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Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly used drugs worldwide. NSAIDs are used for a variety
of conditions including pain, rheumatoid arthritis, and musculoskeletal disorders. The beneficial effects of NSAIDs in reducing or
relieving pain are well established, and other benefits such as reducing inflammation and anticancer effects are also documented.
The undesirable side effects of NSAIDs include ulcers, internal bleeding, kidney failure, and increased risk of heart attack and
stroke. Some of these side effects may be due to the oxidative stress induced by NSAIDs in different tissues. NSAIDs have been
shown to induce reactive oxygen species (ROS) in different cell types including cardiac and cardiovascular related cells. Increases
in ROS result in increased levels of oxidized proteins which alters key intracellular signaling pathways. One of these key pathways
is apoptosis which causes cell death when significantly activated. This review discusses the relationship between NSAIDs and

cardiovascular diseases (CVD) and the role of NSAID-induced ROS in CVD.

1. Introduction

Nonsteroidal anti-inflammatory drugs (NSAIDs) are the
most widely used over-the-counter drugs as well as the most
prescribed class of drugs for a variety of conditions including
pains, rheumatoid arthritis, osteoarthritis, musculoskeletal
disorders, and other comorbid conditions [1]. Millions of
people suffer from pain resulting in the prolonged use of
NSAIDs being common. Besides reducing or relieving pain
NSAIDs have been shown to be useful as anticancer agents in
various kinds of cancers [2-4]. However, NSAIDs also have
undesirable side effects including ulcers [5], bleeding [6], kid-
ney failure [7, 8], and increased risk of heart attack and stroke
[8,9]. One of the mechanisms which has been associated with
the adverse effects of NSAIDs is the generation of oxidative
stress. The present review focuses on NSAIDs-induced ROS
generation leading to cardiovascular diseases (CVD).

2. Types of NSAIDs

NSAIDs may be classified according to their mechanism of
action. Nonselective NSAIDs like ibuprofen and naproxen,

which comprise one class, inhibit both cyclooxygenase-1
(COX-1) and cyclooxygenase-2 (COX-2) enzymes. A second
class of NSAIDs (celecoxib and rofecoxib) targets only the
COX-2 pathway and is termed as COX-2 selective inhibitors
(also known as coxibs). COX selectivity is one of the
determining factors that is considered when administrating
NSAIDs to a patient. Administration of nonselective NSAIDs
has been associated with side effects like peptic ulcer disease
and gastrointestinal bleeding [10]. COX-2 selective NSAIDs
have been shown to exhibit gastroprotective effects unlike
the nonselective NSAIDs and are thus useful in patients
with painful gastrointestinal conditions [10-12]. Another
class of semiselective NSAIDs (indomethacin, meloxicam,
and diclofenac) have a higher affinity for COX-2 but tend to
inhibit the COX-1 pathway also [13]. However, irrespective
of their mechanism of action, prolonged exposure to any
class of NSAIDs has been shown to have potential adverse
effects on cardiovascular events in patients with or without
preexisting cardiovascular conditions, depending on the
duration and dosage of these drugs [14, 15] (Table 1). Patients
with preexisting cardiovascular conditions such as coronary
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F1GURE 1: Inhibition of cyclooxygenase pathway by NSAIDs. Coxibs as well as nonselective NSAIDs inhibit the formation of the metabolites
of the cyclooxygenase pathway thereby disrupting the homeostasis maintained by these metabolites. Coxibs cause an imbalance between
the levels of thromboxane and prostacyclin being more favorable towards thromboxane and decreasing prostacyclin levels leading to the

aggregation of platelets and causing thrombosis.

artery disease, hypertension, and history of stroke are at the
greatest risk of cardiovascular events after taking NSAIDs
(14, 15]. Patients who have recently had cardiovascular bypass
surgery are advised not to take NSAIDs due to a high risk
of heart attacks [16, 17]. The increased selectivity for COX-
2 has also been reported to increase the risk of various CVD
[18,19]. Meta-analyses of several trials have shown that coxibs

are associated with a high risk of atherothrombotic vascular
events [20].

3. Mechanism of Action of NSAIDs

NSAIDs exert their pain relieving effect mainly by inhibit-
ing the cyclooxygenase pathway (Figure 1). This pathway
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is responsible for the conversion of arachidonic acid to
prostaglandins and thromboxanes [21]. Although COX is
officially known as prostaglandin-endoperoxide synthase
(PTGS) the abbreviation “COX” is commonly used for
cyclooxygenase-1 and cyclooxygenase-2 in medicine. In
genetics, the abbreviation PTGS is officially used for the
cyclooxygenase family of genes and proteins to prevent
ambiguity with the cytochrome c oxidase family of genes and
proteins which are also abbreviated COX. Arachidonic acid
is the main precursor to the formation of various eicosanoids
in the cyclooxygenase pathway. Of all the metabolites formed
in the arachidonic acid metabolism, thromboxane A2 in the
platelets is the major product which along with prostacy-
clin (prostaglandin 12) maintains vascular homeostasis [22]
(Figure 1). Both these eicosanoids (thromboxane A2 and
prostaglandin I2) have opposing effects. While thromboxane
is well known for its role in vasoconstriction and aggregation
of platelets, prostacyclin is important for platelet aggregation
inhibition and vasodilation.

The COX enzyme is present as two isoforms, each with
distinct functions: COX-1 is constitutively expressed in the
stomach, kidneys, intestinal mucosa, and other tissues [23].
It protects the mucosal lining of the stomach and plays
an important role in vasoconstriction and platelet aggre-
gation [23]. On the other hand the inducible COX-2 is
upregulated during times of inflammation where it causes
vasodilation [24]. COX-1and COX-2 are similar in molecular
weights, 70 and 72 kDa, respectively, and show 65% homology
with near-identical catalytic sites (based upon information
from UniProtKB/Swiss-Prot database). The critical differ-
ence between the isoenzymes, which permits the selective
inhibition of each isoform, is the substitution of isoleucine
523 in COX-1 with valine in COX-2 [25]. The presence
of valine, which is a smaller amino acid than isoleucine,
allows drugs entrance to a hydrophobic side-pocket only
accessible in COX-2. Expression of both isoforms, COX-1
and COX-2, may be upregulated and downregulated under
various pathological conditions [26]. It is likely that the
classification of the COX enzymes into two isoforms was
an oversimplification [26] as COX-2 may be constitutively
expressed in the brain [27], kidney [28], and testes [29]. In fact
immunohistochemical studies have revealed the constitutive
expression of COX-2 mRNA in the lung, thyroid gland,
spleen, and adipose tissue, which was greater than COX-1 in
these tissues, and in the liver both isoforms were expressed
equally [29]. Therefore the idea that COX-2 can only be
expressed under inducible conditions is unlikely since recent
evidence suggests their occurrence in various human tissues
under normal conditions.

