
We may simulate other types of traffic applications that use the UDP protocol: the exponential on-

off traffic source, the Pareto on-off source, and a trace driven source. The Exponential and Pareto

sources are declared, respectively, using

set source [new Application/Traffic/Exponential]

set source [new Application/Traffic/Pareto]

These sources take as parameters packetSize_ (in bytes), burst_time_ which defines the average

“on" time, idle_time_ which defines the average “off " time, and rate_ which determines the

transmission rate during the “on" periods. In the Pareto On/Off source we also define the “shape"

parameter shape_. An example of a Pareto On/Off is given by:

set source [new Application/Traffic/Pareto]

$source set packetSize_ 500

$source set burst_time_ 200ms

$source set idle_time_ 400ms

$source set rate_ 100k

$source set shape_ 1.5

(For a discussion on random variables, see Section 2.7.)

The trace driven application is defined as follows. We first declare the trace file:

set tracefile [new Tracefile]

$tracefile filename <file>

Then, we define the application to be trace driven and attach it to that file:

set src [new Application/Traffic/Trace]

$src attach-tracefile $tracefile

The file should be in binary format and contain inter-packet time in msec and packet size in bytes.

2.4 SCHEDULING EVENTS IN NS-2
NS-2 is a discrete event based simulation. The Tcl script defines when events should occur. The

initializing command set ns [new Simulator] creates an event scheduler, and events are then

scheduled using the format:

20 2. NS-2 SIMULATOR PRELIMINARIES

$ns at <time> <event>

The scheduler is started when running NS-2, i.e., through the command $ns run.

In our simple example, we should schedule the beginning and end of the FTP and the CBR

applications. This can be done through the following commands:

$ns at 0.1 "$cbr start"

$ns at 1.0 "$ftp start"

$ns at 124.0 "$ftp stop"

$ns at 124.5 "$cbr stop"

Thus the FTP will be active from time 1.0 till 124.0 and the CBR will be active from time 0.1 till

124.5 (all units are in seconds).

We are now ready to run the whole simulation.

Example 2.2
If our commands were written in a file called “ex1.tcl" (see Listing 2.4), we would have to

type “ns ex1.tcl".

Note: in Listing 2.4 we have added at the end another procedure that writes an output file

with the instantaneous sizes of the congestion window of TCP at time intervals of 0.1 sec. In the

example, the name of the output file is “WinFile". The procedure is a recursive one, after each 0.1

sec it calls itself again. It passes as parameter the TCP source and the file to which we wish to write

the output.

Listing 2.4: Script file ex1.tcl.

set ns [new Simulator]

$ns color 1 Blue #Define different colors for data flows (for NAM)

$ns color 2 Red

set tracefile1 [open out.tr w] #Open the Trace files

set winfile [open WinFile w]

$ns trace -all $tracefile1

set namfile [open out.nam w]

$ns namtrace -all $namfile

proc finish {} { #Define a ’finish ’ procedure

global ns tracefile1 namfile

$ns flush -trace

close $tracefile1

close $namfile

exec nam out.nam &

exit 0

}

set n0 [$ns node] #Create six nodes

set n1 [$ns node]

set n2 [$ns node]

2.4. SCHEDULING EVENTS IN NS-2 21

set n3 [$ns node]

set n4 [$ns node]

set n5 [$ns node]

$ns duplex -link $n0 $n2 2Mb 10ms DropTail #Create links between the nodes

$ns duplex -link $n1 $n2 2Mb 10ms DropTail

$ns simplex -link $n2 $n3 0.3Mb 100ms DropTail

$ns simplex -link $n3 $n2 0.3Mb 100ms DropTail

$ns duplex -link $n3 $n4 0.5Mb 40ms DropTail

$ns duplex -link $n3 $n5 0.5Mb 30ms DropTail

$ns duplex -link -op $n0 $n2 orient right -down #Give node position (for NAM)

$ns duplex -link -op $n1 $n2 orient right -up

$ns simplex -link -op $n2 $n3 orient right

$ns simplex -link -op $n3 $n2 orient left

$ns duplex -link -op $n3 $n4 orient right -up

$ns duplex -link -op $n3 $n5 orient right -down

$ns queue -limit $n2 $n3 20 #Set Queue Size of link (n2-n3) to 20

set tcp [new Agent/TCP] #Setup a TCP connection

$ns attach -agent $n0 $tcp

set sink [new Agent/TCPSink]

$ns attach -agent $n4 $sink

$ns connect $tcp $sink

$tcp set fid_ 1

$tcp set packetSize_ 552

set ftp [new Application/FTP] #Setup a FTP over TCP connection

$ftp attach -agent $tcp

#Setup a UDP connection

set udp [new Agent/UDP]

$ns attach -agent $n1 $udp

set null [new Agent/Null]

$ns attach -agent $n5 $null

$ns connect $udp $null

$udp set fid_ 2

set cbr [new Application/Traffic /CBR] #Setup a CBR over UDP connection

$cbr attach -agent $udp

$cbr set packetSize_ 1000

$cbr set rate_ 0.01Mb

$cbr set random_ false

$ns at 0.1 "$cbr start"

$ns at 1.0 "$ftp start"

$ns at 124.0 "$ftp stop"

$ns at 124.5 "$cbr stop"

Procedure for plotting window size. Gets as arguments the name of the tcp

#source node (called " tcpSource ") and of output file.

proc plotWindow {tcpSource file} {

global ns

set time 0.1

set now [$ns now]

set cwnd [$tcpSource set cwnd_]

22 2. NS-2 SIMULATOR PRELIMINARIES

puts $file "$now $cwnd"

$ns at [expr $now+$time] " plotWindow $tcpSource $file"

}

$ns at 0.1 "plotWindow $tcp $winfile"

$ns at 125.0 "finish"

$ns run

2.5 VISUALISATION USING NAM
When we run the example ex1.tcl, the visualisation tool nam will display a 6 nodes network. The

location of the nodes could have been chosen at random. In order to reproduce the initial location

of the nodes as in Figure 2.2, we added to the tcl script the following lines:

#Give node position (for NAM)

$ns duplex-link-op $n0 $n2 orient right-down

$ns duplex-link-op $n1 $n2 orient right-up

$ns simplex-link-op $n2 $n3 orient right

$ns simplex-link-op $n3 $n2 orient left

$ns duplex-link-op $n3 $n4 orient right-up

$ns duplex-link-op $n3 $n5 orient right-down

Note: if a random location of nodes is chosen and it is not satisfactory, one can press on the

“re-layout" button and then another random location is chosen. One can also edit the location by

clicking at the Edit/View button, and then “dragging" each node to its required location (with the

help of the mouse).

We note that the nam display shows us with animation the CBR packets (that flow from node

1 to 5) in red, and TCP packets (flowing from node 0 to 4) in blue.TCP ACKs (acknowledgements)

that go in the reverse directions are also in blue but are much shorter, since an ACK has a size of 40

bytes whereas the TCP packet is of size 552 bytes. To obtain the colors, we had to define them in

the beginning of our script ex1.tcl

$ns color 1 Blue

$ns color 2 Red

Note that if we already have a nam file, we do not have to run ns in order to view it, but instead

type directly the command nam <file name>.

“Snapshots" from the nam visualisations can be printed (into a printer or into a file) by going

into the “File" option in the top menu.

Other things that can be done in NAM:

• Coloring nodes: for example if n0 is to appear in red, we write $n0 color red.

• Shape of nodes: by default they are round, but can appear differently. For example one can

type $n1 shape box (or instead of “box" one can use “hexagon" or “circle").

• Coloring links: type for example

2.5. VISUALISATION USING NAM 23

$ns duplex-link-op $n0 $n2 color "green"

• Adding and removing marks: We can mark a node at a given time (for example at the same

time as we activated some traffic source at that time). For example, we can type:

$ns at 2.0 "$n3 add-mark m3 blue box"

$ns at 30.0 "$n3 delete-mark m3"

This results in a blue mark that surrounds the node 3 during the time interval [2,30].

• Adding labels: a label can appear on the screen from a given time onwards, e.g., for giving the

label “active node" to a node n3 from time 1.2, type:

$ns at 1.2 "$n3 label \"active node\""

and to give a the label “TCP input link" to link n0-n2 type

$ns duplex-link-op $n0 $n2 label "TCP input link"

• Adding text: at the bottom frame of the NAM window one can make text appear at a given

time. This can be used to describe some event that is scheduled at that time. An example is

$ns at 5 "$ns trace-annotate \"packet drop\""

• One may further add in NAM a monitoring of the queue size. For example, to monitor the

input queue of the link n2-n3, one types $ns simplex-link-op $n2 $n3 queuePos 0.5

(All the examples refer to objects defined in ex1.tcl.)

The graphic interface of NAM is shown in figure 2.3.

Figure 2.3: NAM graphic interface.

NOTE: It is worth to note that the example ex1.tcl is a “toy” example.With this configuration,

we cannot have losses, because the default receiver window (window_) in NS-2 is 20 packets, and

because of the bandwidth delay product for this example.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-001.jpg&w=141&h=162

24 2. NS-2 SIMULATOR PRELIMINARIES

2.6 TRACING

2.6.1 TRACING OBJECTS
NS-2 simulation can produce both the visualisation trace (for NAM) as well as an ascii file trace

corresponding to the events registered at the network.

When we use tracing (as mentioned in Section 2.1), ns inserts four objects in the link: EnqT,

DeqT, RecvT and DrpT, as indicated in Figure 2.4.

TTL

Agent/Null

DelayQueue

n0

drop

n1

EnqT DeqT

DrpT

RecvT

Figure 2.4: Tracing objects in a simplex link.

EnqT registers information concerning a packet that arrives and is queued at the input queue

of the link. If the packet overflows, then information concerning the dropped packet are handled

by DrpT. DeqT registers information at the instant the packet is dequed. Finally, RecvT gives us

information about packets that have been received at the output of the link.

NS-2 allows us to get more information than through the above tracing. One way is by using

queue monitoring. This is described at the end of Section 4.3.

2.6.2 STRUCTURE OF TRACE FILES
When tracing into an output ascii file, the trace is organized into 12 fields as follows in Figure 2.5.

Event Time
From
node

To
node

Pkt
type

Pkt
size Flags Fid

Src
addr

Dst
addr

Seq
num

Pkt
id

Figure 2.5: Fields appearing in a trace.

The meanings of the fields are:

1. The first field is the event type. It is given by one of four possible symbols r, +, −, d, which

correspond respectively to receive (at the output of the link), enqueued, dequeued and dropped.

2. The second field gives the time at which the event occurs.

3. The third field gives the input node of the link at which the event occurs.

4. The fourth field gives the output node of the link at which the event occurs.

2.6. TRACING 25

5. The fifth field gives the packet type (for example, CBR, or TCP). The type corresponds to the

name that we gave to those applications. For example, the TCP application in Listing 2.2 is

called “tcp".

6. The sixth field gives the packet size.

7. Some flags follow (that we shall see later).

8. This is the flow id (fid) of IPv6 that a user can set for each flow at the input OTcl script. One

can further use this field for analysis purposes; it is also used when specifying stream color for

the NAM display.

9. This is the source address given in the form of “node.port".

10. This is the destination address, given in the same form.

11. This is the network layer protocol’s packet sequence number. Even though UDP implementa-

tions in a real network do not use sequence number, NS-2 keeps track of UDP packet sequence

number for analysis purposes.

12. The last field shows the unique id of the packet.

As an example, consider the first lines of the trace produced by running the script ex1.tcl given

in Listing 2.4.

Listing 2.5: First lines of the trace file "out.tr" produced by ex1.tcl.

+ 0.1 1 2 cbr 1000 ------- 2 1.0 5.0 0 0

- 0.1 1 2 cbr 1000 ------- 2 1.0 5.0 0 0

r 0.114 1 2 cbr 1000 ------- 2 1.0 5.0 0 0

+ 0.114 2 3 cbr 1000 ------- 2 1.0 5.0 0 0

- 0.114 2 3 cbr 1000 ------- 2 1.0 5.0 0 0

r 0.240667 2 3 cbr 1000 ------- 2 1.0 5.0 0 0

+ 0.240667 3 5 cbr 1000 ------- 2 1.0 5.0 0 0

- 0.240667 3 5 cbr 1000 ------- 2 1.0 5.0 0 0

r 0.286667 3 5 cbr 1000 ------- 2 1.0 5.0 0 0

+ 0.9 1 2 cbr 1000 ------- 2 1.0 5.0 1 1

- 0.9 1 2 cbr 1000 ------- 2 1.0 5.0 1 1

r 0.914 1 2 cbr 1000 ------- 2 1.0 5.0 1 1

+ 0.914 2 3 cbr 1000 ------- 2 1.0 5.0 1 1

- 0.914 2 3 cbr 1000 ------- 2 1.0 5.0 1 1

+ 1 0 2 tcp 40 ------- 1 0.0 4.0 0 2

- 1 0 2 tcp 40 ------- 1 0.0 4.0 0 2

r 1.01016 0 2 tcp 40 ------- 1 0.0 4.0 0 2

+ 1.01016 2 3 tcp 40 ------- 1 0.0 4.0 0 2

- 1.01016 2 3 tcp 40 ------- 1 0.0 4.0 0 2

r 1.040667 2 3 cbr 1000 ------- 2 1.0 5.0 1 1

+ 1.040667 3 5 cbr 1000 ------- 2 1.0 5.0 1 1

- 1.040667 3 5 cbr 1000 ------- 2 1.0 5.0 1 1

r 1.086667 3 5 cbr 1000 ------- 2 1.0 5.0 1 1

r 1.111227 2 3 tcp 40 ------- 1 0.0 4.0 0 2

26 2. NS-2 SIMULATOR PRELIMINARIES

+ 1.111227 3 4 tcp 40 ------- 1 0.0 4.0 0 2

- 1.111227 3 4 tcp 40 ------- 1 0.0 4.0 0 2

r 1.151867 3 4 tcp 40 ------- 1 0.0 4.0 0 2

+ 1.251867 4 3 ack 40 ------- 1 4.0 0.0 0 3

- 1.251867 4 3 ack 40 ------- 1 4.0 0.0 0 3

+ 1.251867 4 3 ack 40 ------- 1 4.0 0.0 0 3

- 1.251867 4 3 ack 40 ------- 1 4.0 0.0 0 3

r 1.292507 4 3 ack 40 ------- 1 4.0 0.0 0 3

+ 1.292507 3 2 ack 40 ------- 1 4.0 0.0 0 3

- 1.292507 3 2 ack 40 ------- 1 4.0 0.0 0 3

r 1.393573 3 2 ack 40 ------- 1 4.0 0.0 0 3

+ 1.393573 2 0 ack 40 ------- 1 4.0 0.0 0 3

- 1.393573 2 0 ack 40 ------- 1 4.0 0.0 0 3

r 1.403733 2 0 ack 40 ------- 1 4.0 0.0 0 3

+ 1.403733 0 2 tcp 552 ------- 1 0.0 4.0 1 4

- 1.403733 0 2 tcp 552 ------- 1 0.0 4.0 1 4

+ 1.403733 0 2 tcp 552 ------- 1 0.0 4.0 2 5

- 1.405941 0 2 tcp 552 ------- 1 0.0 4.0 2 5

r 1.415941 0 2 tcp 552 ------- 1 0.0 4.0 1 4

2.6.3 TRACING A SUBSET OF EVENTS
In Section 2.1 we already mentioned how to trace all simulated events. We now indicate ways to

trace only a subset of these events.

The first way is by replacing the command $ns trace-all <filename> by the command

$ns trace-queue. For example, we can type

$ns trace-queue $n2 $n3 $file1

which will result in an output trace file that contains only events that occurred over the link between

nodes n2 and n3 (these are nodes defined in Table 2.1). (A similar command can be used for the nam

trace, using namtrace-queue instead of trace-queue.) The trace-queue line should appear of

course after the definition of the links, i.e., after the script part of Table 2.1.

It is also possible to filter events using UNIX commands within the tcl script. This will be

discussed in Section 3.6.

2.7 RANDOM VARIABLES

Random Variables (RVs) with different distributions can be created in NS-2. Due to its important

role in traffic modeling and in network simulation, we briefly recall the definitions and moments of

main random variables in Appendix A. For more background, one can consult, e.g., http://www.

xycoon.com/.

2.7.1 SEEDS AND GENERATORS
In addition to its distribution, there are other aspects that we need to be concerned with when

simulating a random variable:

http://www.xycoon.com/
http://www.xycoon.com/

2.7. RANDOM VARIABLES 27

• Do we want to obtain the same value of the random variable when running the simulation

again (possibly varying some other parameters of simulations)? This would allow us to compare

directly, for a single random set of events, how the simulated results depend on some physical

parameters (such as link delays or queue length).

• Often we need random variables to be independent of each other.

The generation of random variables uses a seed (which is some number that we write in the tcl

script). The seed value of 0 results in the generation of a new random variable each time we run the

simulation, so if we wish to have the same generated random variables for different simulations, we

would have to save the generated random variables. In contrast, if we use other seeds then each time

we run the simulation, the same sequence of random variables that are generated in a simulation will

be generated.

In ns-2, if we use different generators with the same seed and the same distribution, they will

create the same values of random variables (unless the seed is zero). We shall see this in an example

below.

2.7.2 CREATING RANDOM VARIABLES IN NS-2
We first create three new random generators and go to the substream corresponding to the replication

number $rep which is a variable declared before.

set rng1 [new RNG]

set rng2 [new RNG]

set rng3 [new RNG]

for {set i 1} {$i < $rep} {incr i} {

$rng1 next-substream;

$rng2 next-substream;

$rng3 next-substream;

}

Then when actually creating a random variable, we have to define its distribution type and

its parameters. We give several examples below: we create RVs with Pareto, Constant, Uniform,

Exponential and HyperExponential distributions.

1. Pareto Distribution. A Pareto distributed RV, say r1, is constructed by specifying its expec-

tation and its shape parameter β, the default values are 1.0 and 1.5, respectively.

set r1 [new RandomVariable/Pareto]

$r1 use-rng $rng1

$r1 set avg_ 10.0

$r1 set shape_ 1.2

2. Constant. A degenerated random variable is the constant which equals to its value:

28 2. NS-2 SIMULATOR PRELIMINARIES

set r2 [new RandomVariable/Constant]

$r2 use-rng $rng2

$r2 set val_ 5.0

3. Uniform distribution. It is defined through the smallest and largest point in its support:

set r3 [new RandomVariable/Uniform]

$r3 use-rng $rng3

$r3 set min_ 0.0

$r3 set max_ 10.0

4. Exponential distribution. It is defined through its average value:

set r4 [new RandomVariable/Exponential]

$r4 use-rng $rng1

$r4 set avg_ 5

5. Hyperexponential distribution. It is defined as follows:

set r5 [new RandomVariable/HyperExponential]

$r5 use-rng $rng2

$r5 set avg_ 1.0

$r5 set cov_ 4.0

Example 2.3 Next we present a small program (rv1.tcl) that tests Pareto distributed random

variables with different seeds and generators but with the same Pareto distribution. It is given in

Table 2.6. For each substream (corresponding to replica values 0, 1 and 2), we create a sequence of

three random variables. The “count" variable is assigned the number of RVs that we create using

the “test" for each substream and generator. The sequences generated by each random generator

are independent, and for each random generator, the sequences generated by a different substream

(i in the example) are also independent.

Listing 2.6: Testing Pareto distributed random variables with different seeds.

Simple example demonstrating use of the RandomVariable class from tcl

set count 3

set rng1 [new RNG]

set rng2 [new RNG]

for {set i 0} {$i <3} {incr i} {

puts "===== i = $i "

for {set j 0} {$j < $i} {incr j} {

$rng1 next -substream;

$rng2 next -substream;

}

set r1 [new RandomVariable/Pareto]

$r1 use -rng $rng1

2.7. RANDOM VARIABLES 29

$r1 set avg_ 10.0

$r1 set shape_ 1.2

puts stdout "(rng1) Testing Pareto Distribution , avg = [$r1 set avg_]

shape = [$r1 set shape_]"

$r1 test $count

set r2 [new RandomVariable/Pareto]

$r2 use -rng $rng2

$r2 set avg_ 10.0

$r2 set shape_ 1.2

puts stdout "(rng2) Testing Pareto Distribution , avg = [$r2 set avg_]

shape = [$r2 set shape_]"

$r2 test $count

}

31

C H A P T E R 3

How to work with trace files
The NS-2 simulator can provide a lot of detailed data on events that occur at the network. If we

wish to analyze the data, we may need to extract relevant information from traces and to manipulate

them.

One can of course write programs in any programming language that can handle data files.

Yet several tools that seem particularly well adapted for these purposes already exist and are

freely available under various operating systems (linux, windows, etc.) All they require is to write

short scripts that are interpreted and executed without need for compilation.

3.1 PROCESSING DATA FILES WITH AWK

The awk tool [1] allows us to do simple operations on data files such as averaging the values of a

given column, summing or multiplying term by term between several columns, all data-reformatting

tasks, etc.

In the following two examples we show how to take the average value of a given column in a

file, and then to compute the standard deviation.

BEGIN { FS = "\t"} { nl++ } { s=s+$4} END {print "average:" s/nl}

Table 3.1: awk script for averaging the values in column 4 of a file.

(Note: the "\t" should be used if columns are tabulated. If not then one should replace it by

" ".)

BEGIN {FS="\t"}{ln++}{d=$4-t}{s2=s2+d*d} END {print "standev:" sqrt(s2/ln)}

Table 3.2: awk script for obtaining the standard deviation of column 4 of a file.

To use the first script to compute the average of column four of a file named “Out.ns," we

type in UNIX:

awk -f Average.awk Out.ns

32 3. HOW TO WORK WITH TRACE FILES

We shall get as a result something like: average : 29.397 for the average of column 4 (where

the first column is considered as number 1).

To compute now the standard deviation of that column, we type

awk -v t=29.397 -f StDev.awk Out.ns

which will give in response something like standev : 33.2003 Note that in the above script,

we have to copy the average value obtained from the previous script into the command that computes

the standard deviation. This example shows how to pass parameters to an awk script.

Note that if we do not divide at the end of the first awk script (Table 3.1) by nl, we shall obtain

simply the sum of entries of column 4 instead of their average.

A recommended way to obtain the average and the standard deviation is using arrays:

BEGIN { FS = "\t"} {val[nl]=$4} { nl++ } {s=s+$4} END {

av=s/nl

for (i in val) {

d=val[i]-av

s2=s2+d*d

}

print "average: " av " standev " sqrt(s2/nl)}

Table 3.3: Average and Standard Deviation awk script.

The next example takes as input a file with 15 columns (0 to 14). It then creates as output 5

columns, where the first contains column no. 1 of the original file, and columns 2 to 5 are the sum

of columns 3-4, 6-8, 9-11 and 12-14, respectively (12-14 correspond to the three last columns in

the original file).

BEGIN {FS="\t"}{l1=$3+$4+$5}{l2=$6+$7+$8}{d1=$9+$10+$11} \

{d2=$12+$13+$14}{print $1"\t" l1"\t" l2"\t" d1"\t" d2 } END {}

Table 3.4: A cut and paste columns awk script.

The use of this script could be as follows:

awk -f suma.awk Conn4.tr > outfile

The original file here is Conn4.tr and the output is written into a file called outfile.

3.2. USING GREP 33

3.2 USING GREP

The grep command in UNIX allows us to “filter" a file. We can create a new file which consists of

only those lines from the original file that contain a given character sequence. For example, output

traces in ns may contain all types of packets that go through all links, and we may be interested only

in the data concerning tcp packets that went from node 0 to node 2. If lines concerning such events

contain the string “ 0 2 tcp ", then all we have to do is type

grep " 0 2 tcp " tr1.tr > tr2.tr

where “tr1.tr" is the original trace and “tr2.tr" is the new file. If we wish to obtain a file containing

all lines of tr1.tr that begin with the letter r, we should type

grep "ˆr" tr1.tr > tr2.tr

If we wish to make a file of all the lines that begin with “s" and have later “tcp 1020", we

should type

grep "ˆs" simple.tr | grep "tcp 1020" > tr3.tr

3.3 PROCESSING DATA FILES WITH PERL

PERL stands for “Practical Extraction and Report Language". Perl[4] allows easy filtering and

processing of ASCII data files in UNIX. This language was created by Larry Wall with the main

idea of simplifying the task of system administration. Perl has evolved considerably and nowadays

is a general purpose language and one of the most widely used tools for web and Internet data

managing.

Perl is an interpreted language which has many uses, but is mainly addressed to search,

extraction and report. Some advantages of Perl are:

• Ease implementation of small programs to be used as filters, for extracting information from

text files.

• It can be used in many OSs without changing the code.

• Maintaining and debugging of Perl scripts are simpler than programs in other specific lan-

guages.

• Perl is very popular, so there exist many of gnu scripts on the web.

We present in this Section some useful Perl scripts.

The first example given in Listing 3.1 computes dynamically the throughput of TCP connec-

tions.The program averages the throughput over periods defined by a parameter called “granularity".

As input it takes three arguments: the name of a trace file (e.g., out.tr), the node at which we wish

to check the throughput of TCP, and the granularity.

34 3. HOW TO WORK WITH TRACE FILES

Listing 3.1: Perl program for computing throughput.

type: perl throughput .pl <trace file > <required node > <granularity > > file

$infile=$ARGV [0];

$tonode=$ARGV [1];

$granularity=$ARGV [2];

#we compute how many bytes were transmitted during time interval specified

#by granularity parameter in seconds

$sum =0;

$clock =0;

open (DATA ,"<$infile")

|| die "Can’t�open�$infile�$!";

while (<DATA >) {

@x = split(’�’);

#column 1 is time

if ($x[1]- $clock <= $granularity)

{

#checking if the event corresponds to a reception

if ($x[0] eq ’r’)

{

#checking if the destination corresponds to 1st argument

if ($x[3] eq $tonode)

{

#checking if the packet type is TCP

if ($x[4] eq ’tcp’)

{

$sum=$sum+$x[5];

}

}

}

}

else

{ $throughput=$sum/$granularity;

print STDOUT "$x[1]�$throughput\n";

$clock=$clock+$granularity;

$sum =0;

}

}

$throughput=$sum/$granularity;

3.4. PLOTTING WITH GNUPLOT 35

print STDOUT "$x[1]�$throughput\n";

$clock=$clock+$granularity;

$sum =0;

close DATA;

exit (0);

3.4 PLOTTING WITH GNUPLOT
Gnuplot is a widely available free software both for UNIX/linux as well as windows operating

systems.

Gnuplot has a help command that can be used to learn details of its operation.

The simplest way to use gnuplot is to type “plot < f n >", where the file (whose name we

write as fn) has two columns representing the x and y values of points. Points can be joined by a line

of different styles by writing commands like:

plot ’fn’ w lines 1

(different numbers can be given instead of "1") that produce different line styles). Alternatively, one

may use different type of points by writing commands of the form

plot ’fn’ w points 9

(again, several types of points can be depicted depending on the number that appears after “points").

Some other features of gnuplot: consider, for example, the following commands:

set size 0.6,0.6

set pointsize 3

set key 100,8

set xrange [90.0:120.0]

plot ’fn1’ w lines 1, ’fn2’ w lines 8, ’fn3’ with points 9

• Line 1 will produce a smaller size curve than the default.

• Line 2 will produce points that are larger than the defaults. (In both lines, other numbers can

be used).

• Line 3 tells gnuplot where exactly to put the ‘key‘; the key is the legend part in the figure

describing the plotted objects. In particular, it gives for each plotted object the line type or

point type that is used. Instead of an exact position, one could use the keywords ‘left‘, ‘right‘,

‘top‘, ‘bottom‘, ‘outside‘ and ‘below‘, e.g.,set key below (which sets the key below the graph),

or simply “set nokey" which disables the key completely. Note that the default name of each

object that appears in the key is simply its corresponding file name. If we wish to give an object

a title other than the file name, we have to state this explicitly in the “plot" command, for

example:

36 3. HOW TO WORK WITH TRACE FILES

plot ’fn1’ t "expectation" w lines 1, ’fn2’ t "variance" w lines 2

Here, the names “expectation" and “variance" will appear in the key.

• Line 4 restricts the range of the x axis to the interval 90-120.

• Line 5 superimposes three curves in a single figure, obtained from three different files: fn1,

fn2, fn3.

If the same sequence of commands are to be used several times, one can write them into a file, say

having the name “g1.com", and then simply load the file each time one wishes to use it:

load ’g1.com’

gnuplot can be used to extract some column from a multicolumn file. This is done as follows

plot ’queue.tr’ using 1:($4/1000) t "kbytes" w lines 1, \

’queue.tr’ using 1:5 t "packets" w lines 2

which means plotting first a curve using column 1 of the file “queue.tr’ as the x axis and 4 divided by

1000 as the y axis, and then plotting on the same curve the column 5 for the y axis using the same

column 1 for the x axis. Note: this order between “using", “t" and “lines" is important!

3.5 PLOTTING WITH XGRAPH
Xgraph is a plotting utility that is provided by NS-2. (Sometimes it needs separate compiling using

./configure and then make when at the directory xgraph. Also, sometimes this does not work

with the xgraph that arrives with the whole NS-2 single package, and it can then be downloaded

and installed separately). Note that it allows to create postscript,Tgif files, and others, by clicking on

the button “Hdcpy". It can be invoked within the tcl command which thus results in an immediate

display at the end of the simulation.

As input, the xgraph command expects one or more ascii files containing each x − y data

point pair perl line. For example, xgraph f1 f2 will print on the same figure the files f1 and f2.

Some options in xgraph are:

• Title: use -t "title".

• Size: -geometry xsize x ysize.

• Title for axis: -x "xtitle" (for the title of the x axis) and -y "ytitle" (for the title of the

y axis).

• Color of text and grid: with the flag -v.

An example of a command would be

xgraph f1 f2 -geometry 800x400 -t "Loss rates" -x "time" -y "Lost packets"

3.6. EXTRACTING INFORMATION WITHIN A TCL SCRIPT 37

3.6 EXTRACTING INFORMATION WITHIN A TCL SCRIPT
It is possible to integrate UNIX commands such as “grep" and “awk" already into the tcl scripts, so

as to start the processing of data while writing the file. For example, another way to limit the tracing

files (or in general, to process them online while they are being written) is to use linux commands

related to file processing within the tcl command that opens the required file.

For example, we may replace the command $set file1 [open out.tr w] (that we had

at the beginning of the script ex1.tcl, see Listing 2.4) by the command

set file1 [open "| grep \"tcp\" > out.tr" w]

This will result in filtering the lines written to the file “out.tr" and leaving only those that contain

the word “tcp".

39

C H A P T E R 4

Description and simulation of
TCP/IP

TCP (Transport Control Protocol) is the transport protocol that is responsible for the transmission

of around 90% of the Internet traffic, and understanding TCP is thus crucial for dimensioning the

Internet. Although TCP is already largely deployed, it continues to evolve.

In the first section we describe the operation of TCP. Then in subsequent sections we present

several NS-2 scripts that illustrate the analysis of TCP through simulations.

4.1 DESCRIPTION OF TCP
4.1.1 OBJECTIVES OF TCP AND WINDOW FLOW CONTROL

TCP has several objectives:

• Adapt the transmission rate of packets to the available bandwidth,

• Avoid congestion at the network, and

• Create a reliable connection by retransmitting lost packets.

