
The following paper was originally published in the

Proceedings of the 2nd USENIX Windows NT Symposium

Seattle, Washington, August 3–4, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649

2. FAX: 510 548-5738

3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org/

NT-SwiFT: Software Implemented Fault Tolerance on Windows NT

Yennun Huang, P. Emerald Chung, and Chandra Kintala

Bell Labs, Lucent Technologies
Chung-Yih Wang and De-Ron Liang

Institute of Information Science, Academia Sinica

NT-SwiFT: Software Implemented Fault Tolerance on Windows NT

Yennun Huang Chung-Yih Wang
1

P. Emerald Chung De-Ron Liang
1

Chandra Kintala

Bell Laboratories, Institute of Information Science
Lucent Technologies, Inc. Academia Sinica
600 Mountain Avenue Taipei, Taiwan
Murray Hill, NJ 07974 R.O.C.

1
This work is sponsored by Lucent Technologies, Inc.

Abstract
More and more high available applications are imple-

mented on Windows NT. However, the current version

of Windows NT (NT4) does not provide some facilities

that are needed to implement these fault tolerant appli-

cations. In this paper, we describe a set of components

collectively named NT-SwiFT (Software Implemented

Fault Tolerance) which facilitates building fault-tolerant

and highly available applications on Windows NT. NT-

SwiFT provides components for automatic error detec-

tion and recovery, checkpointing, event logging and

replay, communication error recovery, incremental data

replications, IP packets re-routing, etc. SwiFT compo-

nents were originally designed on UNIX. The UNIX

version was first ported to NT to run on UWIN

[Korn97]. Gradually a large portion of the software has

been re-implemented to take advantage of native NT

system services. This paper describes these components

and compares the differences in the UNIX and NT im-

plementations. We also describe some applications

using these components and discuss how to leverage NT

system services and cope with some missing features.

1. Introduction

Windows NT has become a popular and viable com-

puting platform for critical applications due to its many

useful features and low hardware costs. The telecom-

munication industry has also started to build fault-

tolerant and highly available applications on NT. To

achieve high reliability and availability in a distributed

environment, three types of techniques have been de-

ployed, namely, transaction processing [Gray93], active

replication [Birman96], and checkpointing/message

logging [Huang93]. Transaction processing is popular in

the financial industry. In a transactional system, appli-

cations usually have a well-defined transaction bound-

ary, such as updating a record. When a fault occurs,

both client and server abort the on-going transaction and

rollback to a clean state. Active replication usually in-

volves several identical servers running synchronously.

It often assumes a deterministic behavior on these serv-

ers and requires an atomic broadcast mechanism to syn-

chronize messages. When a failure occurs in one server,

the failure is masked and the computation continues as

long as there is one server running. No rollbacks are

necessary on either client or server.

Checkpointing and message logging is another way to

provide fault tolerant services. The state of a server is

checkpointed onto backup servers or on stable storage

from time to time. The received messages may also be

logged for recreating state change. When a failure oc-

curs, the failed server process is stopped. Then, either a

backup server is promoted to the primary, or a new pro-

cess is created and its state is recovered by loading its

last checkpoint and replaying its logged messages. Cli-

ent may notice some delay during a recovery, but no

rollback is involved. Many telecommunication applica-

tions constantly manage or monitor some physical de-

vices. Our experience shows that checkpointing and

message logging is most suitable for this type of appli-

cations [Huang95]. To implement checkpoint and mes-

sages logging, we need a number of facilities not pro-

vided by Windows NT 4.0. They are application moni-

toring and failure recovery, application checkpoint and

message logging, file replication, Windows events log-

ging and replay, IP packets dispatching, and IP packets

re-routing in case of a machine failure. As a result, each

application has to implement its own recovery mecha-

nisms. These recovery mechanisms are usually very

complex and hence may not be easy to design and im-

plement by application developers. Therefore, it is de-

sirable to provide them as reusable software compo-

nents.

In Bell laboratories, we have been working on a set of

reusable modules for building reliable and fault tolerant

applications for the last 6 years. The set of modules is

called SwiFT (Software Implemented Fault Tolerance)

[Huang93]. SwiFT has been embedded into tens of tele-

communication systems to improve system availability

and has been licensed to companies such as Tandem

Co., etc. It contains a collection of daemon processes

and libraries. SwiFT can be used to handle both client-

side and server-side error recoveries. The design phi-

losophy of SwiFT is to make the client error recovery as

transparent as possible but provide a set of fault toler-

ance APIs to be embedded into server programs. This

philosophy has proven to be a key to the success of the

SwiFT since developers in Bell Labs often have access

to the source code of server programs but have no con-

trol of client programs developed by other companies.

