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Abstract

Post-translational modifications (PTMs) either enhance a protein’s activity in various sub-cellular processes, or degrade
their activity which leads towards failure of intracellular processes. Tyrosine nitration (NT) modification degrades protein’s
activity that initiate and propagate various diseases including Neurodegenerative, Cardiovascular, Autoimmune diseases,
and Carcinogenesis. Identification of NT modification support development of novel therapies and drug discoveries for
associated diseases. Identification of NT modification in biochemical labs is expensive, time consuming, and error-prone.
To supplement this process, several computational approaches have been proposed. However these approaches remain fail
to precisely identify NT modification, due to the extraction of irrelevant, redundant and less discriminative features from
protein sequences. The paper in hand presents NTpred framework competent in extracting comprehensive features from
raw protein sequences using four different sequence encoders. To reap the benefits of different encoders, it generates four
additional feature spaces by fusing different combinations of individual encodings. Furthermore, it eradicates irrelevant
and redundant features from eight different feature spaces through a Recursive Feature Elimination process. Selected
features of four individual encodings and four feature fusion vectors are used to train eight different Gradient Boosted
Tree classifiers. The probability scores from the trained classifiers are utilized to generate a new probabilistic feature space,
that is utilized to train a Logistic Regression classifier. On BD1 benchmark dataset, the proposed framework outperform
existing best performing predictor in 5-fold cross validation and independent test evaluation with combined improvement
of 13.7% in MCC and 20.1% in AUC. Similarly, on BD2 benchmark dataset, the proposed framework outperform existing
best performing predictor with combined improvement of 5.3% in MCC and 1.0% in AUC.

Key words: Protein Modifications, Tyrosine Nitration Identification, Meta learning, Artificial Intelligence, Sequence
Encoding, Feature Extraction, Feature Selection, Machine Learning, Computational Proteomics
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Introduction

Proteins are essential macro-molecules for human beings and

other living organisms. They perform various intracellular

activities, such as metabolic reaction catalyzation, DNA

replication, stimuli response, and physical processes, such

as, providing structure to cells and organisms, and act

as transport molecules within various biological systems

[8]. Proteins undergo diverse types of Post-translational

Modifications (PTMs), such as, Phosphorylation, Acetylation,

Ubiquitylation, and many more, that alter the structure

of proteins [9]. These modifications improve the activity of

proteins in various cellular processes such as, regulation of

genetic expression, activation of genes, DNA repair and cell

cycle progression, and different physical processes such as signal

transduction, chromatin stability, protein–protein interaction

and nuclear transport [9]. Contrarily, some modifications such

as Nitration, S-nitrosylation and S-palmitoylation adversely

affect the activity of proteins in various aforementioned

processes [10].

To date, more than 620 different types of PTMs have been

identified, that influence the biology of the cell by affecting

the functional diversity of the proteome [10]. Among these

modifications, Tyrosine nitration modification is considered one

of the most important due to its significant involvement in

the initiation and propagation of numerous diseases [11–14].

Tyrosine nitration is a PTM where a covalent bond between the

Tyrosine and a nitro group (NO2) produces Nitrotyrosine (NT)

[11–14]. Figure 1 graphically illustrates the two stage process

of Tyrosine nitration modification, where, in the first stage,

Tyrosine undergoes oxidation to form the Tyrosyl Radical, and

in the second stage, the radical undergoes nitration to form

3-nitrotyrosine.

Tyrosine nitration based structural alteration of proteins

negatively impacts the activity of proteins in various processes,

such as signal transduction in cells, energy production

in mitochondria, antioxidant defense, and stimulation of

the immune system, and sometimes renders a protein

completely inactive [11–14]. It inhibits the signal transduction

pathways in cells, thus impeding cellular responses [12].

The causal nitration agents have been identified in various

disease conditions, such as, Nitric Oxide (NO) produced

at a high rate in inflammatory conditions, Nitrite ion

(NO2-) greatly increased in systemic inflammatory disorders

(sepsis, gastroenteritis, & hemolytic diseases), and abnormal

elevation of copper ion (Cu2+) and free heme catalysts in

type 2 diabetes mellitus, neurological disorders, and severe

hemolytic diseases [12, 14]. Furthermore, NT has been

identified in large number of pathological conditions, such

as, Neurodegenerative diseases (Parkinson’s and Alzheimer’s,

degeneration of dopamine neurons, cerebral ischemia and

edema), Cardiovascular diseases, Autoimmune diseases

(Rheumatoid Arthritis, Systemic Lupus Erythematosus) and

in Carcinogenesis (Breast, Esophageal and Gastric cancer;

Colorectal, Squamous cell, Adeno- and Cholangial carcinoma)

[12, 14]. Tyrosine nitration is a selective process since it depends

upon the accessibility of the Tyrosine residues to the nitrating

agents, for example, Tyrosine residues exposed on the surface

of proteins can become targets and most nitrated Tyrosine s are

in the vicinity of a site which generates nitrating agents [11–14].

Therefore, identification of protein nitration can be employed

to recognize onset and progression of the associated diseases,

and act as surrogate markers for the design of novel clinical

interventions, such as therapeutic strategies and drugs [13, 14].

Traditionally, Tyrosine nitration modification of proteins is

detected in biochemical labs through diverse types of in-vivo,

ex-vivo, and in-vitro methods, such as, mass spectrometry,

histochemical analysis and chromatography [5, 6]. However,

due to the sparse occurrence of endogenously nitrated sites in

proteins, detections are inefficient [5]. Although incorporation

of prior immunoprecipitation techniques in spectrometry

improves the detection of Tyrosine nitration sites, however

ensembling of both approaches makes the detection process

even more complicated [5]. Hence, wet lab experimental

approaches tend to be technically challenging, labor intensive,

time consuming, expensive and have biases in proteome wide

identification [1–7]. Public availability of annotated Tyrosine

nitration modification sites in different databases, such as

PhosphoSitePlus, ProteomeScout, Human Protein Reference

Database, PROSITE, Protein Information Resource (PIR),

dbPTM, SysPTM2.0, Uniprot and O-GlcNAc Database [62–70],

enables the development of computational approaches that take

advantage of Machine Learning and Deep Learning algorithms.

These computational approaches can be easily developed,

are comparatively much less labor intensive, economical and

reusable.

Following the success of machine learning and deep learning

approaches in various application areas of bioinformatics,

to date researchers have developed 7 predictors with the

capability to identify tyrosine nitration sites in protein

sequences [1–7]. The working paradigm of these predictors

can be categorized into two distinct phases. First, due

to the inherent dependency of computational algorithms on

numerical representation, raw sequences are transformed into

Fig. 1. Biochemistry of tyrosine nitration in proteins. It occurs in two stages. First, the Tyrosine undergoes oxidation in the presence of one-

electron oxidants, such as −NO2,
−OH or CO−

3 , that produces the Tyrosyl Radical. Second, addition of Nitrite (−NO2) to the Tyrosyl Radical by a

nitrating agent (OONO− or −NO2) produces 3-nitrotyrosine.
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statistical vectors. Second, the statistical vectors are used to

train a machine learning or deep learning classifier for the

prediction of NT modification sites. Liu et al. [1] developed

the very first computational predictor, GPS-YNO2, that

discretize protein sequences using precomputed substitution

information (BLOSUM62) of the amino acids, and GPS 3.0

(Group-based Prediction System) algorithm that uses vector

similarity based scoring strategy for classification. Xu et al.

[2] developed another predictor iNitro-Tyr that encodes raw

protein sequences into statistical vectors using class aware

Position-specific Dipeptide Propensity (PSDP) encoder capable

of capturing the occurrence frequencies of Dipeptides in the

positive and negative classes at every position in the sequence.

