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Abstract

This paper reviews the second NTIRE challenge on im-

age dehazing (restoration of rich details in hazy image) with

focus on proposed solutions and results. The training data

consists from 55 hazy images (with dense haze generated in

an indoor or outdoor environment) and their correspond-

ing ground truth (haze-free) images of the same scene. The

dense haze has been produced using a professional haze/fog

generator that imitates the real conditions of haze scenes.

The evaluation consists from the comparison of the dehazed

images with the ground truth images. The dehazing process

was learnable through provided pairs of haze-free and hazy

train images. There were ∼ 270 registered participants and

23 teams competed in the final testing phase. They gauge

the state-of-the-art in image dehazing.

1. Introduction

Haze is a common atmospheric phenomenon produced

by small floating particles that reduce the visibility of dis-

tant objects due to light scattering and attenuation. This

results in a loss of local contrast for distant objects, in the

addition of noise to the image, and in a selective attenuation

of the light spectrum. Image dehazing is a challenging ill-
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posed problem that has drawn a significant attention in the

last few years.

In the last decade a significant amount of literature fo-

cused on single image dehazing research. The performance

of the top methods continuously improved [30, 32, 19, 5, 1,

22, 31, 2, 27, 11] showing that the field reaches maturity.

Despite this growing interest, the field lacks standardized

benchmarks to allow for evaluating objectively and quan-

titatively the performance of the existing dehazing tech-

niques.

Basically, a major issue preventing further developments

is related to the impossibility to reliably assess the dehazing

performance of a given algorithm, due to the absence of ref-

erence haze-free images (ground-truth). A key problem in

collecting pairs of hazy and haze-free ground-truth images

lies in the need to capture both images with identical scene

illumination.

In general the existing dehazing quality metrics

are restricted to non-reference image quality metrics

(NRIQA) [24]. For instance, the Fog Aware Density Eval-

uator (FADE) [13] estimates the visibility of a hazy/foggy

scene from a single image without corresponding ground-

truth. Unfortunately, due to the absence of the reference

(haze-free) images in real-life scenarios, none of these ap-

proaches has been generally accepted by the dehazing com-

munity.

Recent works synthesize hazy images, using the opti-

cal model and known depth to synthesize the haze effect.

For instance, FRIDA [33] dataset designed for Advanced

Driver Assistance Systems (ADAS) is a synthetic image

database with 66 computer graphics generated roads scenes.
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D-HAZY [3] is a dataset of 1400+ images of real com-

plex scenes has been derived from the Middleburry and the

NYU-Depth V2 datasets. The depth map associated to each

high quality image has been used to yield synthesized hazy

images based on the simplified optical model. Khoury et

al. [20] introduce the CHIC (Color Hazy Image for Com-

parison) database, providing hazy and haze-free images in

real scenes captured under controlled illumination. The

dataset however only considers two indoor scenes, thereby

failing to cover a large variation of textures and scene depth.

The first challenge for single image dehazing has been

organized by NTIRE 2018 [4]. With the challenge a large

number of dehazing solutions were introduced [4, 36, 25,

21, 15, 28, 16]. The NTIRE 2018 challenge used two

novel datasets: I-HAZE [7] and O-HAZE [8]. The I-

HAZE consists from 35 hazy images (with haze generated

in a controlled indoor environment) and their correspond-

ing ground truth (haze-free) images of the same scene. The

O-HAZE dataset includes 45 hazy images and correspond-

ing ground truth (haze-free) images. Both datasets allow for

full-reference quality assessment of the dehazing results.

The NTIRE 2019 challenge represents a step forward in

benchmarking single image dehazing. It uses a novel de-

hazing dataset, Dense-Haze [6], that consists from 55 hazy

images with dense haze generated in indoor and outdoor

environments; and their corresponding ground truth (haze-

free) images of the same scene. The dense haze has been

produced using a professional haze/fog generator that imi-

tates the real conditions of haze scenes. The evaluation was

performed by comparing the restored hazy images with the

ground truth images.

2. NTIRE 2019 Challenge

The objectives of the NTIRE 2019 challenge on single

image dehazing are: (i) to gauge and push the state-of-the-

art in image dehazing; (ii) to compare different solutions;

and (iii) to promote novel Dense-Haze datasets with real

haze and ground truth haze-free images.

