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Abstract

This work reviews the results of the NTIRE 2021 Chal-

lenge on Non-Homogeneous Dehazing. The proposed tech-

niques and their results have been evaluated on a novel

dataset that extends the NH-Haze datset. It consists of addi-

tional 35 pairs of real haze free and nonhomogeneous hazy

images recorded outdoor. The nonhomogeneous haze has

been introduced in the outdoor scenes by using a a profes-

sional setup that imitates the real conditions of haze scenes.

327 participants registered in the challenge and 23 teams

competed in the final testing phase. The proposed solutions

gauge the state-of-the-art in image dehazing.

1. Introduction

Haze is a natural process that affects image quality by

drastically reducing visibility in the scene as distance in-

creases. This atmospheric phenomenon is manifested in the
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presence of small particles in the air, which change signifi-

cantly the properties of the environment. As a consequence,

the hazy scenes are characterised by low contrast, low satu-

ration, color change or additional noise.

Recovering visual information from hazy images is im-

portant for various applications, such as aerial or ground

surveillance, automatic traffic control and automatic driv-

ing. Therefore, image dehazing has attracted significant in-

terest in the last decade [25, 55, 28, 56, 37, 9, 2, 43, 7, 10].

Recent methods using CNN [17, 51, 69, 44, 58] have ex-

panded the initial solutions built either on the physical

model, or on improving the visual qualities of the image.

Despite of the large number of viable solutions, a sig-

nificant current problem for the objective verification and

classification of dehazing algorithms is the lack of standard-

ized test benchmarks. In the absence of the reference image

(ground truth), a common problem in the evaluation of the

dehazing techniques is given by the fact that there are no

standard algorithms for detecting and measuring errors. The

blind evaluation algorithms developed so far do not always

generate consistent results because they have also not been

validated on real images.

The first image datasets were synthesized and used in-

formation about scene depth and scene attenuation param-
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eter. FRIDA [57] dataset designed for Advanced Driver

Assistance Systems (ADAS) was developed using 66 syn-

thetic ground images of various traffic scenes. D-HAZY [6]

was generated using over 1400 real images and their known

depth maps, by employing the Koschmieder’s [36] light

propagation model.

An essential issue that makes extremely difficult to col-

lect such hazy image, is the maintenance of lighting condi-

tions, as well as the pixel-by-pixel correspondence between

the reference and the hazy image.

Therefore, it is very complicated to record images with

and without haze in the same lighting conditions and with-

out changes in the scene. A feasible solution that is prob-

ably the most realistic one is to record haze-free natural

images and then to record exactly the same scene with

haze introduced in the scene by dedicated equipment. The

first such image dehazing datasets were introduced at the

NTIRE2018 [3] image dehazing challenge. O-Haze [8]

contains 45 outdoor images and the corresponding images

affected by haze, and I-Haze [5] contains 35 indoor im-

ages and similar scenes affected by haze in a controlled

way. Similarly, DENSE-HAZE [4] contains dense (ho-

mogeneous) hazy and ground-truth images and was em-

ployed by the NTIRE 2019 image dehazing challenge

NTIRE2019 [14].

The NTIRE 2021 image dehazing challenge represents

a step forward in benchmarking single image dehazing.

It is based on an extension of the NH-Haze [11] dataset

that was used in the NTIRE 2020 image dehazing chal-

lenge [12]. The NH-Haze2 consists of 35 hazy images and

their corresponding ground truth (haze-free) images of the

same scene. NH-Haze2 contains real outdoor scenes with

non-homogeneous haze generated using a professional haze

setup. We perform an objective evaluation by comparing the

restored output of the methods with the ground truth images

of the dataset.

This challenge is one of the NTIRE 2021 associated

challenges: nonhomogeneous dehazing [13], defocus de-

blurring using dual-pixel [1], depth guided image relight-

ing [24], image deblurring [48], multi-modal aerial view

imagery classification [40], learning the super-resolution

space [46], quality enhancement of heavily compressed

videos [65], video super-resolution [54], perceptual image

quality assessment [27], burst super-resolution [15], high

dynamic range [49].

2. Image Dehazing Challenge

The objectives of the NTIRE 2021 challenge on non-

homogeneous image dehazing are: (i) to gauge and push

the state-of- the-art in image dehazing; (ii) to compare and

promote the sota solutions; and (iii) to promote the non-

homogeneous image dehazing dataset (NH-Haze [11] and

its extension used in this workshop).

2.1. Nonhomogeneous image dataset

The NTIRE 2021 image dehazing challenge was built on

the extended version of the former NH-Haze [11] dataset.

The NH-Haze2 consists of 35 hazy images and their cor-

responding ground truth (haze-free) images of the same

scene. NH-Haze2 contains real outdoor scenes with non-

homogeneous haze generated using a professional haze

setup. To introduce haze in the outdoor scenes we employed

two professional haze machines which generate vapor par-

ticles with diameter size (typically 1 - 10 microns) simi-

lar to the atmospheric haze particles. For recording images

we used sony A7 III cameras remotely controlled. To en-

sure consistency between the unaffected areas of the haze

in the image pairs, the camera parameters (shutter-speed /

exposure-time, the aperture / F-stop, the ISO and the white-

balance settings) were adjusted manually and then kept un-

changed between the two consecutive recording sessions.

