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ARTICLE

Nuclear decoupling is part of a rapid protein-level
cellular response to high-intensity mechanical
loading
Hamish T.J. Gilbert 1,2, Venkatesh Mallikarjun 1,2, Oana Dobre 1,2,4, Mark R. Jackson 1,2,5,

Robert Pedley 1,3, Andrew P. Gilmore 1,3, Stephen M. Richardson 2 & Joe Swift 1,2

Studies of cellular mechano-signaling have often utilized static models that do not fully

replicate the dynamics of living tissues. Here, we examine the time-dependent response of

primary human mesenchymal stem cells (hMSCs) to cyclic tensile strain (CTS). At low-

intensity strain (1 h, 4% CTS at 1 Hz), cell characteristics mimic responses to increased

substrate stiffness. As the strain regime is intensified (frequency increased to 5 Hz), we

characterize rapid establishment of a broad, structured and reversible protein-level response,

even as transcription is apparently downregulated. Protein abundance is quantified coincident

with changes to protein conformation and post-translational modification (PTM). Further-

more, we characterize changes to the linker of nucleoskeleton and cytoskeleton (LINC)

complex that bridges the nuclear envelope, and specifically to levels and PTMs of Sad1/UNC-

84 (SUN) domain-containing protein 2 (SUN2). The result of this regulation is to decouple

mechano-transmission between the cytoskeleton and the nucleus, thus conferring protection

to chromatin.
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T
he structures and integrity of the human body are defined
by stiff tissues such as skin, muscle, cartilage and bone.
Tissue mechanical properties are determined primarily by

the extracellular matrix (ECM), in particular by the identities and
concentrations of its constitutive proteins1–3. ECM properties are
further modulated by protein cross-linking, post-translational
modifications (PTMs), and higher-order organization. Cells
resident within tissues maintain mechanical equilibrium with
their environments4,5, and the mechanical properties of cells are
also regulated by the identities, concentrations, conformations
and PTMs of structural intracellular proteins1,6,7. The char-
acteristics of adherent cells can be influenced by physical stimu-
lation from the surrounding ECM. Cellular protein content1,
morphology1,8, motility9,10 and differentiation potential11,12 are
amongst behaviors known to be affected by stiffness. Cells in
living tissues experience microenvironments of diverse stiffness5,
but are also subject to deformation during activity. Cells sense
and respond to mechanical signals through pathways of
mechanotransduction13,14, but must also maintain integrity and
homeostasis within the tissue. A mismatch between mechanical
loading and cellular regulation can contribute to pathology, such
as in musculoskeletal and connective tissue disorders15, with
ageing being a significant risk factor16.

Here, we compare responses to stiffness and mechanical
loading in primary human mesenchymal stem cells (hMSCs), a
cell type with important physiological and reparative roles, that
have led to investigations of their therapeutic potential in tissues
such as muscle17 and heart18. Using mass spectrometry (MS), we
identify a rapid, reversible and structured regulation of the pro-
teome following high-intensity mechanical loading. Furthermore,
we identify the Sad1/UNC-84 (SUN) domain-containing protein
2 (SUN2) as a strain-induced breakpoint in the linker of
nucleoskeleton and cytoskeleton (LINC) complex of proteins that
acts as a key mediator of intracellular mechano-transmission13,19,
thus enabling the nucleus to decouple from the cytoskeleton in
response to intense strain.

Results
Strain cycle uncouples cell and nuclear morphologies. Primary
hMSCs were cultured on stiffness-controlled polyacrylamide
hydrogels or silicone elastomer sheets that could be subjected to
cyclic tensile strain (CTS); both substrates were collagen-I coated.
hMSCs cultured for 3 days were found to spread increasingly on
stiffer substrates over a physiological range (2–50 kPa; Fig. 1a,
Supplementary Fig. 1a), as has been reported previously1,20. Cells
subjected to sinusoidal, equiaxial CTS for 1 h at 1 or 2 Hz (change
in strain= 4%) showed significantly increased spreading imme-
diately after loading (p ≤ 0.05, determined by ANOVA testing),
returning to initial spread areas after 24 h (Fig. 1b, Supplementary
Figs. 1b, c). Earlier reports of cell behavior following strain have
described cell alignment relative to the direction of strain21 and
reorganization of focal adhesion (FA) complexes and the
cytoskeleton22,23. As the strain applied in our system had radial
symmetry, no overall alignment was observed, but increased cell
spreading was consistent with previous reports describing FA
activation24. The increase in spreading of hMSCs following
dynamic straining at 1 and 2 Hz was thus similar to that observed
with changes in static substrate stiffness.

To explore mechanisms that allow cells to endure more
challenging mechanical environments (e.g. the mechanical
environments encountered within dynamic tensile tissues, includ-
ing muscle, skin and cartilage), we increased the frequency of CTS
to 5 Hz (change in strain= 3.6%). The increased cell spreading
observed at lower frequencies was not seen following 1 h of 5 Hz
CTS (Fig. 1c). Cell spreading was significantly decreased 24 h after

treatment (p= 0.05, ANOVA), but cells remained attached to the
substrate. Furthermore, neither cell viability nor proliferation were
significantly affected (Supplementary Fig. 1d, e).

The nuclear area of hMSCs was found to increase with cell
spreading on stiffer substrates (Fig. 1d). This agrees with findings
reported in earlier works1,25 and reflects the interconnected nature
of the cytoskeleton and nucleoskeleton13, which has been shown
to be necessary for mechanotransduction19. However, we found
that this correlated behavior of cell and nuclear spreading was lost
in hMSCs subjected to CTS: there were no significant changes in
nuclear area following 1 h of CTS at 1 or 2 Hz (Fig. 1e); and
nuclear area was significantly decreased following 1 h of CTS at 5
Hz (p= 0.003, ANOVA; Fig. 1f, Supplementary Fig. 1f),
recovering after 24 h. Under all CTS conditions, ratios of nuclear
to cytoplasmic area were significantly decreased immediately
following strain (p < 0.01, ANOVA; Fig. 1g). Thus, CTS was found
to decouple the coordinated behavior of cell and nuclear spreading
observed at equilibrium on stiffness-defined substrates, either
through failure of the nucleus to match CTS-induced cellular
spreading (CTS at 1 and 2 Hz), or through nuclear contraction
while cell spreading remained constant (at 5 Hz; Fig. 1h). Dynamic
loading was thus accompanied by a disruption of the mechanisms
linking the cytoskeleton and nucleoskeleton.

CTS-induced nuclear contraction requires ion channels. Stretch
activated ion-channels can enable rapid cellular responses to
mechanical stimulation26. To investigate the role of ion channels in
strain-induced nuclear contraction, we combined 5Hz CTS with a
panel of ion channel inhibitors: GdCl3, a broad-spectrum inhibitor
of stretch-activated ion channels27; RN9893, an inhibitor of tran-
sient receptor potential cation channel subfamily V member 4
(TRPV4)28; amiloride, an inhibitor of acid sensing ion channels
(ASICs)27, and GsMTx4, an inhibitor of piezo channels29 (Sup-
plementary Figs. 2a, b). GdCl3, RN9893 and amiloride inhibited
nuclear contraction following CTS. GsMTx4 did not prevent
nuclear contraction, although earlier work has shown it to be
effective in inhibiting chromatin condensation under milder loading
regimes (3% uniaxial strain at 1 Hz)29. This suggested that activa-
tion of different ion channels may be specific to the loading regime.

