
NUcache: An Efficient Multicore Cache Organization

Based on Next-Use Distance

R Manikantan† Kaushik Rajan‡ R Govindarajan†

† Indian Institute of Science, Bangalore, India

‡ Microsoft Research India, Bangalore, India

Abstract

The effectiveness of the last-level shared cache is crucial

to the performance of a multi-core system. In this paper,

we observe and make use of the DelinquentPC—Next-Use

characteristic to improve shared cache performance. We

propose a new PC-centric cache organization, NUcache,

for the shared last level cache of multi-cores. NUcache

logically partitions the associative ways of a cache set into

MainWays and DeliWays. While all lines have access to the

MainWays, only lines brought in by a subset of delinquent

PCs, selected by a PC selection mechanism, are allowed to

enter the DeliWays. The PC selection mechanism is an in-

telligent cost-benefit analysis based algorithm that utilizes

Next-Use information to select the set of PCs that can max-

imize the hits experienced in DeliWays.

Performance evaluation reveals that NUcache improves

the performance over a baseline design by 9.6%, 30%

and 33% respectively for dual, quad and eight core work-

loads comprised of SPEC benchmarks. We also show that

NUcache is more effective than other well-known cache-

partitioning algorithms.

1. Introduction

Most multicores today have one or two levels of ded-

icated private caches, backed up with a shared last level

cache (LLC). The performance of a multicore is heavily

dependent on the performance of the LLC [19]. An effi-

cient LLC can help reduce off-chip memory traffic and con-

tention for memory bandwidth. The focus of this paper is

on improving the design of the last level shared cache to

improve overall system performance.

Traditionally caches have relied upon temporal locality

among the accesses to decide on which blocks to retain

longer. But the locality seen at LLC is often obscured by

(i) interleaving of requests from multiple cores [16, 23, 8]

and (ii) the filtering effect of caches closer to the proces-

sor [14, 17, 1, 18, 22, 15].

Several schemes have been proposed recently [8, 16, 23,

9] to manage the LLC in an efficient and fair manner. Of

these proposals, [8, 16, 23] attempt to improve the perfor-

mance of LLC by adapting some of the parameters of the

cache, typically the number of cache ways allocated to each

core [16] or by changing the insertion and promotion poli-

cies [23, 8]. In this paper we propose an alternative ap-

proach to mange the LLC that is tailor-made to utilize key

characteristics of PCs that bring in a majority of lines into

the LLC.

We observe that the notion of delinquent PCs [12, 21,

24], which has been commonly observed in private caches

of single-core processors, holds (not surprisingly) in multi-

cores as well. As delinquent PCs suffer a majority of

misses, and lines are brought into the cache on misses (with

the exception of prefetched lines), delinquent PCs are re-

sponsible for bringing in a majority of cache lines. The

presence of only a few delinquent PCs indicates that there

is an order of magnitude difference between number of ad-

dresses accessed and the number of PCs that are responsible

for bringing lines into the cache. In this paper we test out

the hypothesis that designing a LLC by prioritizing lines

brought in by certain PCs over other lines can lead to better

performance than a purely memory address reuse driven or-

ganization. To prioritize lines brought in by delinquent PCs

over others, we propose our NUcache organization that can

support higher associativity for lines brought in by some

select PCs and lower associativity for the other lines. NU-

cache is a logical partitioning of cache associativity into

MainWays and DeliWays. While all the incoming blocks

are placed initially in the MainWays, only blocks brought

in by a select subset of delinquent PCs, that are expected

to bring additional hits, are placed into the DeliWays on re-

placement from the MainWays.

We find that simple heuristics like restricting the set of

selected PCs to the top N delinquent PCs or to top PCs that

contributed to a fixed percent of misses do not work well

in practice. We analyze the behaviour of delinquent PCs

in terms of the number of misses between the eviction of a

line brought in by a delinquent PC and its subsequent ac-

chairman1
Text Box
 In the Proc. of the 17th International Conference on High Performance Computer Architecture (HPCA-2011), San Antonio, Texas, February 12--16, 2011.

cess. We refer to this distance metric as the Next-Use dis-

tance(referred to as Eviction-Use interval in [1]). We find

that different PCs exhibit completely different Next-Use be-

haviour. Hence a Next-Use agnostic solution that treats all

PCs equally is unlikely to work well. Therefore one needs

an intelligent way to select PCs to be able to make best use

of the additional associativity.

We propose a cost benefit analysis based PC selection

algorithm that uses the Next-Use behaviour of delinquent

PCs to choose a set of PCs that can make the best use of

the DeliWays. The correlation between PC and Next-Use

distance is the key factor that facilitates the proposed solu-

tion and acts as a link between the various components of

the solution – NUcache and the PC selection mechanism.

While Next-Use distance directly gives an estimate of the

effort involved to convert a miss into a hit, the observation

that only a few delinquent PCs exist, makes it feasible to

track Next-Use distance in hardware.

We evaluate the proposed solution, NUcache together

with the PC-selection mechanism, in the context of last level

shared caches in multi-cores running multi-programmed

workloads. We observed that NUcache improved the per-

formance over a baseline LRU managed organization in

the case of dual, quad and eight cores and for varying

cache configurations. In the case of dual-core configura-

tions, NUcache organization provides an average speed-up

of 9.6% over a baseline LRU last level cache in terms of

Average Normalized Turnaround Time (ANTT) metric [5].

For Quad and eight core workloads, the observed speedup

over baseline LRU is 30% and 33% respectively. We show

that NUcache performs better than three recently proposed

cache partitioning schemes, Utility based cache partition-

ing(UCP) [16], TADIP [8] and PIPP [23].

The rest of the paper is organized as follows: Section 2

demonstrates delinquentPC—Next-Use characteristic and

the need for intelligent PC selection. Section 3 discusses the

organization of NUcache, the structures required to learn

delinquentPC—Next-Use characteristic and the PC selec-

tion mechanism. Section 4 and Section 5 deal with the sim-

ulation methodology and performance results respectively.

Related works are discussed in Section 6.

2. Motivation

2.1. Delinquent loads and Next-Use charac-
teristic

Next-Use distance is associated with a cache block, and

is defined as the number of intervening misses to the asso-

ciated cache set between the block’s eviction to it being ref-

erenced again. As cache replacements are required only on

misses, Next-Use distance is a measure of how long should

a block be retained, after it becomes the replacement candi-

date, to convert a miss in the baseline scenario into a hit.

The term Delinquent PCs refers to a small set of static

PCs that account for a significant fraction of misses in a pro-

gram [12, 21, 24]. The presence of delinquent PCs has been

used to target a variety of optimizations in single core pro-

cessors [21]. We observe that delinquent PCs exist in shared

LLC of multi-cores running multi-programmed workloads.