SwiFT was first implemented and applied on UNIX

systems (UNIX-SwiFT). More than two years ago, we

started porting SwiFT fault tolerance mechanisms to

Windows NT (NT-SwiFT). At the beginning, we were

not sure if NT provides enough mechanisms and utili-

ties for us to implement all fault tolerance utilities we

need. However, after more than two years of NT-SwiFT

effort, we concluded that Windows NT does have all the

facilities that are needed to implement SwiFT on Win-

dows NT although some of the NT-SwiFT implementa-

tions are quite complex. In this paper, we describe the

NT-SwiFT components, their implementation issues

and some examples of using NT-SwiFT to enhance ap-

plications’ reliability and availability. The paper is or-

ganized as follows. Section 2 describes NT-SwiFT

components. Section 3 discusses some implementation

details and issues. Section 4 shows some examples of

using NT-SwiFT and performance measurements. Sec-

tion 5 compares NT-SwiFT with related work. Section

6 concludes the paper.

2. NT-SwiFT Components

As described earlier, NT-SwiFT components can be

used in both client and server error recovery. Therefore,

we describe NT-SwiFT components in two categories -

client components and server components. Please note

that since a program could be both a client and a server,

all these components can be applied in a program.

2.1 Components for client error recovery
The design philosophy of client-side recovery compo-

nents is to make them transparent to client programs.

That is, one can embed NT-SwiFT components into

client programs without modifying the client source

code. A client program may accept a user’s keyboard

and mouse inputs and, at the same time, talk to one or

more server programs running on server machines via

communication channels. When a client application

fails (either due to a program failure, an OS failure or a

machine failure), all input data are lost and all commu-

nication channels are broken. Without any fault toler-

ance facility, the user has to restart the client program,

re-establish communication channels and redo all the

inputs. This could result in a long recovery time and a

frustration of the user. NT-SwiFT provides fault toler-

ance utilities which (1) detect failure of a client pro-

gram; (2) automatically restart a client program at fail-

ure recovery; (3) re-establish communication channels

to server programs; (4) replay all the user inputs and

brings the client program back to the state just before

the failure occurred.

The first component in NT-SwiFT for the client-side

error recovery is watchd. Once watchd detects a failure,

it restarts the application program automatically. If the

client application fails too often (more than a threshold

given to watchd), watchd reboots the machine and then

restarts the application. The second component is

winckp which can be used to transparently checkpoint

an application program state into a file or another proc-

ess. In recovery, the checkpointed state is restored back

to the client application memory. The third component

is winrecord, which can be used to log input events

from the mouse and keyboard of a client machine. In

recovery, the logged input events are replayed to re-

cover the client input data. The last component is libft
library. Libft is used to intercept winsock function calls

in client applications for checkpointing communication

endpoints and logging outgoing messages. In recovery,

libft re-establishes communication endpoints using the

checkpointed information and, if necessary, replays the

logged messages.

2.2 Components for server error recovery

On the server side, watchd can also be used to detect

and recover a server program from a failure. A fault

tolerant application process can register its replication

strategy to watchd. There are two replication strategies

that watchd supports: hot, and cold. In the hot replica-

tion case, watchd monitors all replicas of a fault tolerant

process; if any replica failure is detected, watchd recov-

ers the failed replica on another machine so that the

number of replicas (degree of fault tolerance) remains

constant. In the cold replication scheme, watchd as-

sumes that there is only one active copy of a fault toler-

ant process; if the active copy fails, watchd will first try

to recover the failed process on its local machine; if the

local recovery fails, watchd then migrates the process

onto another machine (a fail-over). Watchd also pro-

vides a few distributed system services such as remote

execution, remote file copy, remote status query, etc.

Many of these services can be invoked by an application

using libft APIs. Watchd detects two kinds of server

failures - hang or crash. To detect a server hang, the

server process needs to periodically sends its heartbeats

to watchd. A server process is considered hung if

watchd does not receive a heartbeat from the server

within a given interval. To send heartbeats to watchd, an

application can call the hbeat() function in libft which

takes a thread id and a timeout value as arguments. To

detect a server crash, watchd pings the server process

periodically. For a hang recovery, watchd kills and re-

starts the hung server process. For a crash recovery,

watchd first determines the cause of the crash. It can be

a machine (including OS failure) or an application pro-

gram failure. To handle a machine, watchd does a fail-

over for the server application by either bringing up a

cold copy of the server application on another machine

or making a warm copy of the server application active.