CTS at 1 and 5 Hz significantly increased the texture parameter
of nuclear DAPI staining (1 Hz, p < 0.0001 and 5 Hz, p= 0.002,
ANOVA; Supplementary Fig. 3a–c), indicative of chromatin
condensation29,30 (comparable to the effect of divalent ions,
Supplementary Fig. 3d, e). Treatment with GdCl3 at its IC50 of
10 µM31 did not prevent changes to DAPI-stain texture following
CTS at 5 Hz (p= 0.02, ANOVA). This contrasted with earlier
characterizations of milder loading regimes, where GdCl3 was
found to block chromatin condensation, although the drug
concentration was higher in this case29. Our finding indicated the
robustness of the chromatin condensation response in cells
subjected to high-intensity CTS, but also suggested that
chromatin condensation and contraction of nuclear area could
be caused by different mechanisms.

Cellular responses to CTS are driven at the protein level. In
order to examine the cellular consequences of high-intensity
strain, we applied -omics analyses to hMSCs following 1 h of 5 Hz
CTS. Surprisingly, we found few changes to the transcriptome as
assessed by RNA-Seq immediately after the treatment (Gaussian
width= 0.21; Fig. 2a, Supplementary Data 1 and 2). Furthermore,
gene ontology (GO) term analysis32,33 of the affected genes
suggested a general suppression of transcription and metabolism
(Fig. 2b). Downregulation of transcriptional activity is consistent
with our observations of chromatin condensation, and previous
reports of histone-methylation mediated gene silencing in
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endothelial progenitor cells subjected to low frequency (0.1 Hz)
strain cycling34. The distribution of changes to gene expression
was narrowed 24 h after CTS (Gaussian width= 0.14; Supple-
mentary Fig. 4a).

In contrast to the analysis of transcript levels, analysis of the
intracellular proteome by MS, showed greater changes relative to
unstrained controls (Fig. 2c, Supplementary Fig. 4b, Supplementary
Data 3 and 4). A Gaussian fit to the distribution of protein fold
changes had a width of 0.61, indicating a greater perturbation to
proteome than transcriptome. Analysis of the Reactome pathways
significantly affected by CTS (pathways with over-representation of
affected proteins; Bayes-modified t-tests with Benjamini–Hochberg
false discovery rate (BH-FDR)-corrected p < 0.05)35,36 showed that
ontologies relating to metabolism of both protein and RNA, signal
transduction, and response to external stimuli were downregulated
(Fig. 2d). Changes to the transcriptome and proteome following
CTS were not correlated (R-squared= 0.002; Fig. 2e), indicating a

post-transcriptional regulation of protein levels. The proteome
returned towards the control state after 24 h (Gaussian width=
0.25; Supplementary Figs. 4c–e).

The time-resolved proteomic response to 5 Hz CTS was further
classified by K-means clustering (Fig. 2f, Supplementary Fig. 4f).
Clusters of protein levels were identified with: (cluster 1) an
immediate but unsustained decrease, enriched for Reactome
annotations associated with translation, protein folding, and
mechanisms of actin and tubulin folding; (cluster 2) an initial but
unsustained increase, enriched for an annotation of metallothio-
nein binding (associated with the management of oxidative
stress37); and (cluster 3) an immediate decrease and slow
recovery, with enrichment of annotations for translation and
regulation of the Slit/Robo signaling pathway (associated with cell
polarity and cytoskeletal dynamics38). Taken as a whole, this
analysis shows a complex, time-resolved, and structured protein-
level response to cellular stress management.
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Fig. 1 Coupled cell and nuclear morphologies are lost following cyclic tensile strain (CTS). a Relative areas of primary human mesenchymal stem cells

(hMSCs) cultured on static substrates (collagen-I coated polyacrylamide hydrogels; 2–50 kPa; n= 6 donors), showing increase with substrate stiffness (p

< 0.05). b Cell areas of hMSCs following low-intensity CTS (0–4% strain at 1 or 2 Hz for 1 h; n= 4 donors). Areas increased immediately following strain (1

Hz, p= 0.05; 2 Hz, p= 0.0006 and p= 0.002 at 3 h). c Cell areas of hMSCs following high-intensity CTS (2.6–6.2% strain at 5 Hz for 1 h; n= 4 donors),

showing decreased 24 h post strain (p= 0.05). d Relative nuclear areas of hMSCs cultured on static substrates (collagen-I coated PA hydrogels; 2–50 kPa;

n= 6 donors). Nuclear areas increased with substrate stiffness (p < 0.05). e Nuclear areas of hMSCs after low-intensity CTS (0–4% strain at 1 or 2 Hz for 1

h; n= 4 donors). f Nuclear areas of hMSCs cultured following high-intensity CTS (2.6–6.2% strain at 5 Hz for 1 h; n= 4 donors). Nuclear areas decreased

immediately following strain treatment (p= 0.003). g Nuclear to cytoplasmic area ratio of hMSCs following CTS (1 h; 0–4% strain at 1 or 2 Hz or 2.6–6.2%

strain at 5 Hz; n= 4 donors). Area ratios decreased immediately following strain treatment for all CTS frequencies (1 Hz, p= 0.01; 2 Hz, p < 0.0001; 5 Hz, p

= 0.01). Only the 5 Hz treatment group showed an increased ratio at 24 h (5 Hz, p= 0.04). All CTS experiments normalized to unstrained controls; data

displayed as mean ± s.e.m.; p-values determined from ANOVA. See Supplementary Fig. 1a–c, f for example cell images and donor-to-donor variability;

Supplementary Table 1 for sample sizes. h In summary, cell and nuclear areas appeared coupled on increasingly stiff substrates. Low-intensity CTS

increased cell area, but did not change nuclear area; high-intensity CTS caused nuclear area to decrease independently of cell area
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For comparison, we also examined proteomic changes in
response to low-intensity CTS (1 h at 1 Hz, change in strain=
4.0%). We found changes to 1 Hz CTS to be less pronounced than
those induced at 5 Hz (Gaussian width= 0.30; Supplementary
Figs. 5a, b, Supplementary Data 8 and 9), and although Reactome

analysis showed similar pathways to be affected (compare Fig. 2d
to Supplementary Fig. 5c), we noted that many of the significantly
affected proteins were associated with the cytoskeleton. CTS at 1
Hz caused a significant increase in levels of actin (ACTB),
vimentin (VIM), tubulin alpha-1B chain (TUBA1B) (all p <
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proteins quantified by ≥3 peptides; n= 3 donors). Proteins associated with cellular metabolic processes were decreased following strain, including protein

and RNA associated metabolism. e Correlation plot between proteome and transcriptome immediately following CTS (1007 genes quantified by RNA-seq

and in proteomics by ≥3 peptides; selected outlying genes/proteins of interest are annotated; R-squared= 0.002). The distribution of changes to protein

levels was broader than, and uncorrelated with, transcript changes. Transcript and protein levels were partially recovered 24 h after CTS (Supplementary

Fig. 4a, c–e). f K-means clustering was used to group quantified proteins based on their response to CTS after 0 and 24 h. Analysis showed four possible

clusters to be most appropriate for this dataset (Supplementary Fig. 4f). Three clusters are shown annotated with significant Reactome enrichments; ≥3

proteins per annotation; false discovery rate (FDR) <0.05. p-values were calculated using empirical Bayes-modified t-tests with Benjamini–Hochberg

correction
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0.0001, Bayes-modified t-test, BH-FDR correction), dynamin-2
(DNM2, p= 0.04, Bayes-modified t-test, BH-FDR correction)
and the nucleoskeletal protein lamin-A/C (henceforth the
abbreviation LMNA will be used to refer to the total protein
products of the LMNA gene, comprising of both lamin A and C
spliceforms; p= 0.008, Bayes-modified t-test, BH-FDR correc-
tion); myosin light chain 6B (MYL6B) and the mechano-
responsive transcriptional coactivator YAP1 were downregulated
(p= 0.001 and 0.03, respectively, Bayes-modified t-tests, BH-FDR
correction). Where these proteins were also detected in the 5 Hz
experiment, only VIM was significantly affected (down-regulated,
p= 0.002, Bayes-modified t-test, BH-FDR correction). As was
observed following 5 Hz CTS, the proteome partially recovered
24 h following strain at 1 Hz (Supplementary Fig. 5d, e; Gaussian
width= 0.26), although some changes to cytoskeletal proteins
persisted (TUBA1B remained elevated, ACTB was decreased;
both p < 0.0001, Bayes-modified t-tests, BH-FDR correction).
Transcripts associated with the cytoskeleton were also affected:
vimentin (VIM) was increased immediately following CTS at 1
Hz (p= 0.0003, ANOVA) and alpha-actin-2 (ACTA2) was
increased after 24 h (p= 0.004, AVOVA) (Supplementary Fig.
5f, g). These results are consistent with previously observed
changes to cell morphology, and earlier characterizations of
cellular responses to strain23,39 and substrate stiffness1, which
were proposed to increase nucleoskeletal and cytoskeletal
robustness to stress.