For a variety of Dual, Quad and Eight core workloads, we

observed that 16 delinquent PCs account for 50–95% of

misses suffered at LLC.

Figure 1 shows the Next-Use distance of the top 16 delin-

quent PCs, for 2 dual-core workloads and one quad-core

workload. Each graph is for a single workload which is

composed of either two or four benchmarks. The line-graph

in the Figure shows the cumulative fraction of L2 misses

caused by the PCs under consideration. Each bar in the

graph is for a single PC, uniquely identified using its 16

least significant bits (4 hex digits) and the benchmark from

which it comes (shown as a subscript). The delinquent PCs

in the graphs are displayed in descending order of misses

caused by them. For each PC, we show the fraction of lines

brought in by that PC that fall under various Next-Use dis-

tance ranges (in steps of 8 up-to 64 and > 64 as another

range). For instance, in (410.bwaves,179.art), the most

delinquent PC belongs to 179.art and it accounts for around

20% of the misses caused at L2. 60% of the lines brought

in by this most delinquent PC have a Next-Use distance be-

tween 25-32, i.e., upon eviction from the cache, they are ref-

erenced again within the next 25-32 misses. Another 20%

of lines brought in by this PC have a Next-Use distance be-

tween 33-40. It is important to note that the subsequent

access to an evicted block need not necessarily come from

the same delinquent PC which brought it into the cache ini-

tially. Also some of the blocks brought in are never referred

again after being evicted from the cache. This is reflected

in the fact that some of the bars corresponding to individual

PCs do not reach 100%.

2.2. Need for intelligent PC selection

As stated before, in this paper we test out the hypothe-

sis that designing a LLC by providing lines brought in by

certain selected PCs exclusive access to additional ways

(called DeliWays) can lead to better performance than a

purely memory address reuse driven organization that treats

all lines equally. We argue that just looking at the fraction

of lines brought in by a delinquent PC does not give suffi-

cient information to choose one PC over another. One has to

consider the correlation between the delinquent PC and its

next-use distance characteristics. For example, from work-

load (471.omnetpp, 179.art) consider the top 2 delinquent

PCs, PC1 = e2e0471 and PC2 = 2150179. Consider a

cache in which 8 DeliWays are used to retain lines brought

in by one of theses PCs for longer. From the graph it can be

 0

 20

 40

 60

 80

 100

2150
179

2128
179

2140
179

1bbc
179

1ebc
179

1cac
179

2078
179

1e5c
179

1d48
179

1f28
179

03cc
410

0480
410

088c
410

ff2c
410

ffc0
410

06f8
410

%
 L

in
e
s
 b

ro
u

g
h

t
b

y
 P

C

%
 L

2
 m

is
s
e
s

(a) (410.bwaves,179.art)

 0

 20

 40

 60

 80

 100

e2e0
471

2150
179

2128
179

d590
471

2140
179

1bbc
179

1ebc
179

2078
179

1cac
179

1f28
179

1e5c
179

1d48
179

1bd0
179

9354
471

0bc0
179

0d90
179

%
 L

in
e
s
 b

ro
u

g
h

t
b

y
 P

C

%
 L

2
 m

is
s
e
s

(b) (471.omnetpp,179.art)

 0

 20

 40

 60

 80

 100

210c
178

30ac
459

0fb4
470

1cc4
470

2118
470

2074
470

1df4
470

1a8c
470

1458
470

23b0
470

230c
470

1d58
470

14c8
470

2500
470

1fd0
470

13e8
470

<=8

9-16

17-24

25-32

33-40

41-48

49-56

57-64

>64

(c) (178.galgel,459.GemsFDTD,168.wupwise,470.lbm)

Figure 1. Delinquent PC – Next-Use correlation in Multi-Programmed Workloads

seen that PC1 contributes to about 30% misses at the LLC

and PC2 contributes to 20% of the misses. Therefore on an

average, 3 out of every 10 lines brought into the LLC is by

PC1 and one out of every 5 is brought in by PC2. If PC1

was the only selected PC, then, approximately once every 3

misses a line would enter the DeliWays. Assuming a FIFO

replacement in the DeliWays, the line can stay there until a

further 8 lines get pushed into the DeliWays. Considering

the rate at which PC1 brings lines into the cache, a line can

stay in the DeliWays for 24 misses on average after the line

entered DeliWays. Similarly, if PC2 was the only selected

PC, then once every 5 misses a line would enter the Deli-

Ways and the line can stay in the DeliWays for 40 misses

after the line entered DeliWays.

Now to estimate how many of the lines pushed into Deli-

Ways will experience a hit, one has to know how long after

eviction from the MainWays will a subsequent access to the

line be seen. This is precisely the information that the Next-

Use histogram provides. For PC1, as long as the next-use

of the line pushed into the DeliWays is within the next 24

misses it will see a hit. From the figure it can be seen that

25% of lines brought in by PC1 have accesses within a next

use distance of 24 and hence providing 25×0.3 = 7.5% re-

duction in misses if PC1 uses the DeliWays. On the other

hand about 70% of lines brought in by PC2 have a next use

distance within 40. This will lead to a 70 × 0.20 = 14%
reduction in number of misses at the LLC. It can be seen

that intelligent selection of PCs in this case can double the

potential benefits.

Our PC selection mechanism is motivated by the need to

perform this kind of cost-benefit analysis. It uses Next-Use

histograms to estimate benefits to be gained by allowing a

PC to access the DeliWays while accounting for the cost of

pushing more lines into the DeliWays. Note that in addition

to considering individual PCs our proposed algorithm con-

siders combinations of PCs as well. In the above example it

will also consider selecting both PC1 and PC2 for access-

ing the DeliWays. The complete algorithm is described in

the next section.

In an equivalent LRU based baseline cache, all the lines

will have access to the additional 8 DeliWays (as Main-

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

Top1

Top2

Top4

Top6

Top8

Top10

Top12

Top14

Top16

B
EST

%
 M

is
s
e
s
 E

li
m

in
a
te

d

(410,179)

(471,179)

Figure 2. Naively selecting top-N delinquent
PCs Vs Proposed scheme (BEST) – % of
Misses likely to be eliminated when 8 Ways

are used to retain lines longer for (410,179)
and (471,179)

Ways) per set. Any line that enters the last 8 ways, should

see its Next-Use before the next 8 misses take place to ex-

perience a hit. Otherwise the line is evicted from the cache.

It is commonly observed that LRU does not work well at

the last level cache [16, 8, 23]. We empirically find that our

proposed PC selection mechanism consistently outperforms

LRU.