Furthermore, they perform classification using a discriminant

function approach, that utilizes similarity scores of positive

and negative classes. Another predictor, NTyroSite developed

by Hasan et al. [3], employs composition of profile-based

k-spaced amino acid pairs (pbCKSAAP) as the sequence

encoding method. Further, they utilize Wilcoxon’s rank-

sum feature selection to generate a comprehensive feature

space, and Random Forest classifier to discriminate protein

sequences between the NT modification and non-modification

classes. Nilamyani et al. [4] developed PredNTS predictor,

which utilizes four different sequence encoders, namely, K-

mer frequency composition, composition of kspaced amino

acid pairs (CKSAAP), AAindex and Binary encoding, followed

by selection of important features using recursive feature

elimination (RFE), four random forest classifiers to generate

classification scores from each encoding, and a weighted

combination of the four scores to generate the final classification

score. More recently, another predictor named PredNitro,

developed by Rahman et. al. [7] made use of encoding method

similar to class aware Position-specific Dipeptide Propensity

(PSDP) encoder, and employs a Support Vector Machine based

classifier. The first deep learning based approach, DeepNitro,

developed by Xie et al. [5], integrates four encodings of the

protein sequences - One-hot encoding (OHE), physiochemical

Property Factor Representation (PFR), k-Space spectrum

encoding, and Position-specific Scoring Matrix (PSSM) - into a

single feature vector, which is then passed to a deep Multi Layer

Perceptron (MLP) for classification. iNitroY-Deep predictor

developed by Naseer et al. [6], uses integer encoding of

amino acids in the protein sequences and Convolutional Neural

Network (CNN) based classifier.

A critical analysis reveals that existing predictors have

limited performance and are more biased towards detection

of false positives, mainly due to the utilization of biased

or substandard statistical vectors. Existing predictors make

use of diverse types of encoding methods that fall under

two main categories, namely, Physiochemical-property and

amino acids distribution based. Encoders that belong to

the Physiochemical-property class utilize various precomputed

values of amino acids for capturing diverse types of sequence

information. However, they often fail to extract amino acids

sequence order and composition information and show extreme

bias towards false positive detection. Different types of encoders

that belongs to amino acids distribution, Such as one hot vector

encoding based method do not capture correlations of amino

acids. Similarly, Position-specific Dipeptide Propensity encoder

generates statistical representation by computing class aware

occurrence of amino acids and maps train set distribution on

test set. These types of encoders rely on distribution of amino

acids in train and test sets. They do not perform better when

train set has less number of samples and also when distribution

of test set slightly differs from train set.

In this study, we propose NTpred, a robust and precise

machine learning framework for computational identification

of Tyrosine nitration modification sites in protein sequences.

we utilized four different composition-based encoding methods

for transforming raw protein sequences into statistical feature

space. To benefit from diverse types of information captured by

different types of encoders, we generate four additional feature

spaces by fusing feature spaces of four individual encoders.

Furthermore, We eradicate irrelevant and redundant features

from each of the eight feature spaces through a recursive feature

elimination (RFE) process. At classification stage, we develop

a stacked ensemble learning predictor that utilize Gradient

Boosted Tree (GBT) classifiers. We generate probabilistic

feature space by training eight stacked ensemble learning

predictors using eight feature spaces. Generated probabilistic

feature space is utilize to train Logistic Regression classifier

that makes final predictions of Tyrosine nitration modification

and non modification sites.

Materials and methods

In this section, comprehensive details about the workflow

of proposed framework, datasets and evaluation measures

are provided. Figure 2 demonstrates 3 core modules of

proposed NTpred framework. The Dataset construction

module illustrates the development process of two benchmark

datasets. The Feature Engineering module consists of three

sub-modules namely Sequence Encoding, Feature Fusion and

Feature Selection. Sequence Encoding sub-module employs 4

different encoding methods competent in generating statistical

representations of raw protein sequences. With an aim to

reap the benefits of different encoding methods, Feature

Fusion module produces 4 additional feature spaces by

performing early fusion of statistical vectors generated through

4 different encoders. The Feature selection module generates

more comprehensive feature spaces by eliminating irrelevant

and redundant features from individual encodings and fused

statistical vectors. The Hybrid Ensemble Classifier consists

of a two-stage ensemble classifier, where in first stage,

probabilistic feature space is generated by separately passing

individual and fused statistical vectors to 8 gradient boosted

tree classifiers. In second stage, the probabilistic feature space

is used to train a Logistic regression classifier that performs

final prediction of modification and non-modification sites.

Following sub-sections discusses in-depth details of each of the

aforementioned modules.

Numerical representations of protein sequences
To generate numerical representations of protein sequences, the

paper in hand makes use of four composition based sequence

encoding methods. The following subsections briefly describe

the working paradigm of these encoding methods.

K-spaced Composition Frequency (Kgap)

Ghandi et al [19] proposed Kgap sequence encoder that

captures comprehensive distributional information of amino

acids, by considering different gaps among bi-mers in the

protein sequences. This encoder has been widely used in

diverse types of DNA, RNA and protein sequence analysis

tasks such as DNA regulatory sequence identification [20],

RNA Pseudouridine sites detection [21], DNA Methylcytosine
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Fig. 2. Graphical representation of proposed NTpred framework.

Fig. 3. Illustration of the Kgap encoding method

prediction [22, 24], and small non-coding RNA classification

[23].

The encoding process of Kgap encoder can be categorized

into two distinct phases. First phase generates 400 bi-mers by

utilizing all possible combinations of 20 unique amino acids

(202 = 400). Second phase computes distributional information

of the generated bi-mers. Suppose a random bi-mer containing

X and Y amino acids that appears with different gaps in

the sequence as XY, X*Y, X**Y, X***Y, and so on. In the

sequence, * denotes a gap containing any random amino acid.

The frequency of a bi-mer at various gap levels in a protein

sequence is recorded by using gaps of differing lengths.

bi-mers ∈ {AA,AC,AD,AE, ...Y V, YW, Y Y } (1)

Equation 1 represents the generated set of all 400 possible

bi-mers and equation 2 illustrates mathematical expression to

compute gap based occurrence frequencies of bi-mers as:

KGAPK = (FA(∗K)A, FA(∗K)C , FA(∗K)D,

..., FY (∗K)W , FY (∗K)Y )400
(2)

In equation 2, F represents the occurrence frequency of a

bi-mer, and (∗K) represents the gap of length K in between

the two amino acids in the bi-mer. To clearly demonstrate

Kgap sequence encoder process, bi-mers generated at first stage

are provided in equation 1, and the rows of Figure 3 describe

a hypothetical protein sequence and bi-mers distribution at

different gap values. In first row, the parameter K=0 illustrates

the occurrence frequencies of bi-mers without any gaps. For

example, in the sample sequence, the bi-mer KD occurs once,

hence FKD = 1, PE occurs twice, hence FPE = 2, bi-mer AA

never occurs, hence FAA = 0, and so on for all the 400 bi-mers.

When parameter K > 0 is set, gaps are introduced in the bi-

mers and value of K represents length of the gap. In second row,

the parameter K=1 illustrates occurrence frequencies of bi-mers

with a gap of 1 between the two amino acids in each bi-mer. In

the sample sequence, 1-gap-based bi-mer A*P occurs twice as

ACP and AYP, hence FA∗P = 2. Similarly, E*T occurs twice

as EGT and EPT, hence FE∗T = 2, and so on for all 400 1-

gap-based bi-mers. In third row, the parameter K=2 illustrates

occurrence frequencies of bi-mers with a gap of 2 in-between

the bi-mers. In the sample sequence, 2-gap-based bi-mer A**E

occurs twice as ACPE and AYPE, hence FA∗∗P = 2, T**L

occurs once as TYIL, hence FT∗∗L = 1, and so on for all 400

2-gap-based bi-mers. A similar process is used to compute the

occurrence frequencies of bi-mers for higher values of K. Here,

we utilize K in range 0 to 4 to generate the complete Kgap

feature vector for each sequence. Since each value of K generates

a 400 dimensional statistical vector, concatenating vectors from

all 5 values of K generates a 2000 dimensional statistical vector.