CTS at 5 Hz causes changes to protein conformation and
PTMs. As changes in protein conformation are important to
mechanotransduction14, MS was performed following protein
labeling with monobromobimane (mBBr), which by selectively
labeling solvent-exposed cysteine residues, acts as an indicator of
protein folding (Fig. 3a). MS was used to both identify mBBr-
labeled proteins and quantify differential labeling in hMSCs fol-
lowing CTS at 5 Hz, relative to unstrained controls (Fig. 3b,
Supplementary Data 5). The histogram of log2-fold changes in
mBBr labeling showed a broad distribution of CTS-induced
changes to mBBr reactivity, with labeling increased on average
immediately following strain. The distribution was narrowed and
centered at about zero 24 h after CTS, indicating a recovery of
protein folding. Earlier applications of mBBr labeling have been
used to identify force-dependent unfolding of domains in spec-
trin40 and nuclear LMNA1. Labeling of Cys-522 in the Ig-folded
domain of LMNA was previously used to report on the defor-
mation of isolated nuclei subjected to shear stress in a rheometer1.
We found the labeling of Cys-522 to be increased 1.1-fold
immediately following strain (p < 0.001, Bayes-modified t-test,
BH-FDR correction). We correlated changes to mBBr-labeled
cysteine site occupancy and changes to total quantities of the
parent proteins (Fig. 3c). This analysis showed that despite the
suggestion of a link between CTS-induced changes to protein
conformation and stability (rates of translation vs. turnover) on
average (Figs. 2c and 3b), correlation on a protein-by-protein
basis was low (Fig. 3c).

Changes to endogenous PTMs were quantified by MS in the
same experiment. A histogram of log2-fold changes to phospho-
site occupancy following CTS at 5 Hz versus unstrained controls
(Fig. 3d, Supplementary Data 6) showed increased phosphoryla-
tion. Phosphorylation of LMNA has been shown to be lower on
stiffer substrates where total LMNA was increased1,7. However,
here we detected a modest (~1.1-fold) but significant increase in
phosphorylation at S22, S390, S392, and S636, and no change in
LMNA abundance. A plot of all changes in phosphosite
occupancy vs. changes in abundance of the phosphorylated
protein (Fig. 3e) did not exhibit general correlation, indicating

that although phosphorylation may in many cases be mechano-
sensitive, it does not necessarily regulate turnover. A similar
analysis of oxidized peptides showed that oxidation was increased
immediately following CTS (Fig. 3f, Supplementary Data 7), and
in a third of detected sites of oxidation, increased oxidation
correlated with decreased protein levels (points in the top left
quadrant of Fig. 3g). Previous work has established that cyclic
stretching can increase levels of reactive oxygen species (ROS) in
a range of cell types through activation of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase systems and mito-
chondria41. ROS have an important role in signal transduction,
for example during vascularization, but can contribute to
oxidative damage to lipids, proteins, and DNA. This potential
for oxidative damage is perhaps consistent with the upregulation
of protective metallothioneins (Fig. 2f). Profiles of both
phosphorylation and oxidation became similar to controls 24 h
after CTS (Fig. 3d, f).

CTS at 5 Hz disrupts the LINC complex. Having detected sys-
tematic responses to CTS, we sought to identify specific cases
where protein regulation modulated mechano-transmission to the
nucleus. There is a continuous system of structural proteins that
run from the ECM through to chromatin13,19. A central feature of
this pathway is the LINC complex, which spans the nuclear
envelope (NE) and includes the outer nuclear membrane (ONM)
nesprin proteins, which bind to cytoskeletal components in the
cytoplasm and have Klarsicht, ANC-1, and Syne homology
(KASH) domains that extend into the perinuclear space of the
nuclear envelope42. The KASH domains bind to the SUN
domains of the inner nuclear membrane (INM) SUN-domain
containing proteins, which in turn bind to the nuclear lamina
within the nucleoplasm43. The nuclear lamina is composed of the
intermediate filament lamin proteins that confer structural
integrity to the nucleus2,44,45, and also interface with chromatin
and a range of regulatory and NE associated proteins1,46. The
complete system of protein linkages enables nuclear positioning47

and acts as a conduit for mechanical signals to regulate the
genome19,46.

LINC and NE protein levels were quantified by MS following 1
h of CTS at 5 Hz, relative to unstrained controls (Fig. 4a). The
levels of the SUN protein SUN2 was reduced to 52% of control
levels (p < 0.0001, Bayes-modified t-test, BH-FDR correction).
Note that SUN2 was not affected by 1 Hz CTS (Supplementary
Fig. 5a, d). We also quantified the levels of proteins located
specifically at the NE using immunofluorescence (IF) imaging
(Fig. 4b, Supplementary Fig. 6a–e). IF confirmed that SUN2 levels
were decreased at the NE following 1 h of CTS (p= 0.03,
ANOVA). Emerin (EMD), which has a role in the mechanical
stimulation of the serum response factor (SRF) pathway48, was
significantly enriched at the NE (p < 0.0001, ANOVA), consistent
with previous reports34.

Mechano-sensitive phosphosites in SUN2 lamin-binding
domain. To understand the regulation of SUN2 and its role in
the nuclear decoupling phenomena, we examined the response of
hMSCs to shorter durations of CTS at 5 Hz. IF showed that SUN2
was significantly reduced at the NE after 1 min of CTS (p= 0.002,
ANOVA; Fig. 4c). This preceded changes to the ratio of nuclear
to cytoplasmic area, which were not significantly reduced within
10 min of CTS (Fig. 4d). PTMs have been shown to regulate the
assembly of nuclear proteins such as LMNA1,7, so we used MS to
search for modifications to SUN2 following 1 h of CTS at 5 Hz
(coverage of the SUN2 amino acid sequence shown in Fig. 5a, b).
This analysis uncovered four strain-responsive phosphorylation
sites within the lamin-binding domain of SUN2; modifications
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were found that occurred immediately (decrease in pS12, p=
0.007; increase in pS21, p < 0.0001; and increase in pS38, p <
0.0001) and some persisted 24 h following CTS (increase in pT9,
p= 0.003; decrease in pS12, p < 0.0001; and increase in pS21, p <
0.0001; p-values derived from Bayes-modified t-tests with BH-
FDR-correction; Fig. 5c).

