
NSGA-Net: Neural Architecture Search using Multi-Objective
Genetic Algorithms Supplementary Materials

Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar,
Kalyanmoy Deb, Erik Goodman and Wolfgang Banzhaf

Michigan State University

East Lansing, Michigan

{luzhicha,whalenia,vishnu,dhebarya,kdeb,goodman,banzhafw}@msu.edu

ACM Reference Format:

Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy

Deb, Erik Goodman and Wolfgang Banzhaf. 2019. NSGA-Net: Neural Ar-

chitecture Search using Multi-Objective Genetic Algorithms Supplemen-

tary Materials. In Proceedings of the Genetic and Evolutionary Computa-

tion Conference 2019 (GECCO ’19). ACM, New York, NY, USA, 5 pages.

https://doi.org/10.1145/3321707.3321729

1 DUPLICATE CHECKING AND REMOVAL

Due to the directed acyclic nature of our encoding, redundancy exists

in the search space defined by our coding, meaning that there exist

multiple encoding strings that decode to the same network architec-

ture. Empirically, we have witnessed the redundancy becomes more

and more severe as the allowed number of nodes in each phase’s

computational block increase, as shown in Figure 1.

4 5 6
Number of allowed nodes in each phase

60

65

70

75

80

Re
du

nd
an

cy
 (%

)

Figure 1: Increase in redundancy as node count increases.

Since the training of a deep network is a computationally taxing

task, it is essential to avoid the re-computation of the same architec-

ture. In this section, we will provide with an overview of an algorithm

we developed to quickly and approximately do a duplicate-check on

genomes. The algorithm takes two genomes to be compared as an

input, and outputs a flag to indicate if the supplied genomes decode

to same architecture.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6111-8/19/07. . . $15.00
https://doi.org/10.1145/3321707.3321729

In general, comparing two graphs is NP-hard, however, given that

we are working with Directed Acyclic Graphs with every node being

the same in terms of operations, we were able to design an efficient

network architecture duplicate checking method to identify most of

the duplicates if not all. The method is built on top of simply intuition

that under such circumstances, the duplicate network architectures

should be identified by swapping the node numbers. Examples are

provided in Figure 2. Our duplicates checking method first derive

the connectivity matrix from the bit-string, which will have positive

1 indicating there is an input to that particular node and negative 1

indicating an output from that particular node. Then a series row-

and-column swapping operation takes place, which essentially try to

shuffle the node number to check if two connectivity matrix can be

exactly matched. Empirically, we have found this method performs

very efficiently in identifying duplicates. An example of different

operation encoding bit-strings decode to the same network phase is

provided in Figure 2.

1

2

3

4

5

6 1

2

3

6

4

5 1

3

2

5

4

6

1 2 3 4 5 6

1 0 1 1 0 0 0

2 -1 0 0 1 0 1

3 -1 0 0 1 1 1

4 0 -1 -1 0 0 0

5 0 0	 -1 0 0 1

6 0 -1 -1 0 -1 0

1 2 3 4 5 6

1 0 1 1 0 0 0

2 -1 0 0 0 1 1

3 -1 0 0 1 1 1

4 0 0 -1 0 1 0

5 0 -1	 -1 -1 0 0

6 0 -1 -1 0 0 0

1 2 3 4 5 6

1 0 1 1 0 0 0

2 -1 0 0 1 1 1

3 -1 0 0 0 1 1

4 0 -1 0 0 0 1

5 0 -1	 -1 0 0 0

6 0 -1 -1 -1 0 0

1-10-011-0010-01101 1-10-001-0111-01100 1-10-010-0110-01110

Figure 2: Examples of different encoding bit strings that decode

to the same network computation block.

2 ARCHITECTURE COMPLEXITY

ESTIMATION

We argue that the choice of inference time or number of parameters

as proxies for computational complexity are sub-optimal and ineffec-

tive in practice. In fact, we initially considered both of these objec-

tives. We concluded from extensive experimentation that inference

time cannot be estimated reliably due differences and inconsistencies

in computing environment, GPU manufacturer, and GPU tempera-

ture etc. Similarly, the number of parameters only relates one aspect

of computational complexity. Instead, we chose to use the number

of floating-point operations (FLOPs) for our second objective. The

following table compares the number of active nodes, the number of

connections, the total number of parameters and the FLOPs over a

https://doi.org/10.1145/3321707.3321729
https://doi.org/10.1145/3321707.3321729

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar,

Kalyanmoy Deb, Erik Goodman and Wolfgang Banzhaf

Table 1: Network examples comparing the number of active nodes, number of connections, number of parameters and number of

multiply-adds.