Coxibs disrupt the balance between the levels of throm-
boxane A2 and prostaglandin 12 leading to atherosclerosis,
thrombosis, and other cardiovascular complications. Coxibs,
through their selective inhibition of COX-2, inhibit endothe-
lial cell synthesis of prostacyclin [30]. In the ApoE—/-
mice (model for atherosclerosis), deletion of the prostacyclin
receptor increased atherogenesis with no such effect observed
in thromboxane receptor deleted mice [30]. Apart from its
role in the inhibition of cyclooxygenase pathway, NSAIDs
have been shown to cause cell death by the inhibition of

the Akt signaling pathway [31], downregulation of the NF-xB
pathway [32], downregulation of the Bcl pathway [33], upreg-
ulation of the nonsteroidal activated gene-1 [34], and altering
the p53 pathway [35], all of which have been suggested to
be involved in apoptosis [36]. Apoptosis (programmed cell
death) induced by NSAIDs has been suggested to be due to
oxidative stress caused by increased generation of reactive
oxygen species (ROS) [37].

A series of mechanisms are involved wherein NSAIDs
exert their cardiotoxic effects and cause various cardiac
conditions. Various non-NSAID drugs like doxorubicin,
azidothymidine, and cisplatin have been shown to induce
oxidative stress as a consequence of elevated ROS levels [38].
Doxorubicin, for example, induced cardiotoxicity through
DNA damage and apoptosis in cardiac cells as a result of
oxidative stress which were reduced by the antioxidant effect
of statin [37]. It is possible that the oxidative stress induced by
NSAIDs, which is known to cause apoptosis and cell death, is
significantly involved in causing cardiovascular dysfunction
(Figure 2).

4. Incidences of CVD Induced by NSAIDs

Various clinical trials have been made during the past few
years regarding the safety and effectiveness of NSAIDs in
CVD (Table 2). Most trials focused on the CVD outcome of
NSAID use in patients with a previous history of cardiovas-
cular disease. Few trials were carried out on patients with
no history of CVD. An important finding is that not only
nonselective NSAIDs lead to the development of hyperten-
sion in both normotensive and hypertensive individuals [39],
but their use interferes with the antihypertensive medications
except for the calcium channel blockers [40]. The risk of atrial
fibrillation, heart failure, myocardial infarction, and other
cardiovascular conditions also increased in patients with a
history of these pathological conditions (Table 2).

The CVD related outcomes in patients enrolled in the
REACH (REduction of Atherothrombosis for Continued
Health) registry showed that in patients with established
stable atherothrombosis, use of NSAIDs increased the inci-
dences of myocardial infarction and cerebrovascular con-
ditions [41]. Additionally, this paper reported that the use
of NSAIDs with other antiplatelet drugs (except aspirin)
increased the rate of cardiovascular events like cardiovascular
death, myocardial infarction, and stroke [41]. Although a few
studies suggest that COX selectivity does not seem to be a
determining factor for myocardial infarction [13, 42], several
studies suggest that coxibs elevate the rate of incidences of
CVD compared to nonselective NSAIDs [18-20]. Several
clinical trials have been completed and are still ongoing, but
some inconsistencies in the results exist regarding the effect
of different types of NSAIDs on cardiovascular outcomes
(Table 2). One meta-analysis report found that ~75% studies
investigating the cardiovascular risk in new NSAID users
reported an increase in the occurrence of cardiovascular
diseases within the first month of NSAID use [43]. Overall,
the different trials showed that several NSAIDs increased
the risk of CVD both at low and high doses [41, 43-45].
Targeted inhibition of COX-2, even for a short term, was
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NSAIDs

Nonselective (inhibits COX-1 and COX-2)
naproxen, ibuprofen, ketoprofen

|
COX-2 selective
valdecoxib, celecoxib, rofecoxib

Arachidonic acid

! )

Cell signalling pathways affected NADPH oxidases
T Nonsteroidal activated gene-1 Lipoxygenases
T p53 T Bax | Bcl-2 Xanthine oxidases
T Mitochondrial cytochrome ¢ Nitric oxide synthases
T Apoptosis inducing factor Cytochrome p450
| Akt
| NF-«B
| Proteasome activity

Apoptosis

Acute myocardial infarction,
reperfusion injury, heart failure

/ artery wall of the heart
Oxidative stress

Cardiovascular diseases

metabolism

0,7, H,0,,
? -OHZ ? T Thromboxane

(free radicals) | Prostacyclin

Thromboxane/prostacyclin
imbalance

Platelet aggregation on the
site of atherosclerotic plaque
rupture on the coronary

FIGURE 2: Pathways involved in the development of cardiovascular diseases by NSAIDS. The figure shows the upregulation and
downregulation of various pathways by NSAIDs leading to the development of CVD. Mitochondria play a major role in the generation
of ROS induced by NSAIDs followed by oxidative stress and finally CVD.

found to increase the risk of atherothrombosis [46]. The
COX-2 selective NSAID rofecoxib at low doses (50 mg daily)
increased the occurrences of myocardial infarction by 0.5%
in approximately 8000 patients with rheumatoid arthritis
compared to 0.1% in those treated with naproxen (500 mg
twice daily), indicating a severe thrombogenic effect of rofe-
coxib compared to naproxen [47]. The main increased risk of
cardiovascular events associated with COX-2 inhibitors was
an increased risk of myocardial infarction [46].