Taken together, this evidence suggests a putative mechanism
(Fig. 5d) whereby high-intensity CTS causes rapid loss of SUN2
from the NE – potentially mediated by phosphorylation of the
lamin-binding domain – followed by a slower remodeling of cell
and nuclear morphology and the cellular proteome (including
turnover of SUN2). The composition of the nuclear lamina has

been used previously as a readout of nuclear adaption to the
mechanical properties of the cellular microenvironment, with an
increased ratio of A-type to B-type lamins being indicative of
nuclear stiffening in response to stiffness1,44. We used IF to
quantify the ratio of total LMNA to lamin-B1 after 1 h of CTS at
5 Hz, finding it to be significantly decreased (p= 0.007, ANOVA;
Supplementary Fig. 7a). Our findings contrast earlier reports1 of
responses within the nuclear lamina to increasing substrate
stiffness (summarized in Supplementary Fig. 7b) and suggest that
SUN2-mediated nuclear decoupling could desensitize the lamina
to mechanical stimulation. Lastly in our investigations into
causation, we found that treatment with GdCl3 – shown to
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prevent contraction of nuclear area following CTS (Supplemen-
tary Fig. 2a, b) – also prevented the loss of SUN2 (Supplementary
Fig. 8a, b).

SUN2 acts upstream of chromatin and cytoskeletal regulation.
As the level of SUN2 was decreased in response to CTS, we
sought to investigate how this could affect cellular function. We
quantified the effects of siRNA-mediated knockdown (KD) of
SUN2 on primary hMSCs by MS, comparing two siRNAs to
increase confidence of identifying on-target effects (Fig. 6a,
Supplementary Data 10 and 11). The siRNAs depleted SUN2 to
35% of scrambled controls (Supplementary Fig. 9a, b). A Reac-
tome pathway analysis of both KDs (Fig. 6b) identified significant
perturbations to processes with the following annotations: poly-
comb repressive complex 2 (PRC2) methylates histones and
DNA; protein lysine methyltransferases (PKMTs) methylate
histone lysines; and, Rho GTPases activate IQ motif containing
GTPase activating proteins (IQGAPs) (all p-values < 0.05, Bayes-
modified t-tests, BH-FDR correction). These annotations sug-
gested that SUN2 could be upstream of chromatin regulation and
nucleus-to-cytoskeleton (inside-to-outside) signaling, consistent
with our earlier observations. A scatter plot of protein fold
changes following SUN2 KD versus CTS showed correlation in

cytoskeletal proteins (Fig. 6c), suggesting SUN2 regulation fol-
lowing CTS could be upstream of cytoskeletal remodeling.

We also investigated the effects of SUN2 overexpression (OE),
using immortalized hMSCs (Y201 line) that maintain the
multipotency and mechano-responsiveness of primary MSCs49,50.
The proteomes of Y201 cells were quantified with doxycycline-
induced OE of SUN2 to 160% and 410% of control levels (Fig. 6d,
Supplementary Fig. 9c, d, Supplementary Data 12 and 13). While
the SUN2 KD caused an increase in a number of cytoskeletal
proteins, SUN2 OE caused a corresponding decrease in many of
the same proteins (including filamin-A, plectin and vimentin),
suggestive of a compensatory mechanism within the cytoskeleton.
Reactome analysis following SUN2 OE was less specific in its
effects than the KD, but interestingly suggested an up-regulation
of pathways associated with DNA repair (Fig. 6e). MS also
revealed changes to the phosphorylation state of SUN2 following
OE (Fig. 6f): consistent with OE driving removal of excess
protein, we found the same sites to be affected as when SUN2 was
lost following CTS (Fig. 5c).

SUN2 modulates nuclear mechano-transmission and DNA
damage. To investigate the role of SUN2 in mechano-
transmission to the nucleus, we examined the relationship

Fig. 3 Post-translational modification (PTM) states respond to CTS. a Schematic diagram of differential labeling of sulfhydryl groups by monobromobimane

(mBBr)1, 40. Exposed cysteine residues are rapidly labeled, but those sequestered within folded proteins are unreactive; changes to the extent of labeling

are indicative of altered protein conformation in response to a stress condition. Changes in protein quantity are determined by rates of synthesis versus

turnover. b Histogram showing log2-fold changes to mBBr labeling site occupancy immediately and 24 h after hMSCs were subjected to CTS (1 h at 5 Hz,

2.6–6.2 % strain; n= 3 donors), relative to unstrained controls. The distribution immediately following CTS was broad and displaced to the right. After

24 h, the distribution was narrowed and centered around zero. Annotations indicate two sites within LMNA with significantly increased modification (p <

0.05). c Correlation between changes to mBBr labeling site occupancy and the quantity of the parent protein (i.e. source of the labeled peptide),

immediately following CTS. d Histogram showing changes to phosphosite occupancy immediately and 24 h after CTS (1 h at 5 Hz, 2.6–6.2% strain; n= 3

donors), relative to unstrained controls. All phosphorylation sites shown have been curated previously in the PhosphoSitePlus database70. The distribution

was shifted to the right immediately following CTS. e Correlation between phosphorylation and protein quantity. f Histogram showing changes to

oxidation-site occupancy immediately and 24 h after CTS (1 h at 5 Hz, 2.6–6.2 % strain; n= 3 donors), relative to unstrained controls. g Correlation

between oxidation and protein quantity; in 33% of cases, increased oxidation correlated with decreased protein levels (points in the top left quadrant).

In c, e, and g, data points are annotated as indicated in the legend if |log2-fold change| > 0.5 and p < 0.05, otherwise they are shown in gray; labels indicate

modified sites within proteins. p-values were calculated using empirical Bayes-modified t-tests with Benjamini–Hochberg correction. See Supplementary

Data 3–7
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Fig. 4 CTS causes loss from the nuclear envelope (NE) and turnover of SUN2 protein. a Changes to linker of nucleoskeleton and cytoskeleton (LINC)

complex and NE proteins in primary hMSCs, detected and quantified by MS immediately following CTS (1 h at 5 Hz, 2.6–6.2% strain; n= 3 donors), relative

to unstrained controls. SUN2 was found to be significantly down-regulated, but was recovered 24 h after CTS (Supplemental Fig. 3d). Numbers in blue

indicate the number of peptides detected per protein identity. p-values were calculated using empirical Bayes-modified t-tests with Benjamini–Hochberg

correction. See Supplementary Data 4. b Immunofluorescence (IF) quantification of proteins localized at the NE immediately following CTS (1 h at 5 Hz,

2.6–6.2% strain; n= 3 donors for SUN1, SUN2, LMNA, and LMNB1; n= 4 donors for EMD; see Supplementary Figs. 6a–e for data distributions and donor-

to-donor variation). c IF quantification of SUN2 at the NE following 1 and 10min of CTS at 5 Hz (2.6–6.2% strain; n= 3 donors). Red line indicates SUN2

levels following 1 h of CTS (p= 0.03). Significant loss of SUN2 at the NE occurred within 1 min (1 min, p= 0.002; 10min, p < 0.0001). d Nuclear to

cytoplasmic area ratios quantified following 1 and 10min of 5 Hz CTS. Red line indicates area ratio following 1 h of CTS (p= 0.003; Fig. 1f). These results

indicate that loss of SUN2 from the NE precedes changes to cellular morphology. p-values in b–d determined from linear models (ANOVA tests). All plots

show mean ± s.e.m.; see Supplementary Table 1 for sample sizes
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between SUN2 levels and cellular morphology. Y201 cells were
cultured on plastic for three days following KD, OE and rescue of
SUN2 levels, and compared to controls (Fig. 7a); modulation of
SUN2 level at the NE was confirmed in all cases by IF (Supple-
mentary Fig. 10a, b). Previous reports have linked SUN2 OE with
abnormally shaped nuclei51 and we found a significant reduction
in nuclear form factor in cells subjected to SUN2 KD (p= 0.002,
ANOVA followed by Dunnett’s multiple comparison tests; Sup-
plementary Fig. 10c). Consistent with the reduction in nuclear
size following SUN2 depletion after CTS at 5 Hz, we found a weak
positive scaling relationship between SUN2 level and nuclear area
(Fig. 7b and Supplementary Fig. 10d). However, the effect of
SUN2 level on cytoplasmic area was stronger, in keeping with our
observations of SUN2-induced inside-to-outside remodeling, and
dominated the scaling of the nuclear to cytoplasmic ratio (Fig. 7c,
d, Supplementary Fig. 10d, e). This contrast between the change
in nuclear to cytoplasmic area ratio following CTS (Fig. 1g) versus
remodeling following imposed modulation of SUN2 levels (Fig.
7d) perhaps reflects the difference in time scales over which these
processes occur. Consistent with an interpretation of A-type
lamins as reporters of a functioning mechanical linkage between
the cytoskeleton and the nucleus1, SUN2 OE led to the loss of
LMNA at the NE (Supplementary Fig. 10f–h).