Composition of K-spaced Amino Acid Pairs (CKSAAP)

The CKSAAP sequence encoder, developed by Chen et al.

[25], is an extended version of the Kgap encoder discussed in

section 2.1.1. The Kgap encoder computes absolute occurrence

frequencies of bi-mers. However, the length of protein sequences

can vary based on the location of the extracted potential

interaction site in the long protein chain, more details in section

2.4. In Kgap encoder, the high variability of sequence length

creates bias in the absolute occurrence frequencies of the bi-

mers in the two classes. To mitigate this inherent bias, Chen

et al. [25] introduces a sequence length based normalization

of the feature vector in the CKSAAP encoder. This encoder

has been successfully employed in a variety of protein sequence
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Fig. 4. Illustration of the CKSAAP encoding method.

analysis studies, such as, analysis of protein rigidity and

flexibility [25], identification of Protein Phosphorylation and

Nitration sites [2, 4, 26], and detection of Protein Pupylation

and Succinylation [27, 28].

The working paradigm of this encoder is similar to the two-

phase process of Kgap encoder. In addition, it normalises the

statistical vectors using sequence length at each gap-length.

Adapting the Kgap vector defined in equation 2, the CKSAAP

encoded vector can be mathematically formulated as:

CKSAAPK = (
FA(∗K)A

FtotalK

,
FA(∗K)C

FtotalK

,
FA(∗K)D

FtotalK

,

...,
FY (∗K)W

FtotalK

,
FY (∗K)Y

FtotalK

)400

(3)

where,

FtotalK = Length of Sequence − (K + 1), (4)

Each row of Figure 4 graphically illustrates the encoding of a

hypothetical protein sequence of length 21 into the CKSAAP

feature vector. The occurrence frequencies (Fi(∗K)j) in the

numerator are computed exactly like the Kgap encoder. The

normalization factor FtotalK varies with K. For K=0, Ftotal0 =

21−(0+1) = 20. Similarly, for K=1, Ftotal1 = 21−(1+1) = 19,

and so on for any value of K. In this study, the parameter K in

the range 0 to 5 is used to generate the full CKSAAP feature

vector. Because each value of K produces a 400-dimensional

statistical vector, concatenating vectors from all 6 values of K

produces a 2400-dimensional statistical vector.

Although normalization potentially removes biases and

variations introduced by the genetic sequencing processes and

factors such as the length of the extracted sequences, it can

adversely affect the biological variability of sequences and s [50,

51]. Furthermore, Lovell et al [52] showed that normalization

into the simplex space (where, the components of the vector are

only positive and sum to 1) can introduce spurious correlation

between the relative compositions even though the absolute

compositions are completely uncorrelated. Lovell et al [52]

implied that, wherever possible, both absolute abundance of the

components and their relative abundance information should be

analysed using appropriate compositional features. Hence, in

this study, both absolute and normalized composition encoders

are utilized.

Adaptive Skip Dipeptide Composition (ASDC)

With an aim to control the dimensionality of generated

statistical vectors, Wei et. al [29] proposed the ASDC sequence

encoder that captures compositional information from all

possible adjacent and gap-based bi-mers in a sequence. In

both Kgap and CKSAAP encoders, although long range

dependencies of amino acids can be captured at large value

of K, however it creates sparse high-dimensional feature spaces

that adversely affect the performance of supervised learning

approaches for classification [49]. To mitigate this issue, Wei et.

al [29] proposed to compute the sum of occurrence frequencies

of bi-mers at all possible values of K in a sequence. In this

way rather than generating 400 ∗ (Kmax + 1) dimensional

vector, it generates a fixed 400-dimensional statistical vector.

Furthermore, to address the bias in absolute occurrence

frequencies of the bi-mers based on the length of the sequences,

as described in section 2.1.2, normalization is performed. This

encoder has been utilized in a variety of protein sequence

analysis tasks, such as, to identify cell-penetrating and anti-

cancer peptides in proteins [29, 30, 32], and protein methylation

sites [31].

Fig. 5. Illustration of the ASDC encoding method.

The encoding process of ASDC encoder can be categorized

into three distinct phases. In first phase, similar to the previous

two encoders, it generates the set of 400 bi-mers. In second

phase, it computes the total occurrence frequency of each bi-

mer considering all possible gap-values (K) that lie in range

0 ≤ K ≤ Sequence Length-2. In the third phase, the total

occurrence frequencies of the bi-mers are normalized to generate

percentage composition. The ASDC feature vector can be

mathematically defined as:

ASDC = (
fvAA

Ftotal

,
fvAC

Ftotal

,
fvAD

Ftotal

, ...,
fvY W

Ftotal

,
fvY Y

Ftotal

)400 (5)

In equation 5, combined occurrence frequency of each bi-mer

at all possible K values can be computed as:

fvij =

L−2∑
K=0

Fi(∗K)j (6)

where, Fi(∗K)j represents the occurrence frequency of bi-mer

with length of gap K between ith and jth amino acids. The
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normalization factor in the ASDC feature vector is formulated

as:

Ftotal =
∑

i,j ∈ amino acids

fvij (7)

Figure 5 graphically describes the computation of total

occurrence frequency of one bi-mer in the ASDC feature vector

from a hypothetical sample sequence. The bi-mer AE appears in

the sequence twice with gap K=2, hence FA∗∗E = 2, once with

gap K=5, hence FA∗∗∗∗∗E = 1, once with gap K=11, hence

FA(∗)11E = 1, and once with gap K=14, hence FA(∗)14E = 1.

For all other values of gap, it does not occur at all. Hence, in

the ASDC encoded vector, the component fvAE = 2+1+1+1

= 5. Similarly, the total frequencies are computed for all 400

bi-mers. The 400-dimensional vector is normalized by the sum

of all fvij components in the ASDC feature vector.

PseAAC of distance-pair (DistancePair)

The Kgap, CKSAAP and ASDC encoders capture distribution

information by considering bi-mers with different gap

values. However, they do not capture composition of

monomers. To address this shortcoming, Liu et al. [33]

proposed DistancePair encoder that can capture comprehensive

composition information of both monomers and gap-based bi-

mers. This encoder is widely used in DNA and protein sequence

analysis studies, such as identification of DNA-binding proteins

[33, 34] and anti-cancer peptides [35].

The working paradigm of this encoder can be categorized

into three distinct phases. In first phase, the set of all 20

monomers are considered as:

mono-mer ∈ {A,C,D,E, ...V,W, Y } (8)

Similar to the previous three encoders, the set of 400 bi-

mers is are generated. In second phase, the occurrence

frequencies of monomers and gap-based bi-mers at multiple

gap-lengths in the sequence are computed. In third phase, the

occurrence frequencies are normalized to encode the percentage

composition. For any protein sequence, the DistancePair

feature vector can be mathematically formulated as:

DPd =


(

FA

Ftotald

,
FC

Ftotald

, ...,
FY

Ftotald

)20, d = 0

(
FA(∗d)A

Ftotald

,
FA(∗d)C

Ftotald

, ...,
FY (∗d)Y

Ftotald

)400, d > 0

(9)

Ftotald =



∑
i∈Amino−acids

Fi, d = 0,

∑
i,j∈Amino−acids

Fi(∗d)j , d > 0,

(10)

In equations 9 and 10, the parameter d controls the level

of encoding, Fi represents the occurrence frequencies of

monomers, and Fi(∗d)j represents the occurrence frequencies

of bi-mers with (d-1) random intervening s in between the two

amino acids in the bi-mer.

The rows of Figure 6 graphically describes the encoding of

a hypothetical protein sequence using DistancePair encoder.

