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1 DUPLICATE CHECKING AND REMOVAL

Due to the directed acyclic nature of our encoding, redundancy exists

in the search space defined by our coding, meaning that there exist

multiple encoding strings that decode to the same network architec-

ture. Empirically, we have witnessed the redundancy becomes more

and more severe as the allowed number of nodes in each phase’s

computational block increase, as shown in Figure 1.
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Figure 1: Increase in redundancy as node count increases.

Since the training of a deep network is a computationally taxing

task, it is essential to avoid the re-computation of the same architec-

ture. In this section, we will provide with an overview of an algorithm

we developed to quickly and approximately do a duplicate-check on

genomes. The algorithm takes two genomes to be compared as an

input, and outputs a flag to indicate if the supplied genomes decode

to same architecture.
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In general, comparing two graphs is NP-hard, however, given that

we are working with Directed Acyclic Graphs with every node being

the same in terms of operations, we were able to design an efficient

network architecture duplicate checking method to identify most of

the duplicates if not all. The method is built on top of simply intuition

that under such circumstances, the duplicate network architectures

should be identified by swapping the node numbers. Examples are

provided in Figure 2. Our duplicates checking method first derive

the connectivity matrix from the bit-string, which will have positive

1 indicating there is an input to that particular node and negative 1

indicating an output from that particular node. Then a series row-

and-column swapping operation takes place, which essentially try to

shuffle the node number to check if two connectivity matrix can be

exactly matched. Empirically, we have found this method performs

very efficiently in identifying duplicates. An example of different

operation encoding bit-strings decode to the same network phase is

provided in Figure 2.
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Figure 2: Examples of different encoding bit strings that decode

to the same network computation block.

2 ARCHITECTURE COMPLEXITY

ESTIMATION

We argue that the choice of inference time or number of parameters

as proxies for computational complexity are sub-optimal and ineffec-

tive in practice. In fact, we initially considered both of these objec-

tives. We concluded from extensive experimentation that inference

time cannot be estimated reliably due differences and inconsistencies

in computing environment, GPU manufacturer, and GPU tempera-

ture etc. Similarly, the number of parameters only relates one aspect

of computational complexity. Instead, we chose to use the number

of floating-point operations (FLOPs) for our second objective. The

following table compares the number of active nodes, the number of

connections, the total number of parameters and the FLOPs over a
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Table 1: Network examples comparing the number of active nodes, number of connections, number of parameters and number of

multiply-adds.

Phase # of # of Params. FLOPs

Architectures Nodes Conns (K) (M)

3 4 113 101

4 6 159 141

4 7 163 145

5 9 208 186

5 10 216 193

6 13 265 237

few sampled architecture building blocks. See Table 1 for examples

of these calculations.
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Figure 3: Set of networks architectures on the trade-off frontier discovered by NSGA-Net.
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Table 2: Summary of relevant related work along with datasets each method has been applied to, objectives optimized, and the

computational power used (if reported). Methods not explicitly named are presented as the author names. PTB refers to the Penn

Treebank [14] dataset. The Dataset(s) column describes what datasets the method performed a search with, meaning other datasets

may have been presented in a study, but not used to perform architecture search. A dash represents some information not being

provided. We attempt to limit the focus here to published methods, though some unpublished methods may be listed for historical

contingency.

Method Name Dataset(s) Objective(s) Compute Used

R
L

Zoph and Lee [21] CIFAR-10, PTB Accuracy
800 Nvidia K80 GPUs

22,400 GPU Hours

NASNet [22] CIFAR-10 Accuracy
500 Nvidia P100 GPUs

2,000 GPU Hours

BlockQNN [20] CIFAR-10 Accuracy
32 Nvidia 1080Ti GPUS

3 Days

MetaQNN [1]
SVHN, MNIST

CIFAR-10
Accuracy

10 Nvidia GPUs

8-10 Days

MONAS [7] CIFAR-10 Accuracy & Power Nvidia 1080Ti GPUs

EAS [2] SVHN, CIFAR-10 Accuracy
5 Nvidia 1080Ti GPUs

2 Days

ENAS [16] CIFAR-10, PTB Accuracy
1 Nvidia 1080Ti GPUs

< 16 Hours

E
A

CoDeepNEAT [15] CIFAR-10, PTB Accuracy 1 Nvidia 980 GPU

Real et al. [18] CIFAR-10, CIFAR-100 Accuracy -

AmoebaNet [17] CIFAR-10 Accuracy
450 Nvidia K40 GPUs

~7 Days

GeNet [19] CIFAR-10 Accuracy
10 GPUs

17 GPU Days

NEMO [10]
MNIST, CIFAR-10

Drowsiness Dataset
Accuracy & Latency 60 Nvidia Tesla M40 GPUs

Liu et al. [12] CIFAR-10 Accuracy 200 Nvidia P100 GPUs

LEMONADE [6] CIFAR-10 Accuracy
Titan X GPUs

56 GPU Days

PNAS [11] CIFAR-10 Accuracy -

PPP-Net [5] CIFAR-10
Accuracy &

Params/FLOPS/Time
Nvidia Titan X Pascal

O
th

er

NASBOT [9]
CIFAR-10

Various
Accuracy 2-4 Nvidia 980 GPUs

DPC [3] Cityscapes [4] Accuracy
370 GPUs

1 Week

NAO [8] CIFAR-10 Accuracy
200 Nvidia V100 GPUs

1 Day

DARTS [13] CIFAR-10 Accuracy
1 Nvidia 1080Ti GPUs

1.5 - 4 Day
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