2.1. Dense-Haze dataset

Dense-Haze [6] dataset contains 33 outdoor scenes and

22 indoor scenes in presence or absence of dense haze. Our

dataset allows to investigate the contribution of the haze

over the scene visibility by analyzing the scene objects ra-

diance starting from the camera proximity to a maximum

distance of 20m.

For the indoor scenes, after carefully setting each scene,

we first recorded the ground truth (haze-free image) and
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then immediately started introducing haze in the scene. We

used two professional fog/haze machines (LSM1500 PRO

1500 W) to generate a dense vapor. These fog generators

use cast or platen type aluminum heat exchangers, which

causes evaporation of the water-based fog liquid. The gen-

erated particles (since are water droplets) have approxi-

mately the same diameter size of 1 - 10 microns as the atmo-

spheric haze. Before shooting the hazy scene, we used a fan

to obtain in a relatively short period of time a homogeneous

haze distribution in the entire room (room kept isolated as

much as possible by closing all the doors and windows).

The entire process to generate haze took approximately 1

minute. Waiting approximately another 5-10 minutes, we

obtained a homogeneous distribution of the haze. The dis-

tances between the camera and the target objects ranged

form 3 to 10 meters. The recordings were performed during

the daytime in relatively short intervals (20-30 minutes per

scene recording) with natural lightning and when the light

remained relatively constant (either smooth cloudy days or

when the sun beams did not hit directly the room windows).

To capture haze-free and dense hazy images, we used a

setup that includes a tripod and a Sony A5000 camera that

was remotely controlled (Sony RM-VPR1). We acquired

JPG and ARW (RAW) with 24 bit depth. The cameras

were set on manual mode and we kept the camera still (on

a tripod) over the entire shooting session of the scene. The

camera was calibrated in haze-free scene, and then we kept

the same parameters for the hazy scene. For each scene,

the camera settings was calibrated by manually adjusting

the aperture (F-stop), shutter-speed (exposure-time), ISO

speed and the white-balance. Setting the three parameters

aperture-exposure-ISO was realized using both the built-

in light-meter of the camera and an external exponometer

Sekonic. For the white-balance we used the gray-card, tar-

geting a middle gray (18% gray). The calibration process

was straight-forward, since it just required to set the white-

balance in manual mode and to place the gray-card in front

of the subject. In practice, we placed the gray-card in the

center of the scene, two meters away from the camera.

For outdoor scenes, a crucial problem in collecting such

images is represented by capturing pixel-level images for

each scene with and without haze under identical condi-

tions, using the same camera settings, viewpoint, etc. Be-

sides assuring that the scene is static, the scene components

keep do not change their spatial position during the record-

ing (quite challenging for natural scenes due to numerous

factors), the most challenging issue is to preserve the out-

door scene illumination. As a result, we recorded the out-

door scenes only during cloudy days, in the morning or in

the sunset. Additionally, another important constraint was

given by the influence of the wind. In order to limit fast

spreading of the haze in the scene we could record images

only when the wind speed was below 2-3 km/h. This con-



straint was hard to meet, it is a main reason for the 8 weeks

duration required by the recording of the 33 outdoor scenes

from Dense-Haze.

To yield hazy outdoor scenes, the haze was spread using

a similar setup used to generating indoor hazy scenes. To

obtain a dense and homogeneous haze layer in the scene,

we employed for 2-3 minutes both haze machines pow-

ered by a portable 2800 Watt generator, and waited for an-

other 2-3 minutes. Additionally, all the recorded scenes

contain a color checker to allow for the post-processing of

the recorded images. We used a classical Macbeth color

checker with the size 11 by 8.25 inches with 24 squares of

painted samples (4×6 grid).

Figure 1. Qualitative dehazing results: from left to right initial

hazy image and the results yielded by the methods of iPAL-Atj,

iPAL-COLOR and MT.MaxClear.

2.2. DenseHaze Challenge

For the NTIRE 2019 dehazing challenge we created a

Codalab competition. To access the data and submit their

dehazed image results to the CodaLab evaluation server

each participant had to register.