Phase # of # of Params. FLOPs

Architectures Nodes Conns (K) (M)

3 4 113 101

4 6 159 141

4 7 163 145

5 9 208 186

5 10 216 193

6 13 265 237

few sampled architecture building blocks. See Table 1 for examples

of these calculations.

NSGA-Net: Neural Architecture Search using EMO GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Figure 3: Set of networks architectures on the trade-off frontier discovered by NSGA-Net.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar,

Kalyanmoy Deb, Erik Goodman and Wolfgang Banzhaf

Table 2: Summary of relevant related work along with datasets each method has been applied to, objectives optimized, and the

computational power used (if reported). Methods not explicitly named are presented as the author names. PTB refers to the Penn

Treebank [14] dataset. The Dataset(s) column describes what datasets the method performed a search with, meaning other datasets

may have been presented in a study, but not used to perform architecture search. A dash represents some information not being

provided. We attempt to limit the focus here to published methods, though some unpublished methods may be listed for historical

contingency.

Method Name Dataset(s) Objective(s) Compute Used

R
L

Zoph and Lee [21] CIFAR-10, PTB Accuracy
800 Nvidia K80 GPUs

22,400 GPU Hours

NASNet [22] CIFAR-10 Accuracy
500 Nvidia P100 GPUs

2,000 GPU Hours

BlockQNN [20] CIFAR-10 Accuracy
32 Nvidia 1080Ti GPUS

3 Days

MetaQNN [1]
SVHN, MNIST

CIFAR-10
Accuracy

10 Nvidia GPUs

8-10 Days

MONAS [7] CIFAR-10 Accuracy & Power Nvidia 1080Ti GPUs

EAS [2] SVHN, CIFAR-10 Accuracy
5 Nvidia 1080Ti GPUs

2 Days

ENAS [16] CIFAR-10, PTB Accuracy
1 Nvidia 1080Ti GPUs

< 16 Hours

E
A

CoDeepNEAT [15] CIFAR-10, PTB Accuracy 1 Nvidia 980 GPU

Real et al. [18] CIFAR-10, CIFAR-100 Accuracy -

AmoebaNet [17] CIFAR-10 Accuracy
450 Nvidia K40 GPUs

~7 Days

GeNet [19] CIFAR-10 Accuracy
10 GPUs

17 GPU Days

NEMO [10]
MNIST, CIFAR-10

Drowsiness Dataset
Accuracy & Latency 60 Nvidia Tesla M40 GPUs

Liu et al. [12] CIFAR-10 Accuracy 200 Nvidia P100 GPUs

LEMONADE [6] CIFAR-10 Accuracy
Titan X GPUs

56 GPU Days

PNAS [11] CIFAR-10 Accuracy -

PPP-Net [5] CIFAR-10
Accuracy &

Params/FLOPS/Time
Nvidia Titan X Pascal

O
th

er

NASBOT [9]
CIFAR-10

Various
Accuracy 2-4 Nvidia 980 GPUs

DPC [3] Cityscapes [4] Accuracy
370 GPUs

1 Week

NAO [8] CIFAR-10 Accuracy
200 Nvidia V100 GPUs

1 Day

DARTS [13] CIFAR-10 Accuracy
1 Nvidia 1080Ti GPUs

1.5 - 4 Day

NSGA-Net: Neural Architecture Search using EMO GECCO ’19, July 13–17, 2019, Prague, Czech Republic

REFERENCES
[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. 2017. Designing

Neural Network Architectures using Reinforcement Learning. In ICLR.
[2] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. 2018. Efficient

Architecture Search by Network Transformation. In AAAI.
[3] L.-C. Chen, M. D. Collins, Y. Zhu, G. Papandreou, B. Zoph, F. Schroff, H.

Adam, and J. Shlens. 2018. Searching for Efficient Multi-Scale Architectures
for Dense Image Prediction. arXiv preprint arXiv:1809.04184 (Sep 2018).
arXiv:cs.CV/1809.04184

[4] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille. 2014. Detect
What You Can: Detecting and Representing Objects Using Holistic Models and
Body Parts. In 2014 IEEE Conference on Computer Vision and Pattern Recogni-

tion. 1979–1986. https://doi.org/10.1109/CVPR.2014.254
[5] Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, and Min Sun. 2018.

PPP-Net: Platform-aware Progressive Search for Pareto-optimal Neural Architec-
tures. In ICLR.