In the first row, the parameter d=0 is set that generates the

DP0 vector, which encodes the occurrence frequencies of 20

monomers. For example, amino acid A occurs twice, hence

FA = 2, amino acid P occurs four times, hence FP = 4, and

so on. For any value of d > 0, occurrence frequencies of bi-

mers are computed exactly like the Kgap encoder, i.e., d=1

Fig. 6. Illustration of the DistancePair encoding method.

computes occurrence frequencies of bi-mers without any gaps,

d=2 computes frequency for bi-mers with a gap of 1 between the

two amino acids, and so on. Each DPd vector is normalized by

sum of components of the respective vector, that converts the

absolute occurrence frequencies into percentage composition.

In this study, the parameter d in range 0 to 6 is utilized

to generate DistancePair feature vector for each sequence.

Since d=0 generates a 20-dimensional statistical vector, and

each value of d > 0 generates a 400 dimensional statistical

vector, concatenating vectors from all 7 values of d generates a

20 + (400 ∗ 6) = 2420-dimensional statistical vector.

Feature fusion and selection
Feature fusion is the process of combining data from several

contexts into a single entity that can enhance discriminative

information and improves the performance of a computational

model. Various feature fusion approaches have been utilized to

improve the performance of diverse sequence analysis tasks such

as protein sub-cellular localization prediction[36], RNA-protein

interaction prediction[37], DNA-binding protein identification

[39], and prediction of novel RNA transcripts [38].

To reap the combined benefits of four different encoders

discussed in Section 2.1, a vector concatenation based early

fusion approach is utilized in our proposed framework. Consider

X⃗ and Y⃗ are two different N and M dimensional statistical

vectors of a sequence S as:

X⃗ = {x1, x2, ..., xN} & Y⃗ = {y1, y2, ..., yM} (11)

Then, the fused feature vector can be formulated as:

F⃗ = X⃗ ⊕ Y⃗ = {x1, x2, ..., xN , y1, y2, ..., yM} (12)

where, F⃗ is an (N+M)-dimensional statistical vector of

sequence S. Following similar criteria, we create four fused
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feature vectors as follows:
FFV1 = (Kgap ⊕ DistancePair)4420

FFV2 = (CKSAAP ⊕ DistancePair)4820

FFV3 = (ASDC ⊕ Kgap ⊕ DistancePair)4820

FFV4 = (ASDC ⊕ Kgap ⊕ CKSAAP )4800

(13)

In total, we generate 8 different numerical feature vectors (4

individual sequence encodings and 4 fused feature vectors) for

every protein sequence.

Feature selection is the process of removing redundant,

irrelevant and noisy features that can degrade the performance

of predictors. Various feature selection approaches have been

utilized in diverse Protein sequence analysis studies, such as,

identification of Phosphorylation sites [26], Pupylation sites

[27], Succinylation sites [28], cell-penetrating proteins [30],

Methylation sites [31], anti-cancer proteins [32] and DNA

binding proteins [39]. In the identification of Tyrosine nitration

sites also, multiple studies have demonstrated the importance

of feature selection methods to build robust computational

models. NTyroSite [3] employs a non-parametric feature

selection method, Wilcoxon rank-sum (WR) test and PredNTS

[4] makes use of the Recursive Feature Elimination process for

optimal feature subset selection.

To select important features, we utilize Recursive Feature

Elimination (RFE) [40] method with backward step-wise

iterative feature selection process. In RFE, a classifier is

trained using full feature space, and the features are ordered

based on a ranking criterion. In the subsequent iterations,

the N lowest ranking features are pruned from the previously

ordered features, and again a classifier is trained using reduced

feature set. The iteration is terminated when N is greater

than or equal to a predefined number of features left. In this

study, an Extreme Gradient Boosted Tree classifier along with

information gain of the features are utilized as the ranking

criterion, with N=50. The RFE process is executed separately

for each of the 4 individual sequence encodings and 4 fused

feature vectors. The number of features selected for each feature

vector, as the stopping criteria for RFE, has been manually

optimized by exploring all possible values in the range of 0

to number of dimensions of the feature vector, with step 50,

and incorporating them into the proposed framework. After

elimination of irrelevant and redundant features, we obtain

950 dimensional feature vector for Kgap, 600 for CKSAAP,

400 for ASDC, 600 for DistancePair, 450 for FFV1, 600 for

FFV2, 450 for FFV3 and 700 for FFV4. For 5-fold evaluation

of the model, 80% of the training datasets are used in the RFE

process, whereas the complete training datasets are used to

perform RFE during the independent testing.

Hybrid Ensemble Classifier
Ensemble learning is a meta learning process where goal is

to improve predictive performance by consolidation of diverse

types of models. The working paradigm of ensemble learning

approaches can be categorized into two stages. In first stage,

utilizing data from a variety of contexts, numerous weak

learners are trained. In second stage, outputs of the weak

learners are intelligently combined to generate the final output.

In this way, multiple weak learners together develop a strong

learner that demonstrates enhanced generalization capabilities,

and reduces model bias and variance [41, 53]. Ensemble learning

has been widely utilized in a variety of sequence analysis

tasks, such as identification of Nitration and Succinylation

in proteins [3, 4, 28], RNA Pseudouridine detection [21],

DNA Methylcytosine prediction [22, 24], DNA-binding protein

identification [39], prediction of cell-penetrating proteins [29,

30], anti-cancer protein detection [35], and lncRNA-protein

interaction prediction [37]. Based on working paradigms,

ensemble learning approaches can be broadly categorized into

3 different classes, namely, Bagging, Stacking and Boosting.

Boosted ensemble learning [42], is a sequential and iterative

process, where multiple weak learners are trained adaptively.

An initial weak learner is trained using all observations.

Then, the successive weak learners in the sequence are trained

iteratively such that the importance of the observations that

were misclassified by the previous weak learner are higher than

the correctly classified observations. Finally, the predictions

from all the weak learners are statistically combined to obtain

the final prediction.

One variant of Boosted ensembles is Gradient boosting

machines (GBMs) [44–46], that adapts a gradient-descent based

formulation of the boosting ensemble method. In GBMs, each

new weak learner is iteratively constructed such that they are

maximally correlated with the negative gradient of the loss

function of the entire ensemble [44], as depicted in Figure 7.

With proper choice of the loss function, GBMs are adaptable

to both regression and classification tasks. By utilizing Decision

Tree classifier with a logistic loss function as the weak learner

in a GBM, the Gradient Boosted Trees ensemble (GBTs) is

obtained [56].

Fig. 7. Graphical illustration of Gradient Boosted Tree classifier.

In Stacked ensemble learning [43], several weak learners are

parallely trained using all observations. Then, a meta learner is

trained, using the predictions of the weak learners as the feature

space, to generate the final prediction. Here, the motivation

behind using a meta-learner is the capability to learn how

diverse weak learners perform, identify their benefits, and

combine them in the best possible way. An example of a simple

meta learner is Logistic Regression, which is a multivariate

statistical analysis technique, that estimates the probability

of occurrence of an event, by fitting a linear combination

of the explanatory variables to the logarithm of odds ratio

derived from the dichotomous response variable, minimizing the

negative log-likelihood (logistic loss) [47].

In this study, a hybrid Stacked ensemble of Boosted

ensembles architecture has been developed as the classifier

model, described graphically in Figure 8. As the weak learners

of the stacked ensemble, Gradient Boosted Tree ensembles

are trained using each of the eight feature vectors that

underwent RFE, as discussed in section 2.2. Then, the predicted

probabilities from the eight weak learners are combined to
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generate a new feature space. Finally, a Logistic Regression

model with a linear kernel is trained on this 8-dimensional

probabilistic feature space to generate the classification model

for final prediction. This final regression step of the hybrid

architecture can be viewed as a fusion of information learnt

from different compositional context of amino acids in a

sequence.

Fig. 8. Graphical illustration of Stacked Ensemble.