2.3. Other observations

From Figure 1 it can be observed that the Next-Use char-

acteristic for different delinquent PCs is significantly differ-

ent. This implies that a solution that is agnostic of Next-Use

and simply selects a fixed number of most delinquent PCs to

access DeliWays is unlikely to work. This can be observed

from Figure 2 where we plot the % of misses eliminated by

a naive PC selection algorithm that picks the top 8 or 16

delinquent PCs.

Secondly, the same PC can exhibit different Next-Use

characteristic in different workloads. This can be observed

by comparing the delinquent PCs belonging to 179.art in the

workloads (410.bwaves, 179.art) and (471.bwaves, 179.art).

This motivates the need for dynamically learning the Next-

Use characteristic of delinquent PCs. In our proposed so-

lution we introduce auxiliary structures to help track delin-

quent PCs and their next-use distance histogram.

2.4. Comparing other distance metrics

Reuse distance [6] and time distance [6] are other dis-

tance metrics that have been used to summarize the perfor-

mance of caches. Time distance is measured as the number

of intervening accesses between two successive accesses to

a cache block and reuse distance is the number of unique

accesses between two successive accesses to a cache block.

In any cache, new lines are brought in and existing lines

are replaced only on misses. Next-Use distance by virtue

of measuring distance in terms of misses, provides a mea-

sure of the effort required to retain a block until its next use.

For instance, a Next-Use distance of 10 means that once a

block is evicted, it will be brought back in again after 10

misses. The effort required to avoid this subsequent miss,

based on the information provided by Next-Use distance, is

that the line should not be a replaced during the subsequent

10 misses once it becomes the candidate for eviction.

Unlike Next-Use distance, time distance cannot provide

an accurate estimate of how far away the next access to

the block is in terms of cache replacement decision. This

is because time distance is measured in terms of interven-

ing accesses which could be either cache hits or misses.

For example, consider two blocks A and B with time dis-

tance of 100 (90 hits and 10 misses) and 50 (40 hits and

10 misses) respectively. While time distance says it takes

twice as much effort to retain A until its next access com-

pared to B, in truth the effort involved to retain A or B until

their next access is the same. They should not be replaced

during the next 10 misses. Even reuse distance suffers from

the problem of hits and misses being treated at par. Also the

uniqueness criteria makes it hard to measure reuse distance

at runtime. In short, we claim that it is not possible to di-

rectly use reuse/time distance in place of Next-Use distance

in our proposed solution without compromising its simplic-

ity.

3. The Next-Use cache (NUcache)

3.1. Cache organization

NUcache is a logical partitioning of a cache’s associa-

tivity into MainWays and DeliWays. Figure 3 shows the

organization of one 8-way set in an NUcache with 4 Deli-

Ways. In the figure, DeliWays are the shaded portion in the

set, and are used on demand to store lines brought in by a se-

lect set of PCs longer. The organization shown in the figure

can retain a maximum of 4 lines longer. The two extra State

bits are used as follows: (i) the M-bit when set indicates

that the line belongs to the MainWays, and (ii) the L-bit in-

dicates whether a line belonging to the MainWays can enter

the DeliWays in future. We use LRU replacement policy for

the lines belonging to the MainWays. For the DeliWays, a

De
liW

ay
s

L−Bit M−Bit

State
Cache Data

M
ai

nW
ay

s

(a) NUcache Organization

Tag PC
Time

Repl
Evicted

(b) NUtrack

PC
Next Use Histogram

Count

Miss Insertion

Time <= 16<= 8Total ...<= 24 <= 64

(c) DeliTrack

Figure 3. NUcache organization and associ-
ated structures.

simple FIFO replacement policy is better suited than LRU

as once a hit is seen, the line has already provided the de-

sired extra benefit. The setting of the M and L bits and the

replacement mechanism are described below.

An access to the cache searches all the ways (Main-

Ways and DeliWays) in the appropriate set. On a hit, apart

from updating replacement information no other changes

are made. On a miss, a replacement candidate is chosen

as follows. The least recently used line belonging to the

MainWays is first considered as the replacement candidate.

If its L-bit is set, indicating that the line should be retained

longer, the line is marked as part of DeliWays by resetting

the M-bit. If the maximum associativity allocated for Deli-

Ways has not been reached, the next least recently used line

from the MainWays is considered as the replacement can-

didate and the above procedure is repeated. If in the pro-

cess the maximum DeliWays associativity is reached, then

the oldest entry in the DeliWays is chosen for replacement.

Note that the DeliWays are utilized to retain lines longer

only on a demand driven basis. This permits all the ways

of a cache to be used by the MainWays if no PC is allowed

access to DeliWays. The newly entering line replaces the

victim and sets the M -bit. Further, if the incoming line is

brought in by a selected delinquent PC, then the L-bit is set

as well.

3.2. DeliTrack and NUtrack

Two auxiliary structures are added to track all PC related

information required by the PC selection algorithm. These

are shown in Figure 3, and are placed alongside NUcache.

DeliTrack: DeliTrack is used to identify delinquent PCs

and store their Next-Use histograms. The structure is in-

dexed using PC. We assume that PC information is avail-

able at LLC as in earlier work on delinquent PCs [21, 13,

10](The recently held cache replacement contest (in con-

junction with ISCA 2010) also assured/assumed the avail-

ability of PC at LLC.). An entry of DeliTrack is assigned

for each PC that is currently being tracked. On a primary

miss, if the PC is already being tracked, its miss count is in-

cremented by one. Otherwise the least recently used entry

in the DeliTrack is replaced with the PC suffering the miss.

The usage of LRU in DeliTrack naturally helps retain the

most delinquent PCs, while throwing away PCs that rarely

suffer a miss. Upon insertion, the miss count is set to one

and the insertion time stamp is updated to reflect the logical

insertion time. The number of misses seen at a particular

cache level is used as logical time. At any instance, the

current logical time, the insertion time stamp and the miss

count can be used to calculate the fraction of misses caused

by a particular PC. This information is used in our PC se-

lection algorithm described later in the section.

DeliTrack also stores the next use histogram for delin-

quent PCs. When a new PC is inserted into the DeliTrack,

the corresponding histogram is cleared and then entries are

subsequently populated through the NUtrack as described

later. The histogram can store Next-Use distances from 8 to

64 in steps of 8.