[6] T. Elsken, J. Hendrik Metzen, and F. Hutter. 2018. Efficient Multi-objective Neural
Architecture Search via Lamarckian Evolution. arXiv preprint arXiv:1804.09081

(April 2018). arXiv:stat.ML/1804.09081
[7] C.-H. Hsu, S.-H. Chang, D.-C. Juan, J.-Y. Pan, Y.-T. Chen, W. Wei, and S.-

C. Chang. 2018. MONAS: Multi-Objective Neural Architecture Search us-
ing Reinforcement Learning. arXiv preprint arXiv:1806.10332 (June 2018).
arXiv:1806.10332

[8] C.-H. Hsu, S.-H. Chang, D.-C. Juan, J.-Y. Pan, Y.-T. Chen, W. Wei, and S.-C.
Chang. 2018. Neural Architecture Optimization. arXiv preprint arXiv:1808.07233

(Aug 2018). arXiv:1808.07233
[9] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. Xing. 2018.

Neural Architecture Search with Bayesian Optimisation and Optimal Transport.
arXiv preprints arXiv:1802.07191 (Feb 2018). arXiv:1802.07191

[10] Y.H. Kim, B. Reddy, S. Yun, and C. Seo. 2017. NEMO: Neuro-evolution with
multiobjective optimization of deep neural network for speed and accuracy. In
JMLR: Workshop and Conference Proceedings, Vol. 1. 1–8.

[11] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan L.
Yuille, Jonathan Huang, and Kevin Murphy. 2017. Progressive Neural Architecture

Search. CoRR abs/1712.00559 (2017). arXiv:1712.00559 http://arxiv.org/abs/
1712.00559

[12] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Ko-
ray Kavukcuoglu. 2018. Hierarchical Representations for Efficient Architecture
Search. In ICLR. https://openreview.net/forum?id=BJQRKzbA-

[13] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. DARTS: Differentiable
Architecture Search. arXiv preprint arXiv:1806.09055 (2018).

[14] Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann
Bies, Mark Ferguson, Karen Katz, and Britta Schasberger. 1994. The Penn
Treebank: Annotating Predicate Argument Structure. In Proceedings of the Work-

shop on Human Language Technology (HLT ’94). Association for Computational
Linguistics, Stroudsburg, PA, USA, 114–119. https://doi.org/10.3115/1075812.
1075835

[15] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,
H. Shahrzad, A. Navruzyan, N. Duffy, and B. Hodjat. 2017. Evolving Deep Neural
Networks. arXiv preprint arXiv:1703.00548 (March 2017). arXiv:1703.00548

[16] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. 2018.
Efficient Neural Architecture Search via Parameter Sharing. CoRR abs/1802.03268
(2018). arXiv:1802.03268 http://arxiv.org/abs/1802.03268

[17] E. Real, A. Aggarwal, Y. Huang, and Q. V Le. 2018. Regularized Evolution
for Image Classifier Architecture Search. arXiv preprint arXiv:1802.01548 (Feb
2018). arXiv:1802.01548

[18] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. Le, and A.
Kurakin. 2017. Large-Scale Evolution of Image Classifiers. arXiv preprint

arXiv:1703.01041 (March 2017). arXiv:1703.01041
[19] L. Xie and A. Yuille. 2017. Genetic CNN. In ICCV.
[20] Zhao Zhong, Junjie Yan, and Cheng-Lin Liu. 2017. Practical Network Blocks

Design with Q-Learning. CoRR abs/1708.05552 (2017). arXiv:1708.05552
http://arxiv.org/abs/1708.05552

[21] B. Zoph and Q. V. Le. 2016. Neural Architecture Search with Reinforcement
Learning. arXiv preprint arXiv:1611.01578 (Nov 2016). arXiv:cs.LG/1611.01578

[22] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition. 8697–8710.

http://arxiv.org/abs/cs.CV/1809.04184
https://doi.org/10.1109/CVPR.2014.254
http://arxiv.org/abs/stat.ML/1804.09081
http://arxiv.org/abs/1806.10332
http://arxiv.org/abs/1808.07233
http://arxiv.org/abs/1802.07191
http://arxiv.org/abs/1712.00559
http://arxiv.org/abs/1712.00559
http://arxiv.org/abs/1712.00559
https://openreview.net/forum?id=BJQRKzbA-
https://doi.org/10.3115/1075812.1075835
https://doi.org/10.3115/1075812.1075835
http://arxiv.org/abs/1703.00548
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1703.01041
http://arxiv.org/abs/1708.05552
http://arxiv.org/abs/1708.05552
http://arxiv.org/abs/cs.LG/1611.01578

	1 Duplicate Checking and Removal
	2 Architecture Complexity Estimation
	References