Benchmark datasets
To develop a reliable and accurate predictor for Tyrosine

nitration modification, stringent selection of suitable datasets

to train and test the predictor is a fundamental requirement

[2, 3]. In literature, we found two benchmark datasets BD1 and

BD2, for Tyrosine nitration site identification. Naseer et al. [6]

developed the BD1 dataset by extracting raw protein sequences

and their associated NT modification information from the

UniProt [69] database. To ensure the quality of data on which

classifiers can train in a comprehensive way, by avoiding over-

fitting and under-fitting, they utilised USEARCH algorithm

[54] with a 70% similarity threshold to remove homologous

sequences. Nilamyani et al. [4] developed the BD2 benchmark

dataset by utilizing annotated data from the dbPTM [67],

SysPTM2.0 [68] and GPS-YNO2 [1] databases. They discarded

redundant sequences by utilizing CD-HIT [55] with a similarity

threshold of 40%.

Both authors have provided the benchmark training

datasets, along with the independent test sets. Figure 9

illustrates the distribution of samples in the training and

test sets for both datasets. BD1 dataset contains 1191

samples of modification class (positives) and 1191 samples

of non-modification class (negatives) in the train set. In the

independent test set, it contains 203 positive and 1022 negative

samples. Similarly, the BD2 dataset contains 229 positive and

354 negative samples in the train set, and 98 positive and 153

negative samples in the independent test set.

In the construction of both BD1 and BD2 benchmark

datasets, positive and negative sequences are extracted from

long protein chains using a window represented in Chou’s

scheme [15] that contains the potential Tyrosine modification

site at center of the sequence as:

Pξ(Y ) = R−ξ...R−2R−1YR+1R+2...R+ξ (14)

Fig. 9. Statistics of benchmark Datasets.

Fig. 10. An illustration of Chou’s scheme for a protein sequence

containing 2ξ + 1 s with tyrosine (Y) at the center. Adapted from

Xu et. al [2] under CC BY 4.0 license.

In equation 14, Ri represents the flanking region around the

potential modification amino acid residue in the sequence,

with a window size of ξ, as illustrated in Figure 10. By

sliding this window along every long protein chain, sequences

containing Y (tyrosine) at the center are extracted. Sequences

extracted from experimentally verified modification locations

are labelled as positive, and all others are labelled as negative.

Both datasets utilize a window size ξ = 20. However, since

Tyrosine can also occur at either ends of a long protein chain

(for example, in Figure 10, locations closer to N and C),

these segments extracted using the sliding window can contain

missing sections of the sequence at either end. Due to this, the

extracted sequences vary in length from ξ+1=21 to 2ξ+1=41.

Furthermore, the relative position of each amino acid residue

in the segment, according to the window, are maintained by

representing missing residues with dummy residue X. But these

dummy residues are discarded during the numerical encoding

of sequences in our proposed framework.

Evaluation criteria and performance measures
Following the evaluation criteria of existing predictors [1–7],

the proposed NTpred framework is evaluated in two distinct

settings. In the first setting, the framework is evaluated on two
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benchmark training datasets through 5-fold cross validation,

which provides an estimate of the predictor’s performance,

generalizability and stability with differing training sample sets.

In this setting, the training datasets are randomly partitioned

into 5 stratified subsets, which maintain the original class ratio.

Then, in each iteration, a discreet subset is selected as the

evaluation set, whereas the remaining four subsets are combined

to train the model. In the second setting, the framework is

trained using the entire benchmark training datasets. Then,

the respective independent test sets are used to generate

performance metrics for the framework. The independent

test sets are also employed, either to generate performance

metrics for existing predictors of Tyrosine nitration, or utilize

the performance information already available in literature.

This enables appropriate comparison of proposed framework’s

performance with existing predictors.

Table 1. Confusion Matrix

Ground Truth

Positive Negative

Prediction
Positive Tp Fp

Negative Fn Tn

Furthermore, performance evaluation of the proposed

NTpred framework is performed using 4 different measures,

namely, Sensitivity (Sn), Specificity (Sp), Accuracy (Acc)

and Matthews Correlation Coefficient (MCC). These measures

makes use of different factors to compute the performance score.

The factors are illustrated in Table 1, where Tp, Tn, Fp and Fn

are the counts of True Positives, True Negatives, False Positives

and False Negatives respectively. The statistical measures can

be formulated as:

Sn =
Tp

Tp + Fn

Sp =
Tn

Fp + Tn

Acc =
Tp + Tn

Tp + Fn + Fp + Tn

MCC =
(Tp × Tn) − (Fp × Fn)√

(Tp + Fn)(Fp + Tn)(Tp + Fp)(Fn + Tn)

(15)

Additionally, the Receiver Operating Characteristic curve

(ROC), which plots the Sn vs. 1 − Sp in the entire range

of possible classifier scores, is also analyzed. The Area

under the ROC (AUC) is equal to the probability that the

classifier will score a randomly chosen positive sample higher

than a randomly chosen negative sample irrespective of the

class distribution [48]. The AUC can be used to determine

optimal classification score thresholds, and measure the overall

robustness of the classifier.

Experimental setup

The proposed NTpred approach is developed in Python, where,

the numerical representations are generated by utilizing 2

APIs: MathFeature [72] and iLearnPlus [73], and the ensemble

classifier is developed using 2 APIs: scikit-learn [75] and

XGBoost [74]. Intrinsic analysis of amino acid’s distribution

in protein sequences is performed using Logomaker [76].

Additionally, by optimizing the hyper-parameters of Machine

Learning algorithms, their performance can be improved and

regularized. For example, for Gradient Boosted Trees, utilizing

3 optimal hyper-parameters namely, Number of Estimators

which controls the number of trees in the ensemble, Maximum

Depth which controls growth of each tree by limiting maximum

decision nodes before a final decision is arrived, and Learning

Rate controls the proportion of residuals (loss) which is used

to update weights of samples utilized to train consecutive trees

in the ensemble. Furthermore, both Gradient Boosted Trees

and Logistic Regression can be further optimized using Lasso

(L1) [60] and Ridge (L2) [61] regularization, that penalizes

unnecessary complexity of models, promotes relevant features

and avoids overfitting [59]. L1 regularization controls absolute

weights of model parameters, whereas L2 regularization

controls the squared weights of model parameters [59].

Hence, a grid search process [71] is employed to optimize

hyper-parameters of Gradient Boosted Trees and classifiers.

Table 2 describes values utilized for each hyper-parameter

in the grid, and their optimal value identified through the

search process. Additionally, all possible combinations of the 4

numerical representations for feature fusion are also explored.

Furthermore, to train all 8 Gradient Boosted Tree based

classifiers, an early stopping criteria is utilized by monitoring

the logistic loss of prediction. Both classifiers, GBT and

Logistic regression, are trained with class weights to control

class bias of the models.

Results and Discussions

This section illustrates distribution of amino acids in protein

sequences. Over two benchmark datasets, it quantifies

predictive performance and generalizability achieved by

proposed NTpred framework at various stages. Furthermore,

it summarizes intrinsic visual analysis of 8 numerical feature

spaces, and performs their comparison with probabilistic

feature space generated through predictions of first stage

classifiers. Finally, it describes performance comparison

of proposed framework with existing Tyrosine nitration

predictors.

Amino-acids distribution analysis
Figure 11 describes discriminative distribution potential of

amino-acids in proteins of two different classes for two

benchmark datasets. In protein sequences, at each position

Table 2. Hyper-parameter optimization using grid search.

Hyperparameters
Grid Search

Hyperparameter space

Optimal Hyperparameters

Gradient Boosted Trees Logistic Regression

No. of Estimators 10, 50, 100, 500, 1000 100 -

Max Depth 1, 3, 5, 7, 10 3 -

Learning Rate 0.0001, 0.001, 0.01, 0.1 0.1 -

reg alpha 0, 0.00001, 0.001, 0.01, 0.1, 1 0 0

reg lambda 0, 0.00001, 0.001, 0.01, 0.1, 1 1 1
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(a) BD1 dataset

(b) BD2 dataset

Fig. 11. Position-specific distribution analysis of amino acids. Color profile represents the dominant chemical property of the amino acids:

Green-Polar, Purple-Neutral, Blue-Basic, Red-Acidic, Black-Hydrophobic.

prevalence of amino acids is depicted through the height of

characters that represents amino acids. To reduce clutter that

occurs when all amino acid occurrence frequencies at every

position is visualized, only those amino acids whose relative

abundance is at least 7.5% are plotted. In Figure 11, different

colors of characters represent five dominant chemical properties

of the amino acids, namely Polar, Neutral, Basic, Acidic and

Hydrophobic.