To handle an application program crash failure, watchd
simply restarts the application. Watchd contains a GUI

for system configuration as shown in figure [watchd].

Figure [watchd]: watchd GUI

Libft has four major sets of functions for servers:

1 Critical data checkpointing: Libft allows an appli-

cation to select critical data from data segment (e.g.

global or static variables) and heap (e.g. data allo-

cated via malloc()). The critical data can be saved

to a file or to another process on a local or a remote

machine, or a protected segment of its own virtual

address space. In case of a process crash, the data

can be restored into the memory of a newly created

process.

2 Communication channel recovery: Libft can inter-

cept winsock system calls, such as accept(), listen(),
send(), recv() so that winsock communication end-

points and messages can be logged. Libft recreates

communication endpoints and replays logged mes-

sages during a recovery.

3 Requesting services from Watchd: Libft provides

functions for system configurations such as regis-

tering a host or a process to be monitored by

watchd. In addition, it allows an application to

send heart-beats to watchd and to invoke distributed

system services such as remote file copy and status

query from watchd.
4 Intercepting kernel calls for system handles and file

updates: Libft can be used to intercept calls that

create system handles and that change file contents

or attributes. This interception is needed in winckp
for transparent checkpointing and roll-back recov-

ery [Wang95].

A server program may also create and update files dur-

ing execution. To make a fail-over possible in a share-

nothing environment, component REPL can be used to

do selective and incremental file replication. By using

the watchd GUI, a user can specify the types of files

that he/she wants to be replicated (see figure [watchd]).

For example, a user enters ppt in the “File Replicator”
sub-window in the watchd GUI and REPL replicates all

powerpoint files of a machine onto one or more backup

machines. REPL is typically used in a fail-over envi-

ronment where files could become unavailable when a

machine crashes. REPL has also been used for disaster

recovery for UNIX applications where a backup ma-

chine/disk is located in very far away site.

In a cluster environment, NT-SwiFT provides ONE-IP
driver (oneip.sys) to dispatch and fail-over IP packets.

The ONE-IP driver provides a single IP image for a

cluster of machines. This ONE-IP mechanism transpar-

ently distributes TCP/IP requests to a set of server ma-

chines in a cluster for load balancing and failure recov-

ery [Damani97]. The ONE-IP driver can be installed on

a set of server machines. A distributed election protocol

is used to select one machine as the dispatcher. All

server machines in the cluster share the same cluster IP

address. In a typical configuration, they (including the

dispatcher) run the same applications such as a web
server, database servers and internet service daemons to

provide services. Client applications use the cluster IP

address to access a server for services. To achieve load

balancing and fault tolerance, the dispatcher picks up

the client requests and forwards them to one of the

server machines for a service. If the dispatcher fails,

watchd detects the failure and promotes another ma-

chine to become a dispatcher.

3. Implementation Issues

The mechanisms of NT-SwiFT derive from those of

UNIX-SwiFT. However, due to the differences between

UNIX and NT, their implementations are very different.

As mentioned in [Korn97], there are many ways to port

UNIX applications to Windows NT. In fact, the first

porting effort we tried was to use the UWIN developed

by D. Korn in AT&T Labs. However, we later decided

to re-implement the NT-SwiFT components from

scratch due to the following considerations:

1. Some of the UNIX-SwiFT components such as

REPL, ONE-IP, libckp and libft depend on the

UNIX internals. They can not be ported directly by

using a library mechanism such as UWIN [Korn97]

or a subsystem such as OpenNT [Walli97].

2. We did not want to depend on any third-party soft-

ware.

3. We wanted to enhance watchd with a Windows

GUI and threads.

4. To understand how NT application fails, we need

to have intimate knowledge of the NT architecture.

Re-implementing SwiFT on NT using native NT

system services help us to understand the NT inter-

nals better.

In this section, we describe how NT-SwiFT components

are implemented and the differences in implementations

between the UNIX-SwiFT and the NT-SwiFT.