Challenge phases (1) Development (training) phase: the

participants got train data (hazy and haze-free images) (45

sets of images); (2) Validation phase: the participants re-

ceived 5 additional sets of images and had the opportunity

to test their solutions on the hazy validation images and to

receive immediate feedback by uploading their results to the

server. A validation leaderboard is available; (3) Final eval-

uation (test) phase: the participants got the hazy test im-

ages (5 additional set of images) and had to submit both

their dehazed images and a description of their methods be-

fore the challenge deadline. One week later the final results

were made available to the participants.

Evaluation protocol The Peak Signal-to-Noise Ratio

(PSNR) measured in decibel (dB) and the Structural Sim-

ilarity index (SSIM) [35] computed between an image re-

sult and the ground truth are the quantitative measures. The

higher the score is the better the restoration fidelity to the

ground truth image is.

3. Challenge Results

From more than 270 registered participants, 23

teams entered in the final phase and submitted results,

codes/executables, and factsheets. Table 1 reports the fi-

nal scoring results of the challenge and Table 2 shows the

https://competitions.codalab.org

runtimes and the major details for each entry. Section 4 de-

scribes briefly the methods for each team while in the Ap-

pendix A are the team members and affiliations.

Team User (+entry) PSNR SSIM

iPAL-AtJ moonriverLucy 20.258 0.657

iPAL-COLOR DH-IRCNN 123 CEDH 19.923 0.653

MT.MaxClear ucenter52 19.469 0.652

BMIPL-UNIST-DW-1 Sprite+Ours 18.842 0.633

xddqm Untitled Folder 18.521 0.640

ECNU emmm+dpn best 17.826 0.617

MOMOCV meshpop 17.177 0.564

BMIPL-UNIST-DW-2 BMIPL-PDW+Hazing 16.857 0.610

BOE-IOT-AIBD BOE-IOT-AIBD 16.780 0.612

MAHA@IIT akshay.aad16 16.472 0.548

FastNet tzofi+submission 16.371 0.569

IVL1 IVL+submission16 16.194 0.601

ecsuiplab1 san santra+up 4 16.152 0.564

IPCV IITM maitreya ipcv+final 16.126 0.595

shh sunhee+res 16.055 0.562

IVL2 IVL+submission17 15.801 0.600

ecsuiplab2 ranjanisi+ranjan 15.969 0.539

Alex SDU wang cheng 15.936 0.557

hcilab hcilab+final 15.122 0.580

IMag dxllx+t88 14.928 0.555

XZSYS ChuanshengWang 14.338 0.491

Vintage jptarel+simple1 14.021 0.529

Table 1. NTIRE 2019 Challenge dehazing results and final rank-

ings on DENSE-HAZE test data.

Architectures and main ideas Most of the proposed meth-

ods (excepting the one introduced by Vintage) use end-to-

end deep learning strategies and employ the GPU(s) for

both training and testing. The Vintage uses an unsupervised

technique, Retinex, on the inverted intensities of a hazy im-

age. However, the CPU-based technique is the lowest rank-

ing in terms of PSNR and SSIM performances.

Restoration fidelity In PSNR and SSIM terms the iPAL-

AtJ, iPAL-COLOR and MT.MaxClear are the winner teams

of NTIRE 2019 dehazing challenge. iPAL-AtJ achieved

more than 20dB for PSNR and 0.65 for SSIM.

Team Runtime [s] Platform CPU/GPU (at runtime)