In order to control the transmission rate, the number of packets that have not yet been received

(or more precisely, for which the source has not obtained the information of good reception) is

bounded by a parameter called a congestion window. We denote it by W , but it is called cwnd in

the TCP code. This means that the source is obliged to wait and stop transmission whenever the

number of packets that it has transmitted and that have not been “acknowledged" reaches W . In

order to acknowledge packets and thus to be able to retransmit lost packets, each transmitted packet

has a sequence number.

4.1.2 ACKNOWLEDGEMENTS

The objectives of Acknowledgements (ACKs) are:

• Regulate the transmission rate of TCP, ensuring that packets can be transmitted only when

others have left the network.

• Render the connection reliable by transmitting to the source information it needs so as to

retransmit packets that have not reached the destination.

40 4. DESCRIPTION AND SIMULATION OF TCP/IP

How does the destination know that a packet is missing?

How do we know that a packet is lost?

What information does the ACK carry along?

The ACK tells the source what is the sequence number of the packet it expects. This is

illustrated by the following example. Suppose packets 1,2,...,6 have reached the destination (in

order). When packet 6 arrives, the destination sends an ACK to say it expects packet number 7. If

packet 7 arrives, the destination requests number 8. Suppose packet 8 is lost and packet 9 arrives

well. At that time, the destination sends an ACK called “repeated ACK" as it tells the source that

it awaits packet 8. The information carried by the ACK is thus the same as the one carried by the

previous ACK.

This method is called “implicit ACK". It is robust under losses of ACKs. Indeed, assume that

the ACK saying that the destination waits for packet 5 is lost. When the next ACK arrives, saying

it awaits packet 6, the source knows that the destination has received packet 5, so the information

sent by the lost ACK is deduced from the next ACK.

A TCP packet is considered lost if

• Three repeated ACKs for the same packet arrive at the source1, or

• When a packet is transmitted, there is a timer that starts counting. If its ACK does not arrive

within a period T0, there is a “Time-Out" and the packet is considered to be lost.

Retransmitting after three duplicated ACKS is called “fast retransmit".

How to choose T0? The source has an estimation of the average round trip time RT T , which

is the time necessary for a packet to reach the destination plus the time for its ACK to reach the

source. It also has an estimation of the variability of RT T . T0 is determined as follows:

T0 = RT T + 4D

Where RT T is the current estimation of RT T , and D is the estimation of the variability of RT T .

In order to estimate RT T , we measure the difference M between the transmission time of a packet

and the time its ACK returns. Then we compute

RT T ← a × RT T + (1 − a)M,

D ← aD + (1 − a)|RT T − M|.

In order to decrease the number of ACKs in the system, TCP frequently uses the “delayed

ACK" option where an ACK is transmitted only for every d packets that reach the destination. The

standard value of d is 2. However, delaying an ACK till d > 1 packets are received could result in

a deadlock in case the window size is one. Therefore, if the first packet (of an expected group of d

1One does not consider a single repeated ACK as a loss indication since duplicated ACKS could be due to resequencing of packets

at the Internet.

4.1. DESCRIPTION OF TCP 41

packets) arrives at the destination, then after some time interval (typically 100ms) if d packets have

not yet arrived, then an acknowledgement is generated without further waiting.

4.1.3 DYNAMIC CONGESTION WINDOW

Since the beginning of the eighties, for several years,TCP had a fixed congestion window. Networks

at that time were unstable, there were many losses, large and severe congestion periods, during which

the throughputs decreased substantially, there were many packet retransmissions and large delays. In

order to solve this problem,Van Jacobson [37] proposed to use a dynamic congestion window: its size

can vary according to the network state.The basic idea is as follows: When the window is small, it can

grow rapidly, and when it reaches large values it can only grow slowly. When congestion is detected,

the window size decreases drastically. This dynamic mechanism allows to resolve congestion rapidly

and yet use efficiently the network’s bandwidth.

More precisely, define a threshold Wth called “slow start threshold" which represents our

estimation of the network capacity. The window starts at a value of one. It thus transmits a single

packet. When its ACK returns, we can transmit two packets. For each ACK of these two packets,

the window increases by one, so that when the ACKs of these two packets return we transmit four

packets. We see that there is an exponential growth of the window. This phase is called “slow start".

It is so called because in spite of the rapid growth, it is slower than if we had started directly with a

value of W = Wth.

When W = Wth, we pass to a second phase called “congestion avoidance", where the window

W increases by ⌊1/W⌋ with each ACK that returns. After transmitting W packets, W increases by

1. If we transmit the W packets at t , then at time t + RT T we transmit W + 1, and at t + 2RT T

we transmit W + 2, etc. We see that the window growth is linear.

4.1.4 LOSSES AND A DYNAMIC THRESHOLD Wth

Not only is W dynamic, Wth is too. It is fixed in TCP to half the value of W when there has been a

packet loss.

There are several variants of TCP. In the first variant, called “Tahoe", whenever a loss is

detected then the window reduces to the value of 1 and a slow-start phase begins. This is a drastic

decrease of the window size and thus of the transmission rate.

In the other mostly used variants, called Reno or New-Reno, the window drops to 1 only

if the loss is detected through a time-out. When a loss is detected through repeated ACKs then

the congestion window drops by half. Slow start is not initiated and we remain in the “congestion

avoidance" phase.

4.1.5 INITIATING A CONNECTION

To initiate a TCP connection, the source sends a “sync" packet of 40 bytes to the destination. The

destination then sends an ACK (also 40 packets long, called “sync ACK"). When receiving this

42 4. DESCRIPTION AND SIMULATION OF TCP/IP

ACK, TCP can start sending data. Note that: if either of these packets is lost then after a time-out

expires (usually 3 or 6 secs) it is retransmitted. When a retransmitted packet is lost, the time-out

duration doubles and the packet is sent again.

4.2 TRACING AND ANALYSIS OF EXAMPLE EX1.TCL
Let us run the perl program “throughput.pl" (Table 3.1) on the trace file out.tr generated by the

ex1.tcl script (see Table 2.4). We have to type:
perl throughput.pl out.tr 4 1 > thp

We obtain an output file with the averaged received throughput of TCP (in bytes per second) as a

function of time, where in our case, each 1 second, a new value of the throughput is obtained. This

output file can be displayed using gnuplot by typing:
gnuplot

set size 0.4,0.4

set key 60,15000

plot ’thp’ w lines 1

The result is given in Figure 4.1.

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100 120 140

ʼthpʼ

Figure 4.1: Throughput of TCP connection.

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140

WinFileʼ

Figure 4.2: Window size of TCP connection.

In order to understand better the behavior of the system, we also plot the window size (Fig-

ure 4.2). This is the file “WinFile" created by running ex1.tcl.

We see that from time 20 onwards a steady-state cyclic regime of TCP is attained: TCP

is always in congestion avoidance, and its window size increases (almost linearly) until congestion

occurs.

Before time 20, we see a transient behavior in which TCP is in the slow-start phase.

At time 4.2 there are losses at the slow start phase.The window halves, whereas the throughput

becomes close to zero. How can we explain that? The reason is that at time 4.2 there is a time-out, so

4.3. TCP OVER NOISY LINKS AND QUEUE MONITORING 43

although the window is of size 30 (packets), there are no transmissions. At time 11 there are again

losses during a slow-start phase.

4.3 TCP OVER NOISY LINKS AND QUEUE MONITORING

In the previous examples losses were due to congestion. In practice, losses may also be caused by

noisy links. This is especially true in the case of radio links, e.g., in cellular phones or in satellite

links. A link may become, in fact, completely disconnected for some period. We shall see this aspect

later, in Section 5.1. Or it may suffer from occasional interference (due to shadowing, fading, etc.)

that causes packets to contain errors and then to be dropped. In this section we shall show how to

introduce the simplest error model: we assume that packets are dropped on the forward link with

some fixed constant probability.

This link error model, which will be introduced to the link connecting nodes n3 and n2 (in

the example in Figure 4.3), is created as follows:

#Set error model on link n2 to n3.

set loss_module [new ErrorModel]

$loss_module set rate_ 0.2

$loss_module ranvar [new RandomVariable/Uniform]

$loss_module drop-target [new Agent/Null]

$ns lossmodel $loss_module $n2 $n3

The command $loss_module set rate_ 0.2 determines a loss rate of 20% of the packets. It

uses a generator of a uniformly distributed random variable, which is declared in the next line. The

last line determines which link will be affected.

As an example of aTCP connection that shares a noisy bottleneck link with a UDP connection,

we consider the network depicted in Figure 4.3.

Figure 4.3: Example rdrop.tcl.

Queue monitoring An important object of NS-2 is the monitor-queue. It allows to collect much

useful information on queue length, on the arrivals, departures and losses. To implement a queue

monitor between nodes n2 and n3, we type:

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-002.jpg&w=151&h=90

44 4. DESCRIPTION AND SIMULATION OF TCP/IP

set qmon [$ns monitor-queue $n2 $n3 [open qm.out w] 0.1];

[$ns link $n2 $n3] queue-sample-timeout; # [$ns link $n2 $n3] start-tracing

The “monitor-queue" object has 4 arguments: the first two defines the link where the queue is located,

the third is the output trace file and the last says how frequently we wish to monitor the queue. In

our case, the queue at the input of node n2-n3 is monitored every 0.1 sec and the output is printed

into the file qm.out. Note that you can use either of the two methods (“queue-sample-timeout” or

“start-tracing”) in order to start the queue monitor.

The output file contains the following 11 columns:

• the time,

• the input and output nodes defining the queue,

• the queue size in bytes (corresponds to the attribute size_ of the monitor-queue object),

• the queue size in packets, (corresponds to the attribute pkt_),

• the number of packets that have arrived, (corresponds to the attribute parrivals_),

• the number of packets that have departed the link, (corresponds to the attribute

pdepartures_),

• the number of packets dropped at the queue, (corresponds to the attribute pdrops_),

• the number of bytes that have arrived, (corresponds to the attribute barrivals_),

• the number of bytes that have departed the link, (corresponds to the attribute bdepartures_),

• the number of bytes dropped (corresponds to the attribute bdrops_).

An alternative way to work directly with these attributes is described in Section 4.5.

Listing 4.1 shows the entire script for modelling TCP with noisy drops.

Listing 4.1: Tcl script rdrop.tcl for TCP over a noisy channel.

set ns [new Simulator] # Create the simulator instance

$ns color 1 Blue

$ns color 2 Red

set nf [open out.nam w] #Open the NAM trace file

$ns namtrace -all $nf

set tf [open out.tr w] #Open the Trace file

set windowVsTime2 [open WindowVsTimeNReno w]

$ns trace -all $tf

4.3. TCP OVER NOISY LINKS AND QUEUE MONITORING 45

proc finish {} { #Define a ’finish ’ procedure

global ns nf tf

$ns flush -trace

close $nf

close $tf

exec nam out.nam &

exit 0

}

set n0 [$ns node] #Create four nodes

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

$ns at 0.1 "$n1 label \"CBR\""

$ns at 1.0 "$n0 label \"FTP\""

#Create links between the nodes

$ns duplex -link $n0 $n2 2Mb 10ms DropTail

$ns duplex -link $n1 $n2 2Mb 10ms DropTail

$ns simplex -link $n2 $n3 0.07Mb 20ms DropTail

$ns simplex -link $n3 $n2 0.07Mb 20ms DropTail

#Set Queue Size of link (n2-n3) to 10

$ns queue -limit $n2 $n3 10

#Monitor the queue for link (n2-n3). (for NAM)

$ns simplex -link -op $n2 $n3 queuePos 0.5

#Set error model on link n3 to n2.

set loss_module [new ErrorModel]

$loss_module set rate_ 0.2

$loss_module ranvar [new RandomVariable/Uniform]

$loss_module drop -target [new Agent/Null]

$ns lossmodel $loss_module $n2 $n3

#Setup a TCP connection

set tcp [new Agent/TCP/Newreno]

$ns attach -agent $n0 $tcp

set sink [new Agent/TCPSink/DelAck]

$ns attach -agent $n3 $sink

$ns connect $tcp $sink

46 4. DESCRIPTION AND SIMULATION OF TCP/IP

$tcp set fid_ 1

#Setup a FTP over TCP connection

set ftp [new Application/FTP]

$ftp attach -agent $tcp

$ftp set type_ FTP

#Setup a UDP connection

set udp [new Agent/UDP]

$ns attach -agent $n1 $udp

set null [new Agent/Null]

$ns attach -agent $n3 $null

$ns connect $udp $null

$udp set fid_ 2

#Setup a CBR over UDP connection

set cbr [new Application/Traffic/CBR]

$cbr attach -agent $udp

$cbr set type_ CBR

$cbr set packetSize_ 1000

$cbr set rate_ 0.01Mb

$cbr set random_ false

#Schedule events for the CBR and FTP agents

$ns at 0.1 "$cbr start"

$ns at 1.0 "$ftp start"

$ns at 624.0 "$ftp stop"

$ns at 624.5 "$cbr stop"

Printing the window size

proc plotWindow {tcpSource file} {

global ns

set time 0.01

set now [$ns now]

set cwnd [$tcpSource set cwnd_]

puts $file "$now $cwnd"

$ns at [expr $now+$time] " plotWindow $tcpSource $file" }

$ns at 1.1 "plotWindow $tcp $windowVsTime2"

sample the bottleneck queue every 0.1 sec. store the trace in qm.out

set qmon [$ns monitor -queue $n2 $n3 [open qm.out w] 0.1];

[$ns link $n2 $n3] queue -sample -timeout; # [$ns link $n2 $n3] start -tracing

4.3. TCP OVER NOISY LINKS AND QUEUE MONITORING 47

#Detach tcp and sink agents (not really necessary)

$ns at 624.5 "$ns detach -agent $n0 $tcp ; $ns detach -agent $n3 $sink"

$ns at 625.0 "finish"

$ns run

In Figure 4.4 we trace (using gnuplot) the file WindowVsTimeNReno created by the simulation. A

zoomed version is given in Figure 4.5.

Figure 4.4: Window size of TCP with

20% random losses.

Figure 4.5: Window size of TCP with

20% random losses: a zoom.

In several cases we can observe long timeouts, in particular at time 300.To see the huge impact

of the random loss on TCP performance, we run the simulation again but with no losses. The result

is depicted in Figure 4.6.

Figure 4.6: TCP window size for 0 random loss rate.

An important performance measure is the average throughput of TCP. A very simple way

to compute it is to search in the trace file out.tr the time that a TCP packet was received at the

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-003.jpg&w=171&h=122
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-004.jpg&w=170&h=122
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-005.jpg&w=174&h=121

48 4. DESCRIPTION AND SIMULATION OF TCP/IP

destination (at node 3). In our simulation this is found at time 624.08754 and the corresponding

trace line is

r 624.082754 2 3 tcp 1000 ------- 1 0.0 3.0 1562 4350

The number before the last means that this is the 1562nd TCP packet to be well received at the

destination. The TCP throughput is thus simply this number divided by the duration of the FTP

connection (623 seconds), i.e., 2.507 packets per second, or equivalently, 2.507 Kbytes per second

(as a TCP packet contains by default 1000 bytes) or 20058 bps.

Note: if we look at the first lines of the out.tr file, we shall see that there are other TCP

packets (of size 40 packets each) which we have not been counted in the total number 1562. Their

serial number is zero. We do not count them because they correspond to signalling packets that are

involved in the opening of the TCP connection.

Note that we used the delayed Ack version of TCP by using

the command set sink [new Agent/TCPSink/DelAck] instead of simply

set sink [new Agent/TCPSink].

4.4 CREATING MANY CONNECTIONS WITH RANDOM
FEATURES

In order to create many connections, it is useful instead of defining each node, link, connection or

application individually to define them as vectors (or arrays) in tcl (within loop statements).

Furthermore, it becomes of interest to choose connection parameters (such as time of be-

ginning or end of activity, link delays, etc.) in a random way. We treat both issues in this Section,

and then provide an example. Note that we have already considered other aspects of randomness in

Section 4.3.

Example 4.1 An example. Consider the network at Figure 4.7. The tcl script is given in Listing

Figure 4.7: Example of a network with several TCP connections.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-006.jpg&w=223&h=131

4.4. CREATING MANY CONNECTIONS WITH RANDOM FEATURES 49

4.2.

We create 5 FTP connections that start at random: the starting time is uniformly distributed

between 0 and 7 sec. The whole simulation duration is 10 seconds. We create links with delay that

is chosen at random, uniformly distributed between 1ms and 5ms.

In addition to the standard trace outputs, we also create a file named “win" that will contain

the evolution of the window size of all connections at a granularity of 0.03sec. This is done in the

procedure plotWindow. Note that the file “win" is addressed using the pointer “windowVsTimes".

The procedure is called recursively for each of the 5 connections.

Listing 4.2: Tcl script ex3.tcl for several competing TCP connections.

set ns [new Simulator] #Create the simulator instance

set nf [open out.nam w] #Opening the trace files

$ns namtrace -all $nf

set tf [open out.tr w]

set windowVsTime [open win w]

set param [open parameters w]

$ns trace -all $tf

proc finish {} { #Define a ’finish ’ procedure

global ns nf tf

$ns flush -trace

close $nf

close $tf

exec nam out.nam &

exit 0

}

#Create bottleneck and destination nodes and link between them

set n2 [$ns node]

set n3 [$ns node]

$ns duplex -link $n2 $n3 0.7Mb 20ms DropTail

set NumbSrc 5

set Duration 10

for {set j 1} {$j <= $NumbSrc} { incr j } { #Source nodes

set S($j) [$ns node]

}

Create a random generator for starting the ftp and for bottleneck link delays

set rep 1

set rng1 [new RNG]

50 4. DESCRIPTION AND SIMULATION OF TCP/IP

set rng2 [new RNG]

for {set i 0} {$i < $rep} {incr i} {

$rng1 next -substream;

$rng2 next -substream;

}

parameters for random variables for delays

set RVdly [new RandomVariable/Uniform]

$RVdly set min_ 1

$RVdly set max_ 5

$RVdly use -rng $rng1

parameters for random variables for beginning of ftp connections

set RVstart [new RandomVariable/Uniform]

$RVstart set min_ 0

$RVstart set max_ 7

$RVstart use -rng $rng2

#We define two random parameters for each connection

for {set i 1} {$i <= $NumbSrc} { incr i } {

set startT($i) [expr [$RVstart value]]

set dly($i) [expr [$RVdly value]]

puts $param "dly($i) $dly($i) ms"

puts $param "startT($i) $startT($i) sec" }

#Links between source and bottleneck

for {set j 1} {$j <= $NumbSrc} { incr j } {

$ns duplex -link $S($j) $n2 10Mb $dly($j)ms DropTail

$ns queue -limit $S($j) $n2 100 }

#Monitor the queue for link (n2-n3). (for NAM)

$ns duplex -link -op $n2 $n3 queuePos 0.5

$ns queue -limit $n2 $n3 10 #Set Queue Size of link (n2-n3) to 10

for {set j 1} {$j <= $NumbSrc} { incr j } { #TCP Sources

set tcp_src($j) [new Agent/TCP/Reno]

}

for {set j 1} {$j <= $NumbSrc} { incr j } { #TCP Destinations

set tcp_snk($j) [new Agent/TCPSink]

}

for {set j 1} {$j <= $NumbSrc} { incr j } { #Connections

4.5. SHORT TCP CONNECTIONS 51

$ns attach -agent $S($j) $tcp_src($j)

$ns attach -agent $n3 $tcp_snk($j)

$ns connect $tcp_src($j) $tcp_snk($j)

}

for {set j 1} {$j <= $NumbSrc} { incr j } { #FTP sources

set ftp($j) [$tcp_src($j) attach -source FTP]

}

#Parametrisation of TCP sources

for {set j 1} {$j <= $NumbSrc} { incr j } {

$tcp_src($j) set packetSize_ 552

}

#Schedule events for the FTP agents:

for {set i 1} {$i <= $NumbSrc} { incr i } {

$ns at $startT($i) "$ftp($i) start"

$ns at $Duration "$ftp($i) stop"

}

proc plotWindow {tcpSource file k} {

global ns

set time 0.03

set now [$ns now]

set cwnd [$tcpSource set cwnd_]

puts $file "$now $cwnd"

$ns at [expr $now+$time] " plotWindow $tcpSource $file $k" }

The procedure will now be called for all tcp sources

for {set j 1} {$j <= $NumbSrc} { incr j } {

$ns at 0.1 "plotWindow $tcp_src ($j) $windowVsTime $j"

}

$ns at [expr $Duration] "finish"

$ns run

4.5 SHORT TCP CONNECTIONS
File transfers constitute the majority of the traffic over the Internet. The average transferred file is

around 10Kbytes. This means that an “average" file has no more than 10 TCP packets taking the

typical TCP packet size to be 1Kbyte [20, 54].This implies that most of the file transfers end in slow

start phase.These files are frequently called “mice". Surprisingly, however, most traffic in the Internet

is transmitted by very long files. These are called “elephants". A typical distribution that describes

the file size is the Pareto [20], with shape parameter of between 1 and 2 [20] (and average of 10KB).

52 4. DESCRIPTION AND SIMULATION OF TCP/IP

The median of the file size is around 2.5Kbytes ([54] and references therein). Note that a Pareto

distribution with mean 10Kbytes and a median size of 2.5Kbytes defines a Pareto distribution with

shape parameter β = 1.16 and with a minimum size of 1.37Kbytes. The distribution of interarrival

times of new connections is frequently taken to be exponential.

In this Section we shall present ways to simulate short sessions, and to measure the distribution

of the transmission duration, of the number of ongoing connections and the throughput.

We shall consider a network with the same topology as the one in Figure 4.2: several sources

sharing a common bottleneck node and a common destination. The number of sources is given

by the parameter “NodeNb" (in our example it is 6). TCP sources are parameterized now by two

parameters: the source node and the session number from that node. For each TCP agent we define

a new FTP application. New TCP connections arrive according to a Poisson process. We shall

therefore generate the beginning of a new TCP connection using exponentially distributed random

variables.

The bottleneck link is assumed to be of 2Mbps, to have a delay of 1ms and to have a queue

of size 3000. All other input links that join this link have a bandwidth of 100 Mbps and a delay of

1ms. We use the New Reno version with a maximum window size of 2000.

The average time between the arrivals of new TCP sessions at each node is in our example

45 msec. This means that on the average, 22.22 new sessions arrive at each node so that the global

arrival rate of sessions is 22.22 times NodeNb, which gives in our case 133.33 sessions/sec. We

generate sessions of random size with a mean of 10Kbytes, with Pareto distribution with shape 1.5.

The global rate of generation of bits is thus

133.33 × 104 × 8 = 10.67Mbps.

We see that the rate of generation of bits is larger than the bottleneck capacity, so we shall expect

a congestion phenomenon to appear. However, TCP has the capacity to avoid congestion in the

network (at the bottleneck queue). Congestion will therefore appear in other forms as we shall see.

Monitoring the number of sessions In the context of short TCP sessions we are interested not only

in packet statistics but also in session statistics. In the NS-2 program we shall define a recursive

procedure, called “Test", that checks for each session whether it has ended. The procedure calls itself

each 0.1 sec (this is set in the variable “time"). If a connection has ended then we print in an output

file

• the connection ids i and j (where (i, j) stands for the j th connection from node i),

• the start and end time of that connection,

• the throughput of that connection, and

• the size of the transfer in bytes.

4.5. SHORT TCP CONNECTIONS 53

The procedure then defines another beginning of transfer after a random time. In the script that

follows, the output file will be Out.ns. To check whether a session has ended, we use the command

if {[$tcpsrc($i,$j) set ack_]==[$tcpsrc($i,$j) set maxseq_]} {

Another recursive procedure called “countFlows" is used to update the number of active

connections from each node (stored in a vector “Cnts" whose j th element corresponds to the number

of ongoing connections from node j .2 The procedure has two parameters: “ind" and “sign".The “ind"

indicates which source node it concerns. The “sign" indicates to the procedure what to do: it is 0

when a call ends and 1 when it begins. These parameters are used when calling the procedure at the

beginning or end of a connection. The procedure also calls itself periodically every 0.2 seconds and

it then prints the number of active calls into a file (Conn.tr). To do that, the “sign" parameter that

is passed should be neither 1 nor 0 (we set it as 3).

Monitoring the queue In the next tcl program, we present an alternative way to do queue moni-

toring, more sophisticated than the method we saw in Section 4.3. We use again the commands

set qfile [$ns monitor-queue $N $D [open queue.tr w] 0.05]

[$ns link $N $D] queue-sample-timeout;

We could however delete the second line. Instead of restricting ourselves to that command, we

work directly with the attributes of the “monitor-queue" which have been described in Section 4.3.

This is done in a procedure called “record" that is recursively called every 0.05 sec. For example, we

print the used bandwidth of the queue (in Kbytes per second) into a file by dividing the number of

departures in a time epoch by the epoch duration. Note that the monitor-queue keeps track of the

total number of arrived bytes in the attribute bdepartures_. In order to count only the number

of departures in a time epoch (and not during the entire simulation duration), we have to reset the

value of bdepartures_ at the end of each new computation of the bandwidth.

Listing 4.3: Tcl script shortTcp.tcl for short TCP connections.

set ns [new Simulator]

There are several sources of TCP sharing a bottleneck link

and a single destination. Their number is given by the parameter NodeNb

S(1) ----

. |

. ---- ---- N -------- D(1)...D(NodeNb)

. |

S(NodeNb) ----

set Out [open Out.ns w] # Out.ns file will contain the transfer times

set Conn [open Conn.tr w] # Next file will contain the number of connections

2The interest in having different counters at different nodes lies in the fact that we can also use the program for the case of asymmetric

input links, in which case we shall be able to study the dependence of the performance on the link delay and bandwidth.

54 4. DESCRIPTION AND SIMULATION OF TCP/IP

set tf [open out.tr w] # Open the Trace file

$ns trace -all $tf

We define three files that will be used to trace the queue size , the bandwidth

and losses at the bottleneck.

set qsize [open queuesize.tr w]

set qbw [open queuebw.tr w]

set qlost [open queuelost.tr w]

defining the topology

set N [$ns node]

set D [$ns node]

$ns duplex -link $N $D 2Mb 1ms DropTail

$ns queue -limit $N $D 3000

set NodeNb 6 # Number of sources

set NumberFlows 530 # Number of flows per source node

for {set j 1} {$j <= $NodeNb} { incr j } { #Nodes and links

set S($j) [$ns node]

$ns duplex -link $S($j) $N 100Mb 1ms DropTail

$ns queue -limit $S($j) $N 1000

}

for {set i 1} {$i <= $NodeNb} { incr i } { #TCP Sources and Destinations

for {set j 1} {$j <= $NumberFlows} { incr j } {

set tcpsrc($i,$j) [new Agent/TCP/Newreno]

set tcp_snk($i,$j) [new Agent/TCPSink]

$tcpsrc($i,$j) set window_ 2000

}

}

for {set i 1} {$i <= $NodeNb} { incr i } { #Connections

for {set j 1} {$j <= $NumberFlows} { incr j } {

$ns attach -agent $S($i) $tcpsrc($i,$j)

$ns attach -agent $D $tcp_snk($i,$j)

$ns connect $tcpsrc($i,$j) $tcp_snk($i,$j)

}

}

for {set i 1} {$i <= $NodeNb} { incr i } { #FTP sources

for {set j 1} {$j <= $NumberFlows} { incr j } {

set ftp($i,$j) [$tcpsrc($i,$j) attach -source FTP]

}

}

4.5. SHORT TCP CONNECTIONS 55

Generators for random size of files and interarrivals.

set rep 1

set rng1 [new RNG]

set rng2 [new RNG]

for {set i 0} {$i < $rep} {incr i} {

$rng1 next -substream;

$rng2 next -substream;

}

Random interarrival time of TCP transfers at each source i

set RV [new RandomVariable/Exponential]

$RV set avg_ 0.045

$RV use -rng $rng1

Random size of files to transmit

set RVSize [new RandomVariable/Pareto]

$RVSize set avg_ 10000

$RVSize set shape_ 1.5 \cite{Jacob}

$RVSize use -rng $rng2

We now define the beginning times of transfers and the transfer sizes

Arrivals of sessions follow a Poisson process.

for {set i 1} {$i <= $NodeNb} { incr i } {

set t [$ns now]

for {set j 1} {$j <= $NumberFlows} { incr j } {

set the beginning time of next transfer from source i

set t [expr $t + [$RV value]]

set Conct($i,$j) $t

set the size of next transfer from source i

set Size($i,$j) [expr [$RVSize value]]

$ns at $Conct($i,$j) "$ftp($i,$j) send $Size($i,$j)"

update the number of flows

$ns at $Conct($i,$j) "countFlows $i 1"

} }

Next is a recursive procedure that checks for each session whether

it has ended. The procedure calls itself each 0.1 sec (this is

set in the variable "time ").

If a connection has ended then we print in the file $Out

* the connection identifiers i and j,

* the start and end time of the connection ,

* the throughput of the session ,

56 4. DESCRIPTION AND SIMULATION OF TCP/IP

* the size of the transfer in bytes

and we further define another beginning of transfer after a random time.

proc Test {} {

global Conct tcpsrc Size NodeNb NumberFlows ns RV ftp Out tcp_snk RVSize

set time 0.1

for {set i 1} {$i <= $NodeNb} { incr i } {

for {set j 1} {$j <= $NumberFlows} { incr j } {

We now check if the transfer is over

if {[$tcpsrc($i,$j) set ack_]==[$tcpsrc($i,$j) set maxseq_]} {

if {[$tcpsrc($i,$j) set ack_]>=0} {

If the transfer is over , we print relevant information in $Out

puts $Out "$i,$j\t$Conct($i,$j)\t[expr [$ns now]]\t\

[expr ($Size($i,$j))/(1000*([expr [$ns now]] - $Conct($i,$j)))]\ t$Size($i,$j)"

countFlows $i 0

$tcpsrc($i,$j) reset

$tcp_snk($i,$j) reset

} } } }

$ns at [expr [$ns now]+$time] "Test"

}

for {set j 1} {$j <= $NodeNb} { incr j } {

set Cnts($j) 0

}

The following recursive procedure updates the number of connections

as a function of time. Each 0.2 it prints them into $Conn. This

is done by calling the procedure with the "sign" parameter equal

3 (in which case the "ind" parameter does not play a role). The

procedure is also called by the Test procedure whenever a connection

from source i ends by assigning the "sign" parameter 0, or when

it begins , by assigning it 1 (i is passed through the "ind" variable).

proc countFlows { ind sign } {

global Cnts Conn NodeNb

set ns [Simulator instance]

if { $sign ==0 } { set Cnts($ind) [expr $Cnts($ind) - 1]

} elsif { $sign ==1 } { set Cnts($ind) [expr $Cnts($ind) + 1]

} else {

puts -nonewline $Conn "[$ns now] \t"

set sum 0

for {set j 1} {$j <= $NodeNb} { incr j } {

puts -nonewline $Conn "$Cnts($j) \t"

set sum [expr $sum + $Cnts($j)]

4.5. SHORT TCP CONNECTIONS 57

}

puts $Conn "$sum"

$ns at [expr [$ns now] + 0.2] " countFlows 1 3"

}}

proc finish {} { #Define a ’finish ’ procedure

global ns tf qsize qbw qlost

$ns flush -trace

close $qsize

close $qbw

close $qlost

Execute xgraph to display the queue size , queue bandwidth and loss rate

exec xgraph queuesize.tr -geometry 800 x400 -t "Queue size" -x "secs" -y "# packs" &

exec xgraph queuebw.tr -geometry 800 x400 -t "bandwidth" -x "secs" -y "Kbps" &

exec xgraph queuelost.tr -geometry 800 x400 -t "# Packs lost" -x "secs" -y "packs" &

exit 0

}

QUEUE MONiTORiNG

set qfile [$ns monitor -queue $N $D [open queue.tr w] 0.05]

[$ns link $N $D] queue -sample -timeout;

The following procedure records queue size , bandwidth and loss rate

proc record {} {

global ns qfile qsize qbw qlost N D

set time 0.05

set now [$ns now]

print the current queue size in $qsize , the current used

bandwidth in $qbw , and the loss rate in $qloss

$qfile instvar parrivals_ pdepartures_ bdrops_ bdepartures_ pdrops_

puts $qsize "$now [expr $parrivals_ -$pdepartures_ -$pdrops_]"

puts $qbw "$now [expr $bdepartures_ *8/1024/ $time]"

set bdepartures_ 0

puts $qlost "$now [expr $pdrops_/$time]"

$ns at [expr $now+$time] "record"

}

$ns at 0.0 "record"

$ns at 0.01 "Test"

$ns at 0.5 "countFlows 1 3"

$ns at 20 "finish"

$ns run

58 4. DESCRIPTION AND SIMULATION OF TCP/IP

The number of sessions generated (530 per source) ensured that arrivals from all nodes continued

till the end of the simulations.