3.1 Watchd

Watchd runs on every machine in a network and uses an

adaptive diagnosis protocol [HUANG93] to detect ma-

chine failures, i.e., each watchd pings its neighbor

watchd; if its neighbor fails, watchd pings its next

neighbor and so on. The UNIX version uses three proc-

esses to implement watchd. The three processes com-

municate using socket messages and UNIX signals

(SIGUSR1 and SIGUSR2). In NT, since there are no

corresponding SIGUSR1 and SIGUSR2 signals, all

functions of NT-watchd are implemented in one process

with four NT threads. The first thread is the polling

thread to detect failures; the second one is the GUI

thread for system configuration and display; the third

one is the service thread that accepts requests from ap-

plications and from other watchds; the last thread is the

heart-beat thread that accepts application heart beats for

a hang detection. Threads are synchronized using sema-

phores and critical sections. The main advantage of us-

ing threads is its low performance overhead – most of

the interprocess communication overhead in UNIX

watchd modules is removed. However, the main disad-

vantage of using threads is that self-recovery and fault

containment are difficult, if not impossible, to achieve.

For example, in UNIX-watchd a crash of any module (a

process) can be recovered automatically and the failure

is transparent to watchd clients. However, in NT-

watchd, any crash of a watchd module (a thread) causes

the entire watchd process to crash.

Watchd uses OpenProcess() and WaitForMultipleOb-
jects() to detect a application crash (vs. kill(pid, 0) and

SIGCHLD in UNIX). It uses non-blocking socket calls

and time-outs to detect machine failures. Watchd detects

a process hang by listening to its heartbeats. An appli-

cation can send its heart beats to watchd by calling

hbeat() functions in libft.

3.2 Libft

Libft contains three sets of functions – the first set is for

dynamic memory allocation and recovery, the second

set of functions is for system configuration and the last

set of functions is to intercept winsock calls and kernel

calls. The implementations of the first two sets of func-

tions are almost identical on both UNIX and NT. More

information on libft APIs and their implementation can

be found in [Huang93]. However, implementations of

the last set of functions (intercepting calls) between

UNIX and NT are very different. In UNIX, the inter-

ception of system and socket calls is done by using the

dynamic shared library mechanism (i.e. dlopen() and

dlsym()). On Windows NT, interception of system calls

is achieved by modification of import address tables and

by the library injection mechanisms [Richter97-18]. To

checkpoint and recover kernel states, NT-SwiFT has to

intercept all NT calls which create file handles, process

handles, thread handles, socket handles and windows

handles. It also has to intercept socket calls for mes-

sages logging and replay and file system calls which

change files contents and attributes. A complete list of

kernel and winsock calls intercepted by libft is illus-

trated in Table 1.

3.3 REPL

REPL implementation includes one module to intercept

file system calls and three daemon processes for send-

ing messages and replaying file system calls. The im-

plementations of the daemon processes are very similar

to the UNIX ones. However, the facilities for inter-

cepting file system calls are very different. On UNIX,

we use the dynamic shared library mechanism (dlopen()
and dlsym()) to intercept and replay file system calls.

On NT, we implement a filter driver, named REPL.sys,
to intercept file system calls. When a specified type of

file is changed, REPL driver intercepts the changes and

sends messages to remote backup machines. REPL

daemons on remote backup machines then replay the

changes to update the files. REPL daemons are all user-

level processes, which send I/O messages, log I/O mes-

sages and replay I/O messages between the primary host

and the backup host. These daemon processes handle

link failures, machine failures, I/O failures on the

backup machine, messages lost, etc. so that the repli-

cated files are consistent as long as they can be ac-

cessed. Libft also uses REPL modules to make check-

point files replicated on all backup machines.

3.4 Winckp

Winckp is a utility program that provides snapshot and

rollback functions to an application in a transparent

way. Winckp deals with executable files and no source

code is needed. Winckp starts the application by Cre-
ateProcess() and obtains its process handle and the

thread handle of its main thread. The GUI interface of

Winckp allows a user to take snapshot of an application

or roll back the memory of an application. To take a

snapshot, Winckp suspends the main thread and stores

the thread context and memory content into a check-

point file. The thread context is obtained and restored

using GetThreadContext() and SetThreadContext(). The

memory image is obtained and restored using Read-
ProcessMemory() and WriteProcessMemory(). Winckp
determines the address and the amount of memory

needed to be saved. An NT process has about 2GB of

private address space, ranging from 0x00010000

through 0x7FFEFFFF [Richter97-3]. Note that not

every region in this space needs to be saved. The Vitu-
alQueryEx() system call allow us to examine the space

region by region. A memory region is necessary to be

saved if its write access is enabled and if its physical

storage is committed [Richter97-5]. Winckp also stores

the MEMORY_BASIC_INFORMATION structure

along with each memory region. During a rollback op-

eration, the application main thread is suspended.