NUtrack. NUtrack is a set-associative structure used to

measure the Next-Use distance of lines brought in by delin-

quent PCs. NUtrack is indexed using block address. The

key operations associated with NUtrack are insertion, re-

placement and learning. Insertion: When a delinquent PC

experiences a miss and brings in a new line, an attempt is

made to insert the line in NUtrack. If a free entry is present,

insertion can take place. Otherwise, if the oldest entry (with

evicted bit being set) has stayed beyond the maximum Next-

Use distance tracked, 64 in this case, it is replaced and the

newly arriving line is inserted. Insertion, sets the PC in-

formation and clears the evicted bit and replacement times-

tamp. If none of the above conditions hold, insertion does

not take place. Learning: When a block is evicted from the

cache, NUtrack is looked up to see whether it was inserted

earlier (when it was brought into the cache originally). If

so, the evicted bit of the NUtrack entry is set to indicate

the beginning of the learning phase for the block. Setting

the evicted bit during replacement time allows us to mea-

sure Next-Use distance from the time of replacement. Also

the replacement time stamp is set to the value of global miss

count. Replacement: Upon any cache miss to a block, if the

block is present in NUtrack, it indicates a successful identi-

fication of Next-Use for that block. The Next-Use distance

for the block is computed as the difference between the cur-

rent value of global miss count and replacement time stamp.

To arrive at a per-set level value for Next-Use, the distance

computed above is scaled down by the number of sets in the

cache. The PC field of the replaced NUtrack entry is used to

selectPCs (DeliTrack, DeliAssoc){

/*The structure S holds information

related to selected PCs*/

S.PCs=∅; S.NUhist={0}; S.MissFraction =0.0;

while(true){

BestGain = 0; BestCandidate = NULL;

foreach(Candidate.PC P ∈ DeliTrack){

if(P ∈ S.PCs) continue;

CurrentGain = computeHits(S, P, DeliTrack

, DeliAssoc);

if(CurrentGain > BestGain){

BestGain = CurrentGain;

BestCandidate = P;

}

}

if(BestCandidate != NULL){

/*A new PC was identified*/

S.PCs = S.PCs ∪ BestCandidate;

S.MissFraction += BestCandidate.

missFraction;

S.NUhist += BestCandidate.NUhist;

}

else

/*No New PC can increase hits*/

return S.PCs;

}

}

Figure 4. PC selection algorithm

update the appropriate fields of DeliTrack and the NUtrack

entry is freed.

Note that even-though the Next-Use distance is mea-

sured only from the time of eviction to a subsequent access,

a NUtrack entry is created as soon as the line enters the last

level cache. This is done to avoid having to add an addi-

tional field that stores PC information along with the cache

blocks.

3.3. PC selection mechanism

In this section, we discuss a cost-benefit algorithm to

determine the PCs that should have access to the Deli-

Ways. The goal of the cost-benefit algorithm is to maximize

the number of hits provided by the NUcache organization.

Once the PCs are identified, using the mechanism described

below, lines brought in by them can be marked as selected

for DeliWays by setting their L-bits to 1.

As it is impractical to evaluate all possible combination

of PCs, we propose a greedy strategy that works incremen-

tally by picking the delinquent PC that provides the maxi-

mum returns at each step. The algorithm is shown in Fig-

ure 4 and it operates on the contents of the DeliTrack. On

each iteration it considers an as yet unselected candidate
and computes the overall gains if it is added to the set of

already selected PCs. This process is repeated until there

comes a stage where no candidate provides a gain.

The estimation of benefits that a new candidate can pro-

vide is computed using the algorithm shown in Figure 5.

computeHits(S, P, DeliTrack, DeliAssoc){

rate = P.MissFraction + S.MissFraction;

effectiveNextUseDist = Incr = rate << 3;

gain = 0;

for(HistIndex ∈{8,16,24,32,40,48,56,64}){

/* The comparison below is effectively

HistIndex ≤ (DeliAssoc/rate),
where (DeliAssoc/rate) is the average time a

line can stay in DeliWays */

if(effectiveNextUseDist ≤ DeliAssoc){
gain += P.NUhist[HistIndex];

gain += S.NUhist[HistIndex];

}

else

break;

effectiveNextUseDist += Incr;

}

return gain;

}

Figure 5. Algorithm to compute the gains
when a candidate is added to the already se-
lected set of PCs.

The estimation of benefits is carried out by first computing

the effective associativity of the DeliWays given the rate at

which selected set of PCs push lines into it. This computa-

tion requires an addition and a left shift operation. The po-

tential benefit is then calculated by going through the Next-

Use histogram of the selected set of PCs and the candidate
under consideration. We use one entry of the DeliTrack to

store the Next-Use histogram of the set of PCs selected so

far (S.NUhist). This allows us to avoid recomputing this

information at each time step. Once the PCs are selected,

we use a 16-entry structure (not shown in the Figures) to

store them. We found that a 16-entry structure was enough

in all the cases to store the set of selected PCs with access to

the DeliWays. The PC selection algorithm is run once every

10,000 misses at the chosen cache level, L2 in our case. In

our studies, for most of the workloads, this translated into

a time interval of at the least 5 million processor cycles be-

tween successive runs of the PC selection algorithm.

With NUcache, the PCs picked in a multi-programmed

workload scenario can come from any of the programs that

constitute the workload. As the access to the DeliWays and

the usage of the associativity present in the DeliWays are

dictated by the selected PCs, the PC-selection mechanism

implicitly leads to a partitioning of the DeliWays across the

various programs. Also note that, while we use the criteria

of maximizing hits to select the best PC at each step, it is

possible to use a range of selection criteria to suit various

design goals ranging from throughput to fair speedup of all

the programs. The study of alternative selection criteria is

left to future work.

3.4. Hardware requirements and PC selec-
tion overhead

The auxiliary structures introduced for the NUcache or-

ganization, DeliTrack and NUtrack are situated off the crit-

ical path. While DeliTrack is a predictor like structure in-

dexed by PC, NUtrack requires a cache like organization.

The space overhead for the structures is shown in Table 1.

We assume a 40 bit physical address space and 32 bit coun-

ters for the appropriate fields of DeliTrack and NUtrack.

The table also reports the storage overheads for the M and

L bits in the physical cache organization, the global miss

count register and the selected PCs table. For a 1MB cache,

the storage overhead is only an additional 1.75% over a tra-

ditional LLC of the same size. Later in Section 4, we show

that these structures (at the same size) perform well for a

4MB/8MB cache as well. Hence the storage overheads will

be lesser with larger caches. This is primarily because of

the fact that delinquent PCs, by definition, are expected to

be few in number. Also as none of the structures track any

information on a per-core basis, the proposed solution does

not face hardware limitations in scaling to larger number of

cores. We demonstrate this by using the same DeliTrack

and NUtrack configurations for dual, quad and eight core

configurations.

Next we describe the overhead in running the PC selec-

tion algorithm. The average number of PCs selected for the

various workloads ranged from 1.5 to 8.6 with a median

of 3. The maximum number of PCs selected across all the

workloads is 12. Also not all 64 entries in the DeliTrack are

delinquent PCs. A good fraction of them are recently in-

serted entries which lack adequate history to be considered

by the algorithm. The algorithm used to compute the bene-

fits provided by a set of PCs requires a maximum of 34 op-

erations (25 additions, 1 shift operation and 8 comparisons).