When running the script we obtain the queue size in Kbytes and in packets as depicted in

Figure 4.8.

We also ran later the simulation with a reduced number of 130 sessions per node, and the

queue size in Kbytes and in packets as depicted in Figure 4.9.

Figure 4.8: Queue size for the example

in shortTcp.tcl.
Figure 4.9: Queue size for the example

in shortTcp.tcl where we limit the num-

ber of sessions.

Here are some observations:

1. In both figures, the number of packets at the queue is larger than the number of Kbytes queued.

This may seem strange since a TCP packet has a size of 1Kbyte! The reason is that a very

large number of sessions are very small (3 packets or less). Therefore the number of overhead

packets of size 40 bytes (that are sent at the beginning of each TCP connection) is considerable

(around one out of three!). Taking into account these short packets as well, there are more

packets than Kbytes.

2. Observe that in Figure 4.8 the queue size stabilizes at 3000; this is the maximum queue size

that is reached. From this moment on there will be losses at the queue.

3. Whereas the number of packets is always larger than the number of Kbytes queued in Fig-

ure 4.8, we see that in Figure 4.9 after some time, the number of packets agrees with the

number of Kbytes. At this point all packets at the queue are TCP data packets and there are

no packets of 40 bytes corresponding to beginning of sessions. This is due to the fact that we

limited the number of sessions per node to 130.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-007.jpg&w=171&h=123
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-008.jpg&w=171&h=123

4.6. ADVANCED MONITORING TOOLS 59

Figure 4.10: Number of Connections.

‘queuebq.tr’

2500

2000

1500

1000

500

0
0 2 4 6 8 10 12 14 16 18 20

Figure 4.11: Used bandwidth at the bottleneck.

4. If we subtract the output rate of the bottleneck link from the generation rate of data, we obtain

much more than the amount of data queued at the bottleneck queue. The reason is that the

data is also buffered at the senders’ buffer.

Next we observe the evolution of the number of ongoing connections at the system, as given

in Figure 4.10 and the used bandwidth at the bottleneck link, see Figure 4.11.

4.6 ADVANCED MONITORING TOOLS
In Section 4.5 we checked the termination of eachTCP session periodically by comparing the current

ack sequence number with the maximum sequence number of connection. This probing approach

is quite costly. We mention two alternative monitoring approaches:

1. The first is to define the actions to be taken upon termination within a procedure called “done"

that is automatically invoked when a connection is ended. The id of the connection that has

ended as well as other properties of the connection (such as its start time) can be used by the

procedure if defined as states of the connection. The approach is presented in the tcl script

shortTcp2.tcl in Listing 4.4.

2. One can use a per-flow monitor. It can give statistics on each flow with information such as

the amount of transferred packets, transferred bytes, losses, etc. We delay the discussion on

this approach until Section 6.4.

The “state" definitions of the TCP connections in the script are done in the same way that we define

the maximum window size of TCP, the slow-start initial threshold, etc. In our script we define the

beginning time of the session, the session and node identity and the transfer size as such states:
$tcpsrc($i,$j) set starts $t

$tcpsrc($i,$j) set sess $j

$tcpsrc($i,$j) set node $i

$tcpsrc($i,$j) set size [expr [$RVSize value]]

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-009.jpg&w=171&h=123

60 4. DESCRIPTION AND SIMULATION OF TCP/IP

The procedure “done" is defined as follows (it replaces the “Test" procedure in the previous

approach of the script shortTcp.tcl in Listing 4.3):

Agent/TCP instproc done {} {

global tcpsrc NodeNb NumberFlows ns RV ftp Out tcp_snk RVSize

print in $Out: node, session, start time, end time, duration,

trans-pkts, transm-bytes, retrans-bytes, throughput

set duration [expr [$ns now] - [$self set starts]]

puts $Out "[$self set node] \t [$self set sess] \t [$self set starts] \t\

[$ns now] \t $duration \t [$self set ndatapack_] \t\

[$self set ndatabytes_] \t [$self set nrexmitbytes_] \t\

[expr [$self set ndatabytes_]/$duration]"

countFlows [$self set node] 0

}

Note that we use other states of TCP connections:

• ndatapack_ is the number of packets transmitted by the connection (if a packet is retrans-

mitted several times, it is counted here only once).

• ndatabytes_ is the number of data bytes transmitted by the connection,

• nrexmitpackets_ is the number of packets retransmitted by the connection.

• nrexmitbytes_ is the number of bytes retransmitted by the connection.

Listing 4.4: Tcl script shortTcp2.tcl for short TCP connections.

set ns [new Simulator]

set Out [open Out.ns w] # This file will contain the transfer times

set Conn [open Conn.tr w] # This file will contain the number of connections

set tf [open out.tr w] #Open the Trace file

$ns trace -all $tf

defining the topology

set N [$ns node]

set D [$ns node]

$ns duplex -link $N $D 2Mb 1ms DropTail

$ns queue -limit $N $D 3000

set NodeNb 6 # Number of Nodes

set NumberFlows 530 # Number of flows per source node

4.6. ADVANCED MONITORING TOOLS 61

for {set j 1} {$j <= $NodeNb} { incr j } { #Nodes and links

set S($j) [$ns node]

$ns duplex -link $S($j) $N 100Mb 1ms DropTail

$ns queue -limit $S($j) $N 1000 }

#TCP Sources , destinations , connections

for {set i 1} {$i <= $NodeNb} { incr i } {

for {set j 1} {$j <= $NumberFlows} { incr j } {

set tcpsrc($i,$j) [new Agent/TCP/Newreno]

set tcp_snk($i,$j) [new Agent/TCPSink]

$tcpsrc($i,$j) set window_ 2000

$ns attach -agent $S($i) $tcpsrc($i,$j)

$ns attach -agent $D $tcp_snk($i,$j)

$ns connect $tcpsrc($i,$j) $tcp_snk($i,$j)

set ftp($i,$j) [$tcpsrc($i,$j) attach -source FTP]

} }

Generators for random size of files.

set rep 1

set rng1 [new RNG]

set rng2 [new RNG]

for {set i 0} {$i < $rep} {incr i} {

$rng1 next -substream;

$rng2 next -substream;

}

Random inter -arrival times of TCP transfer at each source i

set RV [new RandomVariable/Exponential]

$RV set avg_ 0.045

$RV use -rng $rng1

Random size of files to transmit

set RVSize [new RandomVariable/Pareto]

$RVSize set avg_ 10000

$RVSize set shape_ 1.5

$RVSize use -rng $rng2

We now define the beginning times of transfers and the transfer sizes

Arrivals of sessions follow a Poisson process.

for {set i 1} {$i <= $NodeNb} { incr i } {

set t [$ns now]

for {set j 1} {$j <= $NumberFlows} { incr j } {

set the beginning time of next transfer from source and attributes

set t [expr $t + [$RV value]]

62 4. DESCRIPTION AND SIMULATION OF TCP/IP

$tcpsrc($i,$j) set starts $t

$tcpsrc($i,$j) set sess $j

$tcpsrc($i,$j) set node $i

$tcpsrc($i,$j) set size [expr [$RVSize value]]

$ns at [$tcpsrc($i,$j) set starts] "$ftp($i,$j) send [$tcpsrc($i,$j) set size]"

update the number of flows

$ns at [$tcpsrc($i,$j) set starts] "countFlows $i 1"

}}

for {set j 1} {$j <= $NodeNb} { incr j } {

set Cnts($j) 0

}

The following procedure is called whenever a connection ends

Agent/TCP instproc done {} {

global tcpsrc NodeNb NumberFlows ns RV ftp Out tcp_snk RVSize

print in $Out: node , session , start time , end time , duration ,

trans -pkts , transm -bytes , retrans -bytes , throughput

set duration [expr [$ns now] - [$self set starts]]

puts $Out "[$self set node] \t [$self set sess] \t [$self set starts] \t\

[$ns now] \t $duration \t [$self set ndatapack_] \t\

[$self set ndatabytes_] \t [$self set nrexmitbytes_] \t\

[expr [$self set ndatabytes_]/ $duration]"

countFlows [$self set node] 0

}

The following recursive procedure updates the number of connections

as a function of time. Each 0.2 sec it prints them into $Conn. This

is done by calling the procedure with the "sign" parameter equal

3 (in which case the "ind" parameter does not play a role). The

procedure is also called by the "done" procedure whenever a connection

from source i ends by assigning the "sign" parameter 0, or when

it begins , by assigning it 1 (i is passed through the "ind" variable).

#

proc countFlows { ind sign } {

global Cnts Conn NodeNb

set ns [Simulator instance]

if { $sign ==0 } { set Cnts($ind) [expr $Cnts($ind) - 1]

} elseif { $sign ==1 } { set Cnts($ind) [expr $Cnts($ind) + 1]

} else {

puts -nonewline $Conn "[$ns now] \t"

set sum 0

for {set j 1} {$j <= $NodeNb} { incr j } {

puts -nonewline $Conn "$Cnts($j) \t"

set sum [expr $sum + $Cnts($j)]

4.7. EXERCISES 63

}

puts $Conn "$sum"

$ns at [expr [$ns now] + 0.2] " countFlows 1 3"

} }

proc finish {} { #Define a ’finish ’ procedure

global ns tf

close $tf

$ns flush -trace

exit 0

}

$ns at 0.5 "countFlows 1 3"

$ns at 20 "finish"

$ns run

4.7 EXERCISES
4.1. Explain why the window size oscillates much more than the throughput in Figures 4.1

and 4.2.

4.2. What is the average throughput and loss rate of the TCP connection for Example ex1.tcl?

4.3. What is the average queue size for Example ex1.tcl?

4.4. Study the effect of the packet loss probability in the noisy model of rdrop.tcl on TCP

throughput for loss probability ranging between 0 and 40 percent.

4.5. Modify the script rdrop.tcl in order to study the effect of the loss probability of packets

(Acknowledgements) on the reverse link n3-n2. Plot the throughput as a function of the

loss probabilities for loss rates ranging between 0 and 40 percent. Is TCP more sensitive to

forward random losses of packets than to backward random losses of Acknowledgements?

4.6. Simulate two symmetric competing TCP connections sharing a common bottleneck link.

Which fraction of the bandwidth does each one occupy if

(i) only one connection uses the delayed ACK option and both connections are NewReno

and

(ii) both connections have the simple ACK option, the first connection uses the Tahoe

version and the second the NewReno version.

4.7. In the procedure plotWindow at the end of the script ex3.tcl in Table 4.2, we passed the

connection number as an argument of the procedure. What would happen if we passed it

as a global variable (i.e., if we wrote "global ns j")?

4.8. Analyze the loss processes obtained in ex3.tcl (see Table 4.2). What should the queue size

at link n2-n3 be so as to avoid losses?

64 4. DESCRIPTION AND SIMULATION OF TCP/IP

4.9. Add to the script shortTcp.tcl (Table 4.3) random losses (i) at the forward link and (ii) at

the backward link N − D. Vary the packet loss rate between 0% to 40%. Analyze the

average time to transfer a file and the standard deviation of this time as a function of the

loss rate. Explain the results! Note that in a context of many users, one may expect that if

some sessions have low throughput due to losses, there will be more available throughput

to other sessions, so that short TCP sessions are less sensitive than long ones to losses. Do

the simulations confirm this or not? If not, explain what happens.

65

C H A P T E R 5

Routing and network dynamics
We shall review in this chapter both unicast and multicast routing. Routing protocols that fix a

permanent route (static routing) will be compared to dynamic routing. The influence of dynamic

connectivity on the routing will be examined. A good reference for routing over the Internet is [35].

5.1 UNICAST ROUTING
There are several routing possibilities over the Internet. The simplest one is the static routing in

which the shortest route (in terms of number of hops) is chosen throughout the connection.

NS-2 can simulate noisy links (as we saw in Section 4.3) or even links that become discon-

nected. To simulate a disconnection of a link between nodes $n1 and $n4 from time 1 to 4.5, for

example, we should type

$ns rtmodel-at 1.0 down $n1 $n4

$ns rtmodel-at 4.5 up $n1 $n4

We now consider the network depicted in Figure 5.1 which has two alternative routes between

Figure 5.1: A routing example.

the source node 0 and the destination node 5. The default static routing, used by NS-2, will choose

the route 0-1-4-5 for setting connections.

Listing 5.1: Tcl script for static and dynamic routing (ex2.tcl).

set ns [new Simulator]

#Define different colors for data flows (for NAM)

$ns color 1 Blue

66 5. ROUTING AND NETWORK DYNAMICS

$ns color 2 Red

set file1 [open out.tr w] #Open the Trace file

$ns trace -all $file1

set file2 [open out.nam w]

$ns namtrace -all $file2

proc finish {} { #Define a ’finish ’ procedure

global ns file1 file2

$ns flush -trace

close $file1

close $file2

exec nam out.nam &

exit 0

}

$ns rtproto DV

#Create six nodes

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

set n4 [$ns node]

set n5 [$ns node]

#Create links between the nodes

$ns duplex -link $n0 $n1 0.3Mb 10ms DropTail

$ns duplex -link $n1 $n2 0.3Mb 10ms DropTail

$ns duplex -link $n2 $n3 0.3Mb 10ms DropTail

$ns duplex -link $n1 $n4 0.3Mb 10ms DropTail

$ns duplex -link $n3 $n5 0.5Mb 10ms DropTail

$ns duplex -link $n4 $n5 0.5Mb 10ms DropTail

#Give node position (for NAM)

$ns duplex -link -op $n0 $n1 orient right

$ns duplex -link -op $n1 $n2 orient right

$ns duplex -link -op $n2 $n3 orient up

$ns duplex -link -op $n1 $n4 orient up-left

$ns duplex -link -op $n3 $n5 orient left -up

$ns duplex -link -op $n4 $n5 orient right -up

#Setup a TCP connection

5.1. UNICAST ROUTING 67

set tcp [new Agent/TCP/Newreno]

$ns attach -agent $n0 $tcp

set sink [new Agent/TCPSink/DelAck]

$ns attach -agent $n5 $sink

$ns connect $tcp $sink

$tcp set fid_ 1

#Setup a FTP over TCP connection

set ftp [new Application/FTP]

$ftp attach -agent $tcp

$ftp set type_ FTP

$ns rtmodel -at 1.0 down $n1 $n4

$ns rtmodel -at 4.5 up $n1 $n4

$ns at 0.1 "$ftp start"

$ns at 12.0 "finish"

$ns run

In contrast to the static routing, the Internet can find an alternative route once it discovers

that the route actually followed is disconnected.

We can use session routing that will recompute the routes once the network discovers that

there was a change in the topology. This type of routing uses exactly the same algorithm as the static

one, but prevents simulation of the problems of complete disconnection on the static routing if the

network is always connected. To use session routing we have to type: $ns rtproto Session.

Note that if one does not specify which routing protocol will be used with the last command

by default NS-2 will use static routing.

Another option for doing dynamic routing is by using the Distance Vector routing which uses

the Distributed Bellman-Ford algorithm to compute the routes.

In NS-2 we do that by adding the command (see Listing 5.1) $ns rtproto DV.

In the Example ex2.tcl given in Listing 5.1, the link 1-4 is down during the time interval

[1, 4.5]. In NAM, we can see this link becoming red during this time. A TCP connection is set

between node 0 and 5. When running the script, with the static routing (commenting out the

command $ns rtproto DV) we see that even though the connection is resumed at time 4.5, the

TCP connection resumes only at time 8 approximately. The reason is that timeouts had occurred in

the absence of ACKs returning to node 0, and their duration doubles with each new timeout.

In the nam trace we can see in the dynamic routing case, the signaling packets that are used

to determine the path, not only at the beginning, but also at connectivity changes.

68 5. ROUTING AND NETWORK DYNAMICS

5.2 NETWORK DYNAMICS

We saw in the last section that we can determine link states explicitly: the link can go down and up

at preselected times. There are, however, other possibilities to change dynamically the connectivity:

according to an Exponential On-Off process, or a deterministic On-Off process, or according to

some given trace file.

The syntax for this is: $ns rtmodel model model-params args where model can be:

Deterministic, Exponential, Manual or Trace.

The deterministic model has four parameters: start time (0.5sec from the beginning of the

simulation by default), up interval (10sec by default), down interval (1sec by default) and finish time

(end of the simulation by default).

In the exponential case, the up and down parameters correspond to the expected durations.

The arguments (args) are the nodes that specify the link which will fail or a node that will

go down and up. For example, the syntax for the deterministic model applied to link n1-n2 is

$ns rtmodel Deterministic {0.8 1.0 1.0} $n1 $n2 (the finish time is the default).

In a command of the form $ns rtmodel Deterministic {0.8 1.0} $n1 $n2, the

start and end times are the defaults, and in a command of the form $ns rtmodel

Deterministic {- 1.0} $n1 $n2, the only non-default parameter is the down interval. The

exponential connectivity is obtained above by replacing “Deterministic" by “Exponential".

The command that corresponds to connectivity based on a trace file is $ns rtmodel

Trace <config_file> $n0 $n1. Finally, one can also generate a sequence of routing states in

NS-2, and use it as an input (see [24]).

Node failures There is a possibility of a node going down and up. This is done exactly as we saw

for the case of links, except that only one node appears as argument at the end.

5.3 MULTICAST PROTOCOLS

In multicast, there may be several multicast groups of members; the groups may overlap. In IP

multicast, the receiver must request membership in multicast group whereas a sender can send

without first joining a group. Senders do not receive feedback from the network about the receivers

in IP multicast routing. Not all network nodes may be able to handle multicast; in NS-2 one can

declare which nodes indeed have multicast capabilities.

A routing protocol defines the mechanism by which the multicast tree is computed in the

simulation. There are two main classes of routing:

1. A “dense mode" type which is appropriate for the case of a large number of multicast users; in that

case multicast trees are constructed for any pair of source and its multicast group. The construction

of the trees requires broadcasting to all nodes in the network.

2. A “sparse mode" in which there is a small number of nodes. Therefore the routing can be handled

using a single shared tree.

5.3. MULTICAST PROTOCOLS 69

Four multicast routing protocols are available in NS-2: the Dense Mode (DM), the Cen-

tralised (CtrMcast), the Shared Tree mode (ST) and the Bi-directional Shared Tree mode (BST).

Unfortunately, the way NS-2 simulates the protocols does not include much of the signaling, espe-

cially in the initialization. The DM protocol is the only one that has a dynamic version in NS-2,

called dynamicDM.

5.3.1 THE DENSE MODE

The DM protocol has two modes which are quite similar: the protocol pimDM (Protocol Inde-

pendent Multicast - Dense Mode) and the dvmrp (Distance Vector Multicast Routing Protocol)

mode [57], pimDM being somewhat simpler. They are based on an initial flooding of the network

(using the RFP approach) and then on the computation of the shortest reverse path. We suppose

that point-to-point routing tables are available. This is done as follows.

• If a router receives a multipoint packet from a source S to a group G, it checks first (using

point-to-point routing tables) that the input reception interface corresponds to packet from S:

this means that this router is in the shortest path from the source (this is thus called a “shortest

reverse path" approach). If the result is negative then it sends a message “delete(S,G)", i.e., a

message to the source requesting to stop sending to it packets from S to G.

• If the result is positive then the router sends a copy of the message to the set T of all the

interfaces through which it has not yet received a request “delete(S,G)". If T is empty, then

it destroys the packet and sends a message “delete(S,G)" to the interface through which it

received the message.

5.3.2 ROUTING BASED ON A RV POINT

The centralized mcast (CrtMcast) is similar to the so called PIM-SM (the Sparse Mode of PIM

[22]). There is a RendezVous Point (RVP). A shared tree is built for a multicast group rooted at this

RVP. A centralized computation agent is used to compute the forwarding trees and set up multicast

forwarding state, S, G (the state S corresponds to the source of a packet and G to the address of the

multicast group to which it is destined) at the relevant nodes as new receivers join a group. Data

packets from the senders to a group are unicast to the RVP. The multicasting from the RVP to the

group is done according to a shortest path tree.

The ST mode is a simplified version of the above sparse mode routing protocol. This protocol

has a bidirectional version in ns called BST, which is used in the standard version CBT [13] and in

the BGMP protocol for inter-domain multicast [56].

In protocols based on a RV point, all multicast traffic traverses the RV point, which is thus a

bottleneck. A failure in that node is critical for the whole group. Another problem with this approach

is that traffic travels on non-optimal paths. The advantages of this approach are (1) the simplicity in

70 5. ROUTING AND NETWORK DYNAMICS

the state information: only one entry per-source per-group, and (2) signalling does not involve the

whole network.

Note that in PIM-SM, there is a possibility of switching to optimized source-based trees

(S,G) instead of routing through the RV point. This occurs if the source data rate exceeds some

threshold. Thus the RV point can cease to be a bottleneck if traffic rate is large. ST mode does not

simulate this feature.

5.4 SIMULATING MULTICAST ROUTING
Multicast requires enhancements of the nodes and links of the network. NS-2 has therefore specific

requirements from the Simulator class before creating the topology. We thus begin by the special

command
set ns [new Simulator]

$ns multicast

In the tcl script we define group addresses using the command

set group1 [Node allocaddr]. We then define an application and a transport protocol

agent attached on one hand to a given source node and on the other hand to a group destination.

We consider below the DM protocol. When a source S sending to a group G becomes active,

it begins flooding the network along the attached tree corresponding to group G. When a leaf that

has not joined the multicast group receives a packet to that group, it sends a message to the incoming

interface to delete it from the tree (S,G) (a “prune" packet). This then propagates backwards to the

source: a node that receives a message from all its output links within the tree of (S,G) requesting

to delete these links, then sends back to its incoming interface a message to delete it from the tree

(S,G).

A source will stop sending packets if there are no connected receivers in that group; it will

resume sending packet when a receiver connects.

We now consider the network depicted in Figure 5.1.

In the Listing 5.2 we can see a few new commands, we will explain each one of them:

• set group [Node allocaddr] this command will assign a new multicast address to the

variable group. The address comes from the simulator, which maintains control of all the

multicast addresses, but the method is coded on the Node class, because we have to instantiate

the method from the class Node.

• set mproto DM assigns to the variable mproto the value DM, which stands for Dense Mode,

explained in Subsection 5.4.1.

• set mrthandle [$ns mrtproto $mproto] returns a handle to the multicast protocol ob-

ject. It specifies dense mode multicast for all nodes.

• $udp1 set dst_addr_ $group gives as destination address of the flow the multicast address

obtained above.

5.4. SIMULATING MULTICAST ROUTING 71

• The join-group and leave-group commands associate or disassociate a given node to a

multicast address.

Listing 5.2: Example for multicast with DM model: pimdm.tcl.

set ns [new Simulator]

$ns multicast

set f [open out.tr w]

$ns trace -all $f

$ns namtrace -all [open out.nam w]

$ns color 1 red

$ns color 30 purple # the nam colors for the prune packets

$ns color 31 green # the nam colors for the graft packets

set group [Node allocaddr] # allocate a multicast address;

set nod 6 # nod is the number of nodes

create multicast capable nodes;

for {set i 1} {$i <= $nod} {incr i} {

set n($i) [$ns node]

}

#Create links between the nodes

$ns duplex -link $n(1) $n(2) 0.3Mb 10ms DropTail

$ns duplex -link $n(2) $n(3) 0.3Mb 10ms DropTail

$ns duplex -link $n(2) $n(4) 0.5Mb 10ms DropTail

$ns duplex -link $n(2) $n(5) 0.3Mb 10ms DropTail

$ns duplex -link $n(3) $n(4) 0.3Mb 10ms DropTail

$ns duplex -link $n(4) $n(5) 0.5Mb 10ms DropTail

$ns duplex -link $n(4) $n(6) 0.5Mb 10ms DropTail

$ns duplex -link $n(5) $n(6) 0.5Mb 10ms DropTail

set mproto DM # configure multicast protocol;

all nodes will contain multicast protocol agents;

set mrthandle [$ns mrtproto $mproto]

set udp1 [new Agent/UDP]

set udp2 [new Agent/UDP]

$ns attach -agent $n(1) $udp1

$ns attach -agent $n(2) $udp2

72 5. ROUTING AND NETWORK DYNAMICS

set src1 [new Application/Traffic/CBR]

$src1 attach -agent $udp1

$udp1 set dst_addr_ $group

$udp1 set dst_port_ 0

$src1 set random_ false

set src2 [new Application/Traffic/CBR]

$src2 attach -agent $udp2

$udp2 set dst_addr_ $group

$udp2 set dst_port_ 1

$src2 set random_ false

set rcvr [new Agent/ LossMonitor] # create receiver agents

joining and leaving the group;

$ns at 0.6 "$n(3) join -group $rcvr $group"

$ns at 1.3 "$n(4) join -group $rcvr $group"

$ns at 1.6 "$n(5) join -group $rcvr $group"

$ns at 1.9 "$n(4) leave -group $rcvr $group"

$ns at 2.3 "$n(6) join -group $rcvr $group"

$ns at 3.5 "$n(3) leave -group $rcvr $group"

$ns at 0.4 "$src1 start"

$ns at 2.0 "$src2 start"

$ns at 4.0 "finish"

proc finish {} {

global ns

$ns flush -trace

exec nam out.nam &

exit 0

}

$ns run

An example of a multicast configuration with a six node network is depicted in Figure 5.2.

The Loss Monitor Agent We used here the LossMonitor Agent, which is a packet sink agent

that maintains statistics about the received traffic, such as the amount of packets received as well as

lost information. In particular, we can access the following state variables: nlost_ (number of lost

packets), npkts_ (number of received packets), bytes_ (number of received bytes), lastPktTime_

(time at which the last packet was received) and expected_ (the expected sequence number of the

5.4. SIMULATING MULTICAST ROUTING 73

3

2

0
14

5

Figure 5.2: A multicast routing example.

next packet). One can use instead of the LossMonitor agent, the Null agent, as we did before, i.e.,

type set rcvr [new Agent/Null] instead of set rcvr [new Agent/LossMonitor].

5.4.1 DM MODE

The command set mproto DM indicates that we use the Dense Mode protocol. By default, the

pimDM is used. In order to use the dvmrp mode, one adds the line

DM set CacheMissMode dvmrp

just before the line set mproto DM.

In the DM mode, flooding occurs periodically so as to detect the nodes that are connected to

the group. The timer value for the period is given in a variable called PruneTimeout. It’s default

value is 0.5sec; if another value is required, say 0.8 sec, then one adds to the tcl script the command

DM set PruneTimeout 0.8

just before the line set mproto DM.

5.4.2 ROUTING WITH A CENTRALIZED RV POINT

For the centralized mode one needs:

configure multicast protocol;

set mproto CtrMcast

all nodes will contain multicast protocol agents;

set mrthandle [$ns mrtproto $mproto]

set RV and bootstrap points

$mrthandle set_c_rp $n(2)

Here we chose $n(2) to be the RV point.

In both the centralized as well as in the ST mode, the signalling (prune packets) are not

simulated.

We present in Listing 5.3 the same example as in pimdm.tcl (Listing 5.2) but with the BST

routing protocol.

74 5. ROUTING AND NETWORK DYNAMICS

Listing 5.3: Example for multicast with RV point: bst.tcl.

set ns [new Simulator -multicast on]

set f [open out.tr w]

$ns trace -all $f

$ns namtrace -all [open out.nam w]

$ns color 1 red

$ns color 30 purple # the nam colors for the prune packets

$ns color 31 green # the nam colors for the graft packets

set group [Node allocaddr] # allocate a multicast address;

set nod 6 # nod is the number of nodes

create multicast capable nodes;

for {set i 1} {$i <= $nod} {incr i} {

set n($i) [$ns node]

}

#Create links between the nodes

$ns duplex -link $n(1) $n(2) 0.3Mb 10ms DropTail

$ns duplex -link $n(2) $n(3) 0.3Mb 10ms DropTail

$ns duplex -link $n(2) $n(4) 0.5Mb 10ms DropTail

$ns duplex -link $n(2) $n(5) 0.3Mb 10ms DropTail

$ns duplex -link $n(3) $n(4) 0.3Mb 10ms DropTail

$ns duplex -link $n(4) $n(5) 0.5Mb 10ms DropTail

$ns duplex -link $n(4) $n(6) 0.5Mb 10ms DropTail

$ns duplex -link $n(5) $n(6) 0.5Mb 10ms DropTail

configure multicast protocol;

BST set RP_($group) $n(2)

$ns mrtproto BST

set udp1 [new Agent/UDP]

set udp2 [new Agent/UDP]

$ns attach -agent $n(1) $udp1

$ns attach -agent $n(2) $udp2

set src1 [new Application/Traffic/CBR]

$src1 attach -agent $udp1

$udp1 set dst_addr_ $group

$udp1 set dst_port_ 0

$src1 set random_ false

5.5. OBSERVATIONS ON THE SIMULATION OF PIMDM.TCL 75

set src2 [new Application/Traffic/CBR]

$src2 attach -agent $udp2

$udp2 set dst_addr_ $group

$udp2 set dst_port_ 1

$src2 set random_ false

set rcvr [new Agent/ LossMonitor] # create receiver agents

joining and leaving the group;

$ns at 0.6 "$n(3) join -group $rcvr $group"

$ns at 1.3 "$n(4) join -group $rcvr $group"

$ns at 1.6 "$n(5) join -group $rcvr $group"

$ns at 1.9 "$n(4) leave -group $rcvr $group"

$ns at 2.3 "$n(6) join -group $rcvr $group"

$ns at 3.5 "$n(3) leave -group $rcvr $group"

$ns at 0.4 "$src1 start"

$ns at 2.0 "$src2 start"

$ns at 4.0 "finish"

proc finish {} {

global ns

$ns flush -trace

exec nam out.nam &

exit 0

}

$ns run

5.5 OBSERVATIONS ON THE SIMULATION OF PIMDM.TCL
Dense mode: pimdm and dvmrp If we run the simulation and observe the trace, we shall see that

in addition to the CBR packets, there are two other types of packets: the “prune" packet, and the

“graft" packet. The role of the prune packet sent by a node N is to signal to the node that had sent

a previous packet to N to stop sending packets to N . The “graft" packet is a signal originating from

a node that wishes to join the group (after it had been disconnected). In the NAM display of our

simulation, the graft packets are light green, and the prune are purple.