We set the camera parameters (aperture-exposure-ISO), us-

ing an external exposure meter (Sekonic) and for white bal-

ance we used the medium gray card (18percent gray) of

the color checker. The process of recording a pair of im-

ages took about 20-30 minutes.

2.2. Evaluation

For the NTIRE 2021 dehazing challenge we set a Co-

dalab competition. In order to access the data and submit

produced results to the evaluation server, each participant

had to register to the Codalab competition and follow the

phases set.

The Peak Signal-to-Noise Ratio (dB) and the Structural

Similarity index (SSIM) computed between the inferred re-

sult and the ground truth image are the quantitative mea-

sures. The higher the score is, the better the restoration fi-

delity to the ground truth image is. Additionally, the LPIPS

perceptual measure was deployed, for assessing the quality

of the produced results. The final ranking was done after in-

troducing the Mean Opinion Score (MOS), as a result of an

user study set by the challenge organizers, with the results

provided by the teams in the final phase of the challenge.

2.3. Challenge Phases

1. Development phase: In this phase, the first 25 images

of the NH-Haze dataset were available on the chal-

lenge website. The participants used them in order to

develop their proposed solutions.

2. Validation phase: Another set consisting of 5 images

was made public on the challenge website. The par-

ticipants used the images to validate their solutions,

by submitting the produced results to the validation

server.

3. Testing phase: The participants had access to the last
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set of 5 images. They used the images to do infer-

ence on their proposed solution. The produced results

were uploaded to the testing server, along with the fact-

sheet containing information about team contribution,

team members, codes and testing phase results. For

the final ranking, results were analyzed in both fidelity

an perceptual terms. Finally, the Mean Opinion Score

(MOS) was used to differentiate between similar re-

sults in terms of both fidelity and perceptual metrics.

3. Challenge Results

The challenge registered 327 participants, and a num-

ber of 23 teams were ranked in the final phase. Each team

had to prepare their submission consisting of codes, testing

phase results and a factsheet containing identification infor-

mation and a description of their proposed solution. Section

4 offers a description for each of the solutions ranked in the

final phase of the challenge.

The values for the deployed metrics, computed for each

submission, are given in the Table 1, while results charac-

terized by the best value for each of the deployed metrics

were given in the Figure 1.

As you can observe in Table 1, The metric with the high-

est correlation to the Mean Opinion Score (MOS) is the

PSNR, while LPIPS and SSIM can be used to differenti-

ate similar results. However, the results corresponding to

the top performing solutions in terms of perceptual metrics

have, as expected, high SSSIM values and low LPIPS dis-

tance.

Architectures and main ideas

Excepting Team BUUMASRC, all the remaining solutions

used end-to-end deep learning, employing GPU(s) for both

training and inference. Table 1 can be used as reference

point when comparing solutions complexity, as the infer-

ence time was provided for the majority of the ranked solu-

tions.

Team BUUMASRC proposed an algorithm based on a

light scattering model to estimate a dehazed image, us-

ing image level statistics and physical models for various

mechanisms. Their algorithm offers a better estimation over

the atmospheric light and participating media transmittance,

based on the dark channel prior.

Ideas similar to ensemble learning were deployed by the

majority of the top scoring teams, to reduce the level of vari-

ance produced by the limited amount of data. Many teams

used branched structure to achieve a better restoration of

the high-level details. Solutions developed in the adversar-

ial framework were proposed, one of them being the Adap-

tive Dehazing Network, proposed by the challenge winner,

Team DWT dehaze.

In terms of minimized objectives, the majority of the

teams used the L1 loss, and a SSIM based loss, as those

metrics were used for the public leaderboard provided on

DWT dehaze - best PSNR value

NTUGICE LINLAB - best SSIM value

Mac dehaze - best LPIPS values

Ground truth images

Figure 1: Visual results provided for best performing

method on each of the metrics deployed. Best zoom-in on

screen for a better view.

the challenge website. Perceptual losses employing pre-

trained feature extractors were also widely used by chal-

lenge participants. Similar to the last year challenge, they

also deployed losses based on Fast Fourier Transform (FFT)

or knowledge-transfer losses. Gradient or laplacian losses,

or metrics defined in the Lab color space were successfully

employed by some participants, to improve the quality of

their results in the high-frequency domain.

Some of the other ideas that will be encountered when

reading the Section 4 are the usage of attention structures,

where the majority of the teams came with existing methods

or proposed novel designs, the multi-scale extracted fea-

tures and residual learning. The Trident Dehazing Network

(TDN), the winner of the 2020 competition, served as one

of the building blocks for many of the ranked solutions, and

for some of the top scoring teams.

4. Challenge Methods

4.1. DWT dehaze

Inspired by [42, 50, 38], this team proposed a novel two-

branch generative adversarial network, namely DW-GAN.