Finally, we sought to determine how perturbation of SUN2
could affect cellular responses to CTS. We found that SUN2 KD
in primary hMSCs was sufficient to prevent changes to the
nuclear to cytoplasmic area ratio following 1 h of CTS at 5 Hz
(Fig. 8a, b, Supplementary Fig. 11a–e). SUN2-depletion signifi-
cantly decreased strain-induced changes to nuclear texture,

indicating reduced chromatin condensation (p < 0.0001 for both
siRNAs, ANOVA; Fig. 8c, Supplementary Fig. 11f). Likewise,
SUN2 OE in immortalised hMSCs blocked the changes to the
nuclear to cytoplasmic area ratio observed in controls cells (p=
0.03, ANOVA and Dunnett’s multiple comparison tests) follow-
ing 1 h of CTS at 5 Hz (with recovery after 24 h, Fig. 8d, e,
Supplementary Fig. 11g–i). Rescue of SUN2 expression levels
restored the capacity to decouple nuclei from the cytoskeleton
following CTS (p < 0.0001, ANOVA and Dunnett’s multiple
comparison tests; Fig. 8d, e), confirming the importance of
correct SUN2 expression levels for this phenomenon to occur.
SUN2 OE was also found to prevent the increase to nuclear
texture, associated with chromatin condensation, that was caused
by CTS (p= 0.01, ANOVA and Dunnett’s multiple comparison
tests; Fig. 8f).

Mechanical strain has been shown to cause DNA damage,
inducing apoptosis in vascular smooth muscle cells52, and causing
the accumulation of damage to DNA and chromatin in nuclei
subjected to extreme deformation as cells migrate through
constricted environments53–55. We were surprised, therefore, to
find that CTS here resulted in a small but significant decrease in
the intensity of γH2AX staining in primary (p= 0.03, ANOVA)
and immortalised MSCs (p= 0.0002, ANOVA), suggestive of a
protective effect (Fig. 9a, b, Supplementary Fig. 12a). However, we
found that the OE of SUN2 in immortalised hMSCs shown to
override the decoupling response to CTS raised the baseline level
of γH2AX staining (p < 0.0001, ANOVA and Dunnett’s multiple
comparison tests) and caused staining to be further increased
immediately following CTS (p < 0.0001, ANOVA and Dunnett’s
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multiple comparison tests; Fig. 9c). These results indicated that
appropriate levels of SUN2 were essential for the mediation of
nuclear decoupling in response to dynamic loading and therefore
to afford protection to DNA.

Discussion
We have demonstrated in primary cells from multiple donors that
hMSCs have a rapid, structured and reversible response to CTS
regulated at the protein level. This response was dependent on
both functional ion channels and appropriate levels of the LINC
complex protein SUN2 (Fig. 10a). Furthermore, CTS was shown
to cause changes within the LINC complex (Fig. 10b), in parti-
cular to the regulation of SUN2, enabling cells to decouple
nuclear and cellular morphological behaviors and conferring
protection to DNA. Robustness is increased through cytoskeletal
and nucleoskeletal remodeling in cells that have reached a
mechanical equilibrium state on increasingly stiff substrates56.
However, remodeling of the nuclear lamina seemed less impor-
tant in the rapid response to high-intensity CTS. Mechano-
transmission to the nucleus is an important mode of mechanical
signaling, but if unregulated, has potential to apply stresses to
chromatin. While a number of nuclear stress management
mechanisms have been characterized, including chromatin
condensation29,34, chromatin detachment from the NE57, and
altered nuclear mechanics1,7,58, a mechanism that isolates the
nucleus from the cytoskeleton, as demonstrated here through
regulation of SUN2, has potential to be both rapid and reversible.
A role for SUN proteins in such mechanisms is further supported
by analysis of protein turnover rates: SUN1 and 2 were reported
to have the shortest half-lives of LINC complex proteins (Sup-
plementary Fig. 12b)59.

The -omics techniques described in this study have potential to
explore broad aspects of the global cellular response to
mechanical stress in greater detail. These include regulation of
other structural proteins, such as the intermediate filaments60,
molecular chaperones and the pathways that manage DNA and
oxidative damage. The use of MSCs as a model system to study
mechano-responsive processes has been widespread, but these
cells are also being assessed for their potential for therapy
in heart18 and muscle17 – tissues subject to sustained and high-
frequency deformation61. Furthermore, this work may be
particularly relevant to understanding how mechanical stress
contributes to age-related pathology. Many aspects of the cellular
stress response are abrogated in ageing62, but crucially, the NE
may be particularly susceptible to misregulation63,64.

Methods
Primary cell culture. Human mesenchymal stem cells (hMSCs) were isolated from
the bone marrow (knee and hip) of male and female donors using established
methodology65. Informed written consent was obtained from donors. Experiments
followed guidelines and regulations in accordance with the WMA Declaration of
Helsinki and the UK Human Tissue Authority. All work was performed with
approval from the NHS Health Research Authority National Research Ethics
Service (approval number 10/H1013/27) and the University of Manchester. hMSCs
were cultured on tissue culture treated polystyrene (TCTP) in low-glucose DMEM
with pyruvate (Thermo Fisher Scientific) supplemented with 10% fetal bovine
serum (FBS, Labtech.com) and 1% penicillin/streptomycin cocktail (PS, Sigma-
Aldrich). For investigations into the effects of substrate stiffness, hMSCs were
seeded onto type-I collagen coated polyacrylamide gels (2–50 kPa, Matrigen), and
cultured in standard medium for three days.

SUN domain-containing protein 2 (SUN2) protein knockdown. hMSCs were
incubated in complete medium containing RNAi Max Lipofectamine (Thermo
Fisher Scientific) in the presence of short interfering double stranded RNA (siRNA;
Thermo Fisher Scientific; final concentration of 10 nM):- SUN2 siRNA1 (s24467);
sense: GGAAAUCCAGCAACAUGAAtt, antisense: UUCAUGUUGCUGGAU
UUCCtc; SUN2 siRNA2 (s24467); sense: CCUUAGAGCAUGUGCCCAAtt,
antisense: UUGGGCACAUGCUCUAAGGta.

A scrambled control was provided by the manufacturer (Thermo Fisher
Scientific). Following 24 h of culture, the siRNA and Lipofectamine were removed.
Cells were cultured for a further three days in complete media prior to further
experimentation or analysis.

Cyclic tensile strain (CTS). CTS was administered to cells using a FlexCell
Tension Plus System (FX-4000T or FX-5000T; FlexCell International). Cells (pri-
mary hMSCs or transformed immortalised hMSCs, see following descriptions)
were seeded onto type-I collagen coated BioFlex plates (FlexCell International) and
cultured for 48 h to ensure adhesion. Cells were strained for 1 or 2 h at, low-
intensity (0–4% strain at 1 Hz), intermediate-intensity (0–4% strain at 2 Hz), or
high-intensity (2.6–6.2% strain at 5 Hz). Cells were fixed or lysed for downstream
analysis either immediately following straining, or having been maintained in
culture for a further 3 or 24 h.