We can see that at time 0.4, node 0 starts sending CBR packets that flood the network. But

there are no receivers at the multicast group, so eventually, prune packets return to the source and

transmission is stopped (time 0.579). At time 0.6, a graft packet is sent from node 2 (which wishes

to join the group) to node 1, and then from node 1 to node 0. Node 0 then restarts transmission. At

76 5. ROUTING AND NETWORK DYNAMICS

time 0.9978, there is again an attempt to check whether there are connected receiver nodes in the

group other than 2 and the network is again flooded; prune packets return to stop the transmission

to nodes 3, 4, 5.

The centralized mode We see in the trace encapsulated packets that are sent from a source to the

RV point of size 230 bytes. The header is then removed by the RV point which then forwards the

packet (size 210 bytes) to the members of the group.

5.6 EXERCISES
5.1. Run the program ex2.tcl (see Table 5.1) commenting out the command “$ns rtproto DV"

and explain what happens.

5.2. Run the program ex2.tcl (see Table 5.1) with the command “$ns rtproto DV" and explain

the differences from the previous static routing.

5.3. Change and run simulation ex2.tcl (see Table 5.1) for a duration of 200 sec with static

routing but with a dynamic exponential ON-OFF connectivity, with ON average time of

3 sec and OFF average time of 0.5 sec. Analyze the behavior of the TCP connection and

the time-out behavior.

5.4. Run the pimdm.tcl script (see Table 5.2). How many CBR packets have been transmitted

from each source, and how many have been lost? How many CBR packets have been

received at nodes that did not need them (more precisely, how many prune packets have

been generated)?

5.5. Consider the trace obtained from the pimdm.tcl script. At time 1.8375 we start to have

losses at node 0. At time 2.481, packets start getting lost also at node 1. Explain these losses!

5.6. Run the program pimdm.tcl with the dvmrp mode of DM. What are the differences that

you observe between dvmrp and the pimDM version?

5.7. Run the centralised version of the multicast. Explain what happens when the RP is changed

to node n(5) (in the NAM it will correspond to node 4 since NAM counts from 0). Explain

why this is less efficient than choosing the RP node to be n(2). How can we measure

efficiency?

77

C H A P T E R 6

RED: Random Early Discard

6.1 DESCRIPTION OF RED
The RED buffer management scheme was introduced in 1993 by Floyd and Jacobson [28], and

is further described in the RFC 2309 [15]. Many important references to RED can be found at

http://www.icir.org/floyd/red.html. The basic idea is that one should not wait till the buffer is full in

order to detect congestion (drop packets), but start detecting congestion before the buffer overflows.

Congestion signals could still be through packet dropping, but could now also be through marking

of packets without the need to actually drop them.

Some of the goals of the RED buffer management are:

1. Accommodate short bursts that might be delay sensitive, but not to allow the average queue

size to increase too much. Using some low pass filtering of the queue size, the aim is to detect

congestion that lasts long enough.

2. Drop tail and random drop gateways that have a bias against bursty traffic. Indeed in such

buffers, the more the traffic of a connection is bursty, the more likely it is that the queue will

overflow during the arrival time of packets of that connection.

3. Avoid synchronization: in drop tail buffer, many connections may receive a congestion signal

at the same time leading to undesirable oscillations in the throughputs. Such oscillation may

cause lower average throughputs and high jitter.To avoid synchronization, congestions signals

are chosen using randomization.

4. Control the average queue size. Note that this also means controlling the average queueing

delay.

To achieve these objectives, RED monitors the average queue size avg, and checks whether it

lies between some minimum threshold minth and a maximum threshold maxth. If it does, then an

arriving packet is dropped or marked with probability p = p(avg),which is an increasing function of

the average queue size. All arriving packets that arrive when avg exceeds maxth are marked/dropped.

The probability p(avg) is chosen as follows. As the average queue size varies between minth

and maxth, a probability pb varies linearly between 0 and some value maxp, i.e.,

pb(avg) = maxp

avg − minth

maxth − minth

.

78 6. RED: RANDOM EARLY DISCARD

This probability is used as p(avg) if at the arrival of the previous packet, avg ≥ minth. Otherwise,

p(avg) is set to the value p(avg)/(1 + p(avg)).

The average queue size is monitored as follows. The avg parameter is initially set to zero.

Then with each arriving packet, the new value avg is assigned the value

(1 − wq)avg + wqq

where q is the actual queue size and wq is some small constant. If the queue becomes empty some

other formula is used to update its size, which takes into account the time since it became empty and

an estimate on the number of packets that could have been sent during this idle time, see [28]. For

estimating the latter, we shall need in ns to give as parameter a rough estimate of the mean packet

size.

Examples of RED parameters studied in [28] are wq = 0.002, minth = 5packets, maxth =
15packets, maxp = 1/50 and the queue size is 100. More generally they also investigate minth

ranging between 3 to 50, and keep maxth = 3minth.

The implementation of red in ns can be found in ns-allinone-2.XXX/ns-2.XXX/queue/red.cc

(XXX stands for the version, e.g., 1b9a).

6.2 SETTING RED PARAMETERS IN NS-2

The parameters of RED in NS-2 are provided in the following objects:

1. bytes_: takes either the value “true" if we work in the “byte mode" or “false" in the packet mode

(the default value). In the “byte mode", the size of an arriving packet affects the likelihood of

marking it.

2. queue-in-bytes_: the average queue size will be measured in bytes if this is set to “true".

In that case, also thresh_ and maxthres_ are scaled by the estimated average packet size

parameter mean_pktsize_. It is “false" by default.

3. thres_: is the minimum queue size threshold minth.

4. maxthres_: is the maximum queue size threshold maxth.

5. mean_pktsize_: is the estimate of the average packet size in bytes. The default value is 500.

6. q_weight_: the weight factor wq in computing the averaged queue length.

7. wait_: this is a parameter that allows to maintain an interval between dropped packets when

set to “true" (the default value).

8. linterm_: this is the reciprocal of maxp. Its default value is 10.

6.3. SIMULATION EXAMPLES 79

9. setbit_: is “false" in the case that RED is used to actually drop packets, and is “true" if RED

marks the packet with a congestion bit instead. (The ECN version of TCP reacts to these

congestion bits).

10. drop-tail_: this is a parameter that allows, when setting its value to “true" (the default value),

to use the drop-tail policy when queue overflows or when the average queue size exceeds maxth.

The default values of q_weight_, maxthresh_ and thres_ have been 0.002, 15 and 5,

respectively, till the end of 2001. In the more recent releases they are configured automatically.

RED has other parameters and variants that are implemented in NS-2. In particular, S.

Floyd recommends in http://www.icir.org/floyd/red/gentle.html for the best behavior of RED (in

simulations and in implementations), to use the gentle_ parameter set to “true" (this is the default

since April, 2001). In the gentle_ modification to RED in NS-2, the packet-dropping probability

varies from maxp to 1 as the average queue size varies from maxthresh_ to twice maxthresh_.

This option makes RED much more robust to the setting of the parameters maxthresh and max_p.

Another version is the adaptive RED that adapts the choice of parameters to the network

traffic, as described in [51].

In order to monitor a given red buffer, say one between nodes $n2 and $n3, one can type

set redq [[$ns link $n2 $n3] queue]

set traceq [open red-queue.tr w]

$redq trace curq_

$redq trace ave_

$redq attach $traceq

Here curq_ is the current queue value and ave_ is the averaged value. This gives an output file (in

our case “red-queue.tr") with three columns. The first indicates whether it is a value of the current

queue size (by using the flag “Q") or the averaged queue size (using the flag “a"). Then comes the

current time and finally the monitored value.

6.3 SIMULATION EXAMPLES
We consider the following network, depicted in Figure 6.1: We shall compare the behavior of several

queue management schemes.

6.3.1 DROP TAIL BUFFER

The first buffer management scheme is a simple drop tail mechanism. We consider three input links

with delay 1msec each and bandwidth of 10Mbps each. The common bottleneck link has 20msec

of delay and bandwidth of 700 kbps. We consider three FTP connections using TCP and set the

maximum window sizes to 8000. The bottleneck queue size is 100. The three connections start at

random times, uniformly distributed between 0 and 7 sec. They delay till the bottleneck is 1msec.

We chose a TCP packet size of 552 bytes. Note: in version 2.1b9a of ns, when we type the command

80 6. RED: RANDOM EARLY DISCARD

Figure 6.1: Network setting for the study of RED.

$tcp_src($j) set packetSize_ 552

then the actual packet size created in the simulation is 592, since an extra 40 bytes of header are

added. The whole simulation lasts 50 sec.

Using the monitor-queue option that we saw already in Section 4.3, we create a file called

queue.tr whose first column is the time and the fifth column is the queue size in packets. We shall

also use a procedure, called plotWindow, to monitor the window sizes: it creates a file where the first

column is time, and the other three columns correspond to the window sizes of the three connections.

Listing 6.1: Tcl script droptail.tcl.

set ns [new Simulator]

set nf [open out.nam w]

$ns namtrace -all $nf

set tf [open out.tr w]

set windowVsTime [open win w]

set param [open parameters w]

$ns trace -all $tf

#Define a ’finish ’ procedure

proc finish {} {

global ns nf tf

$ns flush -trace

close $nf

close $tf

exec nam out.nam &

exit 0

}

#Create bottleneck and dest nodes

set n2 [$ns node]

6.3. SIMULATION EXAMPLES 81

set n3 [$ns node]

#Create links between these nodes

$ns duplex -link $n2 $n3 0.7Mb 20ms DropTail

set NumbSrc 3

set Duration 50

set rep 2

#Source nodes

for {set j 1} {$j <= $NumbSrc} { incr j } {

set S($j) [$ns node]

}

set rng [new RNG]

Create a random generator for starting the ftp

for { set i 0 } {$i<$rep } {incr i } {

$rng next -substream;

}

parameters for random variables for beginning of ftp connections

set RVstart [new RandomVariable/Uniform]

$RVstart set min_ 0

$RVstart set max_ 7

$RVstart use -rng $rng

#We define random starting times for each connection

for {set i 1} {$i <= $NumbSrc} { incr i } {

set startT($i) [expr [$RVstart value]]

set dly($i) 1

puts $param "startT($i) $startT($i) sec"

}

#Links between source and bottleneck

for {set j 1} {$j <= $NumbSrc} { incr j } {

$ns duplex -link $S($j) $n2 10Mb $dly($j)ms DropTail

$ns queue -limit $S($j) $n2 20

}

#Set Queue Size of link (n2-n3) to 100

$ns queue -limit $n2 $n3 100

#TCP Sources

for {set j 1} {$j <= $NumbSrc} { incr j } {

set tcp_src($j) [new Agent/TCP/Reno]

82 6. RED: RANDOM EARLY DISCARD

$tcp_src($j) set window_ 8000

}

#TCP Destinations

for {set j 1} {$j <= $NumbSrc} { incr j } {

set tcp_snk($j) [new Agent/TCPSink]

}

#Connections

for {set j 1} {$j <= $NumbSrc} { incr j } {

$ns attach -agent $S($j) $tcp_src($j)

$ns attach -agent $n3 $tcp_snk($j)

$ns connect $tcp_src($j) $tcp_snk($j)

}

#FTP sources

for {set j 1} {$j <= $NumbSrc} { incr j } {

set ftp($j) [$tcp_src($j) attach -source FTP]

}

#Parametrisation of TCP sources

for {set j 1} {$j <= $NumbSrc} { incr j } {

$tcp_src($j) set packetSize_ 552

}

#Schedule events for the FTP agents:

for {set i 1} {$i <= $NumbSrc} { incr i } {

$ns at $startT($i) "$ftp($i) start"

$ns at $Duration "$ftp($i) stop"

}

proc plotWindow {tcpSource file k} {

global ns NumbSrc

set time 0.03

set now [$ns now]

set cwnd [$tcpSource set cwnd_]

if {$k == 1} {

puts -nonewline $file "$now \t $cwnd \t"

} else {

if {$k < $NumbSrc } {

puts -nonewline $file "$cwnd \t" }

}

if { $k == $NumbSrc } {

puts -nonewline $file "$cwnd \n" }

$ns at [expr $now+$time] " plotWindow $tcpSource $file $k"

}

The procedure will now be called for all tcp sources

for {set j 1} {$j <= $NumbSrc} { incr j } {

6.3. SIMULATION EXAMPLES 83

$ns at 0.1 "plotWindow $tcp_src ($j) $windowVsTime $j"

}

set qfile [$ns monitor -queue $n2 $n3 [open queue.tr w] 0.05]

[$ns link $n2 $n3] queue -sample -timeout;

$ns at [expr $Duration] "finish"

$ns run

During the 50 sec of simulation time, the source received 6924 TCP packets. Next we plot

the queue size (Figure 6.2) and the window size (Figure 6.3).

Figure 6.2: Queue size evolution. Figure 6.3: Window size of all TCP connec-

tions.

We see from the figures that there is a high level of synchronization between the window sizes:

they all lose packets at the same time. Moreover, we have large oscillations of the queue sizes that

correspond to those of the windows, and the average queue size is around 75 packets. This means

that there is an additional average queueing delay which equals

Dq =
75 × 592 × 8

700 × 103
= 507.42msec

Remark 6.1 The drop-tail queue can be simulated using a RED buffer with minth = maxth set to

the maximum queue size and maxp set to a value close to zero. This allows us to use the monitoring

tools for the instantaneous and average queue length of RED. Of course, the drop-tail_ parameter

has the value “true".

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-012.jpg&w=171&h=124
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-013.jpg&w=170&h=124

84 6. RED: RANDOM EARLY DISCARD

6.3.2 RED BUFFER WITH AUTOMATIC PARAMETER CONFIGURATION

We run a second simulation with the same parameters. Note that we choose for the random delay

a seed 2 (with the variable rep) in all the simulations since unlike the seed 0, it will guarantee that

the same random sequence is used in all simulations.

During the 50 sec of simulation time, the source received 6786 TCP packets, slightly less

than with the drop tail case (where we had 6786 packets). Next we plot the queue size (Figure 6.4

and 6.5) and the window size (Figure 6.6).

Figure 6.4: Current and Average queue size

evolution.

Figure 6.5: Current and Average queue size

evolution: a zoom.

Figure 6.6: Window size of all TCP connections for Red buffer with automatic parameter configu-

ration.

We see from the figures that there is no synchronization between the window sizes, and that

the average queue size is much lower than in the drop tail case: it is around 10 (instead of 75 in the

drop tail case). Thus the average delay of the connections is also smaller,

Dq =
10 × 592 × 8

700 × 103
= 67.66msec.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-014.jpg&w=170&h=123
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-015.jpg&w=170&h=122
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-016.jpg&w=170&h=123

6.3. SIMULATION EXAMPLES 85

We observe that instead of the large oscillations of the queue size and the window sizes, we now get

much faster and smaller variations in both window size as well as queue size. We finally notice that

during the simulation, the queue never overflowed, unlike the case of drop tail. Yet RED did allow

the queue to grow very much during the transient spike at the beginning of the connection, which

shows that short bursts are indeed not penalized with RED.

We provide in Listing 6.2 the tcl script we used.

Listing 6.2: Tcl script red.tcl.

set ns [new Simulator]

set nf [open out.nam w]

$ns namtrace -all $nf

set tf [open out.tr w]

set windowVsTime [open win w]

set param [open parameters w]

$ns trace -all $tf

#Define a ’finish ’ procedure

proc finish {} {

global ns nf tf

$ns flush -trace

close $nf

close $tf

exec nam out.nam &

exec grep "a" red -queue.tr > ave.tr

exec grep "Q" red -queue.tr > cur.tr

exit 0

}

#Create bottleneck and dest nodes

set n2 [$ns node]

set n3 [$ns node]

#Create links between these nodes

$ns duplex -link $n2 $n3 0.7Mb 20ms RED

set NumbSrc 3

set Duration 50

set rep 2

#Source nodes

for {set j 1} {$j <= $NumbSrc} { incr j } {

set S($j) [$ns node]

86 6. RED: RANDOM EARLY DISCARD

}

Create a random generator for starting the ftp and for bottleneck link delays

set rng [new RNG]

for { set i 0 } {$i<$rep } {incr i } {

$rng next -substream;

}

parameters for random variables for begenning of ftp connections

set RVstart [new RandomVariable/Uniform]

$RVstart set min_ 0

$RVstart set max_ 7

$RVstart use -rng $rng

#We define random starting times for each connection

for {set i 1} {$i <= $NumbSrc} { incr i } {

set startT($i) [expr [$RVstart value]]

set dly($i) 1

puts $param "startT($i) $startT($i) sec"

}

#Links between source and bottleneck

for {set j 1} {$j <= $NumbSrc} { incr j } {

$ns duplex -link $S($j) $n2 10Mb $dly($j)ms DropTail

$ns queue -limit $S($j) $n2 20

}

#Set Queue Size of link (n2-n3) to 100

$ns queue -limit $n2 $n3 100

set redq [[$ns link $n2 $n3] queue]

set traceq [open red -queue.tr w]

$redq trace curq_

$redq trace ave_

$redq attach $traceq

#TCP Sources

for {set j 1} {$j <= $NumbSrc} { incr j } {

set tcp_src($j) [new Agent/TCP/Reno]

$tcp_src($j) set window_ 8000

}

#TCP Destinations

for {set j 1} {$j <= $NumbSrc} { incr j } {

set tcp_snk($j) [new Agent/TCPSink]

}

#Connections

6.3. SIMULATION EXAMPLES 87

for {set j 1} {$j <= $NumbSrc} { incr j } {

$ns attach -agent $S($j) $tcp_src($j)

$ns attach -agent $n3 $tcp_snk($j)

$ns connect $tcp_src($j) $tcp_snk($j)

}

#FTP sources

for {set j 1} {$j <= $NumbSrc} { incr j } {

set ftp($j) [$tcp_src($j) attach -source FTP]

}

#Parametrisation of TCP sources

for {set j 1} {$j <= $NumbSrc} { incr j } {

$tcp_src($j) set packetSize_ 552

}

#Schedule events for the FTP agents:

for {set i 1} {$i <= $NumbSrc} { incr i } {

$ns at $startT($i) "$ftp($i) start"

$ns at $Duration "$ftp($i) stop"

}

proc plotWindow {tcpSource file k} {

global ns NumbSrc

set time 0.03

set now [$ns now]

set cwnd [$tcpSource set cwnd_]

if {$k == 1} {

puts -nonewline $file "$now \t $cwnd \t"

} else {

if {$k < $NumbSrc } {

puts -nonewline $file "$cwnd \t" }

}

if { $k == $NumbSrc } {

puts -nonewline $file "$cwnd \n" }

$ns at [expr $now+$time] " plotWindow $tcpSource $file $k"

}

The procedure will now be called for all tcp sources

for {set j 1} {$j <= $NumbSrc} { incr j } {

$ns at 0.1 "plotWindow $tcp_src ($j) $windowVsTime $j"

}

$ns at [expr $Duration] "finish"

$ns run

88 6. RED: RANDOM EARLY DISCARD

6.3.3 RED BUFFER WITH OTHER PARAMETERS

Suppose we wish to define our own parameters for RED rather than use the default ones. For

example, assume we wish to have in our previous example max_{th}=60, min_{th}=40 and

q_weight_=0.02. Then we should add the commands

Queue/RED set thresh_ 60

Queue/RED set maxthresh_ 80

Queue/RED set q_weight_ 0.002

Important note: these commands should be put at the beginning, before the links are defined!

The resulting window and queue size processes are given in Figures 6.8 and 6.7, respectively.

Figure 6.7: Current and Average queue size

evolution.

Figure 6.8: Window size of all TCP connec-

tions for Red buffer.

Note that with the parameters that we chose, the queue lengths are kept around an average

of 50. The number of TCP packets received during the simulation was 6769.

6.4 MONITORING FLOWS
We introduce in this section the flow monitor,which is an efficient way to monitor per-flow quantities

such as losses and amount of transmitted traffic.We shall modify the ns script of shortTcp2.tcl (Table

4.4) to include a RED buffer with monitoring.

A flow monitors a simplex link, so we first define the link we wish to monitor:

set flink [$ns simplex-link $N $D 2Mb 1ms RED]

and then the flow-monitor is defined as follows with respect to this link:

set monfile [open mon.tr w]

set fmon [$ns makeflowmon Fid]

$ns attach-fmon $flink $fmon

$fmon attach $monfile

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-017.jpg&w=170&h=123
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-018.jpg&w=171&h=126

6.4. MONITORING FLOWS 89

When we activate the monitoring, we get the statistics up to the activation time in a file. This is

done as follows:

$ns at $time "$fmon dump"

We next present in Listing 6.3 the full script shortRed.tcl that allows us to study short TCP

sessions interacting with a RED buffer.

Listing 6.3: Tcl script shortRed.tcl.

set ns [new Simulator]

set Out [open Out.ns w]; #file containing transfer times of different connections

set Conn [open Conn.tr w]; #file containing the number of connections

set tf [open out.tr w]; #Open the Trace file

$ns trace -all $tf

set NodeNb 6; # Number od source nodes

set NumberFlows 253; # Number of flows per source node

set sduration 50; # Duration of simulation

set rep 2; # Simulation replica

When the following parameters are commented , the RED is

configured automatically.

Queue/RED set thresh_ 5

Queue/RED set maxthresh_ 15

Queue/RED set q_weight_ 0.002

defining the topology

set N [$ns node]

set D [$ns node]

set flink [$ns simplex -link $N $D 2Mb 1ms RED]

$ns simplex -link $D $N 1Mb 1ms DropTail

$ns queue -limit $N $D 50

queue monitoring , RED

set redq [[$ns link $N $D] queue]

set traceq [open red -queue.tr w]

$redq trace curq_

$redq trace ave_

$redq attach $traceq

#Nodes and links

for {set j 1} {$j <= $NodeNb} { incr j } {

90 6. RED: RANDOM EARLY DISCARD

set S($j) [$ns node]

$ns duplex -link $S($j) $N 100Mb 1ms DropTail

$ns queue -limit $S($j) $N 100

}

set flow monitor

set monfile [open mon.tr w]

set fmon [$ns makeflowmon Fid]

$ns attach -fmon $flink $fmon

$fmon attach $monfile

#TCP Sources , destinations , connections

for {set i 1} {$i <= $NodeNb} { incr i } {

for {set j 1} {$j <= $NumberFlows} { incr j } {

set tcpsrc($i,$j) [new Agent/TCP/Newreno]

set tcp_snk($i,$j) [new Agent/TCPSink]

set k [expr $i*1000 +$j];

$tcpsrc($i,$j) set fid_ $k

$tcpsrc($i,$j) set window_ 2000

$ns attach -agent $S($i) $tcpsrc($i,$j)

$ns attach -agent $D $tcp_snk($i,$j)

$ns connect $tcpsrc($i,$j) $tcp_snk($i,$j)

set ftp($i,$j) [$tcpsrc($i,$j) attach -source FTP]

} }

Generators for random size of files.

set rng1 [new RNG]

set rng2 [new RNG]

for { set i 0 } {$i<$rep } {incr i } {

$rng1 next -substream;

$rng2 next -substream;

}

Random inter -arrival times of TCP transfer at each source i

set RV [new RandomVariable/Exponential]

$RV set avg_ 0.3

$RV use -rng $rng1

Random size of files to transmit

set RVSize [new RandomVariable/Pareto]

$RVSize set avg_ 10000

$RVSize set shape_ 1.5

$RVSize use -rng $rng2

6.4. MONITORING FLOWS 91

We now define the beginning times of transfers and the transfer sizes

Arrivals of sessions follow a Poisson process.

for {set i 1} {$i <= $NodeNb} { incr i } {

set t [$ns now]

for {set j 1} {$j <= $NumberFlows} { incr j } {

set the beginning time of next transfer from source and attributes

set t [expr $t + [$RV value]]

$tcpsrc($i,$j) set starts $t

$tcpsrc($i,$j) set sess $j

$tcpsrc($i,$j) set node $i

$tcpsrc($i,$j) set size [expr [$RVSize value]]

$ns at [$tcpsrc($i,$j) set starts] "$ftp($i,$j) send [$tcpsrc($i,$j) set size]"

update the number of flows

$ns at [$tcpsrc($i,$j) set starts] "countFlows $i 1"

}}

for {set j 1} {$j <= $NodeNb} { incr j } {

set Cnts($j) 0

}

The following procedure is called whenever a connection ends

Agent/TCP instproc done {} {

global tcpsrc NodeNb NumberFlows ns RV ftp Out tcp_snk RVSize

print in $Out: node , session , start time , end time , duration ,

trans -pkts , transm -bytes , retrans -bytes , throughput

set duration [expr [$ns now] - [$self set starts]]

puts $Out "[$self set node] \t [$self set sess] \t [$self set starts] \t\

[$ns now] \t $duration \t [$self set ndatapack_] \t\

[$self set ndatabytes_] \t [$self set nrexmitbytes_] \t\

[expr [$self set ndatabytes_]/ $duration]"

countFlows [$self set node] 0

}

The following recursive procedure updates the number of connections

as a function of time. Each 0.2 it prints them into $Conn. This

is done by calling the procedure with the "sign" parameter equal

3 (in which case the "ind" parameter does not play a role). The

procedure is also called by the "done" procedure whenever a connection

from source i ends by assigning the "sign" parameter 0, or when

it begins , by assigning it 1 (i is passed through the "ind" variable).

proc countFlows { ind sign } {

global Cnts Conn NodeNb

set ns [Simulator instance]

if { $sign ==0 } { set Cnts($ind) [expr $Cnts($ind) - 1]

92 6. RED: RANDOM EARLY DISCARD

} elseif { $sign ==1 } { set Cnts($ind) [expr $Cnts($ind) + 1]

} else {

puts -nonewline $Conn "[$ns now] \t"

set sum 0

for {set j 1} {$j <= $NodeNb} { incr j } {

puts -nonewline $Conn "$Cnts($j) \t"

set sum [expr $sum + $Cnts($j)]

}

puts $Conn "$sum"

$ns at [expr [$ns now] + 0.2] " countFlows 1 3"

} }

proc finish {} {

global ns tf

$ns flush -trace

close $tf

exec grep "a" red -queue.tr > ave.tr

exec grep "Q" red -queue.tr > cur.tr

exit 0

}

$ns at 0.5 "countFlows 1 3"

$ns at [expr $sduration - 0.01] "$fmon dump"

$ns at $sduration "finish"

$ns run

The flow monitor file includes more detailed information on the drop type. It allows to

distinguish between Early Drops (ED) due to early discard of packets, and actual drops due to

buffer overflow. The file has the following format:

1. Column 1: the time at which “dump" was performed.

2. Columns 2 and 5: both give the flow id.

3. Column 3: null (a zero entry).

4. Column 4: flow type.

5. Columns 6 and 7: source and destination of the flow.

6. Columns 8 and 9: total number of arrivals of the flow in packets and in bytes, respectively.

7. Columns 10 and 11: amount of early drops of the flow in packets and in bytes, respectively.

8. Columns 12 and 13: total number of arrivals of all flows in packets and in bytes, respectively.

9. Columns 14 and 15: amount of early drops of all flows in packets and in bytes, respectively.

6.4. MONITORING FLOWS 93

10. Columns 16 and 17: total amount of drops of all flows in packets and in bytes, respectively.

11. Columns 18 and 19: total amount of drops of the particular flow in packets and in bytes,

respectively.

Note: in order to apply the flow monitor, each TCP connection that we wish to monitor

should have a flow id. In our case, we initially identify a flow by its number and its source node (e.g.,

the third TCP connection that starts at node 4). We transform this into a one dimensional vector as

follows:

set k [expr $i*1000 +$j];

$tcpsrc($i,$j) set fid_ $k

The simulation produced the following output files:

1. cur.tr and ave.tr that monitor the evolution of the queue size and its averaged version.

2. Conn.tr for monitoring the number of active connections from each of the six sources (the

number six is given as parameter in the script to the variable NumberFlows) as well as the sum

of active sessions, as a function of time.

3. Out.ns for monitoring for each session (identified with the source node and the session number

originating from that node), start time, end time and duration of the connection, the num-

ber of transmitted packets, transmitted bytes and retransmitted bytes, and the throughput

experienced by the session.

4. mon.tr is the trace produced by the flow monitor that contains number of transmitted packets

and bytes and number of losses per connection.

5. out.tr is the global trace of all events.

We used in the above script the RED version with automatic configuration. We plot the

queue size and its averaged dynamics in Figures 6.9-6.10. We see that the queue length process is

much more bursty and variable than in the case of persistent TCP connections (which we saw in

Figures 6.4 and 6.5). The number of active connection is given in Figure 6.11.

We included in the above script various ways of monitoring.The direct way of monitoring the

number of retransmissions and arrivals of packets through the procedure “done" has the advantage

that it is global: it gives all the data related to the connection. The flow monitor gives on the other

hand local information on losses at a particular link. If the connection traverses several bottleneck

links, the first method is thus more advantageous. The second method has the advantage of giving

more detailed local information which can be useful to understand the contribution of each of several

nodes to congestion suffered by a session.

94 6. RED: RANDOM EARLY DISCARD

Figure 6.9: Evolution of the queue size and

of its average.

Figure 6.10: Queue size and averaged size

evolution: a zoom.

25

20

15

10

5

0
0 5 10 15 20 25 30 35 40 45 50

‘Conn.tr’ using 1:8

Figure 6.11: Number of active connections as a function of time.

6.5 EXERCISES
6.1. Consider the script shortRed.tcl (Listing 6.3) and modify the program to have manual

adjustment of the parameters thresh_, maxthresh_, q_weight_. How should these

parameters, as well as the queue size on link N-D be chosen so as to maximize the through-

put? Study this by simulation and explain the tradeoffs.

6.2. One of the objectives of RED is to allow more fairness to short bursts. Analyze the through-

put and the loss probability of a connection as a function of its size with RED and compare

it to Drop-Tail. Use the script shortRed.tcl (Table 6.3). Try various parameters for RED to

get better fairness. The exercise is based on [10].

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-019.jpg&w=170&h=123
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-020.jpg&w=170&h=123

95

C H A P T E R 7

Differentiated Services
In traditional Internet, all connections get the same treatment in the network. This is in contrast

with other networking concepts, such as the ATM (Asynchronous Transfer Mode), that can offer

quality of service requirements to connections at the price of much higher signalling and processing

related to the acceptance of new connections and maintaining the guarantees of ongoing connections.

Moreover, since network resources are limited, offering guarantees on performance measures requires

rejecting new connections if resources are not available. This is in contrast with the best effort

characteristic of today’s Internet where no admission control is performed.