The network structure is shown in Figure 2. For the first

branch, unlike supervising the training process by a fre-

quency domain loss [41], they proposed the idea of directly

embedding the frequency domain knowledge into the de-
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Participant Results Solution details
Fidelity Perceptual quality Runtime GPU/ extra deep learning loss

Team User PSNR↑ SSIM↑ LPIPS1 ↓ LPIPS2 ↓ MOS↓ img.[s] CPU data ens. framework

Top perceptual quality solutions
DWT dehaze eason97 21.0761 0.8393 0.169 0.203 1 1.558 1080Ti NH-HAZE-20 - Pytorch L1, LSSIM , LGAN , Lperc

NTUGICE LINLAB Jerome Chang 20.8983 0.8441 0.175 0.194 2 60 Tesla V100 NH-HAZE 20 8x Pytorch n/a

Mac dehaze ken103 21.0182 0.8375 0.168 0.196 3 0.089 Tesla V100 NH-HAZE-20 - Pytorch L1, LSSIM , LGAN , Lperc

Bilibili AI & FDU splinter23 20.5985 0.82311 0.182 0.212 4 0.64 1080Ti NH-HAZE 20 8x Pytorch L1, LFFT , LBReLU

buaa colab buaa colab 20.6194 0.8347 0.202 0.220 5 1.77 4x RTX2080Ti - 8x Pytorch L1, LLab, LLaplacian, LKT

TJUVIPLab WangYudong 20.5376 0.8356 0.183 0.205 6 8.0 RTX3090 NH-HAZE 8x Pytorch L1, LSSIM , LGradient, Lperc

O-HAZE

DENSE-HAZE

TeamInception swz30 20.0139 0.8328 0.177 0.205 7 1.4 4x Tesla V100 - 8x Pytorch L1, LSSIM , LV GG

iPAL-GridFFA haichuan 19.56712 0.8392 0.178 0.194 8 1.01 RTX2080Ti NH-HAZE Pytorch L1, smoothed L1, LSSIM , LGAN

VIPLab Yangwj 19.67510 0.82410 0.173 0.203 9 0.042 1080Ti NH-HAZE - Pytorch L1, Lperc

Medium perceptual quality solutions
debut kele debut kele 20.2647 0.8329 0.200 0.219 10 n/a RTX2080Ti - - Pytorch L1, LSSIM , Lstd

alibaba-cipp alibaba-cipp 20.2318 0.80216 0.178 0.220 10 9.0 8x Tesla V100 Place2, O-HAZE, DENSE-HAZE - Pytorch n/a

DeepBlueAI DeepBlueAI 18.97017 0.81613 0.197 0.210 10 1.0 4x Tesla V100 - - Pytorch L1, Lperc., L2

team Dou xiaodou 19.65411 0.81214 0.187 0.208 11 0.94 GPU - - Pytorch n/a

LDGLI YiqunChen1999 19.52213 0.8384 0.192 0.207 11 1.13 RTX3090 NH-HAZE, hand-designed - n/a L2, LSSIM

NTUDS-LINLAB ChangSung 19.28814 0.81712 0.220 0.234 11 n/a GPU NH-HAZE n/a Pytorch n/a

VIP UNIST Eun-Sung 19.15615 0.80915 0.205 0.227 11 0.034 Titan RTX I-HAZE - Pytorch n/a

O-HAZE

DENSE-HAZE

NH-HAZE

Low perceptual quality solutions
SP-CET Geethu 19.05016 0.80017 0.191 0.222 12 0.409 GPU - - n/a n/a

Dehaze aicte CHIPPYMMANU 18.30218 0.73322 0.295 0.309 12 1.0 GPU - - Keras n/a

HZLLC BFZhang 18.04319 0.74221 0.313 0.295 12 0.018 RTX2060 - - Pytorch L2, Lperc., Lt.v.

WaveFull XM R0use 17.97420 0.77120 0.271 0.286 13 10.4 Titan Xp - - Pytorch n/a

SVNIT NTNU Team kalpesh svnit 17.90521 0.78818 0.248 0.264 13 24.0 Quadro P5000 O-HAZE, I-HAZE, Dense-HAZE - Pytorch L1

CVML Lab vishalchudasama 17.65722 0.78319 0.247 0.260 13 1.2 Titan X Pascal O-HAZE, I-HAZE, Dense-HAZE - Tensorflow L1

BUUMASRC BUUMASRC. 12.00623 0.62323 0.467 0.445 13 445.37 CPU O-HAZE - Matlab n/a

no processing baseline 10.936 0.565 0.588 0.489 0.0

Table 1: NTIRE 2021 NonHomogeneous Dehazing Challenge preliminary results in terms of PSNR, SSIM, LPIPS [72], on

the NH-Haze test data. For LPIPS, both Alex-net(LPIPS1) and VGG16 (LPIPS2) pretrained model were used as feature

extractors. The Mean Opinion Score (MOS) was added to determine the final ranking of the challenge. The results were

split into three categories, with respect to their perceptual properties. Note that the perceptual differences can be rather subtle

when comparing results from top scoring teams.

hazing network. They follow the U-Net [52] architecture to

construct the first branch, as the wavelet net. It has a en-

coder that is linked to the decoder by massive skip connec-

tions. To meet the requirements for extracting frequency do-

main knowledge, they adopt five DWT downsampling mod-

ules and six convolutional downsampling layers to build the

encoder. Then, the spatial and frequency representations are

concatenated as the input of the downsampling process.