The average number of operations per single run of the PC-

selection algorithm, ranges from 269.3 operations for the

workload (471,179) to 6491.9 operations for the workload

(410,179). Considering that the operations are simple and

incur low latency, the PC selection algorithm finishes easily

within a few thousands of cycles. As the algorithm is called

only once every 5 million cycles or more, the overhead is

less than 0.05%.

4. Experimental setup and performance met-

rics

4.1. Simulation methodology

We use M5 simulator [2] in system call emulation mode

to carry out all the simulations. The benchmarks consid-

ered are drawn from SPEC2000 and SPEC2006 benchmark

suites and are compiled for ALPHA ISA. We simulate dual,

quad and eight core processors. All the processors have

private L1 caches with a shared L2 cache. The machine

DeliTrack NUtrack

PC 5 Byte Tag 34 bits

Insertion timestamp 4 Byte Insertion time 32 bits

Miss count 4 Byte PC 40 bits

Histogram (8 cate-

gories, 2 Bytes each)

16 Byte

Size per Entry 29 Byte Size per entry 106 bits

Total Size (64 Entry) 1856

Byte

Total Size (1024 entry) 13568

Byte

Global Miss Count 4 Byte

List of Selected PCs (Max 16) 80 Bytes

L and M -bits 4KB

Total Storage Overhead 19.06 KB

Cache Size (data + tag) 1088 KB

% Increase in Storage 1.75%

Table 1. Storage overhead of auxiliary struc-
tures and added fields for a 1MB cache.

Frontend/ Commit/ Issue Width 8

ROB/LQ/SQ/ Issue Queue 192/96/64/64 entries

L1 D/I Cache 64KB, 2way, 64B line size, 1

cycle

L2 1M/4M/8M with 32/16 Ways,

64B, 16 cycles

Memory DRAM-800MHz, Open Page,

Minimum 400 cycles

DeliTrack/NUtrack 64 Entries/ 1024 Entry, 8 way

associative

Table 2. Machine parameters

parameters are presented in Table 2. We used several multi-

programmed workloads. The workloads are discussed in

detail later in the section. All the benchmarks in the multi-

programmed workload were fast forwarded for 10 billion

instructions with the last 1 billion being used for warmup.

After fast-forward, we simulated the multi-programmed

workload in detail until all the programs complete 1 billion

instructions. Performance numbers are reported only for

1B instructions of each program. If a program finishes 1B

instructions early, it continues to run but the extra instruc-

tions are not counted when performance is reported. This

methodology is similar to earlier works [16, 8].

4.2. Multicore workloads and performance
metrics

We evaluated dual, quad and eight core configurations

using a mix of multiprogrammed workloads. The vari-

ous programs belonging to the SPEC benchmark suite have

differing memory requirements and exert various levels of

pressure on the caches and memory. We classified the

benchmarks as having Low, Medium or High memory inten-

sity. This is done by measuring the MPKI(Misses Per Kilo

Instructions) of the programs when they are run alone on a

machine with 1MB 32 way associative L2 cache. Programs

with MPKI ≤ 2 are classified as having Low Memory inten-

sity, while High memory intensity programs have an MPKI

> 8. Benchmarks with MPKI between 2 and 8 are treated

Quad-Core Eight-Core

Q1:(172,173,181,471) E1:(168,175,187,410,470,437,464,172)

Q2:(172,179,459,470) E2:(172,187,179,173,401,437,470,471)

Q3:(172,187,410,470) E3:(172,189,183,462,470,465,178,168)

Q4:(172,459,471,183) E4:(173,301,300,183,179,459,470,437)

Q5:(189,471,171,437) E5:(178,171,187,175,437,255,471,410)

Q6:(178,459,168,470) E6:(179,171,183,435,464,470,181,191)

Q7:(200,187,172,471) E7:(437,470,178,462,465,255,187,482)

Q8:(410,171,173,471) E8:(470,189,437,450,433,471,197,191)

Q9:(178,187,462,470) E9:(470,410,179,256,471,450,187,301)

Q10:(410,181,171,179) E10:(470,410,437,435,172,178,197,255)

Q11:(450,301,459,470)

Q12:(470,179,482,301)

Table 3. Workload mix
as having Medium memory intensity.

The workloads for dual, quad and eight cores are com-

prised of 2, 4 and 8 programs run in parallel respectively.

For dual cores, we consider a set of 18 workloads with 3

workloads for each case from both programs having Low

memory intensity to both having High memory intensity.

For quad and eight cores, we try to ensure that each work-

load has programs belonging to more than one category.

The quad and eight core workloads are shown in Table 3.

Similar approach to selecting workloads has been used in

earlier works [16].

We use the metrics Average Normalized Turnaround

Time (ANTT) [5] and System Throughput (STP) [5] to

summarize the performance. The metrics are defined as:

1. ANTT :
∑

(IPCSP
i

/IPCMP
i

)/N

2. STP :
∑

(IPCMP
i

/IPCSP
i

)

Here, IPCSP
i

is the IPC of the ith program when run alone,

while IPCMP
i

gives its IPC when run as a part of the mul-

tiprogrammed workload. ANTT and STP are metrics with

system-level meaning [5] for multi-programmed workloads.

ANTT is an user-oriented metric that quantifies how fast a

single program is executed. STP is a system-oriented metric

that quantifies efficient usage of resources in the system. As

ANTT is an user-oriented performance metric [5], we use it

to discuss results in detail.

5. Performance evaluation

5.1. NUcache performance

We compare the performance of NUcache organization

with a baseline system which has the configuration spec-

ified in Table 2 and uses LRU replacement at the shared

level. L2 is the shared LLC in all cases. The size of LLC is

1MB, 4MB and 8MB respectively for dual, quad and eight

cores. The associativity is 32. We evaluate two NUcache

configurations with 20 and 24 DeliWays.

Figure 6 shows the ANTT of dual-core workloads for

baseline(LRU) and NUcache with 20 and 24 DeliWays.