According to intrinsic visual analysis, negative class

sequences have a significantly higher prevalence of Hydrophobic

and Polar amino acids, whereas positive class sequences have

a high prevalence of Neutral, Acidic, and Basic amino acids.

Thus, a difference in the amino acids composition between

the sequences of positive and negative classes is observable.

This discriminative distribution of amino acids suggests that

compositional feature encodings of the protein sequences could

prove effective to build robust and precise framework for

the identification of Tyrosine nitration sites. Furthermore,

composition of amino acids in the sequences of two benchmark

datasets is noticeably different, specifically in both classes,

sequences of BD1 dataset are significantly more diverse than

sequences of the BD2 dataset. For example, among positive

and negative class sequences, difference in abundance of the

most common amino acid Leucine (L) is significantly greater in

BD1 dataset than in BD2 dataset.

Additionally, from Figure 11 it can also be concluded

that discriminative distribution of amino acids becomes more

prominent when we consider occurrence of two consecutive

amino acids pairs, as well as amino acids pairs occurrence with

particular gap between them. For example, in both datasets

amino acid pair LL occurs with considerably higher frequency

in negative class than positive class sequences. It is also

evident that Hydrophobic and Polar amino acid residues occur

more frequently in each other’s neighborhood in positive class

sequences than in negative class sequences. The occurrence

frequency of the pair LL with small gap of varying lengths

in between them is also higher in negative class sequences

than in the positive class sequences. Similarly, other amino

acids pairs, such as LS and LG, also demonstrate a similar

distribution patterns in BD1 and BD2 datasets respectively.

The characteristics of amino acids distribution in the sequences

reveal that composition based sequence encoding methods are

more suitable to transform protein sequences into statistical

vectors, as these methods capture diverse types of amino

acids distributional information such as neighboring as well as

gap-based amino acid pairs.

In-depth Performance analysis of proposed NTpred
framework
Tables 3 and 4 illustrate predictive performance of GBT

classifier in terms of 5-fold cross validation and independent test

based settings using 4 numerical encodings (Kgap, CKSAAP,

ASDC and DistancePair) and 4 fusion based numerical

encodings (FFV1, FFV2, FFV3 and FFV4). Both Tables
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also show performance of GBT classifier when fed with the

optimized subset of features selected through Recursive Feature

Elimination (RFE) process. Furthermore, it also presents the

predictive performance of our proposed NTpred framework.

As evident from Table 3 on BD1 dataset in both 5-

fold cross validation and independent test based settings,

among 4 individual encodings using the full feature space,

DistancePair encoder facilitates GBT classifier to produce

better performance compared to other encoders. Furthermore,

although fused numerical encodings have similar performance

compared to individual encodings in 5-fold cross validation

setting, however in the independent test setting they

outperform the individual encodings with 1% to 2% higher

average values across all 5 measures. Among 4 fused numerical

encodings, FFV1 outperforms others in both 5-fold cross

validation and independent test settings. Feature selection over

the 4 individual encodings have very minute improvement in

performance in both settings. However, the 4 fused numerical

encodings achieve significant performance boost in 5-fold cross

validation, with 1% to 5% higher values across all 5 measures.

Similarly, from Table 4 on BD2 dataset, among the

4 individual encodings using the full feature space, the

CKSAAP performs best in 5-fold cross validation, whereas

DistancePair performs best in independent test setting. Among

the fused numerical encodings, FFV1 performs best in both

settings. Analogous to performance on BD1 dataset, the fused

numerical encodings in BD2 dataset have similar performance

compared to individual encodings in 5-fold cross validation,

but outperform the individual encodings with 1% to 2% higher

average values in all 5 measures for the independent test setting.

Unlike the BD1 results, after RFE process optimizes the feature

space in BD2 dataset, the individual encodings as well as fused

numerical encodings show significant improvement in predictive

performance with 1% to 6% higher values across all 5 measures

in 5-fold cross validation.

Upon exploiting the benefits of all 4 individual encodings

and 4 fused numerical encodings in the proposed hybrid

ensemble framework of NTpred, significant performance

improvements are observed. From Table 3 on BD1 dataset, the

NTpred framework acheives 1% to 7% higher values across all 5

measures in comparison with the 8 individual features spaces, in

both 5-fold cross validation and independent test settings. This

improvement is observable using full feature spaces as well as

RFE based optimized feature spaces. Similarly, from Table 4

on BD2 dataset, the proposed framework acheives 1% to 13%

higher performance values across all 5 measures in comparison

with the 8 individual features spaces, in both 5-fold cross

validation and independent test settings. Using RFE optimized

feature space, the NTpred framework acheives 1% to 9% higher

performance measures in comparison with the 8 individual

features spaces in both settings. Additionally, the framework

performs better when RFE based feature selection is added

to its pipeline. However, this improvement is more evident

on BD2 dataset with 1% to 3% improvement in performance

in both settings, whereas the improvements are approximately

0.5% on BD1 dataset. One additional observation is that the

discrepancy in performance of GBT classifier using individual

encodings and the NTpred framework between the BD1 and

BD2 datasets can be attributed to the differences in the amino

acids distribution between the datasets, as discussed in Section

4.1.

Intrinsic analysis of feature spaces
To investigate the discriminative potential of 4 individual

encoders, 4 fused numerical encodings, and generated

probabilistic feature space, we perform an intrinsic visual

analysis. Because the feature spaces are significantly high-

dimensional and sparse, effective visual analysis requires

dimensionality reduction in order to construct appropriate

human-readable plots. In this analysis, dimensionality

reduction is carried out in two stages. In first stage, high-

dimensional numerical representations are passed to a linear

Principal Component Analysis (PCA) [57] and the top 5

components are extracted. In second stage, the reduced

5-dimensional feature spaces are passed to T-distributed

Stochastic Neighbor Embedding (t-SNE) [58] that generates

a 2-dimensional feature spaces and make visualizations.

However, we must keep in mind that this drastic reduction in

dimensionality may result in significant loss of information and

variance in the data.

Figure 12 graphically visualizes nine different statistical

representations of modification (positive) and non-modification

(negative) sites for both BD1 and BD2 benchmark training

datasets. Each of the 4 statistical vectors generated through

compositional encoding methods and 4 fused feature vectors

are individually visualized. Similarly, the Recursive Feature

Elimination (RFE) based reduced statistical vectors are also

individually analyzed. Additionally, the probabilistic feature

space generated from the prediction of the 8 Gradient Boosted

Trees (GBTs) using the 4 compositional encodings and 4 fused

numerical vectors in the first stage of our proposed framework

is examined. The probabilistic feature space is generated in a

5-fold approach for both benchmark training datasets, where 4

folds are used to train the GBTs and the remaining fold is used

to generate the probabilities.

Figure 12a shows 4 individual vectors, 4 fused vectors

and generated probabilistic feature space for the complete

feature spaces of BD1 dataset. Among individual encoder

vectors, ASDC encoder vectors forms more overlapped clusters

compared to CKSAAP, DistancePair and KGAP encoder

vectors which show slightly better separation between the

clusters of the two classes. Furthermore, it is evident that

by exploiting combinations of compositional encodings in the

four fused feature vectors, all of them show better separation

between clusters of the two classes. Similarly, analyzing the

Figure 12b on the RFE reduced feature spaces of BD1 dataset

reveals almost identical patterns.