Microscopy and image analysis. Cells were fixed with 4% paraformaldehyde
(PFA, VWR International) in PBS for 10 min at RT, followed by 2 × 5 min washes
in PBS. Cells were permeabilized using 1% Triton-X (Sigma-Aldrich) in PBS and
blocked with 2% bovine serum albumin (BSA, Sigma-Aldrich), 0.25% Triton-X in
PBS at RT for 30 mins. Cells were incubated overnight at 4 °C with primary
antibodies against SUN1 (1:1000; Sigma, HPA008461), SUN2 (1:300; Sigma,
HPA001209), LMNA/C (1:200; Santa Cruz Biotechnology, sc-7292), LMNB1
(1:2000; Abcam, ab16048), emerin (1:200; Leica Microsystems, NCL) and phospho-
histone H2AX (S139) (γH2AX; 1:300; Merck, 05-636). Following 3 × 5min PBS
washes, cells were incubated with secondary antibodies, specific for mouse or rabbit
IgG as appropriate, for 1 h at RT: AlexaFluor-488 goat anti-mouse (1:2000;
ThermoFisher Scientific, A11029), AlexaFluor-594 donkey anti-rabbit (1:2000;
ThermoFisher Scientific, A21207). Following further 3 × 5 min PBS washes, DAPI
(1:1000; Sigma Aldrich, D9542) was used to stain cells at RT for 20 min; when used,
AlexaFluor-488 Phalloidin (1:100; Cell Signaling Technology, #8878) was added
with the DAPI stain. Samples were washed in PBS for 3 × 5 mins prior to imaging.
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Fig. 10 Effects of cyclic tensile strain (CTS) on mesenchymal stem cell (MSC) behavior. a Schematic summarizing the responses of MSCs to low and high

intensity CTS, and how these pathways depend on ion channel activity and SUN domain-containing protein 2 (SUN2). b Cartoon summarizing strain-

induced changes to proteins in the linker of nucleoskeleton and cytoskeleton (LINC) complex and nuclear envelope (NE). ONMouter nuclear membrane;

INM inner nuclear membrane
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Images were captured on a Leica TCS SP5 or SP8 confocal microscope using
HCX Apo U-V-I 20×/0.5 or HCX Apo U-V 63×/0.9 dipping lenses. Images were
collected using hybrid detectors with the following detection mirror settings: green,
494–530 nm; red 602–665 nm; blue 420–470 nm. A white light source was filtered
for excitation at 488 and 543 nm and a UV laser for excitation at 405 nm. The
microscope used LAS X software (version 3.5, Leica); mages were processed in
ImageJ (version 2.0.0, National Institutes of Health, USA); CellProfiler (version
2.1.1, Broad Institute, USA) was used to characterize cell morphometric
parameters: cell area; cell perimeter; nuclear area; ratio of cytoplasmic to nuclear
area. For quantification of proteins at the nuclear envelope (NE), the integrated
fluorescence intensity was measured at the nuclear periphery, as identified by DAPI
staining. To assess chromatin condensation, nuclei were imaged at 63x as described
above and CellProfiler was used to quantify nuclear texture (Haralick texture
features; sum variance scale 3; offset set to zero). For quantification of DNA
damage, nuclei were imaged at ×63 and the integrated fluorescence intensity of
nuclear phospho-histone γH2AX foci was quantified for each nucleus. Images were
corrected for background fluorescence by subtracting the mean intensity of a cell-
free area from each pixel; all images under comparison in the same experiment had
matched exposure and contrast settings.

Cell proliferation and viability assays. Cell culture medium was removed from
hMSCs immediately or 24 h after CTS (1 h at 1 or 5 Hz) and cells washed with PBS.
Cells were lysed using 3× freeze/thaw cycles in PBS and lysates cleared using
centrifugation at 1,2000 × g for 10 min. Double-strand DNA concentration from
each well was quantified using Quant-It PicoGreen Assay (Thermo Fisher Scien-
tific), as described in the manufacturer’s instructions. Fluorescence was recorded
using a plate reader (excitation, 488 nm; emission, 520 nm). Concentrations were
calculated from a standard curve generated with Lambda control DNA (Thermo
Fisher Scientific).

Cell viability was measured in hMSCs immediately and 24 h after CTS using
LIVE/DEAD Fixable Green Dead Cell Stain Kit (Thermo Fisher Scientific) in
accordance with the manufacturer’s instructions. Cells were washed in PBS and
incubated with the viability dye diluted in PBS for 30 min at 37 °C. Cells were fixed
using 4% PFA and imaged using a Leica TCS SP5 confocal microscope (×20
dipping lens). Cells killed with ethanol treatment were used as a positive control.
The percentage of viable and dead cells was calculated from 6 random fields of view
per treatment and per donor.

RNA extraction. RNA was extracted from cell pellets using the RNeasy Mini kit
(Qiagen) as per the manufacturer’s instructions. Briefly, cell pellets were thawed on
ice and lysed using 350 µL of lysis buffer. In total 350 µL of 70% ethanol was added
to each sample, the tubes mixed by inversion, and the solution drawn through the
provided spin columns by centrifugation at 12,000 × g for 30 s. The columns were
washed with 350 µL of RW1 buffer using centrifugation (12,000 × g for 15 s) and an
on-column DNA digest performed using the RNase-Free DNase kit (Qiagen),
following the manufacturer’s instructions. Briefly, 5 µL of DNase I enzyme was
mixed with 35 µL of RDD buffer and added directly to the membrane of the spin
columns. The columns were incubated at RT for 15 min. The columns were then
washed with 350 µL of RW1 buffer using centrifugation (12,000 × g for 15 s), fol-
lowed by an additional 2 × washes with 500 µL of RPE buffer and centrifugation.
The RNA was eluted using 20 µL of water and the quality and quantity assessed
using a NanoDrop ND-1000 spectrometer (Thermo Fisher).

RT-qPCR. In total 1 µg of RNA was reverse transcribed using the High Capacity
RNA-to-cDNA Kit (ThermoFisher Scientific). RT-qPCR was performed in tripli-
cate using SYBR Select Master Mix (ThermoFisher Scientific) using a StepOnePlus
Real-Time PCR System (ThermoFisher Scientific). Data were analysed using
the 2-ΔΔCt method66 and normalized to PPIA and unstrained control cells.
Custom designed and validated primers (PrimerDesign Ltd) were used as follows:-
Vimentin (VIM); sense: TTCTCTGCCTCTTCCAAACTTT, anti-sense: CGTTGA
TAACCTGTCCATCTCTA; Alpha-actin-2 (ACTA2); sense: AAGCACAGAGC
AAAAGAGGAAT, anti-sense: ATGTCGTCCCAGTTGGTGAT; Peptidyl-prolyl
isomerase A (PPIA); sense: ATGCTGGACCCAACACAAA, anti-sense: TTTC
ACTTTGCCAAACACCA.

RNA-Seq. RNA-Seq analysis was performed by the Genomic Technologies Core
Facility (GTCF) at the University of Manchester. In brief, strand-specific RNA-Seq
libraries were prepared using the TruSeq Stranded mRNA Sample Preparation kit
(Illumina). Data produced by an Illumina HiSeq4000 system was analysed with
FastQC (Babraham Bioinformatics). In total 101 × 101 bp paired-end reads and
between 24 and 124M total reads were generated from each sample. Low quality
reads and contaminated barcodes were trimmed with Trimmomatic67. All libraries
were aligned to the hg19 assembly of the human genome using TopHat (version
2.1.0; Center for Computational Biology, Johns Hopkins University) and only
matches with the best score were reported for each read. The mapped reads were
counted by genes with HTSeq68 against gencode_v16.gtf. Log-transformed tran-
script fold changes were normalized under the assumption that the majority of
genes were not perturbed by any of the experimental conditions.