Lower the value of ANTT, better is the performance. The

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

(1
7
1
,4

7
1
)

(1
7
2
,4

3
7
)

(1
7
3
,1

7
1
)

(1
7
3
,1

7
8
)

(1
7
3
,4

7
1
)

(1
8
9
,1

7
2
)

(1
8
9
,4

2
9
)

(2
0
0
,1

7
2
)

(2
0
0
,1

8
9
)

(2
0
0
,4

5
6
)

(3
0
1
,1

7
8
)

(3
0
1
,1

7
9
)

(4
1
0
,1

7
9
)

(4
3
5
,1

7
8
)

(4
3
7
,1

7
8
)

(4
5
6
,1

7
2
)

(4
5
9
,1

7
9
)

(4
7
1
,1

7
9
)

A
N

T
T

Workload

Lower is better

Avg gain over LRU: 9.6%

LRU DeliWays-20 DeliWays-24

Figure 6. ANTT of dual-core workloads

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

A
N

T
T

Workload

Lower is better

Avg gain over LRU: 30%

LRU DeliWays-20 DeliWays-24

(a) Quad core

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

A
N

T
T

Workload

Lower is better

Avg gain over LRU: 33%

LRU DeliWays-20 DeliWays-24

(b) Eight core

Figure 7. ANTT of quad/eight-core workloads

average performance improvement over the baseline across

the 18 workloads for NUcache (with 24 DeliWays) is 9.6%

in terms of geometric mean. For the quad-core workloads,

NUcache improves the performance in terms of ANTT by

30% over LRU as shown in Figure 7(a). The gains for

eight core, as can be seen from Figure 7(b), are 33%. The

size of DeliTrack and NUtrack, structures introduced in our

NUcache, remained the same for all the simulations. This

shows that the structures and the hardware complexity of

our scheme need not increase with increasing number of

cores and cache size. This advantage primarily comes from

our interest in tracking things at the granularity of delin-

quent PCs and due to the fact that the number of delinquent

PCs remains small even with increasing cache size and core

count.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

(1
7
1
,4

7
1
)

(1
7
2
,4

3
7
)

(1
7
3
,1

7
1
)

(1
7
3
,1

7
8
)

(1
7
3
,4

7
1
)

(1
8
9
,1

7
2
)

(1
8
9
,4

2
9
)

(2
0
0
,1

7
2
)

(2
0
0
,1

8
9
)

(2
0
0
,4

5
6
)

(3
0
1
,1

7
8
)

(3
0
1
,1

7
9
)

(4
1
0
,1

7
9
)

(4
3
5
,1

7
8
)

(4
3
7
,1

7
8
)

(4
5
6
,1

7
2
)

(4
5
9
,1

7
9
)

(4
7
1
,1

7
9
)

G
M

N
o

rm
a
li

z
e
d

 S
T

P

Workload

Higher is better

DeliWays-20 DeliWays-24

(a) Dual core

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 GM
N

o
rm

a
li

z
e
d

 S
T

P

Workload

Higher is better

DeliWays-20 DeliWays-24

(b) Quad core

Figure 8. STP dual/quad core – normalized to
LRU

For the dual-core workloads, NUcache improves the per-

formance across the various mix of workloads from Low-

Low to High-High. Even though NUcache attempts to max-

imize the overall hits, it manages to speedup both the appli-

cations in workloads like (172,437), (173,178), (173,471),

(189,172), (200,172), (410,179), (459,179) and (471,179),

hence providing a measure of fairness. Similar behaviour

of all the constituent benchmarks showing improved per-

formance is observed in the case of quad-core workloads

Q2, Q6, Q9 and eight-core workloads E7 and E10.

Figure 8 shows the performance of dual and quad core

workloads measured using STP. In terms of STP, the aver-

age gains are 7.1%, 4.1% and 6.3% in dual, quad and eight

cores respectively.

5.2. Effectiveness of PC selection

In this section, we consider a few dual-core workloads

and study the working of the proposed PC selection mech-

anism. For the benchmark (301,178), Figure 9(a) shows

the fraction of times each of the Top 16 delinquent PCs are

picked by the PC selection algorithm for NUcache with 24

DeliWays. It can be observed that not all the delinquent

PCs are picked. The most delinquent PC gets picked around

80% of the time primarily due to the low Next-Use distance

exhibited by it. As it also accounts for a significant frac-

tion of misses, the selection algorithm picks the other top

delinquent PCs less frequently so that the lifetime of lines in

 0

 20

 40

 60

 80

 100

210c
178

a0a8
178

8cb0
301

da68
178

2c9c
178

2bac
178

20ec
178

fc74
301

f954
301

f190
301

ee70
301

305c
178

2a54
178

2a6c
178

3048
178

92c4
178

%
T

im
e
s
 S

e
le

c
te

d

Delinquent PC

(a) PC selection in (301,178)

 0

 20

 40

 60

 80

 100

2150
1

2128
2

2140
3

1ebc
4

1bbc
6

1e5c
7

1cac
8

1d48
9

2078
5

1f28
10

1bd0
11

04b4
12

0bc0
15

0c38
16

1648
?

0d90
?

0580
13

06a8
14

%
T

im
e
s
 S

e
le

c
te

d

Delinquent PC

(410,179)

(471,179)

(b) 179.art in (410,179) and (471,179)

Figure 9. Study of PC selection mechanism

DeliWays is not brought down drastically. In this workload,

while 178.galgel showed significant speedup over LRU, it

was achieved with only a 0.2% slowdown for 301.apsi.

We observed earlier that a single delinquent PC can ex-

hibit different behaviour in different workloads. To study

the adaptivity of the PC-selection mechanism under such a

scenario, we examined the PCs selected by it for the bench-

mark 179.art in workloads (410,179) and (471,179) with a

NUcache organization having 24 DeliWays. We consider

only the top 16 delinquent PCs of 179.art in both the work-

loads. Figure 9(b) shows the fraction of times the top 16

delinquent PCs belonging to 179.art get picked by the selec-

tion algorithm in both the workloads. The PCs are ordered

in terms of the misses they cause in (410,179) 1. Each PC

is labeled as PCn, where n indicates that it is the n th most

delinquent PC of 179.art in the workload (471,179). For in-

stance, the 5th most delinquent PC of 179.art in (471,179)

is only the 9th most delinquent PC for 179.art in (410,179).

The top 16 delinquent PCs for 179.art are not the same in

both the workloads. The 13th and 14th most delinquent PCs

in (471,179) are not among the top 16 delinquent PCs for

179.art in (410,179). Also even if a PC is among the top

16 delinquent PCs in both the workloads, its relative or-

dering need not match, as is the case for most of the PCs

in the workloads under consideration. Even though the

4 most delinquent PCs of 179.art are similar in both the

workloads, the PCs of 179.art get picked less frequently in

(471,179). This is because 471.omnetpp is more memory

1The PCs and their ordering may not match the one in Figure 1 as that

was measured for a 1MB, 32-way cache with no DeliWays.