Yet, it has been recognized that it is important to differentiate between connection classes

and to be able to allocate resources to connections according to their class. Thus a subscriber that

is willing to pay more could benefit by smaller delays and larger throughputs. This is of interest in

particular for real time applications over the Internet (voice, video).

For that reason, the Diffserv has been introduced. It is based on marking packets at the edge

of the network according to the performance level that the network wishes to provide them; then

according to the marks, the packets are treated differently at the network’s nodes. A common way

to differentiate packets is by using RED buffers with different parameters for different packets.

The NS-2 module that handles diffserv has been developed in Nortel Networks, and this

Chapter is based in large part on the excellent Nortel Report [48].

7.1 DESCRIPTION OF ASSURED FORWARDING DIFFSERV

The Diffserv implemented in NS-2 follows the “Assured forwarding” approach standardized in [32].

A packet belonging to a flow may receive three possible priority levels within the flow. These are

called sometime “drop precedences".This can be used, for example to provide a lower loss probability

to sync packets in a TCP connection, since unlike other packets, the losses of sync packets result in

very long time-outs [8]. In addition to differentiation within each flow, all flows are classified into

several classes (at most four), and different treatment can be given to the different classes.

Moreover, it is possible to differentiate between flows. Four classes of flows are defined, and

packets of a given class are queued in a class-dependent queue. In order to differentiate between

packets belonging to the same class, three virtual queues are implemented in each of the four queues.

To each of the 12 combinations of the four flow class and the three internal priority levels within a

flow, there corresponds a code point that a packet is given when entering the network. In practice

not all queues and all priority groups need to be implemented.

96 7. DIFFERENTIATED SERVICES

Diffserv architecture has three components:

1. Policy and resource manager: it creates policies and distributes them to diffserv routers. A

policy determines which level of services in the network are assigned to which packets. This

assignment may depend on the behavior of the source of the flow (e.g., its average rate and

its burstiness) and special network elements are therefore added at the edge of the network in

order to measure the source behavior. In ns simulation, the policy is fully determined in the

tcl script.

2. Edge routers: are responsible for assigning the code points to the packets according to the

policy specified by the network administrator. To do so they measure parameters of the input

traffic of each flow.

3. Core routers: the basic approach of diffserv is to keep the intelligence in the edge of the

network; routers within the network have simply to assign the appropriate priority to packets

according to their code mark. The priority translates to parameters of the scheduling and to

the dropping decisions in the core routers.

7.2 MRED ROUTERS
7.2.1 GENERAL DESCRIPTION

The fact that there are three virtual RED buffers (called MRED - Multi RED) in each physical

queue allows the ability to enhance its behavior and to create dependence between their operation.

One way to do that is through the RIO C (Rio Coupled) version of MRED, in which the probability

of dropping low priority packets (called “out-of-profile packets") is based on the weighted average

lengths of all virtual queues, whereas the probability of dropping a high priority (“in-profile") packet

is based only on the weighted average length of its own virtual queue.

In contrast, in RIO-D (RIO De-coupled) the probability of dropping each packet is based on

the size of its virtual queue. Another version is the WRED (Weighted Red) in which all probabilities

are based on a single queue length [18]. It is possible to use also the dropTail queue.

7.2.2 CONFIGURATION OF MRED IN NS-2

To determine the number of physical queues, we use the command

$dsredq set numQueues_ $m

where m can take values between 1 and 4.

Configuring queue 0 to be a RIO-C is done with the command

$dsredq setMREDMode RIO-C 0

If the last argument is not given then all queues are set to be RIO-C. Similarly, types other than

RIO-C can be defined. To specify the number $n of virtual queues, we use the command

7.2. MRED ROUTERS 97

$dsredq setNumPrec $n

Red parameters are then configured using the command

$dsredq configQ $queueNum $virtualQueueNum $minTh $maxTh $maxP

It thus has 5 parameters: the queue number, virtual queue number, minth, maxth and maxp. The

parameter qw can also be given (as the 6th parameter) and if it is not stated then it is taken to be

0.002 by default.

The droptail queue can also be used with the command

$dsredq setMREDMode DROP

The configuation then is given as before with only the first three parameters:

$dsredq configQ $queueNum $virtualQueueNum $minTh

All arriving packets are dropped when the minth value is reached.

As we saw in the chapter on RED, for computing the drop probability we need an estimate

of the packet size. For a packet of size 1000 bytes this is given by the command

$dsredq meanPktSize 1000

Scheduling Particular scheduling regimes can be defined, for example the weighted round robin

(WRR) with queue weights 5 and 1, respectively, will be defined through

$dsredq setSchedularMode WRR

$dsredq addQueueWeights 1 5

Other possible scheduling are Weighted Interleaved Round Robin (WIRR), Round Robin (RR),

which is the default scheduling, and the strict priorities (PRI).

PHB table The set of four queues along with the virtual queues is implemented with a PHB (Per

Hop Behavior) table. Its entries are defined by (i) the code point (ii) the class (physical queue) and

(iii) the “precedence" (virtual queue). An entry is assigned with the command of the form

$dsredq addPHBEntry 11 0 1

which means that code point 11 is mapped to the virtual queue 1 of the physical queue 0.

7.2.3 TCL QUERYING

The following three commands result in printing respectively (i) the PHB table, (ii) the number of

physical and virtual queues and (iii) the RED weighted average size of the specified physical queues

(0 in our case):

$dsredq printPHBTable

$dsredq printStats

$dsredq getAverage 0

98 7. DIFFERENTIATED SERVICES

7.3 DEFINING POLICIES
7.3.1 DESCRIPTION

All flows having the same source and destination are subject to a common policy. A policy defines a

policer type,a target rate,and other policy specific parameters. It specifies at least two code points.The

choice between them depends on the comparison between the flow’s target and its current sending

rate, and possibly on the policy-dependent parameters (such as burstiness). The policy specifies

meter types that are used for measuring the relevant input traffic parameters. A packet arriving at

the edge device causes the meter to update the state variables corresponding to the flow, and the

packet is then marked according to the policy. The packet has an initial code point corresponding

to the required service level; the marking can result in downgrading the service level with respect to

the initial required one.

A policy table is used in NS-2 to store the policy type of each flow. Not all entries are actually

used. The entries are

1. Source node ID

2. Destination node ID

3. Policer type

4. Meter type

5. Initial code point

6. CIR (committed information rate)

7. CBS (committed burst size)

8. C bucket (current size of the committed bucket)

9. EBS (excess burst size)

10. E bucket (current size of the excess bucket)

11. PIR (peak information rate)

12. PBS (peak burst size)

13. P bucket (current size of the peak bucket)

14. Arrival time of last packet

15. Average sending rate

16. TSW window length (TSW is a policer based on average transmission rates and the averaging

is performed over the window length, in seconds, of data). The default value is 1 sec.

7.3. DEFINING POLICIES 99

The following are the possible policer types:

1. TSW2CM (TSW2CMPolicer): uses a CIR and two drop precedences.The lower one is used

probabilistically when the CIR is exceeded.

2. TSW3CM (TSW3CMPolicer) [26]: uses a CIR, a PIR and three drop precedences. The

medium priority level is used probabilistically when the CIR is exceeded, and the lowest one

is used probabilistically when the PIR is exceeded.

3. Token Bucket (TokenBucketPolicer): uses CIR and a CBS, and two drop precedences.

4. Single Rate Three Color Marker (srTCMPolicer) [33]: uses CIR, CBS and EBS to choose

from three drop precedences.

5. Two Rate Three Color Marker (trTCMPolicer) [33]: uses CIR, CBS, EBS and PBS to

choose from three drop precedences.

Each of the above policer type defines the meter it uses. A policer table defines for each policy

type the initial code point as well as one or two downgraded code points. The initial code point is

often called “green code" and the lowest downgraded code is “red". If there is another code point in

between, it is called “yellow".

7.3.2 CONFIGURATION
To update the policy table, the “addPolicyEntry" command is used, which contains the edge queue

variable denoting the edge queue, the source and destination nodes of the flow, the policer type, its

initial code point, and then the values of the parameters that it uses; these are some or all of CIR,

CBS, PIR and PBS as stated above. CIR and PIR are given in bps, and CBS, EBS and PBS in bytes.

An example is:
$edgeQueue addPolicerEntry [$n1 id] [$n8 id] trTCM 10 200000 1000 300000 1000

Here we added a policy for the flow that originates in $n1 and ends at $n8. If the TSW policers are

used, one can add at the end the TSW window length. If not added, it is taken to be 1 sec by default.

Then another “addPolicyEntry" command specific to the policy and to the initial code point

(and not to a particular flow) defines the downgraded code points which are common to all flows

that use the policy with the same initial code point. An example is:
$edgeQueue addPolicerEntry srTCM 10 11 12

7.3.3 TCL QUERYING

The following three commands result in printing respectively (i) the entire policy table, (ii) the entire

policer table and (iii) the current size in bytes of the C buckets:
$edgeQueue printPolicyTable

$edgeQueue printPolicerTable

$edgeQueue getBucket

100 7. DIFFERENTIATED SERVICES

7.4 SIMULATION OF DIFFSERV: PROTECTION OF
VULNERABLE PACKETS

In TCP connections, the loss of some segments has more impact than others on the performance

of the connection. These segments are (i) the connection establishment segments, (ii) the segments

sent when the connection has a small window, and (iii) the segments sent after a timeout or a fast

retransmit. We call these “vulnerable" segments, or packets. In a Infocom paper [43], the authors

show that by marking these segments with a higher priority and implementing the priority using a

diffserv architecture, the performance of the TCP connection considerably improves. This marking

requires, however, that network layer elements be aware of transport layer information, i.e., of the

state of the TCP connection. The goal of the simulation example we introduce is to show that one

can achieve prioritization of sensitive segments without any use of transport layer information, thus

simplifying the implementation of diffserv marking of TCP packets. This part is based on [8].

7.4.1 THE SIMULATED SCENARIO

Preliminaries on the service differentiation Two priority levels are defined: the higher “In packets"

or “green packets" and the lower “Out packets" or “red packets". We focus on the simplest policer

available in ns: the time-sliding window (TSW2CM). A CIR is defined for each edge router. As long

as the connection’s rate is below CIR, all packets are marked as high priority. When the rate exceeds

CIR, packets are marked probabilistically such that on the average, the rate of packets marked with

high priority corresponds to the CIR. The transmitted rate is computed as the rate averaged over

the “TSW window"; in our simulation its duration is 20 msec.

In our experimentations we vary the CIR level at the source edge nodes and study its impact

on performance.

The topology We consider the simple network topology with a single bottleneck, depicted in

Figure 7.1.

Each source node is connected to a corresponding edge node where the traffic is marked

according to parameters that will be specified. The edge routers are connected to a bottleneck

corerouter, and then through another edge router, to a destination node.

There are 20 source nodes, and each one of them generates TCP connections.

We experiment with a high-speed local area type network (short propagation delays) with

completely symmetric links:

• Links between the edge nodes and the corresponding source nodes have delays of 10 μsec and

6Mbps bandwidth.

• Links between the edge node and the corresponding destination node has 10 μsec delay and

10Mbps bandwidth.

7.4. SIMULATION OF DIFFSERV: PROTECTION OF VULNERABLE PACKETS 101

Figure 7.1: Network topology.

• Links between the core node and edge nodes that are attached to the sources have 0.1msec

delay and 6Mbps bandwidth.

• The link between the core node and edge node attached to the destination has 1msec delay

and 10Mbps bandwidth.

The traffic model The size of a transferred file has a Pareto distribution with shape parameter 1.25

and an average size of 10kbytes (see [14, 54] for similar parameters).

Files to be transmitted arrive at each source node according to a Poisson process with an average

rate of 5 files per second. Several sessions from the same source node can be active simultaneously.

Queueing management parameters A queue can build up only at the bottleneck router, i.e., at the

link between the core node and the edge node that connects to the destination.We chose its size to be

of 100 packets.Thus the queue management parameters at other nodes did not have an influence on

the results. In the bottleneck queue at the core node, a multi-RED queue management is used with

a RIO-D version; we choose the same parameters for both priority levels (more details will be given

below). Our aim in choosing the parameters was not to obtain necessarily an optimal performance

but rather to create conditions that allow us to study the effect of diffserv on diminishing the loss

probabilities of vulnerable segments, and the impact of this action on TCP performance (delay,

throughput). For that reason, we choose the same parameters for the two priority levels (this will be

explained below).

For each color of packets (red, green), the averaged queue sized is monitored (this is done

using the standard exponential averaging with parameter wq = 0.01). Packets of a given color start

to be dropped when the averaged number of queued packets of this color exceeds minw; we choose

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-022.jpg&w=330&h=180

102 7. DIFFERENTIATED SERVICES

minw = 15; this drop probability increases linearly with the averaged queue size until it reaches

the value maxw = 45, where the drop probability is taken to be maxp = 0.5. When this value is

exceeded, the drop probability is 1.

Note that often the differentiation between the priorities is done using different sets of pa-

rameters: drops are performed at a larger queue size for green packets (e.g., [52]). We prefer not to

use this approach, since with rejection at a larger window size we also get larger delays, which in some

experimented parameters result in a lower throughput for green packets than for red packets and in

global degradation of performance. By giving the same parameters to both priorities, we can learn

about the direct effect of protecting vulnerable packets on the TCP performance.The differentiation

is then done by using the RIO-D approach, in which the rejection probability of each type of color

depends on the average number of packets of that type. Thus to have green packets dropped less

than red ones, we simply choose their throughput (and consequently also the corresponding average

queue size) to be lower; this is done by the proper choice of the CIR value which determines the

fraction of packets that will be marked green.

Simulations are 80 sec long. This is a very short simulation time, but we use it only as an

example, in a realistic simulation study one needs to simulate till the confidence interval specified

will be achieved.

The rate of arrival of bits to the bottleneck is

20 × 1.04 × 104 × 8

0.22
= 7.563Mbps

This is obtained as follows: An average packet size is 1040 bytes of which 1000 are data and 40 bytes

are an extra header. An average ftp file is assumed to contain 104 bytes of data, which means that

its total average size (including the extra headers) is approximately 1.04 × 104 × 8 bits. The result

is obtained by multiplying by the number of source nodes and dividing by the average time between

arrivals of files at a node.

The NS-2 script is given in Listing 7.1.

Listing 7.1: Tcl script diffs.tcl.

set ns [new Simulator]

There are several sources each generating many TCP sessions sharing a bottleneck

link and a single destination. Their number is given by the parameter NodeNb

S(1) ----- E(1) ----

. |

. ---- E(i) ---Core ---- Ed -------- D

. |

S(NodeNb)- E(NodeNb)-

7.4. SIMULATION OF DIFFSERV: PROTECTION OF VULNERABLE PACKETS 103

set cir0 100000; # policing parameter

set cir1 100000; # policing parameter

set pktSize 1000

set NodeNb 20; # Number of source nodes

set NumberFlows 360 ; # Number of flows per source node

set sduration 80 ; # Duration of simulation

set run 1; #simulation run

#Define different colors for data flows (for NAM)

$ns color 1 Blue

$ns color 2 Red

$ns color 3 Green

$ns color 4 Brown

$ns color 5 Yellow

$ns color 6 Black

set Out [open Out.ns w]; # file containing transfer

times of different connections

set Conn [open Conn.tr w]; # file containing the number of connections

set tf [open out.tr w]; # Open the Trace file

$ns trace -all $tf

#Open the NAM trace file

set file2 [open out.nam w]

$ns namtrace -all $file2

defining the topology

set D [$ns node]

set Ed [$ns node]

set Core [$ns node]

set flink [$ns simplex -link $Core $Ed 10Mb 1ms dsRED/core]

$ns queue -limit $Core $Ed 100

$ns simplex -link $Ed $Core 10Mb 1ms dsRED/edge

$ns duplex -link $Ed $D 10Mb 0.01ms DropTail

for {set j 1} {$j <= $NodeNb} { incr j } {

set S($j) [$ns node]

set E($j) [$ns node]

$ns duplex -link $S($j) $E($j) 6Mb 0.01ms DropTail

104 7. DIFFERENTIATED SERVICES

$ns simplex -link $E($j) $Core 6Mb 0.1ms dsRED/edge

$ns simplex -link $Core $E($j) 6Mb 0.1ms dsRED/core

$ns queue -limit $S($j) $E($j) 100

}

#Config Diffserv

set qEdC [[$ns link $Ed $Core] queue]

$qEdC meanPktSize 40

$qEdC set numQueues_ 1

$qEdC setNumPrec 2

for {set j 1} {$j <= $NodeNb} { incr j } {

$qEdC addPolicyEntry [$D id] [$S($j) id] TSW2CM 10 $cir0 0.02

}

$qEdC addPolicerEntry TSW2CM 10 11

$qEdC addPHBEntry 10 0 0

$qEdC addPHBEntry 11 0 1

$qEdC configQ 0 0 10 30 0.1

$qEdC configQ 0 1 10 30 0.1

$qEdC printPolicyTable

$qEdC printPolicerTable

set qCEd [[$ns link $Core $Ed] queue]

set qCEd [$flink queue]

$qCEd meanPktSize $pktSize

$qCEd set numQueues_ 1

$qCEd set NumPrec 2

$qCEd addPHBEntry 10 0 0

$qCEd addPHBEntry 11 0 1

$qCEd setMREDMode RIO -D

$qCEd configQ 0 0 15 45 0.5 0.01

$qCEd configQ 0 1 15 45 0.5 0.01

for {set j 1} {$j <= $NodeNb} { incr j } {

set qEC($j) [[$ns link $E($j) $Core] queue]

$qEC($j) meanPktSize $pktSize

$qEC($j) set numQueues_ 1

$qEC($j) setNumPrec 2

$qEC($j) addPolicyEntry [$S($j) id] [$D id] TSW2CM 10 $cir1 0.02

$qEC($j) addPolicerEntry TSW2CM 10 11

$qEC($j) addPHBEntry 10 0 0

$qEC($j) addPHBEntry 11 0 1

7.4. SIMULATION OF DIFFSERV: PROTECTION OF VULNERABLE PACKETS 105

$qEC($j) configQ 0 0 20 40 0.02

$qEC($j) configQ 0 0 10 20 0.1

$qEC($j) configQ 0 1 10 20 0.1

$qEC($j) printPolicyTable

$qEC($j) printPolicerTable

set qCE($j) [[$ns link $Core $E($j)] queue]

$qCE($j) meanPktSize 40

$qCE($j) set numQueues_ 1

$qCE($j) setNumPrec 2

$qCE($j) addPHBEntry 10 0 0

$qCE($j) addPHBEntry 11 0 1

$qCE($j) configQ 0 0 20 40 0.02

$qCE($j) configQ 0 0 10 20 0.1

$qCE($j) configQ 0 1 10 20 0.1

}

set flow monitor

set monfile [open mon.tr w]

set fmon [$ns makeflowmon Fid]

$ns attach -fmon $flink $fmon

$fmon attach $monfile

#TCP Sources , destinations , connections

for {set i 1} {$i <= $NodeNb} { incr i } {

for {set j 1} {$j <= $NumberFlows} { incr j } {

set tcpsrc($i,$j) [new Agent/TCP/Newreno]

set tcp_snk($i,$j) [new Agent/TCPSink]

set k [expr $i*1000 +$j];

$tcpsrc($i,$j) set fid_ $k

$tcpsrc($i,$j) set window_ 2000

$ns attach -agent $S($i) $tcpsrc($i,$j)

$ns attach -agent $D $tcp_snk($i,$j)

$ns connect $tcpsrc($i,$j) $tcp_snk($i,$j)

set ftp($i,$j) [$tcpsrc($i,$j) attach -source FTP]

} }

Generators for random size of files.

set rng1 [new RNG]

set rng2 [new RNG]

for {set j 0} {$j < $run} {incr j} {

106 7. DIFFERENTIATED SERVICES

$rng1 next -substream;

$rng2 next -substream;

}

Random inter -arrival times of TCP transfer at each source i

set RV [new RandomVariable/Exponential]

$RV set avg_ 0.22

$RV use -rng $rng1

Random size of files to transmit

set RVSize [new RandomVariable/Pareto]

$RVSize set avg_ 10000

$RVSize set shape_ 1.25

$RVSize use -rng $rng2

We now define the beginning times of transfers and the transfer sizes

Arrivals of sessions follow a Poisson process.

#

for {set i 1} {$i <= $NodeNb} { incr i } {

set t [$ns now]

for {set j 1} {$j <= $NumberFlows} { incr j } {

set the beginning time of next transfer from source and attributes

$tcpsrc($i,$j) set sess $j

$tcpsrc($i,$j) set node $i

set t [expr $t + [$RV value]]

$tcpsrc($i,$j) set starts $t

$tcpsrc($i,$j) set size [expr [$RVSize value]]

$ns at [$tcpsrc($i,$j) set starts] "$ftp($i,$j) send [$tcpsrc($i,$j) set size]"

$ns at [$tcpsrc($i,$j) set starts] "countFlows $i 1"

}}

for {set j 1} {$j <= $NodeNb} { incr j } {

set Cnts($j) 0

}

The following procedure is called whenever a connection ends

Agent/TCP instproc done {} {

global tcpsrc NodeNb NumberFlows ns RV ftp Out tcp_snk RVSize

print in $Out: node , session , start time , end time , duration ,

trans -pkts , transm -bytes , retrans -bytes , throughput

set duration [expr [$ns now] - [$self set starts]]

set i [$self set node]

7.4. SIMULATION OF DIFFSERV: PROTECTION OF VULNERABLE PACKETS 107

set j [$self set sess]

set time [$ns now]

puts $Out "$i \t $j \t $time \t\

$time \t $duration \t [$self set ndatapack_] \t\

[$self set ndatabytes_] \t [$self set nrexmitbytes_] \t\

[expr [$self set ndatabytes_]/ $duration]"

update the number of flows

countFlows [$self set node] 0

}

The following recursive procedure updates the number of connections

as a function of time. Each 0.2 it prints them into $Conn. This

is done by calling the procedure with the "sign" parameter equal

3 (in which case the "ind" parameter does not play a role). The

procedure is also called by the "done" procedure whenever a connection

from source i ends by assigning the "sign" parameter 0, or when

it begins , by assigning it 1 (i is passed through the "ind" variable).

#

proc countFlows { ind sign } {

global Cnts Conn NodeNb

set ns [Simulator instance]

if { $sign ==0 } { set Cnts($ind) [expr $Cnts($ind) - 1]

} elseif { $sign ==1 } { set Cnts($ind) [expr $Cnts($ind) + 1]

} else {

puts -nonewline $Conn "[$ns now] \t"

set sum 0

for {set j 1} {$j <= $NodeNb} { incr j } {

puts -nonewline $Conn "$Cnts($j) \t"

set sum [expr $sum + $Cnts($j)]

}

puts $Conn "$sum"

$ns at [expr [$ns now] + 0.2] " countFlows 1 3"

} }

#Define a ’finish ’ procedure

proc finish {} {

global ns tf qsize qbw qlost file2

$ns flush -trace

close $file2

exit 0

}

108 7. DIFFERENTIATED SERVICES

$ns at 0.5 "countFlows 1 3"

$ns at [expr $sduration - 0.01] "$fmon dump"

$ns at [expr $sduration - 0.001] "$qCEd printStats"

$ns at $sduration "finish"

$ns run

7.5 SIMULATION RESULTS

Losses We check the influence of the CIR marking rate on the loss probabilities of the SYN packets

and of the first data packet in a connection, as before.

CIR 10kbps 30kbps 100kbps 200kbps 300kbps 1Mbps 10Mbps

Lost SYN packets 120 95 53 45 17 78 114

First packets lost 125 119 90 56 37 73 115

Total losses 1699 1612 1476 1286 1088 1290 1577

Table 7.1: Protection of vulnerable packets as a function of CIR.

We see that we manage to decrease the losses of SYN packets by a factor of seven, and the

losses of the first data packet of a connexion by a factor of around 3.4, both obtained at CIR of

300kbps.

Throughput and Goodput The number of data packets that were successfully transmitted during

the simulations was independent of the CIR: it was on the average 58285, with a standard deviation

of 395 packets. This is due to the fact that the arrival rate of sessions does not depend on the CIR.

In view of the low loss probabilities, the throughput too, is almost constant as a function of CIR.

The number of sessions The total number of sessions as a function of time is given in Figure 7.2 for

the CIR of 200kbps (the optimal) and for the case of no prioritization (CIR of 10Mbps).We see from

the simulation result that our marking scheme with CIR of 300kbps gives a better performance: less

number of active sessions are present under this marking. This is related to the fact that the session

duration in our marking is shorter, as we show in the next section. Indeed, since the arrival rate of

sessions is the same independently of CIR, the average number of session should be proportional to

the average duration of a session (the proportionality factor being the arrival rate of sessions).

Session duration In Table 7.2 we present the average duration of a session as a function the CIR.

7.6. DISCUSSIONS AND CONCLUSIONS 109

Figure 7.2: Evolution of total number of sessions.

CIR 10kbps 30kbps 100kbps 200kbps 300kbps 1Mbps 10Mbps

sess. duration 0.25261 0.23107 0.16794 0.14947 0.11950 0.20320 0.22507

Table 7.2: Average duration of a session as a function of CIR.

We see that in the range of 100kbps till 300kbps the average duration decreases by a factor

between 1/3 (for 100kbps) and 1/2 (for 300kbps) with respect to the case of no prioritization.

7.6 DISCUSSIONS AND CONCLUSIONS
There are few limitation of the marking approach. The significant improvement that we obtain

would not be obtained in any scenario, and we propose a few guidelines, which we validated through

further simulations, to describe its limitations.

1. Vulnerable packets deteriorate performance considerably since they cause long timeouts. This

is especially the case for the loss of a syn that results in a timeout of 3 sec or 6sec. In high

speed networks the duration of a file transfer is short (often the whole transfer is much shorter

than timeout), so we can expect to gain much by eliminating these long timeouts. In low speed

networks, this is no longer the case so the gains in our approach become marginal.

2. In our simulation, an average file size is 10kbytes, which is the old averaged measured file

size in the Internet [54]. This means that around 10% of the packets is a SYN packet, and

furthermore, another 10% of the packets are first in a transfer. Thus in the absence of our

approach, around 20% of lost packets would correspond to these types of vulnerable packets,

so eliminating these losses can result in a considerable improvement in performance. If we

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-023.jpg&w=232&h=167

110 7. DIFFERENTIATED SERVICES

were to use our approach to much longer files, the fraction of vulnerable packets would be

much smaller, so that the added value of our approach would be smaller.

7.7 EXERCISES
7.1. Our simulations have restricted to FTP type traffic. In this exercise we shall consider HTTP

type traffic: The time between the end of transmission of a file till the beginning of the next

transmission is exponentially distributed with a mean of 0.1 sec. This is called a “thinking

time". Thus from each source node there can be only one file transmitted at the same

time (at most one active session). Write a tcl program for this traffic model and check its

performance as a function of the CIR. Compare with FTP type traffic.

111

C H A P T E R 8

Mobile Networks and Wireless
Local Area Networks

There are two approaches for wireless communication between two hosts.The first is the centralized

cellular network in which each mobile is connected to one or more fixed base stations (each base

station is responsible for a different cell), so that communication between two mobile stations requires

the participation of one or more base stations. A second decentralized approach consists of an ad-

hoc network between users who wish to communicate between each other. Due to the more limited

range of a mobile terminal (with respect to a fixed base station), this approach requires mobile nodes

not only to be sources or destination of packets but also to forward packets between other mobiles.

Cellular stations have a much larger range than ad-hoc networks. However, ad-hoc networks have

the advantage of being quickly deployable as they do not require an existing infrastructure.

In cellular networks, the wireless part is restricted only to access to a network, and within

the networks classical routing protocols can be used. Ad-hoc networks, in contrast, rely on special

routing protocols that have to be adapted to frequent topology changes.

To model cellular networks well, sophisticated simulation tools of the physical radio channel

are often needed, as well as the simulation of power control mechanisms. NS-2 does not have

an advanced physical layer module (although it contains some simple modeling features of radio

channels).

In ad-hoc networks, in contrast, the routing protocols are central. ns allows to simulate the

main existing routing as well as the transport and applications that use them. Moreover, it allows

the ability to take into account the MAC and link layer, the mobility, and some basic features of the

physical layer.

The current routing protocols implemented by NS-2 are

• DSDV - Destination Sequenced Distance Vector [47],

• DSR - Dynamic Source Routing [38],

• TORA/IMPE - Temporally Ordered Routing Algorithm / Internet MANET Encapsulation

Protocol [19, 44, 45], and

• AODV - Ad-hoc On Demand Distance Vector [46].

112 8. MOBILE NETWORKS AND WIRELESS LOCAL AREA NETWORKS

8.1 THE ROUTING ALGORITHMS
There are several approaches in conventional routing algorithms in traditional wireline networks,

and some ideas from these are also used in ad-hoc networks. Among the traditional approaches we

shall mention the following:

1. Link State. Each node maintains a record of the complete topology with a cost per each link.

Each node periodically broadcasts the link costs of its outgoing links to all other nodes using

flooding. Each node updates its record of the network and applies a shortest path algorithm

for choosing the next-hop for each destination.

2. Distance Vector. Each node only monitors the cost of its outgoing links. Instead of broad-

casting the information to all nodes, it periodically broadcasts to each of its neighbors an

estimate of the shortest distance to every other node in the network. The receiving nodes use

this information to recalculate routing tables using a shortest path algorithm. This method is

more computation efficient, easier to implement and requires less storage space than link state

routing.

3. Source routing. Routing decisions are taken at the source,and packets carry along the complete

path they should take.

4. Flooding. The source sends the information to all neighbors who continue sending it to their

neighbors, etc. By using sequence numbers for the packets, a node is able to relay a packet only

once.

Next we describe the Ad-hoc routing protocols implemented in ns.

8.1.1 DESTINATION SEQUENCED DISTANCE VECTOR - DSDV

DSDV is a distance vector routing protocol. Each node has a routing table that indicates for each

destination, which is the next hop and number of hops to the destination. Each node periodically

broadcasts routing updates. A sequence number is used to tag each route. It shows the freshness of

the route: a route with higher sequence number is more favorable. In addition, among two routes

with the same sequence number, the one with less hops is more favorable. If a node detects that a

route to a destination has broken, then its hop number is set to infinity and its sequence number is

updated (increased) but assigned an odd number: even numbers correspond to sequence numbers of

connected paths.

8.1.2 AD-HOC ON DEMAND DISTANCE VECTOR - AODV

AODV is a distance vector type routing. It does not require nodes to maintain routes to destinations

that are not actively used. As long as the endpoints of a communication connection have valid routes

to each other, AODV does not intervene.

8.1. THE ROUTING ALGORITHMS 113

The protocol uses different messages to discover and maintain links:Route Requests (RREQs),

Route Replies (RREPs), and Route Errors (RERRs). These message types are received via UDP,

and normal IP header processing applies.

AODV uses a destination sequence number for each route entry. The destination sequence

number is created by the destination for any route information it sends to requesting nodes. Using

destination sequence numbers ensures loop freedom and allows to know which of several routes is

“fresher". Given the choice between two routes to a destination, a requesting node always selects the

one with the greatest sequence number.