Protein labeling with monobromobimane (mBBr). Media was removed from
cells immediately or 24 h after CTS treatment and cells were washed in PBS. Cells
were then labeled by incubation with 2 mL of 400 µM monobromobimane (mBBr;
Sigma-Aldrich) in PBS at 37 °C for 10 mins. Following labeling, 50 µL of 0.4 M
glutathione in PBS was added to each well to quench the mBBr reaction. The
quenched mBBr solution was removed and cells washed with PBS. Cells were
detached from the substrate by incubating with 1 mL of trypsin at 37 °C for 10 min.
Trypsin activity was neutralized using serum-containing culture medium and cells
pelleted using centrifugation at 400 × g for 5 min. Cells were resuspended in cold
PBS, re-pelleted in 1.5 mL tubes (LoBind, Eppendorf) at 400 × g for 5 min and cell
pellets stored at −20 °C prior to proteomic analysis.

Mass spectrometry (MS) sample preparation and analysis. Six 1.6 mm steel
beads (Next Advance) were added to the cell pellet tube with 30 µL SL-DOC (1.1%
sodium dodecyl sulfate (Sigma), 0.3% sodium deoxycholate (Sigma), 25 mM
ammonium bicarbonate (AB, Fluka), protease inhibitor cocktail (Sigma), sodium
fluoride (Sigma), and sodium orthovanadate (Sigma) in de-ionized (DI) water).
Cells were homogenized in a Bullet Blender (Next Advance) at maximum speed for
2 min. Homogenates were cleared by centrifugation (12 °C, 10,000 × g, 5 min).

Immobilized-trypsin beads (Perfinity Biosciences) were suspended in 150 µL of
digest buffer (1.33 mM CaCl2 (Sigma) in 25 mM AB) and 50 µL of protein lysate
and shaken overnight at 37 °C. The resulting digest was then reduced (addition of
4 µL × 500 mM dithiothreitol (Sigma) in 25 mM AB; 10 min. shaking at 60 °C) and
alkylated (addition of 12 µL × 500 mM iodoacetamide (Sigma) in 25 mM AB; 30
min. shaking at RT). Peptides were acidified by addition of 5 µL × 10%
trifluoroacetic acid (Riedel-de Haën) in DI water, and cleaned by two-phase
extraction (2 × addition of 200 µL ethyl acetate (Sigma) followed by vortexing and
aspiration of the organic layer). Peptides were desalted, in accordance with the
manufacturer’s protocol, using POROS R3 beads (Thermo Fisher) and lyophilized.
Peptide concentrations (measured by Direct Detect spectrophotometer, Millipore)
in injection buffer (5% HPLC grade acetonitrile (ACN, Fisher Scientific) 0.1%
trifluoroacetic acid in DI water) were adjusted to 300 ngµL−1.

For hMSCs subjected to 5.0 Hz CTS, digested samples were analysed by LC-MS/
MS using an UltiMate 3000 Rapid Separation LC (RSLC; Dionex Corporation,
Sunnyvale, CA) coupled to an Orbitrap Elite (Thermo Fisher Scientific, Waltham,
MA) mass spectrometer. Peptide mixtures were separated using a gradient from
92% A (0.1% formic acid, FA (Sigma) in deionized water) and 8% B (0.1% FA in
ACN) to 33% B, in 104 min at 300 nL per min, using a 75 mm × 250 µm inner
diameter 1.7 µM CSH C18, analytical column (Waters). For analysis of SUN2
knockdown, digested samples were analysed by LC-MS/MS using an UltiMate 3000
RSLC (Dionex Corporation) coupled to a Q Exactive HF (Thermo Fisher Scientific)
mass spectrometer. Peptide mixtures were separated using a multistep gradient
from 95% A (0.1% FA in water) and 5% B (0.1% FA in ACN) to 7% B at 1 min,
18% B at 58 min, 27% B in 72 min and 60% B at 74 min at 300nLmin−1, using a 75
mm × 250 µm inner diameter 1.7 µM CSH C18, analytical column (Waters).
Peptides were selected for fragmentation automatically by data dependent analysis;
mass spectrometers were operated using Xcalibur software (version 4.1.31.9,
Thermo Scientific).

For assessment of SUN2 overexpression, identification of post-translational
modifications (PTMs) in human MSCs following strain, and the response of MSCs
to 1.0 Hz CTS, protein was extracted from cells by resuspension of cell pellets in 5%
sodium dodecyl sulphate (SDS), 50 mM triethylammonium bicarbonate (TEAB),
pH 7.55. Cell lysates (in 4 mm-thick microTUBEs, Covaris) were sonicated using a
focused ultrasonicator (LE220-plus, Covaris) at 8W for 21 min (sonicated for 300
s, peak power= 180, average power= 72, duty factor 40%, cycles per burst= 200,
delay 15s, then repeated once). Samples were clarified using centrifugation at
13,000 × g for 8 min. Samples were reduced by heating to 95 °C for 10 min in DTT
at a final concentration of 20 mM. Cysteine was alkylated by addition of
iodoacetamide to a final concentration of 40 mM and incubated at room temp in
the dark for 30 min. Samples were cleared by centrifugation at 13,000 × g for 8 min.
Lysates were then acidified using aqueous phosphoric acid to a final concentration
of 1.2% phosphoric acid and mixed with S-Trap binding buffer (90% aqueous
methanol, 100 mM TEAB, pH 7.1). The protein lysate solutions were loaded onto
S-Trap Micro Spin Columns by centrifugation at 4000 × g for 1 min. The bound
protein was washed three times using S-Trap binding buffer and then digested on
column with trypsin (6 µg per sample) (Pierce, MS grade), reconstituted in
digestion buffer (50 mM TEAB), for 1 h at 37 °C. Peptides were eluted in 50 mM
TEAB, then 0.2% aqueous formic acid, and finally 50% acetonitrile containing 0.2%
formic acid. Peptide concentration was quantified using a Direct Detect
spectrophotometer (Millipore). Peptides were analysed using a Q Exactive HF
(Thermo Fisher Scientific) mass spectrometer, as described above.

Proteomics data processing. MS spectra from multiple samples were aligned
using Progenesis QI (version 4.1, Nonlinear Dynamics) and searched using Mascot
(Matrix Science UK), against the SWISS-Prot and TREMBL human databases.
Samples were not enriched for PTMs prior to MS (e.g. by affinity column), but MS
spectra of samples from a SUN2 over-expressing immortalised cell line and pri-
mary MSCs subjected to CTS were aligned together to enable detection of PTMs to
SUN2. The peptide database was modified to search for alkylated cysteine residues
(monoisotopic mass change, 57.021 Da), oxidized methionine (15.995 Da),
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hydroxylation of asparagine, aspartic acid, proline or lysine (15.995 Da) and
phosphorylation of serine, tyrosine, threonine, histidine or aspartate (79.966 Da).
In experiments in which cysteine residues were labeled with mBBr, the modifica-
tion was searched for in two possible oxidation states (133.053 and 150.056 Da). A
maximum of 2 missed cleavages was allowed. Peptide detection intensities were
exported from Progenesis QI as Excel spreadsheets (Microsoft) for further
processing.