In contrast over BD2 dataset, Figure 12b reveals that for

all 8 encoded vectors, unlike BD1 dataset, there is almost

negligible separation between clusters of positive and negative

classes. Almost all encoded vectors form a single large cluster

with significantly higher overlap between samples of both

classes. However, it is also evident that within the large cluster

of all 8 feature vectors, the positive vectors are more densely

packed towards one side of the cluster. From Figure 12d that

visualizes RFE reduced feature spaces of BD2 dataset, although

it demonstrates similar patterns as the complete feature spaces

in Figure 12c, the positive vectors are slightly more densely

packed in RFE reduced feature spaces than complete feature

spaces.

Furthermore, the analysis of all 4 plots in Figure 12 also

reveal that the probabilistic feature space generated through

GBTs is significantly more discriminative than the 8 numerical

encodings. From Figures 12a and 12b on the BD1 dataset, it is

evident that two major clusters form, one for each class. The
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(a) Complete feature space of BD1 dataset.

(b) RFE reduced feature space of BD1 dataset.

(c) Complete feature space of BD2 dataset.

(d) RFE reduced feature space of BD2 dataset.

Fig. 12. Visual analysis of Numerical encodings, Fusion vectors and generated Probability space. Each high dimensional feature space is

separately treated with a combination of PCA and tSNE to map to a 2-dimensional space that can be visualized.

clusters of the complete feature space have good separation, but

the clusters themselves are less cohesive. However, the clusters

of the RFE reduced feature space show better cohesion also.

Similarly, in Figures 12c and 12d for the BD2 dataset, two

major clusters are generated. Although these clusters for the

BD2 dataset have slight overlap, they are significantly better

separated than the 8 numerical encodings where the separation

is less prominent.

The analysis reveals that utilizing a two-stage stacked

ensemble classifier increases the discriminative potential of our
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(a) 5-fold Cross Validation (b) Independent Test

Fig. 13. Performance comparison of proposed and existing predictors on BD1 dataset.

(a) 5-fold Cross Validation (b) Independent Test

Fig. 14. Performance comparison of proposed and existing predictors on BD2 dataset.

NTpred framework. Additionally, the performance difference of

our proposed predictor between the BD1 and BD2 benchmark

datasets is also described by the plots, where two classes are

significantly more separable in BD1 dataset in comparison to

BD2 dataset.

Comparative analysis of proposed NTpred framework
with existing predictors
According to best of our knowledge, to date 7 different

computational predictors [1–7] have been developed for the

identification of Tyrosine nitration sites in protein sequences.

Among them, only iNitroY-Deep [6] predictor is evaluated on

BD1 dataset. Five predictors namely GPS-YNO2 [1], DeepNitro

[5], NTyroSite [3], PredNTS [4] and PredNitro [7] are evaluated

on BD2 dataset. Predictors performance on BD2 dataset is

gathered from the published results of PredNTS [4]. The source

code of PredNitro [7] predictor is available, so we computed its

performance on both benchmark datasets. However, the iNitro-

Tyr predictor [2] is not evaluated on BD1 or BD2 datasets.

Furthermore, source-code and dataset used in this predictor

are not available, hence we exclude it from our comparative

analysis.

Figure 13 illustrates performance comparison of proposed

framework with two existing predictors on BD1 dataset. As

shown in Figure 13a and 13b, among two existing predictors,

in terms of both 5-fold cross validation and independent test

set based evaluations, PredNitro [7] predictor that made use of

Position-specific conditional probability based feature encoding

method and Support Vector Machine classifier performs best

by producing 93.2% accuracy, 81.2% MCC and 86.7% AUC

in 5-fold Cross Validation, and 93.1% accuracy, 81.2% MCC

and 86.0% AUC in Independent test evaluation. The iNitroY-

Deep [6] predictor, that utilized integer encoding of amino

acids along with a Convolutional Neural Network based

classifier is evaluated only on the independent test set of

BD1 dataset, performs worst by achieving 87.2% accuracy,

74% MCC and 91% AUC. Basically, replacing amino acids

with random integers generates poor representation of protein

sequences because this encoding strategy does not capture any

dependencies between different amino acids in the sequences

which degrade the performance of iNitroY-Deep predictor.

In contrast, although proposed NTpred framework performs

similar to PredNitro in terms of accuracy in independent

test evaluation on BD1 dataset, however, across other two

evaluation measures namely MCC and AUC, it outperforms

PredNitro by producing 3.8% and 9.4% higher performance

respectively. Furthermore, in 5-fold Cross Validation on BD1

dataset, our proposed framework outperforms iNitroY-Deep
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with 2.5%, 9.9% and 10.5% higher performance in terms of

Accuracy, MCC and AUC.

Figure 14 illustrates performance comparison of proposed

framework with five existing predictors on BD2 dataset. As

shown in Figures 14a and 14b, among existing predictors, in

terms of both 5-fold cross validation and independent test

set based evaluations, PredNTS predictor [4] that made use

of four different encoding methods and Ensemble classifier,

produce highest performance by achieving 81.9% accuracy,

63.9% MCC and 91% AUC over 5-fold cross validation, and

76.1% accuracy, 28.6% MCC and 68.0% AUC over independent

test set. The NTyroSite predictor [3] that is based on Sequence

Evolutionary encoding method and Random Forest classifier,

achieved second highest performance in terms of accuracy and

MCC. NTyroSite predictor generates statistical representation

by utilizing Physiochemical-property based encoding methods

that do not capture amino acids correlation information, which

eventually degrade the performance of predictor.

The GPS-YNO2 [1] and DeepNitro [5] predictors produce

almost similar performance and manage to achieve 3rd rank on

the BD2 dataset. This shows that the BLOSUM62 and Position

Specific Scoring Matrix (PSSM) based encodings, utilized

by GPS-YNO2 and DeepNitro respectively, only compute

position specific physiochemical features, and fail to capture

sequence level discriminative information. Although PredNitro

[7] predictor produced highest performance on BD1 dataset,

however it produce lowest performance on BD2 dataset. This

performance gap reveals that Position-specific Conditional

Probability based encoding method is distribution dependent

and only generates better representation if the train and test

sets have very similar distributions. It will not produce a

better representation if there is a slight difference between

the distribution of train and test sets, because it computes

distribution of amino acids from the train set and maps them

on the test set.

On the other hand, proposed NTpred framework once

again produce highest performance on BD2 dataset. Although,

proposed and PredNTS predictors produce almost similar

performance over Independent test evaluation on BD2 dataset.

However, in 5-fold Cross Validation on BD2 dataset, in

comparison to PredNTS predictor, the proposed NTpred

predictor produces 2.1%, 0.9%, 3.1%, 4.1% and 0.8% higher

performance in terms of accuracy, sensitivity, specificity,

MCC and AUC. Hence, overall it can be concluded that

existing predictors are not generalized, as they produce better

performance only on partial datasets. Contrarily, the proposed

predictor is more generalized as it produce almost similar

performance on both datasets.

Conclusion

Tyrosine nitration site prediction is important to understand

diverse biological processes in various Neurodegenerative,

Cardiovascular and Autoimmune diseases, and Carcinogenesis

in humans, and support the discovery of novel therapies

and drugs. Several computational predictors have been

developed for identification of Tyrosine nitration sites,

however they lack in performance mainly due to utilization

of ineffective sequence encoding methods which do not

capture discriminative potential of the amino acids, and

introduces bias with disproportionately higher Specificity

than Sensitivity. The paper in hand presents a robust

computational framework that is competent in precisely

identifying Tyrosine nitration sites in proteins. The proposed

NTpred framework employs a variety of compositional encoders

capable of capturing discriminative information of amino acids

in protein sequences. Furthermore, the fusion of features

from different encoders and selection of informative features

enhances the predictive capability of NTpred framework. A

thorough performance analysis of proposed framework reveals

that incorporating information from different contexts into

the hybrid ensemble architecture significantly improves the

predictor’s generalizability, robustness and predictive power.