When a node wants to find a route to another one, it broadcasts a RREQ to all the network

till either the destination is reached or another node is found with a “fresh enough" route to the

destination (a “fresh enough" route is a valid route entry for the destination whose associated sequence

number is at least as great as that contained in the RREQ). Then a RREP is sent back to the source

and the discovered route is made available.

Nodes that are part of an active route may offer connectivity information by broadcasting

periodically local Hello messages (special RREP messages) to its immediate neighbors. If Hello

messages stop arriving from a neighbor beyond some given time threshold, the connection is assumed

to be lost.

When a node detects that a route to a neighbor node is not valid, it removes the routing

entry and sends a RERR message to neighbors that are active and use the route; this is possible by

maintaining active neighbor lists. This procedure is repeated at nodes that receive RERR messages.

A source that receives an RERR can reinitiate a RREQ message.

AODV does not allow to handle unidirectional links.

8.1.3 DYNAMIC SOURCE ROUTING - DSR

Designed for mobile ad hoc networks with up to around two hundred nodes with possibly high

mobility rate. The protocol works “on demand", i.e., without any periodic updates.

Packets carry along the complete path they should take. This reduces overheads for large

routing updates at the network. The nodes store in their cache all known routes. The protocol is

composed of route discovery and route maintenance.

At route discovery, a source requesting to send a packet to a destination broadcasts a Route

Request (RREQ) packet. Nodes receiving RREQ search in their Route Cache for a route to the

destination. If a route is not found then the RREQ is further transmitted and the node adds its

own address to the recorded hop sequence. This continues till the destination or a node with a route

to the destination is reached. The route back can be retrieved by the reverse hop record. As routes

need not be symmetric, DSR checks the Route Cache of the replying node and if a route is found,

it is used instead. Alternatively, one can piggyback the reply on a RREQ targeted at the originator.

Hence unidirectional links can be handled.

114 8. MOBILE NETWORKS AND WIRELESS LOCAL AREA NETWORKS

Route maintenance: When originating or forwarding a packet using a source route, each

node transmitting the packet is responsible for confirming that data can flow over the link from

that node to the next hop. An acknowledgment can provide confirmation that a link is capable of

carrying data. Acknowledgements are often already part of the MAC protocol in use (such as the

link-layer acknowledgement frame defined by IEEE 802.11), or are “passive acknowledgement",

i.e., a node knows that its packet is received by an intermediate node since it can hear that the

intermediate node forwards it further. If such acknowledgements are not available then a node

can request an acknowledgement (which can be sent directly to the source using another route).

Acknowledgements may be requested several times (up to some given bound), and in the persistent

absence of acknowledgement, the route is removed from the Route Cache and returns a “Route

Error" to each node that has sent a packet routed over that link since an acknowledgement was last

received.Nodes overhearing or forwarding packets should make use of all carried routing information

to update its own Route Packet.

8.1.4 TEMPORALLY ORDERED ROUTING ALGORITHM - TORA

This protocol is of the family of link reversal protocols. It may provide several routes between a

source and a destination. TORA contains three parts: creating, maintaining and erasing routes. At

each node, a separate copy of TORA is run per each destination. TORA builds a directed acyclic

graph rooted at the destination. It associates a height with each node in the network (with respect to

a common destination). Messages flow from nodes with greater height to those with lower heights.

Routes are discovered using Query (QRY) and Update (UPD) packets.

When a node with no downstream links needs a route to a destination, it broadcasts a QRY

packet that propagates till it either finds a node with a route to the destination or the destination

itself. That node will respond by broadcasting a UPD packet containing the node’s height. A node

receiving the UPD packet updates its height accordingly and broadcasts another UPD. This may

result in a number of directed paths from the source to the destination.

If a node discovers a particular destination to be unreachable, it sets the corresponding local

height to a maximum value. In case the node cannot find any neighbor with finite height w.r.t.

this destination, it attempts to find a new route. In case there is no route to a destination (i.e., of

a network partition), the node broadcasts a Clear (CLR) message resetting all routing states and

removing invalid routes from its part of the network.

TORA operates on top of IMEP (Internet MANET Encapsulation Protocol) that provides

reliable delivery of route-messages and that informs the routing protocol of changes of the links to

its neighbors. IMEP tries to aggregate IMEP and TORA messages to a single packet (called block)

so as to reduce overhead. To get information on the status of neighboring links, IMEP periodically

sends BEACON messages answered by HELLO response messages.

8.2. SIMULATING MOBILE NETWORKS 115

8.2 SIMULATING MOBILE NETWORKS
8.2.1 SIMULATION SCENARIO

We start by presenting simple script that runs a single TCP connection over a 3-node network over

an area of size 500m by 400m depicted in Figure 8.1. The location process is as follows.

1

2

0

Figure 8.1: Example of a three node ad-hoc network.

• The initial locations of nodes 0, 1, and 2 are respectively (5,5), (490,285) and (150,240) (the

z coordinate is assumed throughout to be 0).

• At time 10, node 0 starts moving towards point (250,250) at a speed of 3m/sec.

At time 15, node 1 starts moving towards point (45,285) at a speed of 5m/sec.

At time 10, node 0 starts moving towards point (480,300) at a speed of 5m/sec.

Node 2 is still throughout the simulation.

The simulation lasts 150sec. At time 10, a TCP connection is initiated between node 0 and node 1.

We shall use below the DSDV ad-hoc routing protocol and the IEEE802.11 MAC protocol.

8.2.2 WRITING THE TCL SCRIPT

We begin by specifying some basic parameters for the simulations, providing information for the

different layers. This is done as follows:

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802_11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 50 ;# max packet in ifq

set val(nn) 3 ;# number of mobilenodes

116 8. MOBILE NETWORKS AND WIRELESS LOCAL AREA NETWORKS

set val(rp) DSDV ;# routing protocol

set val(x) 500 ;# X dimension of topography

set val(y) 400 ;# Y dimension of topography

set val(stop) 150 ;# time of simulation end

These parameters are used in the configuring of the nodes, which is done with the help of the

following command

$ns node-config -adhocRouting $val(rp) \

-llType $val(ll) \

-macType $val(mac) \

-ifqType $val(ifq) \

-ifqLen $val(ifqlen) \

-antType $val(ant) \

-propType $val(prop) \

-phyType $val(netif) \

-channelType $val(chan) \

-topoInstance $topo \

-agentTrace ON \

-routerTrace ON \

-macTrace OFF \

-movementTrace ON

for {set i 0} {$i < $val(nn) } { incr i } {

set node_($i) [$ns node]

}

The four last options in the node-config can each be given a value of ON or OFF. The agentTrace

will give in our case the trace of TCP, routerTrace provides tracing of packets involved in the routing,

macTrace is related to tracing MAC protocol packets, and movementTrace is used to allow tracing

the motion of nodes (for nam).

The initial location of node 0 is given as follows:

$node_(0) set X_ 5.0

$node_(0) set Y_ 5.0

$node_(0) set Z_ 0.0

and similarly we provide the initial location of other nodes.

A linear movement of a node is generated by specifying the time at which it starts, the x and

y values of the target point and the speed. For example, the movement of node 1 will be written as

$ns at 15.0 "$node_(1) setdest 45.0 285.0 5.0"

We need to create the initial node position for nam using

8.3. TRACE FORMAT 117

for {set i 0} {$i < $val(nn)} { incr i } {

30 defines the node size for nam

$ns initial_node_pos $node_($i) 30

}

We tell nodes when the simulation ends with

for {set i 0} {$i < $val(nn) } { incr i } {

$ns at $val(stop) "$node_($i) reset";

}

We then create theTCP connection and the ftp application over it as usual, see, e.g., Chapter 4.

Ending the simulation is also as usual, except for an additional command for ending nam:

$ns at $val(stop) "$ns nam-end-wireless $val(stop)"

The complete trace of our program is given in Table 8.1.

8.3 TRACE FORMAT
An example of a line in the output trace is

r 40.639943289 _1_ AGT --- 1569 tcp 1032 [a2 1 2 800] -------

[0:0 1:0 32 1] [35 0] 2 0

• The first field is a letter that can have the values r,s,f,D for “received", “sent", “forwarded" and

“dropped", respectively. It can also be M for giving a location or a movement indication, this

is described later.

• The second field is the time.

• The third field is the node number.

• The fourth field is MAC to indicate if the packet refers to a MAC layer, it is AGT to indicate

the transport layer (e.g., tcp) packet, or RTR if it refers to the routed packet. It can also be

IFQ to indicate events related to the interference priority queue (like drop of packets).

• After the dashes come the global sequence number of the packet (this is not the tcp sequence

number).

• At the next field comes more information on the packet type (e.g., tcp, ack or udp).

• Then comes the packet size in bytes.

• The 4 numbers in the first square brackets concern mac layer information.The first hexadecimal

number, a2 (which equals 162 in decimal) specifies the expected time in seconds to send this

data packet over the wireless channel. The second number, 1, stands for the MAC-id of the

sending node, and the third, 2, is that of the receiving node. The fourth number, 800, specifies

that the MAC type is ETHERTYPE_IP.

118 8. MOBILE NETWORKS AND WIRELESS LOCAL AREA NETWORKS

• The next numbers in the second square brackets refer to the IP source and destination addresses,

then the ttl (Time To Live) of the packet (in our case 32).

• The third brackets concern the tcp information: its sequence number and the acknowledgement

number.

There are other formats related to other routing mechanisms and/or packet types.

A movement command has the form:

M 10.00000 0 (5.00, 5.00, 0.00), (250.00, 250.00), 3.00

where the first number is the time, the second is the node number, then comes the origin and

destination locations, and finally the speed is given.

Listing 8.1: Tcl script wrls-dsdv.tcl for TCP over an ad-hoc network.

A 3-node example for ad-hoc simulation with DSDV

Define options

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio -propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac /802 _11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 50 ;# max packet in ifq

set val(nn) 3 ;# number of mobilenodes

set val(rp) DSDV ;# routing protocol

set val(x) 500 ;# X dimension of topography

set val(y) 400 ;# Y dimension of topography

set val(stop) 150 ;# time of simulation end

set ns [new Simulator]

set tracefd [open simple.tr w]

set windowVsTime2 [open win.tr w]

set namtrace [open simwrls.nam w]

$ns trace -all $tracefd

$ns namtrace -all -wireless $namtrace $val(x) $val(y)

set up topography object

set topo [new Topography]

8.3. TRACE FORMAT 119

$topo load_flatgrid $val(x) $val(y)

create -god $val(nn)

#

Create nn mobilenodes [$val(nn)] and attach them to the channel.

#

configure the nodes

$ns node -config -adhocRouting $val(rp) \

-llType $val(ll) \

-macType $val(mac) \

-ifqType $val(ifq) \

-ifqLen $val(ifqlen) \

-antType $val(ant) \

-propType $val(prop) \

-phyType $val(netif) \

-channelType $val(chan) \

-topoInstance $topo \

-agentTrace ON \

-routerTrace ON \

-macTrace OFF \

-movementTrace ON

for {set i 0} {$i < $val(nn) } { incr i } {

set node_($i) [$ns node]

}

Provide initial location of mobilenodes

$node_ (0) set X_ 5.0

$node_ (0) set Y_ 5.0

$node_ (0) set Z_ 0.0

$node_ (1) set X_ 490.0

$node_ (1) set Y_ 285.0

$node_ (1) set Z_ 0.0

$node_ (2) set X_ 150.0

$node_ (2) set Y_ 240.0

$node_ (2) set Z_ 0.0

Generation of movements

$ns at 10.0 "$node_ (0) setdest 250.0 250.0 3.0"

120 8. MOBILE NETWORKS AND WIRELESS LOCAL AREA NETWORKS

$ns at 15.0 "$node_ (1) setdest 45.0 285.0 5.0"

$ns at 110.0 "$node_ (0) setdest 480.0 300.0 5.0"

Set a TCP connection between node_ (0) and node_ (1)

set tcp [new Agent/TCP/Newreno]

$tcp set class_ 2

set sink [new Agent/TCPSink]

$ns attach -agent $node_ (0) $tcp

$ns attach -agent $node_ (1) $sink

$ns connect $tcp $sink

set ftp [new Application/FTP]

$ftp attach -agent $tcp

$ns at 10.0 "$ftp start"

Printing the window size

proc plotWindow {tcpSource file} {

global ns

set time 0.01

set now [$ns now]

set cwnd [$tcpSource set cwnd_]

puts $file "$now $cwnd"

$ns at [expr $now+$time] " plotWindow $tcpSource $file" }

$ns at 10.1 "plotWindow $tcp $windowVsTime2"

Define node initial position in nam

for {set i 0} {$i < $val(nn)} { incr i } {

30 defines the node size for nam

$ns initial_node_pos $node_($i) 30

}

Telling nodes when the simulation ends

for {set i 0} {$i < $val(nn) } { incr i } {

$ns at $val(stop) "$node_($i) reset";

}

ending nam and the simulation

$ns at $val(stop) "$ns nam -end -wireless $val(stop)"

$ns at $val(stop) "stop"

$ns at 150.01 "puts \"end simulation \" ; $ns halt"

proc stop {} {

global ns tracefd namtrace

$ns flush -trace

8.4. ANALYSIS OF SIMULATION RESULTS 121

close $tracefd

close $namtrace

}

$ns run

8.4 ANALYSIS OF SIMULATION RESULTS

At the beginning the nodes are too far away and a connection cannot be set.The first TCP signaling

packet is transmitted at time 10 but the connection cannot be opened. Meanwhile nodes 0 and

nodes 1 start moving towards node 2. After 6 seconds (timeout) a second attempt is made but still

the connection cannot be established and the timeout value is doubled to 12sec. At time 28 another

transmission attempt occurs. The timeout value is doubled again to 24 sec and again to 48 sec. Only

at time 100 sec has the connection been established. The nodes 1 and 0 are close to each other so

that a direct connection is established. The mobiles get further apart till the direct link breaks. The

routing protocol is too slow to react and to create an alternative route.The window evolution is given

in Figure 8.2 and a snap-shot of nam at time 124.15 sec is given in Figure 8.4.

Figure 8.2:TCP window size in a three node

scenario with DSDV routing protocol.

Figure 8.3:TCP window size in a three node

scenario with DSDV routing protocol with

both two and a single hop path.

Next we slightly change the parameters of the simulation. The only change is in fact that the

ftp transfer will start now at time 12 instead of at time 10. This will cause both nodes 0 as well as

node 1 to be within the radio range of node 2 when the timeout at around 53 sec expires so that

when tcp connection is reattempted at that time a two hop path is established between node 0 and

node 1.This is illustrated in Figure 8.5. At time 66 the nodes 0 and 1 are sufficiently close so a direct

connection is established. The window size evolution is given in Figure 8.3. At the moment of the

path change there is a single TCP packet loss that causes the window to decrease.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-024.jpg&w=170&h=119
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-025.jpg&w=170&h=120

122 8. MOBILE NETWORKS AND WIRELESS LOCAL AREA NETWORKS

02

1

Figure 8.4:TCP in a three node scenario with

DSDV routing protocol, time 124.14 sec, a

single hop path.

2

1

0

Figure 8.5:TCP in a three node scenario with

DSDV routing protocol, time 58 sec: a 2 hop

path.

At time 125.5 nodes 0 and 1 are too far apart for the connection to be maintained and the

connection breaks.

8.5 COMPARISON WITH OTHER AD-HOC ROUTING
8.5.1 TCP OVER DSR

We first change the routing protocol to DSR by changing in wrls-dsdv.tcl the corresponding line to

set val(rp) DSR ;# routing protocol

When performing the simulation, we observe five phases of operation. In the first and last, the nodes

are too far away and there is no connectivity. During phase 2 and 4, connection between nodes 0

and 1 use node 2 as a relay, whereas in the 3rd phase, there is a direct path between node 0 and 1.

Phase 2 starts at around time 40. Phase 3 starts at around 60 sec. At time 125.50 the fourth

phase starts and at time 149 sec it ends, which ends the whole connection. This is described in

Figure 8.6.

Here are some further observations:

• We note that in the DSDV, the system was not able to provide the 4th phase, so the connection

was ended much earlier.

• The total number of TCP packets transferred using DSR is much larger than in DSDV. In

DSR, 6770 TCP (data) packets have been received during the simulation, whereas in DSDV

with the same parameters (corresponding to the script wrls-dsdv.tcl) it is 2079. (We can obtain

this information by typing

grep "ˆr" simple.tr | grep "tcp" | grep "_1_ AGT" > tcp.tr

8.5. COMPARISON WITH OTHER AD-HOC ROUTING 123

Figure 8.6: Window size evolution of the

TCP connection for DSR.

Figure 8.7: Window size evolution of the

TCP connection for AODV.

and then counting the number of lines. Or we can be more precise and look at the sequence

number of the last received tcp packet.)

If we follow the trace of a TCP packet, say the one with sequence number 6, we see that it

appears at various times:

s 40.298003207 _0_ AGT --- 1507 tcp 1040 [0 0 0 0] ...

r 40.298003207 _0_ RTR --- 1507 tcp 1040 [0 0 0 0] ...

s 40.298003207 _0_ RTR --- 1507 tcp 1060 [0 0 0 0] ...

f 40.310503613 _2_ RTR --- 1507 tcp 1060 [13a 2 0 800] ...

r 40.310528613 _2_ RTR --- 1507 tcp 1060 [13a 2 0 800] ...

f 40.310528613 _2_ RTR --- 1507 tcp 1068 [13a 2 0 800] ...

r 40.348863637 _1_ RTR --- 1507 tcp 1068 [13a 1 2 800] ...

r 40.348863637 _1_ AGT --- 1507 tcp 1040 [13a 1 2 800] ...

It is first sent by the TCP agent at node 0, then received by the routing protocol of the same node

and sent from there with an additional header. It is then received and forwarded by node 2, till finally

it is received at node 1 at the routing level and then by the TCP agent. The above trace was obtained

by enabling the tracing of agentTrace and routerTrace. Four other lines concerning the same packet

will appear if we enable also the tracing of macTrace.

8.5.2 TCP OVER AODV

The simulations with the same parameters as before are repeated with AODV. The window size is

given in Figure 8.7.The connection transferred altogether 3924TCP data packets. It had throughout

a long single phase in which the same two hop path was used, in which node 2 relayed the packets.

Due to the fact that changes in paths were avoided, there were no losses so the window

remained high. However, we see that it reaches values less than DSR. This is due to the fact that the

round trip time (needed to increase the window by one unit) is longer since a direct path is not used

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-026.jpg&w=171&h=122
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-027.jpg&w=171&h=122

124 8. MOBILE NETWORKS AND WIRELESS LOCAL AREA NETWORKS

here. This explains the fact that it transfers less data during the simulation than DSR. We thus see

that finding a shorter path results in a better TCP performance.

8.5.3 TCP OVER TORA

With the same parameters as in the previous simulations, i.e., wrls-dsdv.tcl, TORA gave no packet

transfers at all! To increase connectivity, we added another fixed node at point (250,240) which only

serves to relay packets. The window size evolution is given in Figure 8.8.

Figure 8.8: Window size of TCP over Tora

with 4 nodes.

Figure 8.9: TCP over AODV with large

value of maximum window.

We noted from the nam animation (or from the output trace) the following evolution. At the

beginning there is no connectivity. When connectivity starts, a path is established using all nodes:

0-2-3-1 (see Figure 8.10 that describes the situation at time 33). At time 34.5sec a shorter forward

path is established: 0-2-1, but the path of ACKs remains unchanged. Then at time 44 the ACK

path changes to 1-3-0 (e.g., Figure 8.11).

3

1

2

0

Figure 8.10: TCP over Tora with 4 nodes,

time 33.

2 3

1

0

Figure 8.11: TCP over Tora with 4 nodes,

time 56.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-028.jpg&w=170&h=120
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-029.jpg&w=171&h=120

8.6. THE INTERACTION OF TCP WITH THE MAC PROTOCOL 125

8.5.4 SOME COMMENTS

In the examples that we considered, losses occurred either when the geographical range was too

large for reception or when there was a route change, and there were no losses due to buffer overflow.

This is due to the fact that we used the default value of the maximum window size of TCP of 20.

Thus the actual window that is used is the minimum between the congestion window and 20. In

Figure 8.9 we present the window size evolution of TCP using AODV under the same conditions

as those that were used to obtain Figure 8.7 but with a maximum window size of 2000. We see that

we also obtain losses due to overflow.

8.6 THE INTERACTION OF TCP WITH THE MAC
PROTOCOL

8.6.1 BACKGROUND

In the previous sections we considered a small number of mobiles, and saw how mobility phenomena

influenced the performance of TCP. When there are a large number of terminals, particular new

phenomena due to the MAC and physical layers may have a critical influence on TCP performance.

To understand this interaction we first describe some aspects of the operation of the IEEE802.11

MAC layer and of the physical layer.

Each transmission of a DATA packet at the MAC level is part of a four-way handshake

protocol. The mobile that wishes to send a packet, which we call M1, first sends an RTS (Request

to Send) packet. If the destination mobile, which we call M2, can receive the packet, it sends a CTS

(Clear to Send) packet. If M1 receives the CTS, it can then send the DATA packet (e.g., TCP data

or ACK packet). Finally, M2 sends a (MAC layer) ACK so that M1 knows that the data packet has

been well received.

This handshake protocol is intended to reduce the collision probability. Collisions may occur

since a mobile, say M3, may wish to send a packet to M2 at the same time as M1 does; M3 may

be out of range to sense the transmission from M1, so a collision of M1’s and M3’s packets may

occur at M2. This phenomenon is called the “hidden terminal phenomenon". With the handshake

protocol, M3 will not attempt to send any packet when it hears the CTS packet sent by M2 to M1.

If a sender M1 does not receive a CTS packet then it delays its transmission and makes later

attempts to send a RTS. A sender drops the DATA packet if it has resent the RTS message seven

times and has not heard a CTS reply from the receiver. A DATA packet is also dropped after four

retransmissions without receiving a (MAC layer) ACK.

Although the handshake reduces the probability of “hidden terminal" collisions, it does not

eliminate them. To understand how such collisions may occur, we should take into account the

geographical range of interference and reception. Current hardware specifies that transmission range

is about 250m and the carrier sensing range as well as the interference range are about 550m.Consider

the chain topology in Figure 8.12, where the distance between nodes is 200m. Although nodes that

are two hops apart are not hidden from each other, nodes that are three hops apart are, and may

126 8. MOBILE NETWORKS AND WIRELESS LOCAL AREA NETWORKS

create collisions. Indeed, if node M4 wishes to send a packet to M5 during a transmission from

node M1 to M2, it cannot hear the CTS from node M2 since it is out of the 250m range for good

reception. It cannot hear M1’s RTS or DATA packet since it is more than 550m away from M1.

Therefore M4 may initiate transmission to M5 that will collide at node M2 with transmissions from

M1. We shall study in this Section the impact of this type of collision on TCP performance using

ns simulations, restricting to the chain topology. We shall not consider mobility aspects here. We

refer to [9, 29, 55] for more details.

M1 M2 M3 M4 M5

TCP

DESTINATION

TCP

SOURCE

Figure 8.12: The chain topology.

The phenomenon that we have just described limits the number of packets that can be simul-

taneously transmitted in an ad-hoc network without collisions. This spatial constraint turns out to

be the main factor limiting the performance of TCP in such environment and not buffer overflow.

It is shown in [29] that for our chain topology, it is beneficial to limit the maximum window size of

TCP to around n/4; further increase in the maximum window size causes more collisions and a de-

terioration of the throughput. In this section we shall check this assertion by simulations. Moreover,

since the number of simultaneous packets that can be transmitted is limited, we shall try to improve

TCP throughput by decreasing the ACK flows, using delayed ACK. ns allows us to simulate delayed

ACKs with d = 2. We shall further show how to handle the case of d > 2 by making changes in

NS-2 simulator.

8.6.2 THE SIMULATED SCENARIO

We use the standard two-ray ground propagation model, the IEEE802.11 MAC, and an omni-

directional antenna model of ns. We use the AODV routing algorithm, an interface queue length of

50 at each node We tested the NewReno version of TCP, which is the most deployed one. We tested

four scenarios: 3, 9, 20 and 30 nodes. The cases of 3 and 9 nodes required 150 sec per simulation (to

obtain stationary behavior). The other cases required 1500 sec per simulation. A TCP data packet is

taken to be of size 1040 bytes (including the header). The script for the case of delayed ACK (with

d = 2) is given in Table 8.2. Below, when configuring the nodes we shall use the option “macTrace

ON" in order to have detailed tracing of MAC protocol packets. This will allow us to analyse the

reason of each TCP packet loss that occurs.

Listing 8.2: Tcl script tcpwD.tcl for TCP over a static ad-hoc network with a chain topology.

Define options

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio -propagation model

8.6. THE INTERACTION OF TCP WITH THE MAC PROTOCOL 127

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac /802 _11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 50 ;# max packet in ifq

set val(nn) 9 ;# number of mobilenodes

set val(rp) AODV ;# routing protocol

set val(x) 2200 ;# X dimension of topography

set val(y) 500 ;# Y dimension of topography

set val(stop) 150 ;# time of simulation end

set ns [new Simulator]

set tracefd [open simple.tr w]

set windowVsTime2 [open win.tr w]

$ns trace -all $tracefd

set up topography object

set topo [new Topography]

$topo load_flatgrid $val(x) $val(y)

create -god $val(nn)

#

Create nn mobilenodes [$val(nn)] and attach them to the channel.

#

configure the nodes

$ns node -config -adhocRouting $val(rp) \

-llType $val(ll) \

-macType $val(mac) \

-ifqType $val(ifq) \

-ifqLen $val(ifqlen) \

-antType $val(ant) \

-propType $val(prop) \

-phyType $val(netif) \

-channelType $val(chan) \

-topoInstance $topo \

-agentTrace ON \

-routerTrace ON \

128 8. MOBILE NETWORKS AND WIRELESS LOCAL AREA NETWORKS

-macTrace ON \

-movementTrace OFF

for {set i 0} {$i < $val(nn) } { incr i } {

set node_($i) [$ns node]

}

Provide initial location of mobilenodes

for {set i 0} {$i < $val(nn)} { incr i } {

$node_($i) set X_ [expr ($i +1)*200.0]

$node_($i) set Y_ 250.0

$node_($i) set Z_ 0.0

}

Set a TCP connection between node_ (0) and node_ (8)

set tcp [new Agent/TCP/Newreno]

$tcp set class_ 2

$tcp set window_ 2000

Agent/TCPSink/DelAck set interval_ 100ms

set sink [new Agent/TCPSink/DelAck]

$ns attach -agent $node_ (0) $tcp

$ns attach -agent $node_ (8) $sink

$ns connect $tcp $sink

set ftp [new Application/FTP]

$ftp attach -agent $tcp

$ns at 1.0 "$ftp start"

Printing the window size

proc plotWindow {tcpSource file} {

global ns

set time 0.1

set now [$ns now]

set cwnd [$tcpSource set cwnd_]

puts $file "$now $cwnd"

$ns at [expr $now+$time] " plotWindow $tcpSource $file" }

$ns at 1.1 "plotWindow $tcp $windowVsTime2"

Telling nodes when the simulation ends

for {set i 0} {$i < $val(nn) } { incr i } {

$ns at $val(stop) "$node_($i) reset";

8.6. THE INTERACTION OF TCP WITH THE MAC PROTOCOL 129

}

$ns at $val(stop) "stop"

$ns at [expr $val(stop)+0.1] "puts \"end simulation \" ; $ns halt"

proc stop {} {

global ns tracefd

$ns flush -trace

close $tracefd

}

$ns run

8.6.3 SIMULATION RESULTS

Our simulation results for n = 9, 20 and 30 nodes are summarized in Tables 8.13-8.15, respectively.

Figure 8.13:Throughput in pkt/sec for n = 9

as a function of the maximum window size.

Figure 8.14: Throughput in pkt/sec for n =
20 as a function of the maximum window

size.

We see that the standard Delayed Ack option (d = 2) slightly outperforms the standard TCP

(yet with another value of maximum window size) for n = 9, and largely outperforms (more than

10%) the standard TCP for n = 30. A further improvement is obtained by the Delayed Ack with

d = 3 (for both n = 9 as well as n = 20). But the most important improvement that we see is that

all delayed ACK versions are better than the standard TCP for maximum window sizes of more

than 10, with the options of d = 3 or d = 4 outperforming the standard delayed ACK option. For

n = 9, the Delayed ACK version with d = 3 is seen to yield between 30% to 40% improvement

over standard TCP for any maximum window sizes larger than 10; in that range it also outperforms

standard TCP by 20%-30% for n = 20 and by 6% − 20% for n = 30. The version d = 4 performs

130 8. MOBILE NETWORKS AND WIRELESS LOCAL AREA NETWORKS

Figure 8.15: Throughput in pkt/sec for n = 30 as a function of the maximum window size.

even better for n = 20 for maximum windows between 10 to 25. An even better performance of

delayed ACK can be obtained by optimizing over the timer duration of the Delayed Ack options,

as we shall see later.

Yet the most important conclusion from the curves is the robustness of the Delayed Ack

options. In practice, when we do not know the number of nodes, there is no reason to limit the

maximum window size to a small value, since this could deteriorate the throughput considerably.

When choosing large maximum window, the delayed ACK versions considerably outperform stan-

dard TCP. They achieve almost the optimal value that the standard TCP could achieve if it knew

the number of nodes and could choose accordingly the maximum window.

For a fixed small size of maximum window size, the Delayed Ack option does not outperform

the standard TCP version since most of the time, the window size limits the number of transmitted

TCP packets to less than d, which means that the delayed ACK option has to wait until the timer (of

100ms by default) expires before generating an ACK; during that time the source cannot transmit

packets.

Next, we plot the window size evolution for n = 9 for standard TCP and for TCP with

delayed ACK option with d = 3. The window size is sampled every 0.1 sec. We see that although

the maximum window size is 2000, the actual congestion window does not exceed the value of 13.

We see from the figures that in standard TCP, losses are more frequent and more severe (resulting

in timeouts) whereas the d = 3 version of delayed ACK does not give rise to timeouts.

In Figure 8.18 we present the evolution of the congestion window size for standard TCP with

maximum window size of 3 for the case of 9 nodes. We know from [29] that a maximum size of

between 2 and 3 should indeed give optimal performance (and this is confirmed in Figure 8.13). We

see in Figure 8.18 that there are almost no losses. Note that the actual window size is the minimum

between the congestion window (depicted in the Figure) and the maximum window size (whose

value here is 3).

8.6. THE INTERACTION OF TCP WITH THE MAC PROTOCOL 131

Figure 8.16: Window size evolution for stan-

dard TCP with maximum window of 2000.

Figure 8.17: Window size evolution for

DelAck TCP with d = 3, with maximum

window of 2000.

Figure 8.18: Window size evolution for stan-

dard TCP (delayed ACK disabled) with 9

nodes and maximum window size of 3.

Figure 8.19: The influence of Delayed Ack

interval on TCP throughput, as a function of

the maximum window size. d = 3.

In the previous Figures, all versions using delayed Acks had the default interval of 100msec (as

explained in the Introduction). Next, we vary the interval length and check its impact on throughput,

see Figure 8.19. We consider the delayed ACK version with d = 3. We see that the default value

performs quite well, although for small maximum windows, shorter intervals perform slightly better,

whereas with large maximum window, a larger interval (130ms) is slightly better. We tried to further

increase the time interval beyond 130ms but then the throughput decreased.