In the second branch, they use Res2Net [52] as encoder.

Observing that the feature representations learned on a pre-

trained task can have positive impact on the target task

[23, 67], they use the ImageNet [22] pretrained weights as

initialization.

In the decoder module, they used pixel-shuffle layer for

upsampling, which makes the size of the recovered feature

maps to gradually increase to the original resolution. Chan-

nel and pixelwise attention blocks are employed after each

pixel-shuffle layer to identify the dynamic hazy patterns.

Skip connections are added between encoder and decoder

as shown in Figure 2.

Finally, they add a simple 7× 7 convolution layer as fu-

sion operation to map the features from two branch to clear

images.

The loss functions adopted in their work aims to balance

the model behaviour, DW-GAN learning to generate low

distortion and high perceptual quality images.

Therefore, they introduced the final loss blend function

as stated in Equation 1, where α = 0.2, β = 0.001 and

γ = 0.005 are the weights for each of the loss functions.

L1 denotes L1 loss, LSSIM represents MS-SSIM loss [59],

Lperceptual is perceptual loss [35] and, for the adversarial

loss Ladv , they adopt the discriminator in [76].

Ltotal = L1 + αLSSIM + βLperceptual + γ4Ladv (1)

The overall network architecture is shown in Figure 2.

4.2. NTUGICE LINLAB

To cope with the property of nonhomogeneous haze,

they proposed Adaptive Dehazing Network (ADN). This is

a two-branch dehazing network which aims to adaptively

process the region covered by thin haze or heavy haze.

As shown in the Figure 3, ADN consists of two branches,

the Primary Branch and the Enhanced Branch. While the

Primary Branch manage the region covered by thin haze,

the Enhanced Branch will focus on making up for the re-

gion Primary Branch doesn’t dehaze well, which is mostly

severely contaminated area.

Besides, to blend the output of the two branches, they

design the Weight Map Generator. This has the role of gen-

erating a two-channel weight map used to blend the out-

puts of the two branches. So, the output of each branch will
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Figure 2: The network structure of the proposed method. The generator is a two-branch network, which consists of Wavelet

Net and Attention Net. The same color used in the rectangles denotes the same operation. ’Conv’, ’BN’, ’TConv’, ’MP’,

’PS’, ’AP’, ’LReLu’ denotes convolution, batch normalization, transpose-convolution, max-pooling, pixel-shuffle, average-

pooling, and leakyReLu. ’B2N’, ’C-PA’ and ’DWT’ denote bottle2neck, channel and pixel-wise attention, and discrete

wavelet transform modules respectively.

be element-wise multiplied with their corresponding weight

map and the final result will be produced as the sum of the

weighted outputs.

The model of the encoder-decoder structure of the pri-

mary branch is based on the Perceptual Pyramid Deep Net-

work [70]. Both branches share the same encoder, but they

own their individual decoders. The difference between the

decoders is that normal convolution was replaced by the

dilated convolution kernel, attempting to enlarge receptive

field of the enhanced decoder. This enables the Enhanced

Branch to gain ability to deal with heavy haze. Moreover,

some attention modules such as CBAM[61] were added,

combining spatial attention and channel attention to let the

decoders concentrate the training procedure on the most im-

portant features extracted by the encoder.

4.3. Mac dehaze

Mac dehaze team proposes a two-branch neural network

for non-nomogeneous dehazing via ensemble learning to

deal with the above mentioned problems. The structure di-

agram of the network is shown in Figure 4.

The first branch, namely the transfer learning sub-net,

is built upon a ImageNet [21] pretrained Res2Net[26] [62].

It aims to extract robust global representations from input
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Figure 3: Information flow along NTUGICE-LINLAB pro-

posed model.

images with pre-trained weights. To achieve this, instead

of skip connecting all resolution features from encoder to

decoder, they omitted the skip connection of full resolu-

tion features. This physically ensures that the fine details

of input images would not be preserved, and thus, forces

the network to focus more on extracting robust global rep-

resentations. As a result, the ImageNet pretrained branch

can help address the problem of lacking training data.

Besides this, in favor of the strong mapping capability of

residual channel attention network (RCAN) [73], they de-

signed the current data fitting sub-net using RCAN as sec-

ond branch. The current data fitting branch has five residual

groups, and each group has ten residual blocks. Unlike the

original network setting [73] that does the downsampling

of the input images, the second branch always maintains

the original resolution of the inputs and avoids using any

downsampling operation. This adjustment avoids the loss

of fine detailed features. Since the sub-network is trained

from scratch and built with full-resolution purpose, it would

fit on the current data and perform well on the specific train-

ing image domain.

The final output of the entire network is produced by a

fusion layer. Specifically, the fusion layer takes the con-

catenation of features from the branches and then maps the

features to clear outputs.

Moreover, adversarial loss is proved to be effective in

helping restore photo-realistic images [38]. Especially for

the small-scaled dataset, the pixelwise loss function usually

fails to provide sufficient control to supervise the network

training for recovering the photo-realistic details.