Winckp reads the thread context from the checkpoint

file and calls SetThreadContext(). It then calls

WriteProcessMemory() to restore the memory content.

To recover an application process from a failure, winckp
not only has to restore the process memory content but

also has to recreate all the handles that were owned by

the process before the recovery. To checkpoint and re-

cover kernel states, winckp uses the libft interception

facilities to intercept all NT calls which create file han-

dles, process handles, thread handles, socket handles,

such as CreateProcess(), CreateFile(), CreateThread(),
etc. Winckp records each handle value and the parame-

ters that are used to create the handle. In recovery,

winckp recreates all the handles by replaying the calls

with the recorded parameters. To make the values of the

recovered handles equal to their recorded values,

winckp uses a different mechanism from the UNIX ver-

sion (namely libckp [Wang95]). In libckp, each newly

created handle is duplicated to its old value by using the

dup2() call. In NT, since there is no function that can

duplicate a handle to a given handle value, winckp uses

a loop that keeps duplicating a handle using Duplicate-
Handle() call till the returned handle value is equal to

the recorded value. Then, all other handles are closed.

This process is repeated till all the handles are created.
2

Winckp also uses libft to intercept file system calls.

When an application takes a checkpoint, it has not only

to save its memory contents but also its file contents and

attributes. When the application rolls back to its previ-

ous checkpointed state, it has to undo all file updates

after the last checkpoint as well as restore its memory

content. The file roll-back mechanism uses the libft
interception routines as described in [Wang95].

3.5 Winrecord

In winrecord, we are primarily interested in system

events related to keyboard strokes and mouse inputs.

Win32 subsystem provides a hook that allows a user

application to monitor system events such as keyboard

strokes, window messages, debugging information, etc.,

and to react to these events through a user-defined call-

back procedure. User application may specify those

system events of interest and install the corresponding

callback procedures via the Win32 API. Winrecord
captures those events by calling SetWindowsHookEx()
with flag WH_JOURNALRECORD, and all keyboard

2
 This mechanism does not work for Windows handles.

events and mouse events are copied from the Win32

system’s message queue to our callback procedure.

These events are kept in a temporary file. To replay, we

insert these events one after the other in their timestamp

order back to Win32 system message queue by install-

ing the WH_JOURNALPLAYBACK callback proce-

dure. The Win32 system temporarily disables the inputs

from keyboard and mouse when the

WH_JOURNALPLAYBACK callback procedure is

installed. It executes only the events fed from the call-

back procedure until our event log is up and the

WH_JOURNALPLAYBACK callback procedure is un-

installed.

3.6 ONE-IP driver

The ONE-IP driver is an NDIS (Network Driver Inter-

face Specification) intermediate driver. It is sitting be-

tween transport drivers and NDIS NIC (Network Inter-

face Card) mini-ports. The driver is installed on every

machine in the cluster. Our design works in the follow-

ing way: all the client request packets are first sent to

the dispatcher machine and the dispatcher machine se-

lects a server from the cluster and forwards the packet

to that server. A problem is that all machines share the

cluster IP address. In order for a packet to reach the

dispatcher, only the dispatcher should reply ARP re-

quests for the cluster IP. In our implementations, when

the immediate driver on a server machine receives an

ARP request packet for the cluster IP address, if it is not

the dispatcher, it discards the ARP packet.

On the dispatcher machine, when the NIC driver re-

ceives a packet, it calls the ReceiveHandler() in the

transport interface of the ONE-IP intermediate driver.

The ReceiveHandler() examines the packet. If the

packet is from a client request, it contains an Ethernet

packet header and an IP packet in the lookahead buffer.

If the destination address of the IP packet matches the

cluster IP address, a server is selected based on a hash

value of the client IP address (source address in the IP

packet). The Ethernet packet header is then modified in

the following way: the source MAC address is changed

to the dispatcher’s MAC address; the destination MAC

address is changed to the selected server’s MAC ad-

dress. The packet is then sent to the NIC driver by

NdisSend() call and reaches the selected server. Since a

dispatcher can also be servicing requests, if the dis-

patcher itself is selected, then the packet is passed up to

the protocol driver without modifications.