iPAL-AtJ 0.083 pytorch 1.0 NVIDIA TITAN Xp GPU 12GB

iPAL-COLOR 0.077 pytorch 1.0 NVIDIA TITAN Xp GPU 12GB

MT.MaxClear 80 pytorch 0.4.1

BMIPL-UNIST-DW-1 0.75 pytorch 1.0 GPU >10GB

xddqm

ECNU pytorch 0.4.1 4 GTX 1080Ti

MOMOCV 0.020 pytorch 0.4 NVIDIA V100, NVIDIA 1080Ti

BMIPL-UNIST-DW-2 1.01 pytorch 1.0 GPU >10GB

BOE-IOT-AIBD 6 pytorch 1.0 NVIDIA Titan X GPU 12GB

MAHA@IIT 0.95 Tensorflow NVIDIA GTX 1080 8 GB

FastNet 0.03 PytorchC++ NVIDIA Titan RTX

IVL1 0.00065 pytorch NVIDIA Titan X Pascal GPU

ecsuiplab1 6 Tensorflow 8x Nvidia GeFroce GTX Titan Xp

IPCV IITM 1 pytorch NVIDIA Titan X GPU

shh 1.53 pytorch NVIDIA GTX 1080Ti

IVL2 0.03 pytorch NVIDIA Titan X Pascal GPU

ecsuiplab2 12 Tensorflow 8x Nvidia GeFroce GTX Titan Xp

Alex SDU

hcilab 0.8 pytorch NVIDIA 1080 GTX

IMag 2.4 pytorch Nvidia GTX1080ti

Vintage 0.7 matlab CPU

Table 2. Reported runtimes per image on DENSE-HAZE test data

and details from the factsheets.
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Figure 2. The proposed At-DH (within dash-lines) and AtJ-DH network (iPAL-AtJ Team). In At-DH, a shared encoder is employed to

extract image features that are subsequently exploited by the two decoders (Decoder.A and Decoder.t) to jointly estimate the physical

model parameters. AtJ-DH employs an additional decoder, i.e. Decoder.J which estimates the haze-free image.

Runtime / efficiency IVL1 solution is the most efficient. It

runs in 0.16 ms on Intel I7-7700 CPU @ 3.60GHz, 16GB

DDR4 RAM 2400MHz, NVIDIA Titan X Pascal GPU with

3840 CUDA cores but their results in terms of PSNR are

around 16dB.

Train data Besides Dense-Haze dataset, I-HAZE [7] with

35 indoor set of images and O-HAZE [8] with 45 set of out-

door images were used by several competitors that in gen-

eral found the amount of data sufficient for training their

model, especially after data augmentation [34] (by opera-

tions such as flipping, rotation, scaling).

Conclusions By analyzing the challenge methods and their

results we can draw several conclusions. (i) The proposed

solutions have a degree of novelty and go beyond the pub-

lished state-of-the-art methods. (ii) In general the best so-

lutions performed the best for both measures (PSNR and

SSIM). (iii) The evaluation based on SSIM is questionable

since there is only a small variation of the SSIM results.

4. Challenge Methods and Teams

4.1. iPALAtJ

iPAL-AtJ Team introduces a dense CNN that particularly

focuses on the haze generation physical model [18]. Many

recent dehazing methods have addressed this challenge by

designing deep networks that estimate physical parameters

in the haze model, i.e. ambient light (A) and transmission

map (t). The authors developed two novel network archi-

tectures to further this line of investigation. The first model,

denoted as At-DH, designs a shared DenseNet based en-

coder and two distinct DensetNet based decoders to jointly

estimate the scene information viz. A and t respectively.

To incorporate more structural information in the learn-

ing process and overcome the difficulty of estimating A

and t in dense haze, the authors developed an extension of

At-DH called the AtJ-DH network, which adds one more

DenseNet based decoder to jointly recreate the haze-free

image J along with A and t. The knowledge of training

dehazed/clean (ground truth) images is exploited by a cus-

tom regularization term that further enhances the estimates

of model parameters A and t in AtJ-DH.

The encoder in the both models share the same param-

eters which are obtained by pre-training a full autoencoder

structure with the goal of reconstructing the haze-free im-

ages by using the hazy images as the input. After the pre-

training, the encoder is used for both models as a common

feature extractor. The At-DH and AtJ-DH network archi-

tectures are illustrated in Fig.2.

4.2. iPALCOLOR

iPAL-COLOR team observed that usually the color in-

formation is harder to recover from the images with dense

haze compared to the images with less haze. Thus the au-

thors proposed work addressed these challenges by devel-

oping a network structure that comprises of: a common

DenseNet based feature encoder whose output branches into

three distinct DensetNet based decoders to yield estimates

of the R, G, and B color channels of the image [17]. A sub-

sequent refinement block further enhances the final synthe-

sized RGB/color image by joint processing of these color

channels. Inspired by its structure, the proposed network

is called the One-To-Three Color Enhancement Dehazing

(123-CEDH) network. To ensure the recovery of physically

meaningful and high quality color channels, the main net-

work loss function is further regularized by a multi-scale

structural similarity index term as well as a term that en-



hances color contrast. To take the inter-color channel in-

formation into consideration, the authors further use CNN

layers at different scales to fine-tune the color information

and generate the final dehazed image. The proposed 123-

CEDH model is shown in Fig. 3.
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Figure 3. The proposed 123-CEDH network structure. There is

one dense encoder to extract general image features, and three de-

coders to recover R, G, and B color channels. The final refine-

ment block exploits the inter-color channel information for further

enhancement.