Therefore, they implemented the adversarial loss with

the discriminator in [76]. The overall loss function is a lin-

ear combination of smooth L1 loss Ll1, MS-SSIM loss[60]

LSSIM , perceptual loss[35] Lperceptual, and adversarial

loss Ladv , as shown in Equation 2.

L = γ1Ll1 + γ2LSSIM + γ3Lperceptual + γ4Ladv (2)

4.4. Bilibili AI & FDU

They use the Trident Dehazing Network[41] proposed in

NTIRE2020 NH-Dehazing challenge as their model. The

architecture is depicted in the Figure 6. Different from the

proposed paper, they are training their model using the im-

age pairs with a small size (256×256) in the early phase of

the training procedure. Then the resolution will be progres-

sively increased to a higher dimension (384×384), as the

training procedure continues.

4.5. buaa colab

Their contribution is the modified version of Knowl-

edge Transfer Network [62], namely, the Super Resolution

Knowledge Transfer Dehazing Network (SRKTDN). As is

shown in Figure 7, the network described contains two main

components, the main network and teacher network. The

main network consists of a dehaze network and a super-

resolution network.

The dehaze network uses Res2Net101 as encoder, and

PixelShuffle for the upsampling operation. The network

uses an attention mechanism combining channel attention

blocks and pixel attention blocks to restore the haze-free

image [50].

They used a teacher network to generate low-level fea-

ture maps. The teacher network is trained by ground truth

pairs of the dataset, in order to capture the necessary infor-

mation for image restoring. Compared to the Knowledge

Transfer Network, there are structural differences between

the teacher network and the dehaze network. While the de-

haze network uses Res2Net101 as encoder to ensure capa-

bility of haze removal, the teacher network uses ResNet18

as the encoder. This will further enhance the generaliza-

tion ability and reduce the training time and GPU memory

consumption.

Meanwhile, inspired by TDN[41], they used a super-

resolution network to enhance detail restoration. The super-

resolution network uses three Wide Activation Block to cap-

ture details.

The training objective used is a blending of L1 loss,

Laplacian loss, Lab-color space L2 loss and the Knowledge

Transfer loss.

L1 loss is calculated as states in Equation 3, where I and

J refer to the hazy image and ground-truth haze free image,

respectively, and M(·) stands for the main network.

L1 = |J −M(I)|1 (3)

Laplacian loss uses Laplacian pyramid representation of

the image and calculates L1 loss for 5 levels[16]. Lj(·) in

the Equation 4 is the j-th level of the Laplacian pyramid

representation. Laplacian loss focuses on edge of the image

and prevent the output from being blurry.
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Llap =

5∑

j=1

22j |Lj(J)− Lj(M(I))| (4)

L2 loss of Lab color space is used to refine color of

the output image. Different from L1 loss, L2 loss pay

more attention to pixels that have a relatively high devi-

ation from the ground-truth image. Besides, unlike RGB

color space, Lab color space is designed to resemble human

vision. Lab(·) in the Equation 5 refer to the RGB-to-Lab

transformation.

LLab = |Lab(J)− Lab(M(I))|2 (5)

Similar to the method proposed in [62], the Knowledge

Transfer loss is L1 loss between feature map of dehaze
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Figure 6: The network architecture of the solution proposed

by team Bilibili AI & FDU

network and the output of the teacher network. Knowl-

edge Transfer loss helps the Res2Net101 encoder to imitate
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Figure 7: Architecture of buaa colab proposed architecture.

Figure 8: Details over the attention modules used by

buaa colab team.

the teacher’s output, hence learning information of haze re-

moval. In the Equation 6, I ′ and J ′ refer to the output fea-

ture map of dehaze network encoder and teacher network

encoder respectively.

LKT = |J ′ − I ′|1 (6)

The total loss is calculated using the Equation 7.

L = 1× L1 + 0.3× Llap + 0.5× LLab + 1× LKT (7)

4.6. TJUVIPLab

TJU VIPLab team proposed a CNN-based Multi-task

Collaboration Dehazing Network (MCDNet) to directly

learn the mapping between the nonhomogeneous haze im-

age and haze-free clear image. MCDNet consists of three

sub-nets inspired by [41] and a Channel Attention-Spacial

Attention(CASA) Module inspired by [63]. The overall

structure of MCDNet is shown in Figure 9. The Simple

U-Net is used to obtain a preliminary haze-free image, the

Encode-Decode sub-Net(EDN) is used to extract features

and get basic dehazing feature maps, and the Detail Refine-

ment sub-Net(DRN) is used to get high frequency details

of the haze free image features. CASA Module is used to

enhance the usage of available information to improve the

perceptual properties of the produced image.

Figure 9: An overview of the proposed MCDNet architec-

ture.

The architecture of simple U-Net is shown in Figure 10,

as a light encoder-decoder structure. There are 6 downsam-

pling/upsampling blocks, using 4 × 4 convolution (trans-

posed convolution), with stride= 2, and suitable padding,

to finally match the dimensions of the input image.

Figure 10: Structure of Simple U-Net

DenseNet-101 pretrained on the ImageNet is the back-

bone of EDN’s encoder part. Same as [41], the decoder

is composed of five Deformable Convolution Upsampling

(DConv Up) blocks, as shown in right side of Figure 9.