Proteomics datasets were analysed using code written in-house in Matlab with
the bioinformatics toolbox (R2015a, The MathWorks, USA). Raw ion intensities
from peptides from proteins with fewer than 3 unique peptides per protein were
excluded from quantification. Peptide lists were filtered leaving only those peptides
with a Mascot score corresponding to a Benjamini-Hochberg false discovery rate
(BH-FDR)69 of <0.2. Normalization was performed as follows: raw peptide ion
intensities were log-transformed to ensure a normal distribution and normalized
within-sample by equalizing sample medians (subtracting sample median). Fold-
change differences in the quantity of proteins detected in different samples were
calculated by fitting a linear regression model that considers donor variability at
both the peptide and protein levels. For each protein the following model was fit:

yfgd ¼ β0 þ Xf βf þ Xgβg þ Xdβd þ XfXgβfg þ XfXdβfd þ εfgd ð1Þ

Where yfgd represents the logged peptide intensity for peptide f, obtained under
experimental treatment g, from donor d. βs represent the parameters to be
estimated by the model fit, with βg and βfg representing the logged fold change in a
given protein and peptide f, caused by experimental treatment g. Where peptide f
had been subject to post-translational modification (e.g. phosphorylation or
reaction with mBBr), βfg would therefore give a measure of the fold-change in site
occupancy (i.e. the fraction of the protein present that has been modified). β0 is the
intercept term that correlates with mean peptide intensity and εfgd corresponds to a
Gaussian error term centered on 0 with a width equal to the residual variance, σ2.
The model was fit using a Bayesian elastic net implemented using a Monte Carlo
Markov Chain Gibb’s sampler. Additionally, residuals were weighted according to
their Mascot score each iteration of the Gibb’s sampler such that outlier
observations would not have their contribution to the model diminished if
confidence in their identification was high. The full formulation and
implementation is described in Mallikarjun et al.36. Standard error estimates were
modified according to empirical Bayes correction of variances and empirical Bayes-
modified t-tests were used to compare different experimental conditions. Linear
modeling for Reactome pathway analysis was performed as described above using
logged fold changes as the response variable according to the model for a given
Reactome pathway:

ygp ¼ β0 þ Xgβg þ Xpβp þ εgp ð2Þ

Where βg and βp denote effect sizes due to experimental treatment g and protein p.
False positive correction of p-values for differential abundance was performed
using Benjamini–Hochberg correction. Gene Ontology (GO) analysis was
performed using Gorilla32. Resulting GO term lists were cleaned of redundant
terms using REVIGO33. For cluster analysis, pathway enrichment was detected
using Reactome35, showing only terms with a false discovery rate (FDR) <0.05 and
≥3 entities associated. For analysis of phospho-proteomics, highlighted sites are
those significantly differentially regulated (Benjamini–Hochberg FDR < 0.05) and
observed previously by comparison to the PhosphoSitePlus database70.

Small molecule inhibition of ion channel activity. hMSCs were cultured in
complete medium containing inhibitors against stretch-activated ion channels 10
min prior to, and throughout, strain treatment, with vehicle only used as a control.
Gadolinium chloride (GdCl3; Sigma), dissolved in water and used at a final con-
centration of 10 µM (determined from a dose response experiment assessing its
effects on nuclear morphology), was used as a broad-spectrum inhibitor against all
stretch-activated ion channels27. Amiloride (Sigma), dissolved in DMSO and used
at a final concentration of 100 µM (determined from a dose response experiment
assessing its effects on nuclear morphology), was used as an inhibitor against acid
sensing ion channels (ASICs)27. RN9893 (Sigma), dissolved in DMSO and used at a
final concentration of 10 µM28, was used to selectively inhibit the function of
transient receptor potential vanilloid type 4 (TRPV4) ion channel. The tarantula
venom peptide GsMTx4 (Abcam), dissolved in water and used at a final con-
centration of 3 µM29 was used to inhibit piezo channels.

Overexpression of SUN2 in an immortalised hMSC line. The open reading
frame of human SUN2 (isoform 2) was cloned into pCDH_TetOn, which contains
a Tet response element enabling doxycycline-controlled expression of SUN2
protein. SUN2 (open reading frame); sense: AGACTCATCGCCACATTTCCA,
antisense; AATCACACCTTCTTTCTGCAG; SUN2 (restriction enzyme sites
added); sense (PacI): AAAAATTAATTAAATGTCCCGAAGAA, GCCAGCGC
CTCACGCGCTAC, antisense (NheI): TTTTTGCTAGCCTAGTGGGCGG, GCT
CCCCATGCACTCTGA.

Lentivirus was made by transfecting HEK 293 T cells in a T75 flask, with a
complex of 4.5 µg of PsPax2 packaging vector, 3 µg of pMD2G packaging vector and
6 µg of pCDH_TetOn_Sun2, combined with polyethylenimine (PEI) (1 µgµL−1) at a
ratio of 1:2 DNA:PEI in DMEM medium and incubated at 37 °C overnight. The

transfection media was removed and replaced with complete medium containing
sodium butyrate 10mM (HDAC inhibitor) for 8 h, followed by replacement with
complete medium. Following an additional 24 h culture in complete medium the
virus containing media was removed, filtered through a Millipore Membrane 0.45 µm
syringe filter (Merck) and stored at 4 °C, with fresh complete medium added to the
HEK 293 T cells. Following an additional 24 h culture period, the second harvest of
virus containing media was collected, filtered through a Millipore Membrane 0.45 µm
syringe filter, combined with the first viral harvest and concentrated using a Vivaspin
20, 100 kDa MWCO PES column (Sartorius). Concentrated virus was aliquoted into
4× vials and stored at −80 °C until required.

The virus was used to transform immortalised hMSCs (line Y20149). The virus
was added to 2 mL of complete medium containing polybrene 8 µgmL−1 (Sigma)
and added to 40% confluent Y201 hMSCs seeded in a 10 cm2 dish. After 48 h of
culture the virus containing media was removed and cells washed in complete
medium twice. Cells were grown in culture for two weeks to allow transient viral
expression to subside, then FACS sorted for blue fluorescent protein positive cells
containing stable viral insertions.

Cells containing the inducible SUN2 expression vector were cultured for 4 days
in complete medium containing 50 ngmL−1 doxycycline (DOX, Sigma). Following
DOX treatment, cells were cultured on either standard polystyrene tissue culture
plastic, or type-I collagen coated BioFlex plates, prior to treatments and
morphometric characterizations as described above. The length of time cells were
cultured following DOX treatment was used to modulate levels of SUN2
expression. Non-transformed cells treated with 50 ngmL−1 DOX were used as
controls. For SUN2 rescue experiments, cells containing the inducible SUN2
expression vector were first treated with siRNA against SUN2 (siRNA2) as
described above, with DOX then added for a further 4 days of culture. SUN2 rescue
cells were then cultured on either standard polystyrene tissue culture plastic, or
type-I collagen coated BioFlex plates, and morphometric analysis conducted.

Chromatin condensation assay. Primary hMSCs were cultured on type-I collagen
coated BioFlex plates. They were treated for 30 min with complete medium con-
taining MgCl2 and CaCl2 (both Sigma) at 2 mM final concentrations. Cells were
fixed in 4% PFA, stained with DAPI (Sigma) for 20 min and imaged as
described above.

Statistical treatments and linear modeling. Statistical tests were performed in
Mathematica (version 11, Wolfram Research), MatLab (version R2015a, Math-
Works) and GraphPad (version 8, Prism). All tests were two-tailed. Evaluations of
R-squared and graphical analyses were performed using Igor Pro (version 6.37,
Wavemetrics). Linear regression analysis was performed on imaging data where
indicated, using the formula:

ygd ¼ β0 þ Xgβg þ Xdβd þ εgd ð3Þ

Where ygd represents a vector of normalized intensity data for each cell from
experimental treatment g and donor d. βs represent fold changes due to experi-
mental treatment group g and donor d to be estimated by the model fit. β0
represents the intercept term determined by the mean of y. Linear modeling was
performed in Matlab using the fitlm function.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
Proteomics data have been deposited to the ProteomeXchange Consortium via the

PRIDE partner repository with the identifiers: PXD012863, PXD012873, PXD012948,

PXD012949 and PXD013287. RNA-Seq data is available via EMBL-EBI ArrayExpress

with identifier E-MTAB-7925.

Code availability
The BayesENproteomics code used to process MS data36 is available to download from

GitHub [https://www.github.com/VenkMallikarjun/BayesENproteomics].
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