4.3. MT.MaxClear

MT.MaxClear team uses a modified HRNet [29] as their

backbone network for its excellent ability in combining var-

ious features of different resolutions. The proposed network

consists of 4 stages, each stage adds one additional stride-2

down-sampling branch compared to previous stage. Fea-

tures of different resolutions are fused frequently between

these stages. They add an additional PSP module after the

HRnet module for obtaining better global information rep-

resentation, which, based on some observations, is crucial

in Image Dehaze Task. The authors used L1, L2, GAN and

perceptual (VGG) loss to train the net-work. Apart from

including training images from last year, the team also ex-

ploits extensively on various data augmentation methods,

some of them are proved to be quite useful, including ran-

dom input size, random patch cropping etc. The authors use

a novel haze-generating method to further expand training

data. For this purpose, a haze-generation network is trained,

the input and target of which is simply reversed pairs of

original training data - they use GT images as input and

hazy inputs as target. This haze- generation network is then

applied on the raw GT images to generate new training data.

4.4. BMIPLUNISTDW1

The BMIPL-UNIST-DW-1 Team introduced a learning

method based on a network that consists of several Encoders

and Decoders. The Encoder is composed of Dilated Resnet-

18. The Resnet-18 downscaling minimizes resolution loss

up to 32 times and Dilated Resnet-18 downscaling up to 8

times. The authors also extend receptive field using Pyra-

mid Pooling. The decoder part consists of Bilinear + convo-

lution layer, and Skip connection part is set to add instead

of concatenation. Also, we used Decoder Skip connection

channel fixed to 256 channels. The architecture of the pro-

posed method is shown in Fig. 4

Figure 4. The proposed architecture of BMIPL-UNIST-DW-1

Team.

4.5. xddqm

The xddqm Team proposed a Multi-scale Cascade Gen-

erative Adversarial Network (MSCGAN) for image dehaz-

ing [12]. The generator of MSCGAN contains two sub-

nets which have a similar Unet-shape architecture, all con-

sists of two downsample residual block, nine residual block,

two upsample residual block and a refine convolution layer.

Differently, the first network (Net1) takes the downsampled

haze images as inputs; the second one (Net2) takes the orig-

inal haze images and features of Net1 before refine convo-

lution layer as inputs (see Fig. 5).

Motivated by multi-scale discriminators used in

Pix2PixHD and spectral normalized GANs for stable

training, the authors developed a multi-scale spectral nor-

malization discriminator structure for training the dehaze

net. The discriminator uses 3 models, D1, D2 and D3,

with a identical structure that trained at 3 different scales

of the real and dehazed high resolution images,images

downsample by 2× and 4×, respectively. They also adopt

the spectral normalization technology to stabilize the

training process of CCGAN.

Figure 5. xddqm Team: architecture with 7 used convolutional lay-

ers. The digits denotes numbers of channels.

4.6. ECNU

The ECNU Team proposes a network architecture that is

an end-to-end Encoder-Decoder structure Network (EDN)

to learn the Hazy-GT mapping, as shown in Fig. 6. The

backbone of encoder we use in the competition is DPN92



Figure 6. ECNU Team: the architecture of the proposed method.

pre-trained in ImageNet1K. Concat is used in 8x,16x,32x

downsampled scales and 1x. The decoder is composed of

several upsample layers. The upsample layers are com-

posed of attention modules, dense block and upsample

block, details are in Fig. 7. The depthwise conv layer in

Fig. 7 provides each spatial attention map for each chan-

nel. The second ReLU layer in dense blocks is replaced by

xUnit, a learnable nonlinear activation function with spatial

connections. The channel attention layer in attention mod-

ule is the same as SENet, composed by a global average

pooling layer, two linear layers, a ReLU layer and a sig-

moid layer in the tail of the attention module. In the tail

of the network, the authors use a BReLU layer to limit the

output between 0 and 1. To enhance the results, they add a

U-net after EDN to adjustment the intensity of each pixel.