 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

(1
7
1
,4

7
1
)

(1
7
2
,4

3
7
)

(1
7
3
,1

7
1
)

(1
7
3
,1

7
8
)

(1
7
3
,4

7
1
)

(1
8
9
,1

7
2
)

(1
8
9
,4

2
9
)

(2
0
0
,1

7
2
)

(2
0
0
,1

8
9
)

(2
0
0
,4

5
6
)

(3
0
1
,1

7
8
)

(3
0
1
,1

7
9
)

(4
1
0
,1

7
9
)

(4
3
5
,1

7
8
)

(4
3
7
,1

7
8
)

(4
5
6
,1

7
2
)

(4
5
9
,1

7
9
)

(4
7
1
,1

7
9
)

A
N

T
T

Workload

Lower is better

Avg gain over LRU: 8.9%

LRU DeliWays-10 DeliWays-12

(a) Dual core

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

A
N

T
T

Workload

Lower is better

Avg gain over LRU: 21.5%

LRU DeliWays-10 DeliWays-12

(b) Quad core

Figure 10. ANTT of 16 way caches

intensive compared to 410.bwaves. This demonstrates an

instance where our selection algorithm adapts well to vary-

ing workload behaviour.

5.3. Sensitivity study

We studied dual cores with 1MB 16 way shared L2 and

quad cores with 4MB 16 way shared L2 as their LLC. We

use NUcache configurations with 10 and 12 DeliWays. The

size of DeliTrack and NUtrack remains same as that of the

earlier experiments.

Figure 10(a) and 10(b) show the ANTT experienced by

the dual and quad-core workloads respectively. NUcache

organization improves the performance of the various mix

of workloads in both dual and quad cores. In dual cores, the

average gain in ANTT using 12 DeliWays is 8.9%. For quad

core workloads, the average gain is 21.5%. Even in config-

urations with only 4 MainWays, NUcache performs better

than LRU in a significant number of workloads. This effec-

tive behaviour is due to the fact that the DeliWays are used

only on a demand basis and also due to the effective utiliza-

tion of the DeliWays achieved by the cost benefit algorithm.

This can primarily be seen in workloads like (173,178) and

(437,178), where 12 DeliWays provides noticeable gain in

performance over 10 DeliWays. Also the performance re-

sults demonstrate the suitability of the auxiliary structures

– DeliTrackand NUtrack – and the effectiveness of the PC

selection algorithm for varying cache configurations.

So far we have discussed the performance of NUcache

with 20 and 24 DeliWays. It is possible to vary the num-

ber of DeliWays anywhere from 1 to (associativity - 1). To

study the performance trends with varying sizes for Deli-

Ways, we varied the associativity of DeliWays from 4 to

28 in steps of 4 in a dual core configuration with 1MB 32

way L2 cache. Even using only 4 DeliWays showed gains

over LRU. But the margin of gain was not as high as us-

ing 20 or 24 DeliWays. This is because it is not possible to

retain many lines longer in the DeliWays when the associa-

tivity is as low as 4. In general, increasing the associativity

of DeliWays helps improve the performance. However at

places where DeliWays cannot make up for the loss in hits

experienced by the MainWays with reduced associativity,

we observed a minor drop in performance compared to the

best performing NUcache configuration.

5.4. Comparison with partitioning schemes

The problem of shared cache management is well stud-

ied, and in this section we compare our scheme with three

of the most effective solutions known, Utility-Based Cache

Partitioning(UCP) [16], thread aware DIP(TADIP) [8] and

Promotion, Insertion and Pseudo-Partition(PIPP) [23]. In

our experiments, we used shadow tags in 32 sets and recom-

puted the partition every 5 million cycles as recommended

in the original work [16]. The promotion probabilities and

the stream-detection thresholds for PIPP used in our exper-

iments are same as that of the original work [23]. We sim-

ulated TADIP-F [8] with the parameters being same as that

of the original work.

Figure 11 shows the performance of UCP, PIPP and

TADIP in dual and quad core scenarios. All the partition-

ing schemes in general provide better performance com-

pared to LRU. For instance, in dual cores, UCP, PIPP and

TA-DIP improve performance by 3.7%, 3.2%, 7.1% respec-

tively over LRU. In quad cores, the gains are 9.6%, 13.6%

and 2% for UCP, PIPP and TA-DIP. In general, though one

or other partitioning scheme outperforms NUcache in a few

workloads, no single scheme consistently outperforms NU-

cache across the spectrum of workloads. At a qualitative

level, the performance gap between UCP and NUcache or

PIPP and NUcache can be attributed to their inability to ex-

ploit Next-Use beyond the associativity of the cache. Hits

per ways are generally tracked up to the associativity of

the cache as these schemes cannot exploit any informa-

tion beyond it. Thus in practice, only lines with a rela-

tively shorter Next-Use distance belonging to an applica-

tion/core can benefit from these schemes. Also the coarser

levels of approximation employed, treating all lines from

a core to exhibit similar reuse characteristic limits the effi-

ciency of these schemes. This limitation can be observed in

cases like (173,178) where even though UCP and PIPP im-

prove the performance of LRU, they still fall short of the

gains provided by NUcache. Also the need for tracking

Next-Use beyond associativity can be seen in workloads

(410,179) and Q6 where all the partitioning schemes per-

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

(1
7
1
,4

7
1
)

(1
7
2
,4

3
7
)

(1
7
3
,1

7
1
)

(1
7
3
,1

7
8
)

(1
7
3
,4

7
1
)

(1
8
9
,1

7
2
)

(1
8
9
,4

2
9
)

(2
0
0
,1

7
2
)

(2
0
0
,1

8
9
)

(2
0
0
,4

5
6
)

(3
0
1
,1

7
8
)

(3
0
1
,1

7
9
)

(4
1
0
,1

7
9
)

(4
3
5
,1

7
8
)

(4
3
7
,1

7
8
)

(4
5
6
,1

7
2
)

(4
5
9
,1

7
9
)

(4
7
1
,1

7
9
)

N
o

rm
.

A
N

T
T

Workload

Lower is Better

DeliWays-20

DeliWays-24

UCP

PIPP

TADIP

(a) Dual core

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
N

o
rm

a
li
z
e
d

 A
N

T
T

Workload

Lower is Better

DeliWays-20

DeliWays-24

UCP

PIPP

TADIP

(b) Quad core

Figure 11. Normalized ANTT of NUcache
UCP, PIPP and TADIP: normalized to LRU

form similar to LRU while NUcache provides substantial

performance gain. There are a few workloads where PIPP

performs worse than LRU. This behaviour of PIPP has been

observed in the past [4] and is due to insertion taking place

closer to the LRU. We verified this by ensuring that all lines

are inserted at the least 8 ways above LRU and it eliminated

the performance loss in those cases. TADIP by inserting at

LRU more often can also suffer the same problem as can

be seen from its quad-core performance. Insertion above

LRU helps avoid performance losses in TADIP too. We

have validated our performance comparison using a trace-

driven simulation methodology.