An in-depth comparison of our proposed NTpred framework

with six existing predictors using two benchmark datasets

demonstrates higher performance potential of proposed

framework compared to state-of-the-art. A compelling direction

for future studies would be to investigate the effectiveness

of various Natural Language Processing techniques, including

traditional statistical analysis, language models, and cutting-

edge neural network architectures.
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Importance Analysis of Non-coding DNA/RNA Sequences

Based on Machine Learning Approaches. 10.1007/978-3-

030-91814-9 8.

24. Lyu, Zhibin & Wang, Donghua & Ding, Hui &

Zhong, Bineng & Xu, Lei. (2020). Escherichia Coli

DNA N-4-Methycytosine Site Prediction Accuracy

Improved by Light Gradient Boosting Machine

Feature Selection Technology. IEEE Access. PP. 1-1.

10.1109/ACCESS.2020.2966576.

25. Chen, Ke & Kurgan, Lukasz & RUAN, Jishou. (2007).

Prediction of flexible/rigid regions from protein sequences

using k-spaced amino acid pairs. BMC structural biology.

7. 25. 10.1186/1472-6807-7-25.

26. Zhao, Xiaowei & Zhang, Wenyi & Xu, Xin & Ma,

Zhiqiang & Yin, Minghao. (2012). Prediction of Protein

Phosphorylation Sites by Using the Composition of

k-Spaced Amino Acid Pairs. PloS one. 7. e46302.

10.1371/journal.pone.0046302.

27. Hasan, Md. Mehedi & Zhou, Yuan & Lu, Xiaotian &

Li, Jinyan & Song, Jiangning & Zhang, Ziding. (2015).

Computational Identification of Protein Pupylation

Sites by Using Profile-Based Composition of k-

Spaced Amino Acid Pairs. PLoS ONE. 10. e0129635.

10.1371/journal.pone.0129635.

28. Hasan, Md. Mehedi & Kurata, Hiroyuki. (2018).

GPSuc: Global Prediction of Generic and Species-

specific Succinylation Sites by aggregating multiple

sequence features. PLOS ONE. 13. e0200283.

10.1371/journal.pone.0200283.

29. Wei, Leyi & Tang, Jijun & Zou, Quan. (2017).

SkipCPP-Pred: An improved and promising sequence-

based predictor for predicting cell-penetrating proteins.

BMC Genomics. 18. 1-11. 10.1186/s12864-017-4128-1.

30. Wei, Leyi & Xing, Pengwei & Su, Ran & Shi, Gaotao

& Ma, Zhanshan & Zou, Quan. (2017). CPPred-RF: A

Sequence-based Predictor for Identifying Cell-Penetrating

proteins and Their Uptake Efficiency. Journal of Proteome

Research. 16. 10.1021/acs.jproteome.7b00019.

31. Wei, Leyi & Xing, Pengwei & Shi, Gaotao & Ji,

Zhi-Liang & Zou, Quan. (2017). Fast Prediction

of Protein Methylation Sites Using a Sequence-Based

Feature Selection Technique. IEEE/ACM Transactions

on Computational Biology and Bioinformatics. PP. 1-1.

10.1109/TCBB.2017.2670558.

32. Wei, Leyi & Chen, Zhou & Chen, Huangrong & Song,

Jiangning & Su, Ran. (2018). ACPred-FL: a sequence-

based predictor using effective feature representation

to improve the prediction of anti-cancer proteins.

Bioinformatics. 34. 10.1093/bioinformatics/bty451.

33. Liu, Bin & Xu, Jinghao & Lan, Xun & Xu, Ruifeng

& Zhou, Jiyun & Wang, Xiaolong & Chou, Kuo-

Chen. (2014). iDNA-Prot—dis: Identifying DNA-Binding

Proteins by Incorporating Amino Acid Distance-Pairs

and Reduced Alphabet Profile into the General Pseudo

Amino Acid Composition. PloS one. 9. e106691.

10.1371/journal.pone.0106691.

34. Liu, Bin & Gao, Xin & Zhang, Hanyu. (2019). BioSeq-

Analysis2.0: an updated platform for analyzing DNA,

RNA and protein sequences at sequence level and level

based on machine learning approaches. Nucleic acids

research. 47. 10.1093/nar/gkz740.

35. Ruiquan, Ge & Feng, Guanwen & Jing, Xiaoyang &

Zhang, Renfeng & Wang, Pu & Wu, Qing. (2020).

EnACP: An Ensemble Learning Model for Identification

of Anticancer Peptides. Frontiers in Genetics. 11.

10.3389/fgene.2020.00760.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2023. ; https://doi.org/10.1101/2023.02.18.529069doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.18.529069
http://creativecommons.org/licenses/by-nc-nd/4.0/


NTpred 17

36. Li, Bo & Cai, Lijun & Liao, Bo & Fu, Xiangzheng & Bing,

Pingping & Yang, Jialiang. (2019). Prediction of Protein

Subcellular Localization Based on Fusion of Multi-view

Features. Molecules. 24. 919. 10.3390/molecules24050919.

37. Wekesa, Jael & Meng, Jun & Luan, Yushi. (2020).

Multi-feature fusion for deep learning to predict plant

lncRNA-protein interaction. Genomics. 112. 2928-2936.

10.1016/j.ygeno.2020.05.005.

38. Singh, Dalwinder & Madhawan, Akansha & Roy, Joy.

(2021). Identification of multiple RNAs using feature

fusion. Briefings in Bioinformatics, Volume 22, Issue 6,

bbab218, https://doi.org/10.1093/bib/bbab218

39. Jia, Yuran & Huang, Shan & Zhang, Tianjiao. (2021). KK-

DBP: A Multi-Feature Fusion Method for DNA-Binding

Protein Identification Based on Random Forest. Frontiers

in Genetics. 12. 10.3389/fgene.2021.811158.

40. Guyon, Isabelle & Weston, Jason & Barnhill, Stephen

& Vapnik, Vladimir. (2002). Gene Selection for Cancer

Classification Using Support Vector Machines. Machine

Learning. 46. 389-422. 10.1023/A:1012487302797.

41. Re, Matteo & Valentini, Giorgio. (2012). Ensemble

methods: A review. Advances in Machine Learning and

Data Mining for Astronomy, pp. 563–594. Chapman & Hall.

42. Schapire, Robert. (1990). The strength of weak

learnability. Machine Learning. 5(2). 197–227.

10.1007/BF00116037

43. Wolpert, David. (1992). Stacked Generalization. Neural

Networks. 5. 241-259. 10.1016/S0893-6080(05)80023-1.

44. Friedman, Jerome & Hastie, Trevor & Tibshirani, Robert.

(2000). Additive Logistic Regression: A Statistical View

of Boosting. The Annals of Statistics. 28. 337-407.

10.1214/aos/1016218223.

45. Friedman, Jerome. (2000). Greedy Function

Approximation: A Gradient Boosting Machine. The

Annals of Statistics. 29. 10.1214/aos/1013203451.

46. Friedman, Jerome. (2002). Stochastic Gradient Boosting.

Computational Statistics & Data Analysis. 38. 367-378.

10.1016/S0167-9473(01)00065-2.

47. Cucchiara, Andrew. (2012). Applied Logistic

Regression. Technometrics. 34. 358-359.

10.1080/00401706.1992.10485291.

48. Fawcett, Tom. (2006). Introduction to ROC

analysis. Pattern Recognition Letters. 27. 861-874.

10.1016/j.patrec.2005.10.010.

49. Debie, Essam & Shafi, Kamran. (2019). Implications

of the curse of dimensionality for supervised learning

classifier systems: theoretical and empirical analyses.

Pattern Analysis and Applications. 22. 10.1007/s10044-017-

0649-0.

50. Weiss, Sophie & Xu, Zhenjiang & Peddada, Shyamal &

Amir, Amnon & Bittinger, Kyle & González, Antonio
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