The report of Adenomatous Polyp Prevention on Vioxx
(APPROVe) trial on the adverse effect of rofecoxib on CVD
ultimately led to the discontinuation of this drug in several
countries [48]. Increased thromboembolic events have been
associated with rofecoxib compared to naproxen [49]. In
another trial rofecoxib was found to be associated with
cardiac arrhythmias and renal conditions [50]. However
similar adverse effects were not encountered in patients
treated with other COX-2 inhibitors [50]. More importantly,
several semiselective NSAIDs like diclofenac and meloxicam
and nonselective NSAIDs including naproxen and ibuprofen
have also been shown to increase the incidences of CVD
[46,51]. Of these drugs, diclofenac has been shown to increase

the occurrences of myocardial infarction and stroke even
at lower doses of <150 mg/day compared to naproxen at
doses of >1000 mg/day [51]. This effect of diclofenac has
been attributed to its greater selectivity for COX-2 inhibition.
It has also been reported that ibuprofen is associated with
CVD comparable to the effect of COX-2 selective inhibitor,
celecoxib [20]. It has been suggested that the difference
between the effect exhibited by rofecoxib and other NSAIDs
of the same class on cardiovascular incidences is due to
the distinct chemical properties and prooxidant activity of
rofecoxib [52]. The toxic effect of rofecoxib was reportedly
due to its ability to reduce the low density lipoprotein (LDL)
antioxidant capacity as a result of increased lipid peroxidation
[52]. Merck voluntarily withdrew rofecoxib (Vioxx) in 2004.
Pfizer was asked by the US Food and Drug Administration
(FDA) to withdraw valdecoxib (Bextra) from the market in
2005 because of a higher than expected number of reports
of serious and potentially life-threatening skin reactions and
deaths.

Naproxen seems to show less cardiovascular events than
other commonly used NSAIDs, possibly because it mimics
the activity of acetylsalicylic acid (aspirin) by suppressing
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cyclooxygenase platelet thromboxane B2 [53]. However, the
role of naproxen in the development of CVD has been con-
troversial. Several studies have reported the cardioprotective
effect of the compound [54-56], and on the other hand
increased cardiovascular risk has been associated with the use
of this NSAID [57-59]. The only NSAID which has not been
associated with increased cardiovascular events is aspirin.
Aspirin is the only known NSAID which has antithrombotic
activity through the inhibition of platelet aggregation in
the artery of the heart thereby exhibiting cardioprotective
effects [60]. It does so by acetylating the platelet COX-1
and irreversibly suppressing thromboxane A2 production,
which is required for platelet aggregation and thrombus
formation [60]. Naproxen on the other hand causes reversible
inhibition of cyclooxygenase by binding to the enzyme [61].
It was found that inhibition in thromboxane A2 synthesis was
more pronounced (75%) compared to prostacyclin inhibition
(50%) after the oral administration of 500 mg naproxen in
healthy volunteers [61].

5. NSAIDs and Reactive Oxygen
Species Generation

NSAIDs have been shown to be associated with increased
ROS production (Table 3). In the heart the main producer of
ROS is the mitochondria [62]. Under normal physiological
conditions, mitochondria generate ROS as a consequence of
aerobic respiration [63]. During aerobic respiration about 5%
of O, consumed via aerobic reaction is converted into ROS
[63]. The mitochondria-dependent overproduction of ROS
has been reported under numerous pathological conditions
including myocardial heart failure, inflammatory diseases,
cancer, hypertension, and diabetes [64-67]. In myocardial
heart failure, cardiomyocytes have been shown to be targeted
by excessive ROS generation [64].

ROS levels and the redox state of a cell are considered
to be important in the dysfunction of various biological
signaling pathways. The formation of ROS via the reduction
of molecular oxygen or by the oxidation of water leads to the
formation of free radicals such as superoxide anion (O,"),
hydroxyl radical ("OH), and hydrogen peroxide (H,O,).
Oxidative stress arises when the oxidant production (sum of
all the ROS) surpasses the antioxidant capacity in the cells.
Under normal physiological conditions low amounts of O,"”
in the cardiomyocytes are converted to the less toxic H,O,
by the enzyme superoxide dismutase (SOD). The reaction
turther proceeds by the formation of water by the action of
the enzyme catalase or glutathione peroxidase (GPx) system
[68]. However, when a homeostatic imbalance between the
cellular antioxidant capacity and ROS levels occurs, elevated
ROS levels can damage cellular macromolecules including
lipids, proteins, and nucleic acids. High levels of ROS also
accelerate cell death due to apoptosis as well as necrosis by the
activation of poly(adenosine diphosphate ribose) polymerase
[69] and thus significantly contribute to the development of
various pathological conditions [70].

The generation of ATP in the mitochondria utilizes the
electrons from reduced substrates that are transferred to an
acceptor molecule of the electron transport chain (ETC).

1

Leakage of electrons from the mitochondria ETC results in
0O, formation [71]. Electron leakage is potentially possible
at 9 sites in the ETC; however most of the ROS seem to
be associated with complexes I and III which have been
well studied [72]. The generation of ROS increases in intact
mitochondria as well as in submitochondrial particles due
to the oxidation of complex I substrates as a result of
inhibiting complex III by antimycin A [72]. On the other
hand, rotenone, an inhibitor of complex I, prevented the
antimycin A induced ROS generation in mitochondria but
not in the submitochondrial particles [72].

The ROS status in the cellular system regulates many
biological processes. While increased levels of ROS have been
shown to be involved in various pathological conditions,
under basal conditions, the generation of free radicals in the
heart is needed for cellular responses including regulating
myocyte growth and maintaining vascular smooth muscle
tone [73]. Basal levels of ROS play an important role in the
increase of cell cycle progression and intracellular signaling
associated with phosphorylation of several signaling proteins
like mitogen-activated protein kinases (MAPKs) and protein
kinase B [74]. Under normal physiological conditions, ROS
upregulates the Akt signaling pathway and promotes cell
survival [75]. ROS also behaves as second messengers in sig-
naling pathways wherein it has been demonstrated that, in the
presence of basal ROS levels, tyrosine phosphatase activity
is higher relative to its kinases [76]. Ligand stimulation (as
in the case of neutrophils, through the binding of cytosolic
proteins to a membrane bound oxidase) leads to increased
ROS levels and deactivation of tyrosine phosphatases with a
consequent increase in the kinase activity [76]. This condition
is transient and is reversed by reductions in ROS levels. ROS
has also been demonstrated to be involved in the modulation
of transcription factors like NF-«B, Hif-1 [77], and several
cardiac transcription factors like SRE Spl, AP-1, GATA-4, and
MEF2C [78].