Finally, we consider the case of n = 3 nodes. In that case the hidden terminal phenomenon

does not occur anymore, so we do not observe TCP losses for any value of window size. Even then,

delayed ACKs can be used to improve considerably the performance. This is illustrated in Table 8.1

that gives the number of TCP packets successfully received within 149 sec for n = 3. Since there are

no losses, then as long as d is greater than the max window, we expect to improve the performance

132 8. MOBILE NETWORKS AND WIRELESS LOCAL AREA NETWORKS

Standard TCP Delayed Ack Versions

WinMax Standard d = 2 d = 3 d = 4

3 6068 6602 6763 2699

2000 6094 6565 6779 6888

Table 8.1: Number of transmitter packets during 149sec for n = 3 as a function of the maximum

window size.

as d gets larger, since TCP packets compete with less ACKs. This is indeed confirmed in Table 8.1.

The improvement that increases from 10% to 15% as d grows from 2 to 4, does not depend on the

maximum window (as long as it is greater than d). However for d = 4 we see, as can be expected,

that we get a bad performance for a maximum window of 3, since the destination always needs to

wait till the 100ms interval of the Delayed Ack option expires in order to send an ACK (since the

windows allows for sending only 3 data packets).

8.7 EXERCISES
8.1. We have restricted the study in this chapter to a permanent TCP connection. Repeat the

experience with short TCP connections. Check the case where TCP is used by an FTP and

then consider HTTP type traffic (using TCP). What conclusions can we draw?

8.2. Repeat the simulations on TCP over ad-hoc networks with a star topology instead of a

linear one. What are the conclusions?

133

C H A P T E R 9

Classical queueing models
NS-2 simulator can be used to simulate classical queueing models. In the simplest classical models,

the time between packets arrival is random and has some general probability distribution, and the

time it takes to transmit a packet is random as well distributed according to some other distribution.

The fact that the transmission time varies may reflect a situation of a constant transmission rate but

a varying size of a packet. The mathematical analysis of queueing example we present here as well

as many others can be found in the excellent book by Kleinrock [39] on queueing theory.

9.1 SIMULATING AN M/M/1, M/D/1 AND D/M/1 QUEUES

The queueing example which is the simplest for mathematical analysis is the M/M/1 queue: inter-

arrival times are exponentially distributed with some parameter, say λ, and the transmission duration

of a packet has an exponential distribution with another parameter, say μ. One packet can be

transmitted at a time, and the buffer size is infinite. If we denote ρ = λ/μ, the time average number

of packets in the system is given by

E[Q] =
ρ

1 − ρ
. (9.1)

In Listing 9.1 we present a simulation of this queue.The simulation produces a trace file out.tr

with all events, and also a monitor-queue trace called qm.out, as discussed in Section 4.3. By plotting

columns 5 (queue size in packets) against column 1 (time) we obtain (see Figure 9.1) the queue length

evolution. The average simulated queue size over 1000sec is 9.69117, a good approximation of the

value 10 obtained by (9.1).

Note that we use a simpler way to declare and manipulate random variables than the one

described in Section 2.7: we do not declare generators and seeds.

It is quite interesting to analyze the simulation results and try to find the possible reasons for

the difference. Once we do so we may find several reasons for the simulation’s imprecisions (and use

the conclusions to improve the simulations):

Listing 9.1: Tcl script mm1.tcl for simulating an M/M/1 queue.

set ns [new Simulator]

set tf [open out.tr w]

$ns trace -all $tf

134 9. CLASSICAL QUEUEING MODELS

set lambda 30.0

set mu 33.0

set n1 [$ns node]

set n2 [$ns node]

Since packet sizes will be rounded to an integer

number of bytes , we should have large packets and

to have small rounding errors , and so we take large bandwidth

set link [$ns simplex -link $n1 $n2 100kb 0ms DropTail]

$ns queue -limit $n1 $n2 100000

generate random interarrival times and packet sizes

set InterArrivalTime [new RandomVariable/Exponential]

$InterArrivalTime set avg_ [expr 1/ $lambda]

set pktSize [new RandomVariable/Exponential]

$pktSize set avg_ [expr 100000.0/(8* $mu)]

set src [new Agent/UDP]

$ns attach -agent $n1 $src

queue monitoring

set qmon [$ns monitor -queue $n1 $n2 [open qm.out w] 0.1]

$link queue -sample -timeout

proc finish {} {

global ns tf

$ns flush -trace

close $tf

exit 0

}

proc sendpacket {} {

global ns src InterArrivalTime pktSize

set time [$ns now]

$ns at [expr $time + [$InterArrivalTime value]] "sendpacket"

set bytes [expr round ([$pktSize value])]

$src send $bytes

}

set sink [new Agent/Null]

$ns attach -agent $n2 $sink

9.1. SIMULATING AN M/M/1, M/D/1 AND D/M/1 QUEUES 135

$ns connect $src $sink

$ns at 0.0001 "sendpacket"

$ns at 1000.0 "finish"

$ns run

• The formula (9.1) counts the whole packet that is being transmitted, whereas the simulation

counts only the fraction of the transmitted packet that is still in the queue. This difference

should make the simulated result lower than the exact one by about 0.5 per packet.

• On the other hand, the simulated packets turn out to be truncated at the value of 1kbyte,

which is the default size of a UDP packet. Thus transmission times are a little shorter than we

intended them to be. To correct this, one should change the default maximum packet size, for

example to 100000. This is done by adding the line

$src set packetSize_ 100000

after the command set src [new Agent/UDP].

• The simulation time is not sufficiently long. With a duration of 20000, we get a much more

precise value.

Figure 9.1: Evolution of an M/M/1 queue size.

The M/D/1 queue is one where inter-arrival times are exponentially distributed but trans-

mission times of packets are constant. To simulate it, simply replace the random variable pktSize by

its average. Similarly, a D/M/1 queue is one where transmission duration has an exponential distri-

bution and inter-arrival times are constant. To simulate this, we should replace the InterarrivalTime

random variable by its average.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-030.jpg&w=171&h=118

136 9. CLASSICAL QUEUEING MODELS

9.2 FINITE QUEUE
In the above simulation, we used very large buffers to avoid losses. One can use smaller buffers and

observe losses. For M/M/1/K queue with K buffers, the loss probability is given by

P(loss) =
ρK

∑K
i=0 ρi

.

The way to compute the loss probability from the simulation is simply to divide the total number of

losses by the total number of arrivals, both given in the last line of the monitor-queue file.

Listing 9.2: Tcl script mm1k.tcl for simulating an MM1 queue.

set ns [new Simulator]

set tf [open out.tr w]

$ns trace -all $tf

set lambda 30.0

set mu 33.0

set qsize 2

set duration 2000

set n1 [$ns node]

set n2 [$ns node]

set link [$ns simplex -link $n1 $n2 100kb 0ms DropTail]

$ns queue -limit $n1 $n2 $qsize

generate random interarrival times and packet sizes

set InterArrivalTime [new RandomVariable/Exponential]

$InterArrivalTime set avg_ [expr 1/ $lambda]

set pktSize [new RandomVariable/Exponential]

$pktSize set avg_ [expr 100000.0/(8* $mu)]

set src [new Agent/UDP]

$src set packetSize_ 100000

$ns attach -agent $n1 $src

queue monitoring

set qmon [$ns monitor -queue $n1 $n2 [open qm.out w] 0.1]

$link queue -sample -timeout

proc finish {} {

9.3. EXERCISES 137

global ns tf

$ns flush -trace

close $tf

exit 0

}

proc sendpacket {} {

global ns src InterArrivalTime pktSize

set time [$ns now]

$ns at [expr $time + [$InterArrivalTime value]] "sendpacket"

set bytes [expr round ([$pktSize value])]

$src send $bytes

}

set sink [new Agent/Null]

$ns attach -agent $n2 $sink

$ns connect $src $sink

$ns at 0.0001 "sendpacket"

$ns at $duration "finish"

$ns run

Adding the command $src set packetSize_ 100000 as mentioned in the previous Section, we

get very good agreement between the simulation and the formula. For example, for K = 2 we get

P(loss) = 0.298 by simulation of duration of 2000sec and P(loss) = 0.3025 through the above

formula. For K = 5 we obtain 0.131 and 0.128 by simulation and through the formula, respectively.

The script is given in Table 9.2.

Remark: For K = 1, the simulation does not work well; in that case all arriving packets are

lost!

9.3 EXERCISES
9.1. Write a tcl script for simulating an infinite server queue with a Poisson arrival process of

packets, where the service time of packets are i.i.d. with a general distribution (this queue

is known as an M/G/∞ queue). In this system there are no waiting times: each arriving

packet is served by another server immediately upon arrival. Thus if packet i requires Bi

service time and it arrives at time Ti then it leaves the system at time Ti + Bi .

9.2. Assume that 10 sources, which send files of data to a common destination using TCP,

share a common bottleneck link. The sequence of times at which source i starts to send

the ith file is a Poisson process, which is independent of arrivals from other sources. All

connections are assumed to have the same propagation delay. There has been a rich amount

138 9. CLASSICAL QUEUEING MODELS

of research that used queueing models to compute the expected time needed to transmit a

file. Several have proposed the processor sharing queueing discipline to model the behavior

of the system at a connection level.This exercise proposes to check this statement for the case

of exponentially distributed file sizes. To do so, find out what is a processor sharing queue.

Explain how the parameter of the model are computed (as a function of the parameters of

the TCP connections). Simulate both, the initial scenario of TCP connections that share a

bottleneck link, as well as an abstract queueing model using the processor sharing discipline.

Compare the results and check for what parameters the processor sharing queue is a good

approximation for the session level behavior.

9.3. Next use the M/G/∞ queue instead of the processor sharing queue and check for what

parameters it provides for more accurate modeling of the original problem than the processor

sharing queue.

139

C H A P T E R 10

Tcl and C++ linkage
This last chapter is more advanced than previous ones and we usually do not include it in courses

for beginners. We chose to include it in this book in order to ease the access to those beginners who

might be confronted with the need to perform more advanced tasks.

To be more specific, NS-2 is composed of two object oriented languages: C++ and Otcl.

If one wants to create new modules or to change the current ones, one has to have at least basic

programming notions in C++, or more generally, in object oriented programming. Without such

background the reader has little chance to follow this Chapter.

There is a hierarchy of classes in C++ and also in Otcl.The exact place of each group of classes

in the NS-2 directory will depend on the version of the NS-2 simulator that one uses.

For example, in the “common” directory there are all the classes that are common to all

simulations, like the scheduler, the agent, the packet, etc. We recommend to spend time at the

beginning exploring the hierarchy of NS-2. But if one creates a class (or many classes) on the C++

hierarchy, how can we use them from the tcl script? The C++ classes that we want to access from

the tcl script have to be bound to classes in the Otcl hierarchy.

For binding two classes (a C++ class with an Otcl class) we have to follow some steps:

At first one has to create the C++ class. The place where one will put the files will depend on

the functionality of this class. For example, if we code a new version of the TCP protocol, we shall

put the tcp-mine.h and tcp-mine.cc files under the tcp directory.

In general, we do not create a class from scratch, but we let it inherit from a more general class

in the NS-2 C++ hierarchy. If we want to develop a new Application, we will let our class inherit

from the Application class (in the app directory).

In the example that we shall use we want to create a new traffic generator. We wish it to inherit

from the abstract class TrafficGenerator. The TrafficGenerator class has some methods that we will

re-define; there are the virtual methods.

class normalTraffic : public TrafficGenerator {

public:

normalTraffic();

virtual void timeout();

virtual double next_interval(int&);

int command(int argc, const char*const* argv);

protected:

void init();

140 10. TCL AND C++ LINKAGE

double avg_;

double std_;

double off_;

double rate_; /* send rate during on time (bps) */

double interval_; /* packet inter-arrival

time during burst (sec) */

unsigned int rem_; /* number of packets left in current burst */

NormalRandomVariable burstlen;

ExponentialRandomVariable offtime;

};

Our class is called normalTraffic. We now have to bind it with the correspondent Otcl class.

The first thing to do is to choose a name for the Otcl class; we don’t need to call them in the same

way, but is the common way to do.
static class normalTrafficClass : public TclClass {

public:

normalTrafficClass() : TclClass("Application/Traffic/Normal") {}

TclObject* create(int, const char*const*) {

return (new normalTraffic());

}

} class_normaltraffic;

In these lines we said that we will create a static class which inherits from the TclClass. In

the first line after public we establish how our class will be called from the tcl script. In our example

one will have to use: set traf [new Application/Traffic/Normal] in order to create an object of this

class. We said in the return clause the C++ class that we will use when instantiating this Otcl class.

Remark that we have to give a name also at the end.

In the constructor of the C++ class we have to bind the variables that we shall use and whose

values are given in the tcl script (or in the defaults file).
normalTraffic::normalTraffic()

{

bind_bw("rate_", &rate_);

bind("avg_", &avg_);

bind("off_", &off_);

bind("std_", &std_);

bind("packetSize_", &size_);

}

We use the same name for most of them, but we can use a different name for the tcl (like

packetSize_) and another for the C++ (like size_); the way of calling the attributes is up to the

programmer, but it is a good practice to use the same way of that of the main classes of NS-2.

141

Once we have complete the program, we have to update two files: the ns-defaults.tcl in the

tcl/lib directory, where we write the default values for the variables we have made a bind in our class

and the Makefile, where we said to compile also our new class. After that we have to compile, using

the make command and then we can test using a tcl script which uses the recently created class.

In the following example we have created a new traffic generator, which is an on off source,

that in the on periods generates packets following a Normal distribution.

Listing 10.1: C++ script Normal Traffic Generator.

/*

* Normal Traffic Generator

*/

#include "trafgen.h"

#include "ranvar.h"

class normalTraffic : public TrafficGenerator {

public:

normalTraffic ();

virtual void timeout ();

virtual double next_interval(int&);

int command(int argc , const char*const* argv);

protected:

void init ();

double avg_; /* average of the normal dist. */

double std_; /* standard deviation */

double off_; /* average off time */

double rate_; /* send rate during on time (bps) */

double interval_; /* packet inter -arrival

time during burst (sec) */

unsigned int rem_; /* number of packets left in current burst */

NormalRandomVariable burstlen;

ExponentialRandomVariable offtime;

};

static class normalTrafficClass : public TclClass {

public:

normalTrafficClass () : TclClass (" Application /Traffic/Normal ") {}

TclObject* create(int , const char*const*) {

return (new normalTraffic ());

}

142 10. TCL AND C++ LINKAGE

} class_normaltraffic;

int normalTraffic :: command(int argc , const char*const* argv){

if(argc ==3){

if (strcmp(argv[1], "use -rng") == 0){

burstlen.seed((char *)argv [2]);

offtime.seed((char *)argv [2]);

return (TCL_OK);

}

}

return Application :: command(argc ,argv);

}

normalTraffic :: normalTraffic ()

{

bind_bw ("rate_", &rate_);

bind("avg_", &avg_);

bind("off_", &off_);

bind("std_", &std_);

bind(" packetSize_", &size_);

}

void normalTraffic :: init()

{

if (agent_)

agent_ ->set_pkttype(PT_EXP);

interval_ = (double)(size_ << 3)/(double)rate_;

burstlen.setavg(avg_);

burstlen.setstd(std_);

offtime.setavg(off_);

rem_ =0;

}

double normalTraffic :: next_interval(int& size)

{

double t = interval_;

if (rem_ == 0) {

/* compute number of packets in next burst */

rem_ = int(burstlen.value() +.5);

/* make sure we got at least 1 */

if (rem_ == 0)

143

rem_ = 1;

/* start of an idle period , compute idle time */

t += offtime.value ();

}

rem_ --;

size = size_;

return(t);

}

void normalTraffic :: timeout ()

{

if (! running_)

return;

agent_ ->sendmsg(size_);

nextPkttime_ = next_interval(size_);

timer_.resched(nextPkttime_);

}

The method command allows us to check if there are parameters passed to the class. In this case we

check if one wants to use a different random number generator than the default one. If it is the case,

we pass it to our two Random Variables (RVs).

In the init method we initialize the RVs and the interval between packets, using the values of

the bound variables. The next interval gives to the Traffic Generator the next step for sending data,

which is the next packet if there is data to send, or the wake up time after the off period.

The timeout method is the same as in the Traffic Generator, but if we like to change it then

it is better to reload it on the new class. This is the method that actually calls the agent for sending

the packet and then schedule the next event (at the time to send the next packet) on the scheduler.

In the next listing 10.2 we show how to use this newly created class.

Listing 10.2: Tcl script rdrop.tcl for testing the new class.

set ns [new Simulator]

proc finish {} {

exit 0

}

set n0 [$ns node]

set n1 [$ns node]

$ns duplex -link $n0 $n1 1Mb 10ms DropTail

144 10. TCL AND C++ LINKAGE

set Udp [new Agent/UDP]

$ns attach -agent $n0 $Udp

set null [new Agent/Null]

$ns attach -agent $n1 $null

$ns connect $Udp $null

set traf [new Application/Traffic/Normal]

$traf set packetSize_ 1500

$traf set off_ 10ms

$traf set avg_ 5

$traf set std_ 5

$traf set rate_ 1Mb

$traf attach -agent $Udp

$ns at 0.1 "$traf start"

$ns at 5.0 "$traf stop"

$ns at 5.1 "finish"

$ns run

We call the creation of the class with the name we use on the NormalTrafficClass method.

Then we give values to the parameters (if we omit some of them, they will take the default values).

The avg_ is the average number of packets to be send during the on period, and std_ is the standard

deviation; those are the parameters of the normal distribution.

This is a very simple example of how to create new classes within the NS-2 hierarchy. Of

course, if one wants to create a new module, for example to simulate a new protocol, then many C++

classes have to be created, some of them will be linked with the Otcl hierarchy and others not. It

depends in the design of the new modules and the interface one wants to have with the final user.

145

A P P E N D I X A

Appendix I: Random variables:
background

Random variables with different distributions can be created in ns. Due to its important role in traffic

modeling and in network simulation, we briefly recall the definitions and moments of main random

variables in Appendix A. For more background, one can consult, e.g., http://www.xycoon.com/.

For a random variable (RV) X, we denote Fx(s) = P(X ≤ s), F x(s) = P(X > s) and by

fx(s) we denote its density. (We often omit the subscript x.)

1. Pareto distribution. A Pareto RV is defined through

F(s) = (k/s)β ,

where k is the minimum size and β > 0 is the so called “shape parameter". It is defined on the

range X ≥ k. The density is given by

f (s) =
βkβ

sβ+1
.

The expectation and other moments are

E[X] =
βk

β − 1
, 1 < β

E[Xn] =
βkn

β − n
, n < β

The nth moment is infinite if n ≥ β.

The size of files transferred over the Internet is often characterized with a Pareto distribution

with 1 < β ≤ 2, see [20, 54]. A typical value is β = 1.2 [14]. A typical value for the expected

size of a file in Internet transfers is 10Kbits. In the context of WEB transfers, typical values

are β = 1.1 and k = 81.5Kbytes (see [23, p.34-35]).

2. The exponential Random Variable. An exponentially distributed RV with parameter α is

defined through

F(s) = exp(−αs), f (s) = α exp(−αs).

146 A. APPENDIX I: RANDOM VARIABLES: BACKGROUND

All its moments exist and are given by

E[Xn] =
n!
αn

.

In a WEB transfer, Pareto distributed transfers are typically separated with exponentially

distributed silence times (“thinking times") with average duration of α−1 = 5sec [21].

3. Normal distribution. It is characterized by two parameters (μ, σ 2). Its probability density is

given by

f (s) =
1

2π
exp

[

−
1

2

(

s − μ

σ

)2
]

and its first moments by

E[X] = μ, E[X2] = μ2 + σ 2.

This distribution is mostly used to describe thermal noise that should be taken into account

when computing the signal to noise ratio in radio links.

4. Lognormal distribution. It is characterized by two parameters (μ, σ 2). Its density function

is given by

f (s) =
exp

[

−
1

2

(

ln(s) − μ

σ

)2
]

√
2πσ 2s2

.

and its moments are given by

E[Xn] = exp

[

jμ +
1

2
(jσ)2

]

.

X is lognormally distributed with parameters (μ, σ 2) if and only if ln(X) is normally dis-

tributed with the same parameters. It can thus be written as X = exp(Y) where Y ∼ N(μ, σ 2).

In CDMA wireless communications, the received power from power controlled sources with

fading channels have lognormal distribution where σ is typically between 0.3 and 3dB [6].

5. Gamma distribution A Gamma distributed RV with parameters (α, r) has a probability

density of

f (s) =
αr

Ŵ[r]
sr−1e−αr

where Ŵ is the Ŵ-function which satisfies Ŵ(r) = (r − 1)! for r integers. The moments are

E[X] =
r

α
, E[Xn] = α−n

n−1
∏

i=0

(r + i), n > 1.

147

The distribution is defined on the range 0 ≤ s ≤ ∞, and its parameters are defined for α > 0

and r > 0. In the special case where r is an integer, this distribution is called the Erlang

distribution.

149

A P P E N D I X B

Appendix II: Confidence
intervals

In this Appendix we briefly recall the notion of confidence intervals that addresses the question of

how to estimate the correctness of a simulated result.

A standard way to obtain a better precision of performance measures obtained from simulations

is to take the average of several “independent" runs (independence can be obtained by using different

seeds and generators). Indeed, by the strong law of large numbers, the average X of n independent

and identically distributed values Xi , i = 1, ..., n approaches the expectation E[X] which we may

wish to estimate.

Our goal is to check how accurate X is as an estimator of E[X]. In particular, we wish to

determine some constant d such that the probability that X ∈
[

E[X] − d, E[X] + d
]

be at least

1-α, where α is some small error probability (say 5%).

The variance of X is given by

V ar(X) =
σ 2

n

Let σ 2 be the variance of Xi . If we knew σ , we could estimate the accuracy of X as a prediction of

E[X] by using the central limit theorem, which implies that

√
n
X − E[X]

σ
∼ N(0, 1).

If 	(x) is the probability that a standard Gaussian RV is not greater than x, then this suggests that

P
(

X ∈
[

E[X] − d, E[X] + d
])

= 	

(

d
√

n

σ

)

− 	

(

−
d
√

n

σ

)

. (B.1)

For example, if α = 5% then the constant d that guarantees that P
(

X ∈
[

E[X] − d, E[X] +

d
])

≥ 1 − α = 0.95 is given by d = 1.96σ/
√

n.

In practice,σ is typically unknown and has to be estimated together with E[X]. One could use
∑n

i=1(Xi − Xi)
2/n as an estimator for σ 2, but this would give a biased estimator, i.e., an estimator

150 B. APPENDIX II: CONFIDENCE INTERVALS

whose expected value differs from σ 2. Instead, the estimator

S2 =
∑n

i=1(Xi − Xi)
2

n − 1

turns out to be unbiased, i.e., E[S2] = σ 2, see [50, p. 111]. It is called the sample variance.

One then uses (B.1) with S replacing σ as an approximation of the probability that X is within

the confidence interval.

The next script in awk can be used to compute the sample average of an output file, where we

average over the numbers appearing in the 3rd column:

BEGIN { FS = "\t"} { nl++ } { s = s + $3 } END {print "del : " s/nl}

If this script is written in a file called “thpR.awk" and the values of Xi ’s are given in the third column

of a file called "a40n" then one should type

awk -f thpR.awk a40n

in order to get X.

The following then computes the confidence interval related to α = 5%:

BEGIN { FS = "\t"} {ln++}{ d = $3 - t } { s2 = s2 + d*d } END \

{s=sqrt(s2/(ln-1)); print "sample variance: " s " \

Conf. Int. 95%: " t "+/-" 1.96*s/sqrt(ln)}

If “ConfInt.awk" is the name of the file containig this script, type

awk -v t=XXX -f ConfInt.awk a40n

where instead of XXX one should put the value of X. This will give both the sample variance as

well as the required confidence interval.

151

A P P E N D I X C

Appendix III: A small overview
on NS-3

In this Appendix we briefly show some simple examples for NS-3.

In NS-3 you can take a look to the file samples/main-attribute-value.cc to

learn how to set the default values for the attributes you need to specify. See also

http://www.nsnam.org/docs/manual/html/attributes.html for learning how to deal with

attributes in NS-3.

C.1 INITIALIZATION AND TERMINATION IN NS-3

In NS-3 we can stop the simulation using the “Stop” method

Simulator::Stop (Seconds (10.0)); of the simulator which can have “Time” as pa-

rameter. If this method is called with a parameter, the simulation will end when all the events with

timestamps less than the stop time passed as parameter have been processed. If no parameter is

passed to this method, the simulation will stop after processing the event which called the Stop

method.

In NS-3 the simulation begins using the command Simulator::Run ();. This command

will run the simulation until one of the following conditions hold : “

• no events are present anymore

• the user called Simulator::stop

• the user called Simulator::stopAtUs and the expiration time of the next event to be processed

is greater than or equal to the stop time [2].”

The method “Destroy” Simulator::Destroy (); is called at the end of the simulation in

order to free the memory allocated by the Simulator.

C.2 DEFINITION OF A NETWORK TOPOLOGY IN NS-3

In order to create two nodes with a point-to-point link between them we use the following code:

152 C. APPENDIX III: A SMALL OVERVIEW ON NS-3

NodeContainer nodes;

nodes.Create (2);

PointToPointHelper pointToPoint;

pointToPoint.SetDeviceAttribute (" DataRate", StringValue ("5Mbps"));

pointToPoint. SetChannelAttribute ("Delay", StringValue ("2ms"));

NetDeviceContainer p2pDevices;

p2pDevices = pointToPoint.Install (nodes);

The two first lines are used to create a container for the nodes, and to create two of them.

Next, we use the class “PointToPointHelper” which will be used for installing the devices into the

nodes with the corresponding channel attributes: 5Mbps of data rate and 2ms of delay. By default it

creates a DropTail queue with a maximum capacity of 100 packets.

C.3 TRANSPORT PROTOCOLS AND APPLICATIONS IN NS-3

In NS-3 there is no Agent class for specifying the transport protocol, but a module called “Inter-

netStack” which provides the necessary classes for the TCP/IP(v4 and v6)-related components.

InternetStackHelper stack;

stack.Install (nodes);

Ipv4AddressHelper address;

address.SetBase ("10.1.1.0 ", "255.255.255.0");

Ipv4InterfaceContainer interfaces = address.Assign (p2pDevices);

uint16_t port = 9; // the echo port number

UdpEchoServerHelper server (port);

ApplicationContainer apps = server.Install (nodes.Get (1));

apps.Start (Seconds (1.0));

apps.Stop (Seconds (10.0));

uint32_t packetSize = 1024;

uint32_t maxPacketCount = 5;

Time interPacketInterval = Seconds (1.5);

UdpEchoClientHelper client (i.GetAddress (1), port);

client.SetAttribute ("MaxPackets", UintegerValue (maxPacketCount));

client.SetAttribute ("Interval", TimeValue (interPacketInterval));

client.SetAttribute ("PacketSize", UintegerValue (packetSize));

apps = client.Install (nodes.Get (0));

apps.Start (Seconds (2.0));

apps.Stop (Seconds (10.0));

C.4. SCHEDULING EVENTS IN NS-3 153

We use the class “InternetStackHelper” in order to install the internet stack. We declare the

IP address to use. The interfaces of the nodes will have then IP addresses: 10.1.1.1 and 10.1.1.2.

All the implemented classes of applications in NS-3 are derived from the “Application” class.

There are a BulkSendApplication, OnOffApplication, PacketSink, Ping6, Radvd, UdpClientServer,

and UdpEcho applications.

In the script above we use the application UdpEcho, with its helper classes “EdpEchoServer-

Helper” and “UdpEchoClientHelper”. Once the application is declared, we install it in a node (node

0 for the client and 1 for the server) and we declare the beginning and end time for each application.

C.4 SCHEDULING EVENTS IN NS-3
NS-3 is also a discrete event simulator. The class “Scheduler” maintains the event list. There are

five different schedulers in NS-3 at the moment: CalendarScheduler, HeapScheduler, ListScheduler,

MapScheduler and Ns2CalendarScheduler.

By default the MapScheduler is used, but you can change the sched-

uler, as well as all the Global Values, by the command line, for example:

./waf --run "<your_program_name> --SchedulerType=ns3::HeapScheduler" will

run the simulation with the HeapScheduler.

C.5 TRACING IN NS-3
NS-3 has a Tracing API that is well documented in the manual [3]. Here we will show only the

base tracing using the Trace Helpers.

AsciiTraceHelper ascii;

helper.EnableAsciiAll (ascii.CreateFileStream ("trace.tr"));

helper.EnablePcapAll ("trace", true);

In NS-3 we can declare the tracefiles anywhere in the main file.

In order to create trace files you can insert these three lines of code into your program. The

helper object depends on your topology, for example you have to use a CsmaHelper if you want to

trace the packets in a csma channel. After running the simulation you will obtain a file trace.tr with

the trace in ascii. The last line will create some “.pcap” files where the trace prefix are the nodes. For

example, if there is traffic between node 1 and node 2 you will have a file trace-1-2.pcap. These pcap

files can be read with tcpdump or wireshark.

C.6 CREATING RANDOM VARIABLES IN NS-3
NS-3 uses the same implementation of Random Variables as NS-2.

Listing C.1 does the same as the example we saw with NS-2. By default the global seed for

all rng streams is set to 1 and the run number is also set to 1. One can see these global values using:

./waf --run "scratch/<your_program_name> --PrintGlobals"

154 C. APPENDIX III: A SMALL OVERVIEW ON NS-3

Listing C.1: C++ program for Random Variables test in ns-3.

#include <iostream >

#include "ns3/random -variable.h"

using namespace ns3;

using namespace std;

int main(int argc , char *argv [])

{

// These two lines are not needed , the values are the same by default ,

// only here to show how to change the

Seed and Run number into the program.

SeedManager :: SetSeed (1);

SeedManager :: SetRun (1);

ExponentialVariable r0 (5.0);

r0.GetValue () ;

UniformVariable r1(0.0, 10.0);

ExponentialVariable r2 (5.0);

NormalVariable r3(1.0, 16.0);

ParetoVariable r4(1.0, 1.5);

cout << "Uniform�\t�Exponential�\t�Normal�\t�Pareto" <<endl;

for(int i = 0; i<10; i++)

cout << r1.GetValue () << "\t" << r2.GetValue () << "\t"

<< r3.GetValue () << "\t" << r4.GetValue () << endl;

}

The Seed and the Run number can be changed by using the command line:

./waf --run "scratch/udp-echo --RngRun=4"

In Listing C.1 we declare an Exponential Variable with average 5.0, then a Uniform Variable

(r1) between 0 and 10, another Exponential Variable (r2), a Normal Variable (r3) with average 1.0

and variance 16.01, and a Pareto Variable (r4) with average 1.0 and shape 1.5. Then we print each

of these values. In NS-3 each new Random Variable created will use a new substream.

C.7 SHORT OVERVIEW OF TCP IN NS-3
In the following example we create three nodes, which are connected by two different point to point

networks. The node in the middle has two devices in order to send packets from a network to the

other. Most parts of Listing C.2 have been explained in previous sections. We will explain here only

1In NS-2 the normal variable has as parameters the average and the standard deviation.