One desired feature for the ONE-IP driver is the capa-

bility to dynamically reconfigure the dispatching hash

function, the cluster IP address or the cluster size. To

achieve this, we create a logical device in the ONE-IP
driver by IoCreateDevice() and expose a device name in

the NT object namespace, \\device\oneip. A user-level

program can change parameters in the ONE-IP driver

by first obtaining a handle to the logical device by Cre-
ateFile() with the device name and then issuing a De-
viceIoControl() via the handle.

To make the ONE-IP dispatching mechanism fault tol-

erant, we integrate ONE-IP driver with the watchd
daemon. As mentioned earlier, watchd runs on every

machine in a SwiFT domain. When the first watchd
comes up in the domain, it makes its own ONE-IP
driver the primary dispatcher by calling the DeviceIo-
Control (sys_handle, SET_PRIMARY,…). When the

dispatcher machine fails, the neighboring watchd de-

tects the failure and set its ONE-IP driver the new pri-

mary dispatcher.

The UNIX implementation of ONE-IP is done in the

NetBSD kernel [Damani97] [Wang 97]. The dispatcher

runs our modified kernel and is configured to run in the

routing mode. The main kernel modifications are in the

IP forwarding layer ([Wright 95] p.222). We modified

the ip_forward() routine so that the selected

server’s IP address is used as the next hop for the

packet.

Since the UNIX implementation involves changing ker-

nel code, it is difficult to port to a system where the

kernel source code is unavailable. On the other hand,

the NDIS driver approach on NT is much easier to be

adopted into a product.

4. Applications and Overhead

We are currently working with a few projects in Lucent

Technologies to embed NT-SwiFT in their systems to

improve their fault tolerance and availability. In one

project, the system uses NT-SwiFT to detect application

failures such as process crashes and hangs. Once a fail-

ure is detected, watchd stops the process and restart the

process. If a process fails too many times in a given

interval, watchd then automatically reboots the NT ma-

chine and restarts the application. In another project,

we are using watchd and libft to provide a warm backup

scheme for a switch prototype implemented on Win-

dows NT where processes on the primary board check-

point their critical states to the backup processes on a

backup board whenever necessary. When a failure is

detected, watchd makes the backup board the primary

by changing a flag in the shared memory of the board.

In a normal situation, watchd polls applications and

machines every 10 seconds and one polling takes about

10 milliseconds on a Pentium 180MHz machine. By

polling, watchd increases the CPU utilization by about

4%. Libft overhead depends on the frequency of check-

pointing and message logging. In one study, it showed 5

to 10% increases for the service time of a server pro-

gram when checkpoint and message logging were used.

REPL overhead also depends on the intensity of I/O

write operations. One study showed 14% decrease of

I/O throughputs when using REPL in replicating files

for a disaster recovery.

5. Comparison with Related Work

Some of the NT-SwiFT functions are also provided by a

few commercial NT cluster mechanisms. A survey on

NT clustering solutions can be found in [NT-

CLUSTER]. Examples of NT clustering solutions are

Microsoft MSCS, Tandem CAS, Marathon Endurance,

Apcon PowerSwitch, NCR LifeKeeper, Veritas

FirstWatch, Octopus HA+, etc. These commercial NT

cluster products provide basic fail-over and detection

capabilities. Some of them also provide file replication

or disk-mirroring facilities for persistent data recovery.

However, there are at least three major differences be-

tween NT-SwiFT and these clustering tools:

1. The fundamental design philosophy is different

between NT-SwiFT and these commercial tools.

Most of these tools assume application programs

can not be changed and therefore all the recovery

mechanisms have to be completely transparent to

application programs. Consequently, these cluster-

ing tools provide either no application APIs or a

very small set of APIs to be embedded into appli-

cation programs. Our design philosophy considers

the recovery mechanisms into two categories: client

recovery and server recovery. We also think that

the client error recovery mechanisms have to be

transparent to the client application programs.

However, we believe that a truly fault tolerant

server application has to be enhanced with fault tol-

erance APIs. Therefore, a large part of our effort is

to design and implement a set of fault tolerance

APIs for the server application developers
3
. As a

result, the APIs provided by libft are more powerful

and complete than those provided by these com-

mercial clustering tools. These fault tolerance APIs

3
 Note that except some functions in libft, all other com-

ponents in NT-SwiFT can be used transparently with

application programs.

also have to interact with other components in

SwiFT such as watchd, REPL, winrecord, winckp
and ONE-IP. Therefore, an integration of all fault

tolerance components is a must but none of the

commercial clustering tools provides such integra-

tion.