The DConv Up block consists of 2 deformable convolution

blocks. The input feature is first fed into a residual-3 × 3
DConv block, then fed into a 1 × 1 DConv block, and fi-

nally go through an 2× nearest-upsampling layer to obtain

the upsampled feature. The deepest two blocks used skip

connection from the output of the third and the fourth dense-

block, respectively. Moreover, EDN uses trainable instance

normalization for skip connections.

DRN starts with two downsampled enhancing mod-

els (EM) to capture multi-scale detailed feature maps.

Then, their output is fed into three residual blocks. The

Pixel Shuffle layer implements a 2× upsampling operation,

which is used to change the feature maps from H×W×4C
to 2H × 2W ×C, where H,W,C are the height, width and
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the number of channels of feature map. As shown in Fig-

ure 11, EM obtains 4×, 8×, 16×, 32× downsampling fea-

tures, and performs 2×, 4×, 8×, 16× upsampling respec-

tively. The feature maps are concatenated with 2× down-

sampling and fed into 3× 3 convolution layer.

Figure 11: Structure of Enhance Module

CASA Module contains four CASA-blocks, which is

shown at the bottom of Figure 9. Three Sub-Net outputs are

fed into three CASA-blocks respectively. Then, their out-

puts are concatenated and used as input of the next CASA-

block, which can further enhance useful information. The

CASA Module output adds with concatenated feature map

consisting of the output of three Sub-Nets. Finally, this fea-

ture map is fed into a 3 × 3 DConv layer. This layer uses

Tanh as activation function, which normalizes the output

in the [−1, 1] interval.

4.7. Team Inception

They present an architecture, named MPRNet, that is

based on a recent work [66]. As illustrated in Fig. 12, MPR-

Net consists of two stages to progressively restore images.

In the first stage they employ three encoder-decoder sub-

networks that independently operate on the red, green and

blue channels of the hazy input image. It is based on the

observation that each channel is affected by the haze differ-

ently. For instance, the density of haze in the blue chan-

nel is much higher than in the red channel. Therefore, the

solution proposes different parameters allocation per chan-

nel, with respect to the haze density. For the output of each

encoder-decoder subnetworks, they deployed a supervised

attention module (SAM) [66]. The schematic diagram of

SAM is shown in Figure 13.

The output features from the first stage are concatenated

and passed as input to the final stage. This stage act as a re-

finement stage and outputs the final dehazed image. To train

the proposed network, they use L1 loss at the first stage, and

the loss function stated in Equation 8 for the final stage.

Figure 12: Overall framework of MPRNet.

Lf = αL1(ŷ,y) + βLMS-SSIM(ŷ,y) + γLVGG(ŷ,y) (8)

The first term (L1 loss) and second term (multi-scale

structural similarity measure) computes differences be-

tween the network’s output and the ground truth directly at

the pixel-level. The last term of the loss function compares

the deep feature representations of the output and ground-

truth images extracted with the VGG network pre-trained on

the ImageNet dataset. In Equation 9, the formula of this loss

function is given, where N is the number of pixels in the im-

age and φ(.) is the transformation after the conv2 layer of

the VGG net.

LV GG(ŷ,y) =
1

N
‖ φ(ŷ)− φ(y) ‖2

2
, (9)

Figure 13: Supervised attention module (SAM).

4.8. iPAL-GridFFA

The team designed an end-to-end GAN Network for non-

homogeneous haze removal which consists of a generator

network, a group structure, and a discriminator. For the

generator architecture, they chose a 3×6 Grid network with

Feature Fusion Attention. The generator network is an en-

hanced network of GridDehazeNet [45].

The Group Structure combines 15 Basic Block structures

which conclude the Pixel attention [50] and Channel atten-

tion [29], with skip connections for each of the modules.
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Figure 14: Solution proposed by iPAL-GridFFA

Figure 15: The architecture of the group structure proposed

by iPAL-GridFFA.

For the discriminator architecture, they use a similar idea

to Patch GAN[74], using the discriminator score for the

image as the average score over the set of disjoint image

patches that can be fed to the discriminator for each train-

ing image.

Besides the adversarial loss, they use SSIM loss function

as well as Smooth L1 loss and L1 loss. Moreover, the cosine

annealing [31] mechanism is used for the adjustment of the

learning rate.

Figure 15 provides a detailed illustration of Group Struc-

ture. Local residual learning allows the region with a thin

haze to be bypassed through multiple local residual con-

nections. While Channel Attention concerns that different

channel features have different weighted information, the

Pixel Attention makes the network pay more attention to in-

formative features.

They opted for a simple network with the building block

made of a convolution layer, a Batch Normalization layers,

and using ReLU as the activation function. The network

contains three building blocks in serial, where the first two

blocks are attached to a Max Pooling operation.

4.9. VIPLab

Densenet network has a wide range of applications in
many fields due to its dense connection characteristics, and
so, this team used it as the backbone network for dehazing.
The boosting algorithm operates the refinement process on
the strengthened image, based on the previously estimated
image. The algorithm has been shown to improve the
Signal-to-Noise Ratio (SNR) under the axiom that the
denoising method obtains better results in terms of SNR on

the images of the same scene but less noise. For image de-
hazing, the Enhance strategy can be formulated similarly as:

Ĵ
n+1

= g
(

I + Ĵ
n
)

− Ĵ
n

(10)

where Ĵndenotes the estimated image at the n-th iteration,

g() is the dehazing approach, and I + Ĵn represents the

strengthened image using the hazy input I .