Current experimental data suggest that the main mecha-
nism through which NSAIDs exert their anticancer activity is
through the generation of ROS leading to oxidative stress and
finally apoptosis in cancer cells [79-82]. ROS is accompanied
by the activation and inhibition of several signaling pathways
associated with cell death and cell survival although contro-
versies exist regarding the role of ROS in the downregulation
and upregulation of these pathways [83, 84]. The Akt pathway
is one of the most important pathways for promoting cell
survival and growth, and it has been shown that high ROS
levels are lethal and can inactivate the Akt signaling pathway
[85]. NF-xB is an important transcription factor involved in
cell survival, inflammation, and stress responses. Its down-
regulation was demonstrated by exposure of HLEC (human
lymphatic endothelial cells) cells to sustained oxidative stress
[86]. Increased levels of H,O, caused by addition of glucose
oxidase to HLECs prevented NF-«B(p65) regulated gene
expression by blocking translocation of NF-xB to the nucleus
[86]. NF-xB regulated gene expression is important for a
broad range of physiological processes [86].

Sulindac, a nonselective NSAID, as well as its metabolites,
generates ROS in different cancer cell lines [80-82]. Similarly,
diclofenac-induced apoptosis of various kinds of cancer cells
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has been reported [87]. This apoptosis is mainly mediated
by an increase in the intracellular levels of the ROS [87]. In
the cardiovascular system the major sources of ROS gener-
ation include the mitochondria, NADPH oxidases, xanthine
oxidoreductases, lipoxygenase, cyclooxygenases, nitric oxide
synthases, and cytochrome P450 based enzymes (Figure 2).
Continuous exposure of cardiovascular cells to oxidative
stress associated with elevated ROS levels would result in
altered cellular homeostasis which could be an important
contributing factor for various cardiovascular conditions.
Endothelial cells play a critical role in maintaining vas-
cular homeostasis which is important for the control of
many cardiovascular diseases including atherosclerosis and
thrombosis [88]. In human umbilical vein endothelial cells
(HUVEC), 160 uM sulindac induced endothelial apoptosis
as determined by a time dependent increase in annexin V
positive cells. Both sulindac and indomethacin significantly
increased cleaved poly(ADP-ribose) polymerase (PARP) lev-
els as well as increasing the level of the apoptotic activating
factor caspase-3 [89]. The apoptosis in HUVEC cells induced
by the NSAIDs was associated with reduced PPARS and 14-
3-3-¢ expression. Under normal conditions 14-3-3-¢ binds
to phosphorylated Bad inhibiting translocation of Bad to
the mitochondria and preventing apoptosis through the
mitochondrial pathway. However, sulindac through the sup-
pression of 14-3-3-¢ expression increased Bad translocation
to mitochondria thereby inducing apoptosis [89].

6. Mitochondria Are the Main Target
Organelles of the NSAIDs

It has been shown that the heart is more susceptible to
ROS generation induced by drugs like doxorubicin compared
to other tissues of the body although the drugs are evenly
distributed throughout the body [90]. This is possibly due
to high levels of mitochondria in the heart which are the
major producers of ROS in the cardiovascular system. Over
90% of ATP required for the normal functioning of the
heart is provided by the mitochondria, which utilizes an
efficient oxidative phosphorylation system. ATP production
may increase depending upon the requirements of the body,
especially at times of excessive physical exertion or other hor-
monal stimulations [91]. Mitochondria are not only the major
producers of the free radicals [72], but excessive generation
of ROS in turn targets the mitochondria itself [92]. NSAIDs
have been shown to have adverse effects on the mitochondria
resulting in the increased production of ROS [93, 94]. In yeast
cells different NSAIDs generated ROS which was associated
with delayed growth in wild-type cells [95]. Yeast cells lacking
mitochondrial DNA were resistant to a delay in cell growth
[95]. More specifically the yeast deletion strains lacking the
genes encoding subunits of the mitochondrial complexes III
and IV were significantly resistant to diclofenac as well as
indomethacin and ketoprofen [95]. This data suggests that
mitochondria are the main target organelles through which
these compounds exert their toxic effect on these cells. The
data also suggest that mitochondrial complex III and/or
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complex IV are affected by NSAIDs resulting in increased
ROS production.

The nonselective NSAID indomethacin has been shown
to target mitochondria by directly inhibiting mitochondrial
complex 1 of human colonic adenocarcinoma cells. The
inhibition of complex I was accompanied by a decrease in the
intracellular ATP levels within 10-30 minutes [96]. Studies
directly related to mitochondrial dysfunction or damage in
the presence of NSAIDs in CVD have not been carried
out but are needed (Table 2). Although the mechanism
by which NSAIDs can cause mitochondrial dysfunction in
cardiomyocytes is not fully understood, preventing increased
mitochondrial ROS levels will reduce the adverse effects of
elevated ROS levels and may reduce the incidences of CVD
caused by NSAIDs.

Apart from the role of NSAIDs in causing cardiovascular
incidences, NSAIDs affect other cardiovascular (CV) param-
eters including left ventricular function, infarct size, and
blood pressure.In elderly patients (71.8 + 7.6 years) NSAID
exposure for <14 days showed a significantly higher left ven-
tricular end-systolic dimension (+1.74 mm) and left ventric-
ular end-diastolic dimension (+3.69 mm) with a significantly
lower fractional shortening (—6.03%) when compared to non-
NSAID users. Patients with NSAID use for >14 days were
found to have higher left end-diastolic dimension (+1.96 mm)
but no significant changes in other echocardiographic param-
eters compared to non-NSAID users [97].