2. Most of these clustering tools assume transaction

model for error recovery while our focus is on the

checkpoint and roll-back recovery. As a result,

none of these tools integrate roll-back recovery

mechanisms such as process checkpoint,

events/messages logging and replay, etc. into their

recovery mechanisms. Without an integrated solu-

tion, application developers may have to design and

implement a lot of recovery routines into their pro-

grams.

3. NT-SwiFT provides facilities to do application re-

juvenation [Garg96]
4
, IP requests dispatching, pro-

cess migration and load balancing. As a result, NT-

SwiFT can not only increase application availabil-

ity but also improve application robustness, per-

formance and scalability.

6. Concluding Remarks and Future work
The goal of NT-SwiFT research is to understand the

fault-tolerance and high availability requirements of

applications running on NT and to create generic and

reusable components that can facilitate the development

of these applications. We have described components

including watchd for process failure detection and re-

covery, libft for critical data checkpointing, communi-

cation messages logging and recovery, REPL for on-line

incremental file replication and disaster recovery,

winckp for transparent process checkpointing, winre-
cord for mouse and keyboard events logging and re-

playing, and ONE-IP for IP packets dispatching, fail-

over and re-routing. We have demonstrated that lever-

aging specific facilities on Windows NT such as filter

drivers, intermediate drivers, library injection and

memory management routines makes the implementa-

tion of some fault tolerance mechanisms easier on Win-

dows NT than on UNIX.

Currently, we are working on enhancing the NT-SwiFT

to deal with process thread failure detection and recov-

ery, incremental state checkpoint to remote processes,

integration of the NT-SwiFT with some middle-ware

4
 Application rejuvenation is a mechanism which

monitors applications behaviors, predicts applications

failures and rejuvenates unhealthy applications even

before they actually fail.

tools such as CORBA and DCOM, dynamic process

migration for load balancing, intercepting calls in other

DLLs such as advapi32.dll, user32.dll, GDI32.dll, etc.,

and the compatibility of NT-SwiFT with other popular

commercial clustering tools such as MSCS.

Acknowledgements: Gaurav Suri and Yi-Min Wang

implemented the first prototype of watchd and libft in

NT-SwiFT. Recently, Woei-Jyh Lee joined our NT-

SwiFT team and contributed in the porting of ONE-IP
driver and watchd. The authors would also like to thank

the users of the NT-SwiFT who constantly provide

ideas for improvements and Dave Korn for his help in

using UWIN and comments on this paper.

References:

[Birman96] Kenneth P. Birman, "Building Secure and

Reliable Network Applications", Manning Publication

Co. 1996.

[Damani97] Damani, O. P., Chung, P.-Y., Huang, Y.,

Kintala, C. M., and Wang, Y-M., "ONE-IP: Techniques

for Hosting a Service on a Cluster of Machines", Sixth
International World Wide Web Conference (WWW6),

Santa Clara, pp. 735-743, Apr. 1997.

[DDK-NDIS] "Network Drivers", Windows NT 4.0

DDK, Microsoft MSDN Library.

[Huang93] Huang, Y. and Kintala, C. "Software Im-

plemented Fault Tolerance", Proceedings of the 23rd
IEEE Fault Tolerant Computing Symposium (FTCS23),
Toulous, France, June 1993, Pages 2-10.

[Huang95] Y. Huang and Y. Wang, ‘‘Why optimistic

message logging has not been used in telecommunica-

tion", Proceedings of the 25th IEEE Fault Tolerant
Computing Symposium (FTCS25), Pasadena, Califor-

nia, page 459-463, 1995.

[Garg96] S. Garg and Y. Huang and K. Trivedi and C.

Kintala, ‘‘Minimizing Completion Time of a Program

by Checkpointing and Rejuvenation",ACM SIGMET-

RICS 96, Philadelphia, PA, pages 252-261, May, 1996.

[Gray93] J. Gray and A. Reuter, "Transaction Process-

ing: Concepts and Techniques", Morgan Kaufmann

Publishers, 1993.

[Richter96-3] J. Richter, "Processes", Chapter 3, in Ad-
vanced Windows, Ed. 3, pp.33-72, Microsoft Press,

1996.