C.7. SHORT OVERVIEW OF TCP IN NS-3 155

how to trace the value of the cwnd. We create a method called CwndTracer which will write on a file

the time and the value of cwnd at this time. This method will be invoked by the callback each time

the congestion window of the Tcp socket on node zero will change. It is declared in the following

way:

Config::ConnectWithoutContext,"/NodeList/0/$ns3::TcpL4Protocol/

SocketList/0/CongestionWindow", MakeCallback (&CwndTracer));

This has to be scheduled after the Application starts. We can choose the version of TCP we will use

with the line:

Config::SetDefault ("ns3::TcpL4Protocol::SocketType", TypeIdValue(TypeId::

LookupByName ("ns3::TcpTahoe")));

For more information, refer to the NS-3 manual [3].

Listing C.2: A TCP example on NS-3.

#include <iostream >

#include <fstream >

#include "ns3/simulator -module.h"

#include "ns3/node -module.h"

#include "ns3/core -module.h"

#include "ns3/helper -module.h"

#include "ns3/global -route -manager.h"

#include "ns3/ipv4 -global -routing -helper.h"

using namespace ns3;

NS_LOG_COMPONENT_DEFINE (" simpleTCP");

// global variables

static std:: ofstream window;

static void

CwndTracer (uint32_t oldval , uint32_t newval)

{

window << ns3:: Simulator :: Now(). GetSeconds () <<"�"<< newval /1024 <<std:: endl;

}

int main (int argc , char *argv [])

{

LogComponentEnable ("simpleTCP", LOG_LEVEL_ALL);

// Set up some default values for the simulation .

156 C. APPENDIX III: A SMALL OVERVIEW ON NS-3

Config :: SetDefault ("ns3:: OnOffApplication :: PacketSize", UintegerValue (1024));

Config :: SetDefault ("ns3:: OnOffApplication :: DataRate", DataRateValue (2000000));

Config :: SetDefault ("ns3:: DropTailQueue :: MaxPackets", UintegerValue(uint32_t (20)));

CommandLine cmd;

cmd.Parse (argc , argv);

window.open("window.tr");

NS_LOG_INFO ("Creating�nodes..");

// We create three nodes

Ptr <Node > n0 = CreateObject <Node > ();

Ptr <Node > n1 = CreateObject <Node > ();

Ptr <Node > n2 = CreateObject <Node > ();

NS_LOG_INFO ("Creating�Topology ..");

NodeContainer n0n1;

NodeContainer n1n2;

n0n1.Add(n0);

n0n1.Add(n1);

n1n2.Add(n1);

n1n2.Add(n2);

// Container for all nodes

NodeContainer contAllNodes;

contAllNodes.Add(n0);

contAllNodes.Add(n1);

contAllNodes.Add(n2);

// Point2point network 1

PointToPointHelper p2pNet1;

p2pNet1.SetDeviceAttribute ("DataRate", DataRateValue (2000000));

p2pNet1.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (5)));

// Point2point network 2

PointToPointHelper p2pNet2;

p2pNet2.SetDeviceAttribute ("DataRate", DataRateValue (1000000));

p2pNet2.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (5)));

// NetDeviceContainers

NetDeviceContainer dev1 = p2pNet1.Install(n0n1);

NetDeviceContainer dev2 = p2pNet2.Install(n1n2);

C.7. SHORT OVERVIEW OF TCP IN NS-3 157

// Install Internet stack in all nodes

InternetStackHelper stack;

stack.Install (contAllNodes);

NS_LOG_INFO ("Add�IP�addresses ..");

Ipv4AddressHelper ipv4;

// First Network

ipv4.SetBase ("194.57.1.0", "255.255.255.0");

Ipv4InterfaceContainer ipIfaceN0N1 = ipv4.Assign (dev1);

// Second Network

ipv4.SetBase ("194.57.2.0", "255.255.255.0");

Ipv4InterfaceContainer ipIfaceN1N2 = ipv4.Assign (dev2);

Ipv4GlobalRoutingHelper :: PopulateRoutingTables ();

// Create TCP Sink

uint16_t port = 10600;

Address SinkLocalAddress(InetSocketAddress (Ipv4Address :: GetAny (), port));

PacketSinkHelper sinkHelper ("ns3:: TcpSocketFactory",SinkLocalAddress);

ApplicationContainer sinkApp = sinkHelper .Install (n1n2.Get (1));

sinkApp.Start (Seconds (0.0));

sinkApp.Stop (Seconds (1000.0));

// Create Application for generating packets

OnOffHelper clientHelper ("ns3 :: TcpSocketFactory ", Address ());

clientHelper.SetAttribute ("OnTime", RandomVariableValue(ConstantVariable (1)));

clientHelper.SetAttribute (" OffTime", RandomVariableValue(ConstantVariable (0)));

ApplicationContainer clientApps;

AddressValue remoteAddress (InetSocketAddress (ipIfaceN1N2.GetAddress (1),

port));

clientHelper.SetAttribute ("Remote", remoteAddress);

clientApps.Add(clientHelper.Install (n0n1.Get (0)));

clientApps.Start (Seconds (1.0));

clientApps.Stop (Seconds (300.0));

// Set default Socket type to one of the Tcp Sockets

Config :: SetDefault ("ns3:: TcpL4Protocol :: SocketType",

TypeIdValue(TypeId :: LookupByName ("ns3:: TcpTahoe")));

Simulator :: Schedule (Seconds (1.1),

158 C. APPENDIX III: A SMALL OVERVIEW ON NS-3

Config :: ConnectWithoutContext ,"/NodeList /0/ $ns3:: TcpL4Protocol/SocketList /0

/CongestionWindow",MakeCallback (& CwndTracer));

NS_LOG_INFO ("Configure�Tracing.");

AsciiTraceHelper ascii;

PointToPointHelper ptp;

ptp.EnableAsciiAll (ascii.CreateFileStream("tcp.tr"));

// Simulation .

NS_LOG_INFO ("Running� Simulation ..");

Simulator :: Stop (Seconds (1000));

Simulator ::Run ();

Simulator :: Destroy ();

NS_LOG_INFO ("Done!.");

}

C.8 SIMULATING CLASSICAL QUEUEING MODELS IN NS-3

We will use this small example (thanks to M. Lacage) for showing how we can simulate a M/M/1

queue with NS-3.

The author creates two classes: a Queue and a Sender. The Receiver is only a static method

which prints the packets received. When simulation starts, the Sender will send packets each “send-

Interval” to the Queue that will Enqueue them and treat them a “serviceDuration” time; when it

finishes, it sends the packets to the receiver method.

Listing C.3: C++ program for M/M/1 simulation in NS-3 (from M. Lacage).

#include "ns3/packet.h"

#include "ns3/ptr.h"

#include "ns3/random -variable.h"

#include "ns3/callback.h"

#include "ns3/simulator.h"

#include "ns3/nstime.h"

#include "ns3/command -line.h"

#include <list >

using namespace ns3;

using namespace std;

class Queue

{

C.8. SIMULATING CLASSICAL QUEUEING MODELS IN NS-3 159

public:

void SetServiceDuration (RandomVariable v);

void SetReceiver (Callback <void ,Ptr <Packet > > receiver);

void Enqueue (Ptr <Packet > p);

private:

void StartWork (void);

void EndWork (Ptr <Packet > work);

Callback <void ,Ptr <Packet > > m_receiver;

std::list <Ptr <Packet > > m_queue;

EventId m_working;

RandomVariable m_random;

};

void

Queue:: SetServiceDuration (RandomVariable v)

{

m_random = v;

}

void

Queue:: SetReceiver (Callback <void ,Ptr <Packet > > receiver)

{

m_receiver = receiver;

}

void

Queue:: Enqueue (Ptr <Packet > p)

{

std::cout << Simulator ::Now (). GetSeconds () << "�" << m_queue. size ()

<< std::endl;

m_queue.push_back (p);

if (! m_working.IsRunning ())

{

StartWork ();

}

}

void

Queue:: StartWork (void)

{

double serviceDuration = m_random.GetValue ();

Ptr <Packet > work = m_queue.front ();

m_queue.pop_front ();

m_working = Simulator :: Schedule (Seconds (serviceDuration),

&Queue::EndWork , this , work);

}

160 C. APPENDIX III: A SMALL OVERVIEW ON NS-3

void

Queue:: EndWork (Ptr <Packet > work)

{

m_receiver (work);

if (! m_queue.empty ())

{

StartWork ();

}

}

class Sender

{

public:

void SetCreationInterval (RandomVariable v);

void SetPacketSize (uint32_t v);

void SetReceiver (Callback <void ,Ptr <Packet > > receiver);

void Start (void);

void Stop (void);

private:

void DoSend (void);

RandomVariable m_creationInterval;

uint32_t m_packetSize;

Callback <void ,Ptr <Packet > > m_receiver;

EventId m_sending;

};

void

Sender :: DoSend (void)

{

uint32_t nbytes = m_packetSize;

Ptr <Packet > p = Create <Packet > (nbytes);

m_receiver (p);

double sendInterval = m_creationInterval .GetValue ();

m_sending = Simulator :: Schedule (Seconds (sendInterval),

&Sender ::DoSend , this);

}

void

Sender :: SetCreationInterval (RandomVariable v)

{

m_creationInterval = v;

}

void

Sender :: SetPacketSize (uint32_t v)

C.8. SIMULATING CLASSICAL QUEUEING MODELS IN NS-3 161

{

m_packetSize = v;

}

void

Sender :: SetReceiver (Callback <void ,Ptr <Packet > > receiver)

{

m_receiver = receiver;

}

void

Sender ::Start (void)

{

DoSend ();

}

void

Sender ::Stop (void)

{

m_sending.Cancel ();

}

static void Receiver (Ptr <Packet > p)

{

std::cout << Simulator ::Now (). GetSeconds () << "Get=" << p->GetSize ()

<< std::endl;

}

int main (int argc , char *argv [])

{

unsigned int rep = 1;

double lambda = 9.0;

double mu = 10.0;

double tmax = 100000.0;

CommandLine cmd;

cmd.AddValue ("rep", "Rep", rep);

cmd.AddValue ("l", "Lambda", lambda);

cmd.AddValue ("mu", "mu", mu);

cmd.AddValue ("tmax", "Tmax", tmax);

cmd.Parse (argc ,argv);

SeedManager :: SetRun(rep);

162 C. APPENDIX III: A SMALL OVERVIEW ON NS-3

Queue *queue = new Queue ();

queue ->SetServiceDuration (ExponentialVariable (1.0/mu));

queue ->SetReceiver (MakeCallback (& Receiver));

Sender *sender = new Sender ();

sender ->SetCreationInterval (ExponentialVariable (1.0/ lambda));

sender ->SetPacketSize (1000);

sender ->SetReceiver (MakeCallback (&Queue::Enqueue , queue));

Simulator :: Schedule (Seconds (0.0001) , &Sender ::Start , sender);

Simulator :: Schedule (Seconds (tmax), &Sender ::Stop , sender);

Simulator ::Run ();

Simulator :: Destroy ();

delete sender;

delete queue;

return 0;

}

163

Bibliography

[1] GAWK: Effective AWK Programming: A User’s Guide for GNU Awk, for the 3.1.8 (or later) version

of the GNU implementation of AWK. Cited on page(s) 31

[2] Ns-3 doxigen documentation. http://www.nsnam.org/docs/release/ns-3.11/

doxygen/index.html. Cited on page(s) 151

[3] Ns-3 Manual. http://www.nsnam.org/docs/release/ns-3.11/manual/singlehtml/

index.html. Cited on page(s) 153, 155

[4] PERL – Practical Extraction and Report Language. Cited on page(s) 33

[5] Tclcl web page. http://otcl-tclcl.sourceforge.net/tclcl/. Cited on page(s) 5

[6] A. M. Viterbi, A. J. Viterbi, and E. Zehavi. Performance of power-controlled wideband

terrestrial digital communication. IEEE Transactions on Communications, 4(41):559–569, April

1993. DOI: 10.1109/26.223780 Cited on page(s) 146

[7] M. Allman, S. Dawkins, D. Glover, J. Griner, D. Tran, T. Henderson, J. Heidemann, J. Touch,

H. Kruse, S. Ostermann, K. Scott, and J. Semke. Request for comments rfc-2760: Ongoing

tcp research related to satellites. 2000. Cited on page(s) 2

[8] E. Altman. A stateless approach for improving tcp performance using diffserv. In Proceedings

of the 18th International Teletraffic Congress, September 2003. Berlin, 31 Aug - 5 Sept. Cited

on page(s) 95, 100

[9] E. Altman and T. Jiménez. Novel delayed ack techniques for improving tcp perfor-

mance in multihop wireless networks. In PWC (Personal Wireless Communications), volume

2775/2003, pages 237–250. LNCS, Springer Berlin/Heidelberg, September 2003. Venice,

Italy. DOI: 10.1007/978-3-540-39867-7_26 Cited on page(s) 126

[10] E. Altman and T. Jiménez. Simulation analysis of red with short lived tcp connection. Computer

Networks, 44(5):631–641, April 2004. DOI: 10.1016/j.comnet.2003.08.003 Cited on page(s)

94

[11] Todd R. Andel and ALec Yasinasac. On the credibility of manet simulations. IEEE Computer

Magazine, 2006. DOI: 10.1109/MC.2006.242 Cited on page(s) 5

http://www.nsnam.org/docs/release/ns-3.11/doxygen/index.html
http://www.nsnam.org/docs/release/ns-3.11/doxygen/index.html
http://www.nsnam.org/docs/release/ns-3.11/manual/singlehtml/index.html
http://www.nsnam.org/docs/release/ns-3.11/manual/singlehtml/index.html
http://www.nsnam.org/docs/release/ns-3.11/manual/singlehtml/index.html
http://otcl-tclcl.sourceforge.net/tclcl/
http://otcl-tclcl.sourceforge.net/tclcl/
http://dx.doi.org/10.1109/26.223780
http://dx.doi.org/10.1007/978-3-540-39867-7_26
http://dx.doi.org/10.1016/j.comnet.2003.08.003
http://dx.doi.org/10.1109/MC.2006.242

164 BIBLIOGRAPHY

[12] L. Andrew, C. Marcondes, S. Floyd, L. Dunn, R. Guillier, W. Gang, L. Eggert, S. Ha, and

I. Rhee. Towards a common tcp evaluation suite. In PFLDnet, March 2008. Cited on page(s)

2

[13] A. Ballardie. Core Based Trees (CBT) Multicast Routing Architecture. RFC 2201 (Historic),

September 1997. Cited on page(s) 69

[14] T.Bonald and J.Roberts. Performance modeling of elastic trafic in overload. In ACM Sigmetrics,

pages 342–343, 2001. DOI: 10.1145/384268.378845 Cited on page(s) 101, 145

[15] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson,

G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, and

L. Zhang. Recommendations on Queue Management and Congestion Avoidance in the

Internet. RFC 2309 (Informational), April 1998. Cited on page(s) 77

[16] Josh Broch, David A. Maltz, David B. Johnson, Yih chun Hu, and Jorjeta Jetcheva. A per-

formance comparison of multi-hop wireless ad hoc network routing protocols. pages 85–97,

1998. DOI: 10.1145/288235.288256 Cited on page(s) 2

[17] Xi Chen, Siu chung Wong, Chi K. Tse, and Francis C. M. Lau. Oscillation and period

doubling in tcp/red system: Analysis and verification. International Journal of Bifurcation and

Chaos, 18(5):1459–1475, 2008. DOI: 10.1142/S0218127408021105 Cited on page(s) 2

[18] D. D. Clark and W. Fang. Explicit allocation of best-e ort packet delivery service. IEEE/ACM

Trans on Networking, 6(4):362–373, August 1998. DOI: 10.1109/90.720870 Cited on page(s)

96

[19] M. S. Corson, S. Papademetriou, P. Papadopolous, V. D. Park, and A. Qayyum. An internet

manet encapsulation protocol (imep) specification. Internet draft, draft-ietf-manet-imep-

spec01.txt, August 1998. Cited on page(s) 111

[20] M. Crovella and A. Bestravos. Self-similarity in world wide web traffic: Evidence and possible

cause. ACM Sigmetrics, 1996. DOI: 10.1145/233008.233038 Cited on page(s) 51, 145

[21] T. V. Lakshman D. P. Heyman and A. L. Neidhardt. A new method for analysing feedback-

based protocols with applications to engineering web traffic over the internet. In ACM Sig-

metrics, 1997. DOI: 10.1145/258623.258670 Cited on page(s) 146

[22] S. Deering, D. Estrin, D. Farinacci, Ching-Gung Liu V. Jacobson, and L. Wei. An architec-

ture for wise-area multicast routing. Technical Report USC-SC-94-565, Computer Science

Department, University of Southern California, 1994. Cited on page(s) 69

[23] ETSI. Universal mobile telecommunication system (umts); selection procedures for the choice

of radio transmission technologies of the umts. UMTS 30.03 Version 3.2.0, April 1998.

http://dx.doi.org/10.1145/384268.378845
http://dx.doi.org/10.1145/288235.288256
http://dx.doi.org/10.1142/S0218127408021105
http://dx.doi.org/10.1109/90.720870
http://dx.doi.org/10.1145/233008.233038
http://dx.doi.org/10.1145/258623.258670

BIBLIOGRAPHY 165

Available (public domain) at http://www.etsi.org/getastandard/home.htm. Cited on

page(s) 145

[24] K. Fall and K. Varadhan. The ns manual. available at http://www.isi.edu/nsnam/ns/.

Cited on page(s) 68

[25] Kevin Fall and Sally Floyd. Simulation-based comparisons of tahoe, reno, and sack tcp. Com-

puter Communication Review, 26(3):5–21, July 1996. DOI: 10.1145/235160.235162 Cited on

page(s) 1

[26] W. Fang, N. Seddigh, and B. Nandy. A Time Sliding Window Three Colour Marker

(TSWTCM). RFC 2859 (Experimental), June 2000. Cited on page(s) 99

[27] M. Fleury, G. Flores Lucio, and M. J. Reed. Clarification of the ?opnet ns-2 comparison. Cited

on page(s) 4

[28] Sally Floyd and Van Jacobson. Random early detection gateways for congestion avoidance.

IEEE/ACM Trans. Netw., 1:397–413, August 1993. DOI: 10.1109/90.251892 Cited on

page(s) 77, 78

[29] Zhenghua Fu, Haiyun Luo, Petros Zerfos, Songwu Lu, Lixia Zhang, and Mario Gerla. The

impact of multihop wireless channel on tcp throughput and loss. In IEEE INFOCOM, pages

1744–1753, 2003. DOI: 10.1109/INFCOM.2003.1209197 Cited on page(s) 126, 130

[30] P. Pablo Garrido, Manuel P. Malumbres, and Carlos T. Calafate. ns-2 vs. opnet: a comparative

study of the ieee 802.11e technology on manet environments. In Proceedins of SIMUTools,

Marseille, France, March 03–07 2008. Cited on page(s) 4

[31] Christoph Hanle and Markus Hofmann. Performance comparison of reliable multicast pro-

tocols using the network simulator ns-2. In PROCEEDINGS OF THE ANNUAL CONFER-

ENCE ON LOCAL COMPUTER NETWORKS, 1998. DOI: 10.1109/LCN.1998.727663

Cited on page(s) 2

[32] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding PHB Group. RFC

2597 (Proposed Standard), June 1999. Updated by RFC 3260. Cited on page(s) 95

[33] J. Heinanen and R. Guerin. A Two Rate Three Color Marker. RFC 2698 (Informational),

September 1999. Cited on page(s) 99

[34] Thomas R. Henderson, Sumit Roy, Sally Floyd, and George D. Riley. ns-3 project goals.

DOI: 10.1145/1190455.1190468 Cited on page(s) 3

[35] Christian. Huitema. Routing in the Internet / Christian Huitema. Prentice Hall PTR, Engle-

wood Cliffs, N.J. :, 1995. Cited on page(s) 65

http://www.etsi.org/getastandard/home.htm
http://www.etsi.org/getastandard/home.htm
http://www.isi.edu/nsnam/ns/
http://dx.doi.org/10.1145/235160.235162
http://dx.doi.org/10.1109/90.251892
http://dx.doi.org/10.1109/INFCOM.2003.1209197
http://dx.doi.org/10.1109/LCN.1998.727663
http://dx.doi.org/10.1145/1190455.1190468

166 BIBLIOGRAPHY

[36] Murat M iran Köksal. A survey of network simulators supporting wireless networks. In

Available on the Internet. Cited on page(s) 3

[37] V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM 88,, pages 273–288,

1988. DOI: 10.1145/52325.52356 Cited on page(s) 41

[38] D. Johnson, Y. Hu, and D. Maltz. The Dynamic Source Routing Protocol (DSR) for Mobile

Ad Hoc Networks for IPv4. RFC 4728 (Experimental), February 2007. Cited on page(s) 111

[39] Leonard Kleinrock. Theory, Volume 1, Queueing Systems. Wiley-Interscience, 1975. Cited on

page(s) 133

[40] Gilberto Flores Lucio, Marcos Paredes-farrera, Emmanuel Jammeh, Martin Fleury, and Mar-

tin J. Reed. Opnet modeler and ns-2: Comparing the accuracy of network simulators for

packet-level analysis using a network testbed. In 3rd WEAS International Conference on Simu-

lation, Modelling and Optimization (ICOSMO), pages 700–707, 2003. Cited on page(s) 4

[41] Marek Malowidzki. Network simulators:A developer?s perspective. In International Symposium

on Performance Evaluation of Computer and Telecommunication Systems (SPECTS?04), 2004.

Cited on page(s) 3

[42] A. Mankin, A. Romanow, S. Bradner, and V. Paxon. Rfc 2357: Ietf criteria for evaluating

reliable multicast transport and application protocols. 1998. Cited on page(s) 2

[43] W. Noureddine and F.Tobagi. Improving the performance of interactive tcp applications using

service differentiation. In IEEE Infocom, 2002.DOI: 10.1109/INFCOM.2002.1019243 Cited

on page(s) 100

[44] D. Park and M. S. Corson. Temporally-ordered routing algorithm (tora) version 1: functional

specifications. Internet draft, July 2001. From; http://tools.ietf.org/html/draft-

ietf-manet-tora-spec-04. Cited on page(s) 111

[45] V. D. Park and M. S. Corson. A performance comparison of the temporally-ordered routing

algorithm and ideal link-state routing. In Proceedings of the Third IEEE Symposium on Comput-

ers & Communications, pages 592–, Washington, DC, USA, 1998. IEEE Computer Society.

DOI: 10.1109/ISCC.1998.702600 Cited on page(s) 111

[46] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance Vector (AODV)

Routing. RFC 3561 (Experimental), July 2003. Cited on page(s) 111

[47] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced distance-

vector routing (dsdv) for mobile computers. In Proceedings of the conference on Communications

architectures, protocols and applications, SIGCOMM ’94, pages 234–244, New York, NY, USA,

1994. ACM. DOI: 10.1145/190809.190336 Cited on page(s) 111

http://dx.doi.org/10.1145/52325.52356
http://dx.doi.org/10.1109/INFCOM.2002.1019243
http://tools.ietf.org/html/draft-ietf-manet-tora-spec-04
http://tools.ietf.org/html/draft-ietf-manet-tora-spec-04
http://dx.doi.org/10.1109/ISCC.1998.702600
http://dx.doi.org/10.1145/190809.190336

BIBLIOGRAPHY 167

[48] Peter Pieda, Jeremy Ethridge, Mandeep Baines, and Farhan Shallwani. A Network Simulator,

Differentiated Services Implementation. Open IP, Nortel Networks, 2000. Cited on page(s) 95

[49] J. Postel and J. Reynolds. File transfer protocol. RFC 959 (Standard), October 1985. Updated

by RFCs 2228, 2640, 2773, 3659, 5797. Cited on page(s) 17

[50] Sheldon Ross. Simulation. Academic Press, 4th edition, 2002. Cited on page(s) 150

[51] R. Gummadi S. Floyd and S. Shenker. Adaptive red: an algorithm for increasing the robustness

of red’s active queue management. from: http://www.icir.org/floyd/red.html, 2001.

Cited on page(s) 79

[52] Sambit Sahu, Philippe Nain, Christophe Diot, Victor Firoiu, and Don Towsley. On achievable

service differentiation with token bucket marking forTCP. In Proceedings of the 2000 ACM SIG-

METRICS international conference on Measurement and modeling of computer systems, SIGMET-

RICS ’00, pages 23–33, New York, NY, USA, 2000. ACM. DOI: 10.1145/339331.339342

Cited on page(s) 102

[53] S Shah, A Khandre, M. Shirole, and G . Bhole. Performance evaluation of ad hoc routing

protocols using ns2 simulation. In Mobile and Pervasive Computing (CoMPC), 07=08 Aug

2008. DOI: 10.1016/j.comcom.2007.02.015 Cited on page(s) 2

[54] Biplab Sikdar, S. Kalyanaraman, and Kenneth S. Vastola. An integrated model for the latency

and steady-state throughput of tcp connections. Perform. Eval., 46:139–154, October 2001.

DOI: 10.1016/S0166-5316(01)00048-7 Cited on page(s) 51, 52, 101, 109, 145

[55] P. Sinha. Routing and transport layer protocols for wireless networks. PhD thesis, Univ. of Illinois

at Urbana-Champaign, Computer Science, 2001. Cited on page(s) 126

[56] D. Thaler. Border Gateway Multicast Protocol (BGMP): Protocol Specification. RFC 3913

(Historic), September 2004. Cited on page(s) 69

[57] D. Waitzman, C. Partridge, and S.E. Deering. Distance Vector Multicast Routing Protocol.

RFC 1075 (Experimental), November 1988. Cited on page(s) 69

[58] Xiaodong Xian, Weiren Shi, and He Huang. Comparison of OMNET++ and other simulator

for WSN simulation. DOI: 10.1109/ICIEA.2008.4582757 Cited on page(s) 4

http://www.icir.org/floyd/red.html
http://dx.doi.org/10.1145/339331.339342
http://dx.doi.org/10.1016/j.comcom.2007.02.015
http://dx.doi.org/10.1016/S0166-5316(01)00048-7
http://dx.doi.org/10.1109/ICIEA.2008.4582757

169

Authors’ Biographies

EITAN ALTMAN
Eitan Altman received the B.Sc. in electrical engineering (1984),

the B.A. degree in physics (1984) and the Ph.D. degree in elec-

trical engineering (1990), all from the Technion-Israel Institute,

Haifa. In (1990) he further received his B.Mus. degree in mu-

sic composition at Tel-Aviv University. Since 1990, he has been

with INRIA Sophia-Antipolis, France. His current research in-

terests include performance evaluation and control of telecom-

munication networks and in particular, wireless communications

and networking games. He is in the editorial board of the jour-

nals: DGAA (Dynamic Games and Applications) and JEDC,

and served in the editorial board of the journals Stochastic Mod-

els, COMNET, SIAM SICON, WINET and JDEDs. He has

been the general chairman and the (co)chairman of the program committee of several international

conferences and workshops (on game theory, networking games and mobile networks). He is the

steering committee chair of WIOPT and of NetGCoop and a Fellow member of IEEE. For more

information see www-sop.inria.fr/members/Eitan.Altman.

www-sop.inria.fr/members/Eitan.Altman
www-sop.inria.fr/members/Eitan.Altman
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00397ED1V01Y201112CNT010&iName=master.img-031.jpg&w=108&h=149

170 AUTHORS’ BIOGRAPHIES

TANIA JIMÉNEZ
Tania Jiménez received her Ph.D. from University of Nice

Sophia-Antipolis, France in 2000. She was Assistant Professor

at Universidad de Los Andes, Venezuela from 2000 to 2002,

in the Center of Models and Simulation (CeSiMo). She is at

present a research engineer at Avignon University, in the Infor-

matics Lab (http://lia.univ-avignon.fr). Her research in-

terests include simulation as well as optimization and control of

telecommunication networks.

http://lia.univ-avignon.fr

	Preface
	Introduction
	NS-2 as a tool for designing Internet protocols
	NS-2, NS-3 and other simulators
	Further background on NS-2 simulator
	Tcl and Otcl programming

	NS-2 Simulator Preliminaries
	Initialization and termination
	Definition of a network of links and nodes
	Agents and applications
	FTP over TCP
	CBR over UDP
	UDP with other traffic sources

	Scheduling events in NS-2
	Visualisation using nam
	Tracing
	Tracing objects
	Structure of trace files
	Tracing a subset of events

	Random Variables
	Seeds and generators
	Creating Random Variables in NS-2

	How to work with trace files
	Processing data files with awk
	Using grep
	Processing data files with perl
	Plotting with gnuplot
	Plotting with xgraph
	Extracting information within a tcl script

	Description and simulation of TCP/IP
	Description of TCP
	Objectives of TCP and window flow control
	Acknowledgements
	Dynamic congestion window
	Losses and a dynamic threshold Wth
	Initiating a connection

	Tracing and analysis of Example ex1.tcl
	TCP over noisy links and queue monitoring
	Creating many connections with random features
	Short TCP connections
	Advanced monitoring tools
	Exercises

	Routing and network dynamics
	Unicast routing
	Network dynamics
	Multicast protocols
	The Dense mode
	Routing based on a RV point

	Simulating multicast routing
	DM mode
	Routing with a centralized RV point

	Observations on the simulation of pimdm.tcl
	Exercises

	RED: Random Early Discard
	Description of RED
	Setting RED parameters in NS-2
	Simulation examples
	Drop tail buffer
	RED buffer with automatic parameter configuration
	RED buffer with other parameters

	Monitoring flows
	Exercises

	Differentiated Services
	Description of assured forwarding Diffserv
	MRED routers
	General description
	Configuration of MRED in NS-2
	TCL querying

	Defining policies
	Description
	Configuration
	TCL querying

	Simulation of diffserv: protection of vulnerable packets
	The simulated scenario

	Simulation results
	Discussions and conclusions
	Exercises

	Mobile Networks and Wireless Local Area Networks
	The routing algorithms
	Destination Sequenced Distance Vector - DSDV
	Ad-hoc On Demand Distance Vector - AODV
	Dynamic Source Routing - DSR
	Temporally Ordered Routing Algorithm - TORA

	Simulating mobile networks
	Simulation scenario
	Writing the tcl script

	Trace format
	Analysis of simulation results
	Comparison with other ad-hoc routing
	TCP over DSR
	TCP over AODV
	TCP over TORA
	Some comments

	The interaction of TCP with the MAC protocol
	Background
	The simulated scenario
	Simulation results

	Exercises

	Classical queueing models
	Simulating an M/M/1, M/D/1 and D/M/1 queues
	Finite queue
	Exercises

	Tcl and C++ linkage
	Appendix I: Random variables: background
	Appendix II: Confidence intervals
	Appendix III: A small overview on NS-3
	Initialization and termination in NS-3
	Definition of a network topology in NS-3
	Transport Protocols and Applications in NS-3
	Scheduling events in NS-3
	Tracing in NS-3
	Creating Random Variables in NS-3
	Short overview of TCP in NS-3
	Simulating classical queueing models in NS-3

	Bibliography
	Authors' Biographies