The impact of NSAIDs on infarct size during myocardial
infarction has only been investigated by a few laboratories.
Indomethacin (10 mg/kg) was found to increase myocardial
infarct size in animals, while ibuprofen (6.25 mg/kg/h) had
the opposite effect [98-100]. The authors suggested that the
opposite effect on the infarct size could be attributed to
variable doses of the NSAIDs, different degrees of inhibition
of prostaglandin and its by-products, and others factors
like myocardial oxygen consumption [99]. The same group
reported that the frequency of acute infarct expansion syn-
drome in patients with symptomatic pericarditis treated with
indomethacin was 22% compared to ibuprofen which was
only 8% [101]. The degree of infarct expansion was also greater
in patients treated with indomethacin compared to ibuprofen
[101].

Another important CV parameter is hypertension, which
is one of the major contributors to the development of CVD.
A series of events occur in patients with prolonged high
blood pressure including left ventricular hypertrophy, systolic
and diastolic dysfunction leading to arrhythmias, and heart
failure [102]. Except for aspirin, all NSAIDs could potentially
increase blood pressure when taken at doses necessary to
alleviate pain and inflammation in both hypertensive and
normotensive individuals [39].

NSAIDs through their ability to block COX enzymes
lead to the inhibition of renal prostaglandin [103]. Renal
prostaglandins modulate several renal functions which
include maintaining renal homeostasis and exerting diuretic
and natriuretic effects [104, 105]. Inhibition of the natriuretic
effect of COX-2 leads to an increase in sodium retention
thereby leading to excess water retention in humans [106].
The inhibition of renal vasodilating prostaglandins induces
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the production of vasoconstricting factors like vasopressin
and endothelin-1. This also results in water retention, thereby
leading to an increase in the total blood volume and caus-
ing altered systolic and diastolic blood pressure [103, 106,
107]. NSAIDs like ibuprofen, indomethacin, and naproxen
increase the mean arterial pressure by 5 to 6 mmHg in
patients with established hypertension [108, 109], which may
be enough to raise medical concerns under certain conditions
[110]. Additionally, the efficiency of all antihypertensive
medications except for calcium channel blockers may be sub-
stantially reduced by NSAIDs [40]. Since CV outcomes would
have different pathogenesis, increased ROS levels may not
be the underlying mechanism for some occurrences of CVD.
Other CV related parameters (such as hypertension), which
are important for the normal functioning of the heart, are also
likely to affect the CV outcome. Although direct comparisons
between the different clinical studies shown in Table 2 are not
possible, these studies suggest that CVD in NSAID users are
influenced by the study populations used (such as with versus
without preexisting acute myocardial infarction). Chronic
use of NSAIDs by hypertensive individuals has been shown to
increase the incidences of myocardial infarction, stroke, and
cardiovascular mortality compared to nonchronic NSAID
users [111] (Table 2).

7. NSAIDs and Nicotinamide Adenine
Dinucleotide Phosphate-Oxidase

Apart from mitochondria being the major source of ROS gen-
eration, the plasma membrane bound nicotinamide adenine
dinucleotide phosphate-oxidase (NADPH oxidase) has also
been indicated in the production of ROS in phagocytes like
neutrophils and macrophages where it produces an “oxidative
burst” of O,"” [112]. NADPH oxidases are considered to be the
major source of nonmitochondrial ROS generation in many
cells. The formation of free radicals is due to the electron
transferred from the NADPH to molecular oxygen during the
process of phagocytosis. The phagocytic NADPH oxidases
play an important role in the host defense mechanism and are
involved in killing pathogens ingested during phagocytosis.
Apart from the phagocytic NADPH oxidase, in the last
decade NADPH oxidase-dependent ROS generation was also
identified in nonphagocytic cells including the endothelial
cells, vascular smooth muscle cells, and cardiomyocytes of
the cardiovascular system [113]. Compared to the phago-
cytic NADPH oxidases, the nonphagocytic enzymes produce
lower amounts of ROS continuously and these levels may
increase in the presence of specific extrinsic stimuli [113].
More interestingly, the ROS generated by NADPH oxidases
lead to an enhancement in levels of ROS produced from
other sources [112]. In one such study, mitochondria and
NADPH oxidase 1 isoenzyme (Nox 1) were found to be closely
coordinated for sustained generation of ROS leading to
oxidative stress and cell death [112]. When human embryonic
kidney 293T cells were exposed to serum-free media elevated
ROS levels occur within 5 minutes of exposure and persisted
for 8 hrs [112]. Utilizing RNA interference Nox isoenzymes
were demonstrated to play a role in the induction of serum-
withdrawal ROS generation. Although low levels of Nox 2
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and Nox 4 did not affect the generation of serum-withdrawal
induced ROS generation, low levels of Nox 1led to a decrease
in the ROS formation in these cells at 8 h (late phase). Using
different mitochondrial complex inhibitors such as rotenone
and potassium cyanide (KCN) mitochondria were found to
play a role in the early phase (first 30 minutes) of ROS
generation in the cells exposed to serum-free media [112]. The
authors of the study suggested that mitochondrial generation
of ROS occurs first, followed by the action of Nox 1 in the
serum deprived cell system [112].

The adverse effect of NSAIDs on the cardiovascular
system was evident by a study which reported that when male
spontaneously hypertensive rats (SHR) were treated either
with coxibs or with nonselective NSAIDs like diclofenac
and naproxen, the mRNA expression of NOX enzymes 1, 2,
and 4 was markedly increased in the heart and aorta [114].
Furthermore the oxidative stress in the heart and aorta of
the NSAID treated animals was also elevated along with an
increase in the O," production. Of all the NSAIDs used,
diclofenac was the most potent inducer of NADPH oxidases
[114]. The role of NADPH oxidases in the generation of
ROS in the animals was ascertained by studying the effect
of apocynin (an NADPH oxidase inhibitor) in the reversal
of the oxidative stress induced by diclofenac [114]. Activation
of Nox 4 by NSAIDs like aspirin, naproxen, nimesulide, and
piroxicam has also been reported in rat adipocytes resulting
in higher production of H, O, [115].