The structure of U-net is the same as DCPDN. They train

EDN first, and then joint learning the whole network.

Figure 7. ECNU Team: modules in the proposed upsampling lay-

ers.

4.7. MOMOCV

The authors introduce a generative adversarial model,

with some important modifications to solve the dehazing

problem. They use a similar structure as CycleGAN [38]

architecture, however fully utilize the paired characteristics

with the content loss on both sides. To be specific, they

compare real clear image (in domain B) with the dehazed

image (generated by the forward network from the dense-

hazy image in domain A), and similarly for the real hazy

image (in domain A) and the hazed image from clear image

(in domain B). They carefully select the criterion for those

comparison. They use the VGG network to extract the se-

mantic information of the images to be paired. The proper

VGG layer and the weight relative to the other losses play

important roles.

4.8. BMIPLUNISTDW2

The BMIPL-UNIST-DW-2 introduces a CNN networks

that consists of several Encoders and Decoders. The En-

coder is composed of DenseNet-169. The DenseNet-169

downscaling minimizes resolution loss up to 32 times. The

authors also extend receptive field using Pyramid Pooling.

The decoder part consists of Bilinear + convolution layer,

and Skip connection part is set to concatenation. Also, they

used Decoder Skip connection channel (512, 256, 128, 64,

32, 16) channels.

Figure 8. BOE-IOT-AIBD Team: the architecture of the proposed

method.

4.9. BOEIOTAIBD

BOE-IOT-AIBD Team introduces a new deeplearning ar-

chitecture with the aim to solve general image enhance-

ment problems based on previous work in image super-

resolution [23]. The proposed network design follows sig-

nal processing principles based on the Iterative BackProjec-

tion (IBP) algorithm. Compared to similar approaches, the

authors propose a novel solution to make backprojections

run in multiple resolutions by using a data pipeline work-

flow. The residual and sequential nature of our system pro-

vides convenient features similar to ResNets. First, there

are straight connection from the output to every convolu-

tional layer, providing gradient superhighways; and second,

the sequential processing allows very large models to run

efficiently without demanding excessive memory. Finally,

a distinctive feature of their design is the use Instance Nor-

malization layers (see Fig. 8). The authors found this to

be very effective to make the network stable during train-

ing. At the expense of better results, the final architecture

presents difficulties to be applied when image resolutions

are very different in training and inference.

4.10. MAHA@IIT

The authors designed an end-to-end generative adversar-

ial network (GAN) for single image haze removal [14]. The

proposed network bypasses the intermediate stages and di-

rectly recovers the haze-free scene. Generator architecture

of the proposed network is designed using novel residual



inception (RI) module (see Fig. 9). The RI module com-

prises of dense connections within the multi-scale convolu-

tion layers which allows it to learn the integrated avors of

the haze-related features. Also, the authors propose a dense

residual module for discriminator network of RI-GAN. Fur-

ther, to preserve the edge and the structural details in the

recovered haze- free scene, structural consistency loss and

edge consistency loss along with the L1 loss are incorpo-

rated in proposed RI-GAN.

Figure 9. MAHA@IIT Team: overview of the proposed method.

4.11. FastNet

The proposed approach [26] utilizes a feed-forward con-

volutional neural network trained only on the competition’s

provided dataset. The network uses a pre-trained feature

encoder-to-decoder convolutional architecture, feeding to

dense convolutional refinement layers. Two approaches

were attempted. One approach estimates airlight and trans-

mission maps with two separate encoder-to-decoder net-

works that feed into the refinement layers. This model is

named DualFastNet. The second approach uses a single

encoder-to-decoder network that feeds into the refinement

layers. This model is named FastNet50. The competition

test results were generated from the DualFastNet architec-

ture (see Fig. 10).