Figure 16: VIPLab proposed architecture.

They show that the boosting method can facilitate image

dehazing performance in terms of Portion of Haze (PoH)

under a similar axiom as that for denoising.

Figure 17: Dense Feature Fusion

4.10. debut kele

They proposed a deep learning architecture, similar

to [47], that estimates physical parameters in the haze

model. Compared to it, they experiment with different

data augmentation strategies, a custom loss function, and

the Stochastic Weight Averaging optimization [34]. Their

network uses a shared DenseNet encoder and four parallel

distinct decoders to jointly estimate the scene information.

Moreover, the channel attention mechanism is utilized to

generate different feature maps. A novel Dilation Inception

module at the direct decoder is used to generate additional

features at densely-hazed regions using the non-local fea-

tures principle.

The minimized objective consists of a final blend of L1,

LSSIM and Lstd. is used, where Lstd. is used to suppress

extreme values throughout the image.

4.11. alibaba-cipp

They adopt the GAN framework, which is widely known

to be able to do image restoration. The generator consists of
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a sequence of two stages to progressively dehaze the input

hazy images.

In the first stage, they use a residual-in-residual dense

block (RRDB)[64] as the basic module to generate the

coarse dehazed image. The second stage, they employ

a encoder-decoder architecture to refine the coarse image.

In order to combine information from different receptive

fields, they deployed a multi-patch transformer structure be-

tween the encoder and the decoder, to guide the network to

refine the result. The proposed solution is illustrated in Fig-

ure 18.

4.12. DeepBlueAI

They used Trident Dehazing Network as the core sub-

network, and based on DMPHN, they designed a new net-

work named Cascaded Multi-Path Dehazing Network (CM-

PDN). The team used a simple but effective data augmen-

tation strategy named Hazing Reinforcement Augmenta-

tion (HRA). Compared with the traditional method, they

perform additional data augmentation on the cropped sub-

images. This method consists of randomly initializing two

fog masks with a total area of 64×64 and merging them

with the sub-images, in order to solve the problem of insuf-

ficient training for non-haze area/shallow haze area.

Figure 19 shows the effect of HRA on the dehazing re-

sults. The left and right columns are the compared results

produced before and after using HRA. HRA effectively re-

moves dense haze and maintains the original texture of the

image, making the result clearer.

4.13. Team Dou

Team Dou proposed an improvement over the work pub-

lished in [66], based on muti-scale features extraction. Prin-

ciples as attention mechanisms, residual learning, feature

fusion and hybrid dilated convolution are combined in an

architecture illustrated in Figure 20.

4.14. LDGLI

The architecture is illustrated in the Figure 21. They used

a pre-trained ResNeSt [71] model to extract the features at

five different levels, and employed the proposed NonHo-

mogeneous Dehazing Block (NHDBlock) (see Figure 22)

to remove the haze and recover the image. The 2× is an

upsampling operation which is done by a transposed convo-

lution and a nonlinear activation.

The NHDBlock, mainly consists of a sequence of four

NonHomogeneous Dehazing Units (NHDUint). Each of

the proposed NHDUnit tries to augment the input feature

I by utilizing the global feature G and local feature L, and

produces output augmented feature O. They introduce the

residual connection in NHDBlock to help preserve spatial

details.

4.15. NTUDS-LINLAB

They proposed a U-Net architecture [53] (see Figure 23)

dehazing model using multiscale dense features, based on

dense blocks [32] and residual blocks [30]. Their Encoder

module used Densenet which was pretrained on ImageNet

dataset. One important difference between their model and

U-Net is the re-designed skip connection. Aiming at uti-

lizing lower level feature maps, they used a concatenation

between the decoder feature map and the upsampled lower

dimension feature map.

4.16. VIP UNIST

They proposed an end-to-end dehazing method named

Selective Residual Learning for Multi-scale Dehazing.

Overall network architecture (see Figure 24) shows the mul-

tiscale inputs and outputs and the use of proposed selective

residual blocks.

Firstly, adopting the multi-scale architecture in the

method is an effective way to train model that can extract

both high-level and low-level features.

Secondly, the selective residual block reduces unneces-

sary artifacts of the final outputs. The selective residual

block is an operation that is similar to the residual block

in the ResNet.

However, the final output O(x) at the pixel location x is

the activated weighted sum of the input feature F (x) and

the estimated residual feature R(x), which can be denoted

as Equation 11. Since both the skip connection and the con-

volutional output are weighted, the block selectively takes

the branches. Therefore, the artifacts that are crucial to the

fidelity of the final outputs are alleviated.

O(x) = σ(αF (x) + βR(x)), (11)

4.17. SP-CET

This method includes a multi-level CNN model called

Deep Multi-patch Hierarchical Network(DMPHN) inspired

by [20] and [68]. It uses multi patch hierarchy as input and

exploits dehazing at different scales. Each level of the net-

work consists of an encoder and a decoder. The overall ar-

chitecture of the method is shown in Figure 25.