8. NSAIDs and Xanthine Oxidase

Xanthine oxidoreductase (XOR) is a conserved molybd-
oflavoenzyme occurring in milk and some tissues includ-
ing the liver, heart, and small intestine [116]. It has two
interconvertible forms: xanthine dehydrogenase (XDH) and
xanthine oxidase (XO). Both enzymes catalyze the conversion
of hypoxanthine to xanthine and xanthine to uric acid [116].
Although both enzymes are involved in purine degradation,
XO is involved only in the reduction of oxygen while XDH is
involved in the reduction of both oxygen and to a larger extent
NAD™. The enzyme XDH has the ability to bind to NAD" and,
following the oxidation of hypoxanthine to xanthine, reduces
NAD" to NADH. On the other hand, XO, not being able to
bind to NAD™, produces the free radical, O, by the transfer
of electrons to molecular oxygen. Apart from O,"", H,O,
was also shown to be a major free radical generated by XO
[117]. XDH can utilize molecular oxygen and generate ROS
but to a lesser extent than XO. Compared to the other sources
of ROS generation like mitochondria and NADPH oxidases,
the role of XOR as a producer of ROS has been previously
overlooked due to its relatively low activity in the heart of
animals and human. Recently the role of XOR in mediating
various pathological conditions has been demonstrated in the
cardiovascular system due to significant increases in cellular
XOR levels [118]. This was evident by the inhibition of XOR
by compounds like allopurinol and oxypurinol which lead to
a decrease in the oxidative tissue damage. Apart from their
property of inhibiting XOR, allopurinol and oxypurinol have
also been shown to act as free radical scavengers and inhibit
lipid peroxidation as well as inducing heat shock proteins
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during times of oxidative stress [118]. Interestingly, a high
level of serum uric acid, the end product of XOR, has been
shown to be a marker for impaired oxidative metabolism
[119].

Although the prevalence of this enzyme has been
reported in human hearts [116, 120] and although increased
levels of uric acid in myocardial heart failure have been
reported in the literature [119], the role of NSAIDs on XO
in the development of various cardiovascular conditions has
not been investigated. In a study to investigate the adverse
effect of aspirin on gastric mucosal lining leading to peptic
ulcers and intestinal bleeding, rat gastric mucosal cells were
incubated with aspirin and cytotoxicity already induced by
hypoxanthine/XO was determined [121]. Aspirin was shown
to increase the cytotoxicity induced by XO. This increase in
cytotoxicity in the presence of hypoxanthine/XO was incor-
porated with an increase in uric acid levels which suggests
ROS generation in these cells. Aspirin had an additive effect to
these changes induced by hypoxanthine/XO [121]. In another
study, it was seen that indomethacin augmented the XO
activity in human colonic adenocarcinoma cells by more than
100% upon 60 minutes of exposure which resulted in a time
dependent increase in the rate of lipid peroxidation [96].

9. NSAIDs and Lipoxygenase

Arachidonic acid that is formed by the action of diacylglyc-
erol and cytosolic phospholipase A2 (cPLA,) from the mem-
brane phospholipids is a substrate involved in the formation
of either prostaglandins and thromboxanes or leukotrienes by
the cyclooxygenase and lipoxygenase pathway respectively.
The oxidation of arachidonic acid by these enzymes leads
to the formation of ROS as the by-product [122]. It was
shown that ¢PLA,-arachidonic acid linked cascade could
lead to an increase in ROS generation via the lipoxygenase
pathway in the rat fibroblasts [123]. The same group reported
that the generation of ROS triggered by tumor necrosis
factor- (TNF-) o was mediated by the activation of cPLA,
and the metabolism of arachidonic acid by 5-lipoxygenase
[124]. Lipoxygenase has been reported to be involved in
the upregulation of NADPH oxidases and increased ROS
generation [125].

While NSAIDs are well known to inhibit the cyclooxyge-
nase pathway, they do not inhibit the formation of leukotri-
enes by the lipoxygenase pathway. NSAIDs increases arachi-
donic acid levels [82, 126] and arachidonic acid itself can
increase ROS generation [82]. Increased levels of leukotrienes
and other metabolites of the lipoxygenase pathway induced
by NSAIDs lead to gastric mucosal damage [127]. The
effect of NSAIDs like indomethacin, piroxicam, and aspirin
on the development of gastric lesions could be reversed
by 5-lipoxygenase inhibitors and leukotriene antagonists
[127]. This is consistent with NSAIDs increasing the lev-
els of leukotrienes and products of 5-lipoxygenase activ-
ity. Increased occurrences of leukotriene C4 production
were also observed in the gastric circulation induced by
indomethacin [128]. The gastric and intestinal lesions in
the presence of indomethacin could be reverted by 5-
lipoxygenase inhibitor. Increased gastric mucosal leukotriene
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B4 production was observed in patients suffering from
arthritis due to prolonged NSAID treatment [129]. NSAIDs
have also been reported to increase the expression of 15-
lipoxygenase-1 protein in colorectal cancer cells resulting in
the inhibition of cell growth and apoptosis [130]. Although
a growing body of evidence supports the idea that NSAIDs
upregulate the lipoxygenase pathway, no direct evidence is
available on the precise biochemical mechanism by which
NSAIDs induced lipoxygenase pathway activity increase the
rate of ROS generation. It is possible that the upregulation of
the lipoxygenase pathway by NSAIDs may contribute to the
net increase in free radicals leading to apoptosis and oxidative
cell damage and ultimately cell death.

10. NSAIDs and Cytochrome P450

Cytochrome P450 (P450) is a family of biotransformation
enzymes involved in critical metabolic processes [131]. They
are a class of more than 50 enzymes that catalyze a diverse
set of reactions with a wide range of chemically dissimilar
substrates [131]. In humans they are primarily membrane-
associated proteins that can be found in the inner mem-
brane of the mitochondria or endoplasmic reticulum of cell
[132]. They are predominantly expressed in the liver but are
present in other tissues of the body as well.This group of
proteins belongs to the heme-thiolate enzyme family, and
they are involved in the oxidative metabolism of numerous
compounds of endogenous and exogenous origin [133]. The
role of P450 in drug metabolism has been considered to
be a key factor in overcoming the adverse and toxicological
effects of drugs [134]. The P450 system has been shown to
play an important role in activation of oxygen and ROS
generation [135, 136]. Normally, the active oxygen species are
formed in situ during the P450 cycle when it reacts with a
substrate. However, uncoupling of the P450 system results in
excessive ROS generation and the P450 system being unable
to metabolize a substrate, which leads to oxidative stress and
subsequently cellular damage [133, 137].