[Korn97] D. Korn, “UWIN – UNIX for Windows”,

Proceedings of Usenix Windows NT Workshop, Seattle,

Washington, pp. 133-145, 1997.

[NTCLUSTER] "Lab Reports: Clustering Solutions for

Windows NT", Windows NT Magazine, pp.54-95, June

1997.

[Richter97-5] J. Richter, "Win32 Memory Architec-

ture", Chapter 5, in Advanced Windows, Ed. 3, pp.115 -

144, Microsoft Press, 1997.

[Richter97-18] J. Richter, "Breaking Through Process

Boundary Wall", Chapter 18, in Advanced Windows,

Ed. 3, pp.899-970, Microsoft Press, 1997.

[Walli97] S. R. Walli, “OpenNT: UNIX Application

Portability to Windows NT via an Alternative Environ-

ment Subsystem”, Proceedings of Usenix Windows NT
Workshop, Seattle, Washington, pp. 123-132, 1997.

[Wang95] Y. Wang and Y. Huang and K. Vo and E.

Chung and C. Kintala, “Checkpoint and its applica-

tions”, Proceedings of the 25th IEEE Fault Tolerant
Computing Symposium, Pasadena, California, pp. 22-

31, 1995.

[Wang97] Y.-M. Wang, O. P. Damani, P. E. Chung, Y.

Huang and C. M. Kintala, Web Server Clustering with

Single-IP Image: Design and Implementation", in Proc.
Int. Symp. on Multimedia Information Processing, Dec.

1997, also in

http://www.research.att.com/~ymwang/papers/newONE

-IP.htm

WINDOWS

SOCKET

(Wsock32.dll)

accept, bind, closesocket, con-

nect, ioctlsocket, listen, set-

sockopt, shutdown, socket,

send, recv, recvfrom, sendto

File

Operations

(Kernel32.dll)

CopyFileA, CopyFileExA,

CopyFileExW, CopyFileW,

CreateFileA, CreateFileW, De-

leteFileA, DeleteFileW, Move-

FileA, MoveFileW, MoveFile-

ExA, MoveFileExW, OpenFile,

ReadFile, ReadFileEx, Read-

FileScatter, SetFilePointer,

UnlockFile, UnlockFileEx,

WriteFile, WriteFileEx, Write-

FileGather.

Directory

(Kernel32.dll)

CreateDirectoryA, CreateDi-

rectoryExA, CreateDirectory-

ExW, CreateDirectoryW, Re-

moveDirectoryA, RemoveDi-

rectoryW,

SetCurrentDirectoryA, SetCur-

rentDirectoryW.

Process and

Thread

(Kernel32.dll)

CreateRemoteThread, Cre-

ateThread, CreateProcessA,

CreateProcessW, ExitProcess,

ExitThread, OpenProcess, Ter-

minateProcess, Termi-

nateThread.

Event

(Kernel32.dll)
CreateEventA, CreateEventW,

OpenEventA, OpenEventW,

ResetEvent, SetEvent.

NamedPipe

(Kernel32.dll)
ConnectNamedPipe, Cre-

ateNamedPipeA, Cre-

ateNamedPipeW, Disconnect-

NamedPipe, SetNamedPipe-

HandleState,

WaitNamedPipeA, Wait-

NamedPipeW.

MailSlot

(Kernel32.dll)
CreateMailslotA, CreateMail-

slotW, SetMailslotInfo.

Mutex

(Kernel32.dll)

CreateMutexA, CreateMutexW,

OpenMutexA, OpenMutexW,

ReleaseMutex

Semaphore

(Kernel32.dll)

CreateSemaphoreA, Create-

SemaphoreW, OpenSemapho-

reA, OpenSemaphoreW, Re-

leaseSemaphore

CriticalSection
EnterCriticalSection, Initialize-

(Kernel32.dll) CriticalSection, InitializeCriti-

calSectionAndSpinCount,

LeaveCriticalSection

DLL Library

(Kernel32.dll)

FreeLibrary, FreeLibrary-

AndExitThread, LoadLibraryA,

LoadLibraryExA, LoadLibra-

ryExW, LoadLibraryW

Other handles

(Kernel32.dll)

CloseHandle, DuplicateHandle,

SetHandleCount, SetHandleIn-

formation

Table 1. A summary of NT system calls that are inter-

cepted in NT-SwiFT.