Correlation between PC and time distance has been ob-

served in the case of single cores [10, 13]. Multicore adapta-

tion of [13] performed worse than LRU, experiencing 5.8%,

6.0% and 14.7% loss in performance compared to LRU in

dual, quad and eight cores respectively.

6. Related work

Efficiently managing shared caches in multi-cores has

been well studied [3, 8, 23, 16, 9]. We focus on some

of the key works in this section. One of the earliest and

most effective solutions proposed to improve the perfor-

mance of shared caches under multi-programmed work-

loads is Utility-based Cache Partitioning (UCP) [16]. UCP

primarily attempts to get an estimate of the returns increased

associativity can provide for each application by measuring

the hits per cache ways that the application experiences if it

has the whole cache for itself. This is achieved by duplicat-

ing the cache tags in a few sets. The information obtained

is used to form a partition of the ways of the cache to maxi-

mize the hits.

TA-DIP [8] is an adaptation of the popular single-core in-

sertion mechanism DIP [14] to multi-cores. Similar to DIP,

when the working set size exceeds the cache size, TA-DIP

inserts incoming lines at LRU location to retain as much of

the useful working set as possible. PIPP [23], relies on a

combination of insertion and promotion policies to retain

useful lines in the cache and to provide a partitioning of an

implicit or on-demand nature.

Way partitioning to manage shared caches to guarantee

either performance [3] or quality of service [7] has been

well studied. While we too propose a partitioned architec-

ture, the key contribution of this paper is to identify the PC–

Next-Use correlation and to propose an intelligent mecha-

nism that can exploit this knowledge in a way partitioned

cache.

LIFO [4] is a basis for a new set of replacement policies.

It is part of our future work to study the presence of delin-

quent PCs in LIFO, compare them with LRU and look for

predictable behaviour like Next-Use distance. In the con-

text of single cores, a wide variety of interesting solutions

like [15, 17, 14, 11, 18, 20] have been proposed to improve

the performance of LLC.

7. Conclusions

In this paper, we observe and make use of the

DelinquentPC—Next-Use characteristic to improve the per-

formance of shared caches in multi-cores. We propose the

NUcache organization which logically partitions the asso-

ciative ways of a cache set into MainWays and DeliWays.

While all lines have access to the MainWays, only lines

brought in by a select set of PCs are allowed to enter the

DeliWays. We propose an intelligent algorithm which uses

cost-benefit analysis to identify these select PCs to derive

maximum benefits from the proposed cache organization.

Our proposed organization leads to a speedup of 9.6%

over a conventional shared cache for dual core processors,

30% in quad core processors and 33% in eight core pro-

cessors. The proposed NUcache organization also outper-

forms well-known mechanisms to manage shared caches

like UCP, PIPP and TA-DIP. While NUcache works well

for multi-programmed workloads, we have not evaluated it

in the context of multithreaded workloads. Also, we be-

lieve that the Next-Use information provided by DeliTrack

and NUtrack can be used to improve the performance of

prefetchers. We plan to study these in the future.

Acknowledgments

The first author is supported by a Microsoft Research India

PhD Fellowship. The authors thank Prof. Matthew Jacob

and Prof. Mainak Chaudhuri for their comments and sug-

gestions. The authors thank Prof T N Vijaykumar for shep-

herding the final version and the anonymous reviewers.

References

[1] A. Basu, N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez.

Scavenger: A new last level cache architecture with global block

priority. In MICRO 40, 2007.
[2] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi,

and S. K. Reinhardt. The m5 simulator: Modeling networked sys-

tems. IEEE Micro, 26:52–60, 2006.
[3] J. Chang and G. S. Sohi. Cooperative caching for chip multiproces-

sors. In ISCA, 2006.
[4] M. Chaudhuri. Pseudo-lifo: the foundation of a new family of re-

placement policies for last-level caches. In MICRO 42, 2009.
[5] S. Eyerman and L. Eeckhout. System-level performance metrics for

multiprogram workloads. IEEE Micro, 28:42–53, May 2008.
[6] F. Guo and Y. Solihin. An analytical model for cache replacement

policy performance. In SIGMETRICS ’06/Performance ’06, 2006.
[7] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A framework for providing

quality of service in chip multi-processors. In MICRO 40, 2007.
[8] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and

J. Emer. Adaptive insertion policies for managing shared caches. In

PACT, 2008.
[9] A. Jaleel, K. B. Theobald, S. C. S. Jr., and J. S. Emer. High per-

formance cache replacement using re-reference interval prediction

(rrip). In ISCA, 2010.
[10] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache replacement

based on reuse-distance prediction. In 25th International Confer-

ence on Computer Design, ICCD 2007.
[11] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache bursts: A

new approach for eliminating dead blocks and increasing cache ef-

ficiency. In MICRO 41, 2008.
[12] V.-M. Panait, A. Sasturkar, and W.-F. Wong. Static identification of

delinquent loads. In CGO, 2004.
[13] P. Petoumenos, G. Keramidas, and S. Kaxiras. Instruction-based

reuse-distance prediction for effective cache management. In Pro-

ceedings of the 9th international conference on Systems, architec-

tures, modeling and simulation, SAMOS’09, 2009.
[14] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adap-

tive insertion policies for high performance caching. In ISCA, 2007.
[15] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A case for

mlp-aware cache replacement. In ISCA, 2006.
[16] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A

low-overhead, high-performance, runtime mechanism to partition

shared caches. In MICRO 39, 2006.
[17] M. K. Qureshi, D. Thompson, and Y. N. Patt. The v-way cache:

Demand based associativity via global replacement. In ISCA, 2005.
[18] K. Rajan and R. Govindarajan. Emulating optimal replacement with

a shepherd cache. In MICRO 40, 2007.
[19] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Soli-

hin. Scaling the bandwidth wall: challenges in and avenues for cmp

scaling. In ISCA, 2009.
[20] R. Subramanian, Y. Smaragdakis, and G. H. Loh. Adaptive caches:

Effective shaping of cache behavior to workloads. In MICRO 39,

2006.
[21] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. A modified

approach to data cache management. In MICRO 28, 1995.
[22] W. A. Wong and J.-L. Baer. Modified lru policies for improving

second-level cache behavior. In HPCA, 2000.
[23] Y. Xie and G. H. Loh. PIPP: promotion/insertion pseudo-

partitioning of multi-core shared caches. In ISCA, 2009.
[24] W. Zhang, D. M. Tullsen, and B. Calder. Accelerating and adapting

precomputation threads for effcient prefetching. In HPCA, 2007.