Several studies have indicated the role of P450 in
toxicity induced by NSAIDs [138-140]. One such NSAID,
diclofenac, has been associated with hepatotoxicity due to
poor metabolism by P450 [140]. Expression of a drug metab-
olizing mutant of P450, BM3 M, in yeast mimicked the
oxidative metabolite profiles of diclofenac metabolized by
human P450s [141]. The treatment of the yeast cells expressing
the mutant BM3 M1l with 30 uM and 50 uM diclofenac
increased the ROS production in the cells significantly by 1.5
and 4 times, respectively, compared to cells not treated with
the compound [140]. In another study by the same group,
it was shown that diclofenac as well as indomethacin and
ketoprofen showed an increase in ROS generation by 1.5-2
times compared to control [95]. On the other hand, P450 has
been shown to be upregulated in bacterial cells by NSAIDs
like ibuprofen, ketoprofen, and indomethacin by 11.8-fold,
3.9-fold, and 3.0-fold, respectively, relative to control cells
[142]. Although no direct evidence is yet available on the
involvement of P450 in the generation of ROS by NSAIDs
in CVD, experimental data available in other cells suggest
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that NSAIDs may lead to increased ROS levels via the
upregulation of P450 in cardiovascular related cells.

11. NSAIDs and Nitric Oxide Synthases

Nitric oxide (NO) is among the few gaseous biological mes-
sengers and can be synthesized from /-arginine by endothelial
nitric oxide synthase (eNOS). NO has emerged as a key
signaling molecule for maintaining vasodilation and the
dysfunction of enzymes associated with NO production has
been implicated in various pathological conditions including
CVD, diabetes, and hypertension. When eNOS, which is
responsible for regulating vascular homeostasis, is impaired
due to a lack of the cofactor tetrahydrobiopterin (BH4), it
results in the generation of O,"” rather than NO [143]. This
state is referred to as the uncoupled state of eNOS and is
mainly attributed to the deficiency or lack of BH4 leading to
the generation of free radicals [144]. The depletion of the BH4
can be the result of severe oxidative stress.

A 1.5-fold decrease in plasma nitrite levels was demon-
strated in SHR treated with nonselective COX inhibitors
and coxibs [114]. Although earlier reports demonstrated a
cardioprotective effect of naproxen, a twofold decrease in
plasma nitrite levels was observed after treatment of SHR
with naproxen suggesting diminished levels of bioactive NO
[114]. Additionally, the authors reported an upregulation in
the eNOS mRNA expression levels rather than a decrease by
diclofenac and naproxen by >2-fold. This increase has been
attributed to the generation of H,O, which increases eNOS
expression at the transcriptional and posttranscriptional
levels [145]. Diclofenac treated animals showed an increase
in O," production which could be inhibited by the NOS
inhibitor -NAME. NSAIDs have also been shown to impair
the NO induced vasodilation in healthy individuals possibly
due to increased oxidative stress induced by NSAIDs due to
the uncoupling of eNOS [114].

12. NSAIDs, ROS, and Cardiovascular Diseases

Li et al. investigated the effect of several NSAIDs on
free radical generation, NADPH oxidase expression, eNOS
expression, and nitrite levels in the rat aorta and heart using
a mouse model of hypertension as well as vasodilation in
human subjects [114]. As previously described in the sections
NSAIDs and nicotinamide adenine dinucleotide phosphate-
oxidase and NSAIDs and nitric oxide synthases, this study
demonstrated that the heart and aorta of the NSAID treated
animals showed increased O,” production and oxidative
stress. The oxidative stress was due to ROS formation by many
enzymes including NADPH oxidases, with diclofenac being
the most potent inducer of NADPH oxidases [114].

Rat embryonic H9¢2 cardiac cells exposed to celecoxib,
at concentrations of 10 M and 100 uM, demonstrated a
decrease in cell viability by 45% and 92%, respectively, and
this was associated with a decrease in the expression levels
of the cell survival protein Bcl2 [146]. However, 1uM of
celecoxib had no significant effect on cell viability and was
associated with an upregulation of the Bcl, transcript level
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by ~30%. This effect of such a low amount of NSAID in
the upregulation of cell survival gene expression is rather
comparable to the effect of proteasome inhibitors like MG-132
or epoxomicin which at nanomolar ranges has been reported
to actually increase the proteasome activity in the pretreated
neocortical neurons [147]. Also, this was the first study that
measured COX-2 levels directly in the cardiac cells [146].
Although no significant changes in the COX-2 levels were
observed in cells treated with 1uM celecoxib, at 10 uM the
COX-2 levels decreased [146].

Apart from studying the effect of NSAIDs on cardiomy-
ocytes, the role of NSAIDs on the COX enzyme system in
platelets is also of prime importance. Platelets are impor-
tant for the life-saving blood coagulation process [148] and
are closely associated with CVD [149]. The aggregation
of platelets by agonists like ADP, collagen, thrombin, or
epinephrine leads to the formation of thrombus (microaggre-
gate of platelets in fibrin mass), at the site of atherosclerotic
plaque fissure on the coronary artery wall of the heart which
results in thrombosis or CVD [150]. As expected because of
the importance of platelets in CVD, the generation of ROS in
platelets has been well-studied [149]. Measurement of O,
in platelets activated by thrombin as well as in inactivated
platelets demonstrated that thrombin significantly increased
the free radical (O,"") generation by ~40% in the activated
platelets compared to the inactivated platelets [149]. Although
this result suggests the possibility of increased ROS formation
in activated platelets, no direct role of NSAIDs in the
production of ROS in the platelets has been reported [151].
However, it has been demonstrated that selective COX-2
inhibition led to an increase in platelet activation [152]. The
increased platelet activation by COX-2 inhibition facilitated
thrombotic vessel occlusion after the disruption of the vessel
wall supporting a critical role for COX-2 inhibition in
platelet activation and aggregation leading to thrombosis
[152]. All these effects were accompanied by a decline in the
production of endothelial prostacyclin. Diclofenac (1 mg/kg),
a nonselective NSAID, caused significantly increased platelet
vessel wall interaction with an increase in the number of
adherent platelets on the endothelium of diclofenac treated
animals compared to the control group [153]. Thrombotic
vessel wall occlusion was also increased in animals treated
with diclofenac once the vessel wall had been injured [153].
The direct contribution of ROS induced by NSAIDs to platelet
activation and aggregation is yet to be determined. The role
of aspirin in cardioprotection by the inhibition of platelet
aggregation due to the inhibition of platelet thromboxane A2
is well established [154, 155]. Similarly, naproxen has also been
suggested to have significant antiplatelet effect comparable to
that of aspirin [156].