4.12. IVL1

The core of the proposed method [9] is the encoder-

decoder model (shown in Fig. 11) inspired by the U-Net ar-

chitecture. In order to reduce the generation of artifacts and

gain sample independence, we respectively replace Convo-

lution Transpose layers with Pixel Shuffle layers and re-

move all Batch Normalization layers.

4.13. ecsuiplab1

The ecsuiplab1 team trained the dehazing network in ad-

versarial manner. It consists of two networks: a dehazing

Figure 10. The network architecture of FastNet team.

Figure 11. IVL1 Team: overview of the proposed method.

network, and a discriminator network. The block structure

of the dehazing network is given in Fig. 12. They applied

residual blocks in two image scales for feature extraction.

They have also taken noise (uniform random values be-

tween -1 and 1) as the input apart from the locally contrast

stretched image. From each of the inputs, features are ex-

tracted separately. Then they are concatenated and utilized

to generate the final dehazed output. The discriminator is

a simple CNN with some conv, Instance norm and Leaky

ReLU layers stacked together. It takes the generated or the

real haze-free image along with the hazy image as input to

decide whether the patches of the input are real or gener-

ated. The discriminator is trained to minimize the MSE loss



of the predicted labels (real/fake). Whereas, the dehazing

network is trained with the aim of minimizing the error of

labelling the generated images as real by the discrimina-

tor along with DSSIM and MAE loss of the dehazed image

from the ground-truth. The weight of these three terms is

taken to be 1, 25 and 50. DSSIM is a measure of structural

dissimilarity based on SSIM metric.

Figure 12. The network architecture of ecsuiplab1 team.

4.14. IPCVIITM

The proposed network consists of a Deep dense-residual

encoder-decoder structure with subpixel convolution and

multi-level pyramid pooling module for efficiently estimat-

ing the dehazed image. The input image is first downsam-

pled by a factor of 2 and fed to the encoder, which increases

the receptive field of the network and reduces computa-

tional footprint. The encoder is made of densely connected

modules. It helps to address the issue of vanishing gradi-

ents and feature propagation while substantially reducing

the model complexity. The encoder has a similar structure

to the network mentioned in [37]. The weights are initial-

ized using pre-trained Dense-121 network. Each layer in a

block receives feature maps from all earlier layers, which

strengthens the information flow during forward and back-

ward pass making training deeper networks easier. The final

output is the residual between the ground-truth colored im-

age and the input image. The Decoder accepts the features

estimated by the encoder at various levels and processes

them using residual blocks before increasing their spatial

resolution through bi-linear up-sampling and convolution.

The intermediate features with higher spatial resolution in

the decoder are concatenated with the corresponding-sized

encoder features. Finally, the decoder output is enhanced

through multi-scale context aggregation through pooling

and upsampling at 4 scales, before being fed to the final

layer. To match the features to the input image resolution,

the authors employ a subpixel-convolution block to upsam-

ple them by a factor of 2. They optimize the inference time

of the network by performing computationally intensive op-

erations on features at lower spatial resolution. This also re-

duces memory footprint while increasing the receptive field.

They make the downsample-upsample operation end-to-end

trainable which gives better performance compared to bilin-

ear operations. The upsampled features are passed through

a convolutional layer to construct the dehazed output (see

Fig. 13).

Figure 13. IPCV-IITM Team: overview of the proposed method.

4.15. shh

The authors introduce a the multi-task dehazing genera-

tive adversarial network that generates haze-free image and

transmission image from the input hazy image. The net-

work has two generators with thirteen shared convolutional

networks and three convolutional networks for each task.

The authors uses U-Net based generator as shown in Fig. 14.

For the multi-task image generation, we removed two skip-

connection layers. We also added four convolutional layers

followed by 512-dimension features to achieve outperform

results. To train the network we take three procedures as

follows. First two parts are trained by NTIRE 2018 dataset

to generate the pre-trained dehazing model.

Figure 14. shh Team: overview of the proposed method.

4.16. IVL2

The authors propose a content-preserving method for im-

age enhancement that estimates a global color transforma-

tion. The proposed method takes inspiration by the work of

Bianco et al. [10], and is composed by two different neural

networks: the first one performs global enhancement and

is in charge of estimating the coefficients of a global color

transformation, in the form of a continuous piece wise func-

tion, which is later applied to the input image; the second

one performs local enhancement and estimates the best spa-

tial filters to be applied to further improve the enhancement

(see Fig. 15).