4.18. Dehaze aicte

This team proposed the GANID method, tackling the

image dehazing problem in the adversarial learning frame-

work. Deep supervision [39] in UNet++ is used for the

generator (see Figure 26), to create secondary output maps,

which allows for models to be pruned, therefore, applying

the model pruning process.

Deep supervision operates in two modes, namely the ac-

curate mode and the fast mode. In the accurate mode, the

averaged output is calculated from all output branches. In
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Figure 18: The framework proposed by Team alibaba-cipp.

Figure 19: The effect of Hazing Reinforcement Algorithm.

the fast mode, one of the output branches is selected for

the final response map. The fast mode is also known as

a pruned mode. Model pruning reduces the complexity of

the network with some modest drop inaccuracy. The accu-

rate model is used in the proposed method. Deep super-

vision means that all the responses from nodes Xk,l with

conv dilated
conv

Recursive
 Residual 

Group

Recursive
 Residual 

Group
conv

Input
Output

Figure 20: Architecture of the solution proposed by Team

Dou.

k = 0 and l = 1, 2, 3, 4 are passed through a 1× 1 convolu-

tion along with a k kernel, followed by an activation func-

tion (sigmoid). A detailed description of UNet++ is given

[75]. Patch discriminator in the Conditional GAN [33] is

used with some additional layers. Rather than using pixel-

based comparison, a patch-based comparison is made in this

model.

4.19. HZZLC

This team proposed a solution named VMPHN, using

an end-to-end Multi-patch architecture. Figure 27 depicts

the architecture of the proposed solution. The informa-

tion flow is like a ”V” shape.The level-1 patch is just an

original image that is fed to the first Encoder-Decoder and

its output is then added to the level-2 patch.The result of

level-2 is the input of the second Encoder-Decoder,and the

level-3 is the same condition.Now the top-bottom flow is

completed.As to the bottom-top flow,the third output of
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Figure 21: Architecture of the solution proposed by LDGLI

team.

Figure 22: Schematic illustration of the NHDBlock used by

LDGLI team.

Figure 23: The architecture of the model used by NTUDS-

LINLAB team.

the Encoder-Decoder is added with the input of Encoder-

Decoder,the result is then feed to the forth Encoder-Decoder

net.Finally,we get the fifth Encoder-Decoder’s output and

Figure 24: The architecture of the VIP UNIST proposed

method.

Figure 25: Architecture of the DMPHN model.

Figure 26: Generator of the GANID method.

adopt the MSE loss, perception loss and total variation loss

to get the dehazed images.

4.20. WaveFull-XM

This team combines the GCAN model [18] and the PAM

model [19] to build a network implementing residual learn-
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Figure 27: VMPHN model architecture.

Figure 28: Architecture of the MACNet model.

ing, in order to learn the features on non-homogeneous

haze. Several PAM modules are added to different layers

of the residual network, which enable the network to learn

local information from both high-level semantics and low-

level semantics. Finally, the features of different layers are

fused as the ultimate features.

4.21. SVNIT NTNU Team

The proposed MACNet consists of a multiple atten-

tion based approach, able to tune with the given non-

homogeneous haze image adaptively. The architecture of

the solution is depicted in Figure 28. In order to deal

with the non-homogeneous haze, the proposed network uses

channel attention, pixel attention and spatial attention, help-

ing the network to learn the statistical characteristics of haze

image. The L1 loss function, between the hallucinated im-

age and the ground truth haze-free image was used as the

minimized objective.

4.22. CVML

To tackle the non-homogeneous haze, they proposed a

new appraoch called Depth-in-Residual Mulit-Path CNN

for Non-Homogeneous DeHazing (i.e., DMCNN-DHaze)

and the design of the same is depicted in the Figure 29. The

proposed DMCNN-DHaze model consists of several resid-

ual groups (i.e., consisting depth-in-Residual blocks) where

multi-path connections along with attention networks are

utilized in order to remove the non-homogeneous haze and

produce plausible solutions.

4.23. BUUMASRC

Their algorithm refines the estimation of the atmospheric

ambient light and transmittance based on the original dark

Figure 29: Architecture of the CVML proposed solution.

Figure 30: Flowchart diagram of the algorithm proposed by

Team BUUMASRC

channel prior algorithm, thus get more effective estimate

values, which significantly improve the dehazing effect.

The flowchart diagram in the algorithm is represented in

Figure 30.

The algorithm makes estimations over the ambient light

and the atmospheric light using image level statistics. Those

estimations are used to compute a color layer transmittance

matrix, and then, this is used for the image dehazing proce-

dure.

5. Conclusion

The challenge registered 327 participants, and 23 teams

were ranked in the final phase. They experimented with

various architectures and proposed several novel solutions,

improving over the existing results. Designs presented in

the past years were successfully deployed, showing them as

useful building blocks, with a lot of potential for improve-

ment.

The final ranking was done with respect to the Mean

Opinion Score resulting of our user study, and the solutions

were split into three categories with respect to their percep-

tual properties. Finally, the ranking was highly influenced

by the recovered images fidelity, as this had the highest cor-

relation to the users feedback about the presented results.
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