13. Possible Alternatives to NSAIDs for
Reduced Cardiovascular Events

With the availability of a larger selection of synthetic drugs,
people are more aware of the side effects of taking drugs
on a regular basis. Nutraceuticals or phytoceuticals are a
class of compounds that are derived from plants with fewer
or no side effects compared to synthetic drugs [157] but
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with similar and sometimes even better beneficial biological
effects [158]. Hyperforin obtained from the herb Hypericum
perforatum has been reported to inhibit COX-1 3-18-fold
higher when compared to aspirin [158]. Hyperforin is a
natural antioxidant and has been shown to inhibit excessive
ROS generation [159] as well as prostaglandin synthesis [160].
Several other studies indicate the usefulness of nutraceuticals
in cardiovascular protection specifically by the inhibition of
COX. Purified anthocyanins (pigment responsible for the
color of fruits) have been shown to have an effect on COX
activity [161]. While NSAIDs like naproxen (10 uM) and
ibuprofen (10 uM) showed COX-1 inhibition of 47.3% and
54.3%, respectively, anthocyanins from raspberries (10 M)
and blackberries (10 uM) showed an inhibition of 45.8%
and 38.5%, respectively. COX-2 inhibition by naproxen and
ibuprofen was 39.8% and 41.3%, for sweet cherries it ranged
from 36% to 48%, and for berries the inhibition was between
31% and 46% [161]. The antioxidant activities of the antho-
cyanins derived from these fruits were also high suggesting
the importance of their role in reducing ROS.

In other studies the biologically active compounds of
mycelia of Grifola frondosa and Agrocybe aegerita (edible
mushrooms) were isolated and studied for their antioxidant
and COX activity [162, 163]. The authors found that that fatty
acids like ergosterol, ergostra-4,6,8(14),22-tetraen-3-one, and
1-oleoyl-2-linoleoyl-3-palmitoylglycerol in the case of Grifola
frondosa and palmitic acid, ergosterol, 5,8-epidioxy-ergosta-
6,22-dien-3beta-ol, mannitol, and trehalose in the case of
Agrocybe aegerita as determined by spectroscopic analysis
were the most potent in inhibiting both COX-1 and COX-
2 [162, 163]. The efficiency of fish oil omega-3 fatty acids
like eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DCHA) [164] in preventing CVD, stroke, and high blood
pressure is also well established [165, 166]. It was suggested
that fish oils have natural inhibitors which can inhibit COX
[167]. While the EPA of fish oils inhibited COX-1 more than
COX-2 [168], DCHA was shown to be an effective inhibitor
of arachidonic acid induced prostaglandin biosynthesis [169].
Among the other reports available indicating the role of
nutraceuticals in the cyclooxygenase pathway, calcitriol (vita-
min D) [170], several types of flavonoids [171,172], and marine
derived steroids from formosan soft coral Clavularia viridis
[173] all have been reported to affect prostaglandin synthesis.
Interestingly most of the compounds exhibit antioxidant
properties and inhibit both COX-1 and COX-2 [161, 172]
suggesting a role in cardioprotection.

14. Conclusion

The review focuses on ROS generated by NSAIDs and its role
in CVD. While the number of clinical experiments investi-
gating the effects of NSAIDs on the cardiovascular events
has significantly increased over the last two decades, basic
research related to the mechanism by which NSAIDs cause
cardiovascular dysfunction is limited. High variability in
the clinical trials conducted (different populations, dosages,
exposure, and types of NSAIDs) has led to results which are
difficult to interpret and compare between studies. However,
irrespective of the type of NSAID used, increased occurrence
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of CVD is common. Clinical trials showed that the risk of
CVD is higher for coxibs than nonselective NSAIDs probably
through the imbalance between prostacyclin/thromboxane
levels.

According to the Joint Meeting of the Arthritis Advisory
Committee and Drug Safety and Risk Management Advi-
sory Committee, US FDA (2014), patients with a history
of myocardial infarction, heart failure, hypertension, and
other CV risk factors are at a greater risk of developing
cardiovascular diseases due to NSAIDs usage compared to
normal individuals [174]. The committee concluded that
the increased risk of fatal cardiovascular thrombotic events,
myocardial infarction, and stroke by NSAIDS should be
lessened by using the lowest effective dose of NSAIDs for the
shortest period of time possible.

Interestingly most of the studies that showed the gener-
ation of ROS induced by NSAIDs in various types of cells
involved nonselective or semiselective NSAIDs (Table 3).
However, irrespective of the type of NSAIDs used, either
selective COX-2 inhibitors or the nonselective NSAIDs,
NSAIDs produced oxidative stress with the nonselective
NSAIDs showing a greater degree of ROS generation [114].
Therefore it may be hypothesized that it is through the
generation of ROS as well as the upregulation and downreg-
ulation of several cell survival pathways that these NSAIDs
exert their thrombogenic effect. Although COX-2 inhibitors
have been shown to cause CVD some COX-2 inhibitors
such as celebrex are currently still used widely, as the FDA
determined the benefits of this drug outweigh the potential
risks in properly selected and informed patients. The use of
COX-2 inhibitors underscores the need for compounds with
NSAID like properties without the side effects.

As such, various aspects of NSAID induced cardiotoxi-
city still need to be investigated, including the significance
of NSAID induced lipoxygenase ROS generation in the
cardiovascular system, determining if prevention of ROS
production reduces CVD and determining if ROS production
is needed for pain relief. Answers to these questions will result
in substantial improvement on how CVD risk management
will be conducted in the future.
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