4.17. ecsuiplab2

The ecsuiplab2 team trained the dehazing network in ad-

versarial manner. It consists of three networks: a dehaz-

ing network, a discriminator network and a refinement net-

work. The block structure of the dehazing network is given



Figure 15. IVL2 Team: overview of the proposed method.

in Fig. 16. There are four paths from the given input. In two

of them features are extracted from local contrast stretched

version of the input image with two different window sizes.

Out of the remaining two paths one extracts global features

and the other one extracts local features from the image.

As the global features can help in computation of the local

features, the global features are concatenated before com-

puting the local features. The features computed from all

four paths are concatenated and then used for generating the

output. The discriminator is a simple classifier CNN with

conv, instance norm and leaky relu blocks. It takes the gen-

erated or the real haze-free image along with the hazy im-

age as input to decide whether the patches of the input are

real or generated. The discriminator is trained to minimize

the MSE loss of the predicted labels (real/fake). Whereas,

the dehazing network is trained with the aim of minimizing

the error of labelling the generated images as real by the

discriminator along with DSSIM and and MAE loss of the

dehazed image from the ground-truth. The refinement net-

work has an architecture similar to UNet that tries to further

refine the the result generated by the dehazing network.

Figure 16. The network architecture of ecsuiplab2 team.

4.18. AlexSDU

The method proposed by Alex-SDU team is a combina-

tion of GCANet and pyramid pooling. This kind of model

have potential to improve dehazing performance. More-

over, we utilize channel attention mechanism and wide ac-

tivation operation to boost the performance. In order to

get optimal results the authors used a patch-based strategy

for the inference process. The authors trained their model

with 600× 800 patch size for 100000 epochs. The learning

rate was set to 0.001 and decayed by 0.5 times each 10000

epochs. The batch size was 8.

4.19. hcilab

The hcilab team customized the U-net with 16-Block

Layers network for training and testing the images. The

network consists of 8 blocks layers for encoding the im-

ages and 8 blocks for decoding the images. For encoding

part each block contains: conv-conv-pool combination lay-

ers and for decoding part each block contains upsampling-

conv-conv combination layers.

Figure 17. The network architecture of iMag team.

4.20. iMag

The iMag team’s approach uses a condition gan network.

They use Residual in Resid-ual Dense Network as the gen-

erator and multi-scale discriminator in Pix2PixHd as the

discriminator. They also use spectral normalization in dis-

criminator to stable our training. In Residual in Residual

Dense Network, the authors downsample two times in en-

coder and upsample two times in decoder at last. They

adopt a mix of GAN loss, L1 loss, perceptual loss and SSIM

loss as the total losses (see Fig. 17).

4.21. Vintage

The proposed method is based on filtering the image to

guess the value of the colored veil which can be due to fog,

dust or smoke. Then the Koschmieder’s model is reversed

to obtain the restored image with fog, dust or smoke atten-

uated. A linear and gamma mapping is then performed to

obtain a less dark image and a little smoothing is also per-

formed to attenuate noise.

Figure 18. XZSYS Team: overview of the proposed method.



4.22. XZSYS

The authors introduce a deep deep symmetric residual

network DSRNet consists of three parts, as illustrated in

Fig. 18: an encoder part (left side), a nonlinear transforma-

tion part (middle part) and a decoder part (right side). The

DSRNet is directly motivated to learn the haze residual im-

ages between the hazy images and the clear images. Based

on this motivation, the authors adopt a multi-scale CNN to

vastly enhance the performance by aggregating more con-

text information in the first layer of the encoder part and

then encode it into feature maps. Subsequently, for the

sake of extract high-level features, they insert seven resid-

ual blocks which effectively improve the convergence and

help enhance the performance of the the proposed DSRNet.

The high-level feature maps is finally decoded back by de-

coder part to get the residual map. Finally, by subtract the

input hazy image to the haze residual image, it is obtained

the haze-free image. The authors also introduce a novel al-

gorithm of feature extract and a useful nonlinear activation

function, called Reverse Parametric Rectified Linear Unit

(RPReLU).
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