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An irrotational nuclear fluid dynamical scheme, on the. basis of the quantal action principle, is 
presented, where the effect of temperature is taken into account. A low temperature expansion, retaining 
terms up to T', is considered. The temperature dependence of the energies of isoscalar giant resonances 
is calculated. The nuclear radius, chemical potential, excitation energy and incompressibility of hot nuclei 
are investigated as functions of the temperature. 

§ 1. Introduction 

It has been shown that selfconsistent HF plus RPA is a powerful tool in the study of 
giant multipole states. However when these calculations are made for a finite tempera
ture the numerical situation turns out to be of a,higher degree of complexity because the 
configuration space of possible transitions. grows drastically when mixed states take the 
place of pure states (zero temperature). One thus expects the methods of fluid mechanics 
to be an appropriate tool to describe such phenomena_ 

Macroscopic modelsl)-lll have contributed enormously to our understanding. of the 
nucleus. Obviously one should try to justify successful macroscopic models in micro
scopic terms as for instance TDHF. We expect that the semiclassical methods, which 
already have given good results for zero temperature, are also appropriate for describing 
thermally excited systems. 

In Ref. 12) a variational derivation of the Liouville-von Neumann equation of statis
tical mechanics was presented in order to formulate a mean field approximation appropri
ate to mixed states. A mixed state of equilibrium is described by a density matrix Do 
satisfying the so-called stability condition 

tr(DoH) :5:tr( UDoU+ H) , (1) 

for all unitary operators U. In the sequel, Eq. (1) is implemented in the independent 
particle approximation, which means that U and Do are exponentials of one body 
operators. For physical situations requiring the use of mixed states the time evolution of 
the density matrix may be derived from the lagrangian 

(2) 

where Do is a fixed (time independent) density matrix satisfying the condition (1), U 
= U(t) is a time dependent unitary operator and the dot over U means partial time 
derivative. We write 

u=exp( ~ 5), (3) 

where 5 is a time dependent hermitian operator. If a stationary state is slightly perturb
ed, the system is afterwards described by a density matrix which at all instants differs only 
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Nuclear Fluid Dynamics at a Finite Temperature 863 

infinitesimally from the stationary one. We neglect therefore in (2) terms of higher order 
in 5 than the second obtaining then the lagrangian 

(4) 

which describes the dynamics of states in the neighborhood of a state of equilibrium. The 
density matrix is 

(5) 

where 5 is the generator of deviations from equilibrium. 
In this note we will consider the classical limitS) of the lagrangian (4), retaining only 

the leading order terms in a Wigner-Kirkwood expansion. Presently we restrict the 
generator 5 to the first two terms in an expansion in powers of the momentum 

A 

5= "':E.S(Xi, Pi, t), 
i=l 

seX, p, t) = x(x, t) + p. sex, t) . (6) 

The fields X and s will be taken as variational fields. Different truncation schemes of the 
generator 5, such as those presented in Refs. 6) ~ 11) provide reliable approximation 
schemes to the exact dynamics of the atomic nucleus. 

§ 2. The static case 

It is well-known that the density matrix Do, exponential of a one-body operator, 
describes a state of equilibrium if we have 

tr(oS[H, Do]) =0, (7) 

for all one body operators oS. Equation (7) alone does not ensure stable equilibrium. 
The stability condition (1) leads to short term equilibrium and should not be confused with 
the condition for statistical equilibrium which is obtained minimizing the free energy and 
should be understood as a long term equilibrium. 

From Eq. (7) the well-known Hartree-Fock equation for the reduced density matrix 
Po may be derived 

[h, Po]=O, (8) 

where h is the selfconsistent single particle hamiltonian. The classical version of this 
equation is the static form of the Vlasov equation 

(9) 

where fo is the equilibrium distribution function (Wigner transform of Po) and 

(10) 

Here the following simplifying notation is adopted: f(i) denotes a function of Xi, Pi and 
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t; the quantities V12, V123, "', stand respectively for the two body, three body, "', interac
tions. The volume integral element is dr = gd3zd3pl (27fhV 

Let W denote the energy functional associated to a distribution function I 

W[f]= jdrl g~ 1(1) + 2\ jjdrldr2 V1d(I)/(2) 

+ 3\ jjjdrldr2dr3V123/(I)/(2)/(3) + .... (11) 

Let I(x, p) be a fixed function of x and p and Af the set of all distribution functions I' 
which are obtained from I by a canonical transformation, 

A f = {J'(x, p): I'(x, p) = I(x, p) + {J, S} 

1 +2{{/, S}, S}+ "', S=S(x, p) real}. 

Let laEAf be such that 

W [fa}";;: W [f'] , 

for all l'EAf . Clearly 10 represents a state of equilibrium satisfying Eq. (9). 

(12) 

(13) 

In this note we will consider the classical limit of the quantal lagrangian and we will 
consider density dependent 0 forces. In this case 10 may be conveniently written 

10= 8(R---; r) 

l+exp[(fm -t)ITJ' 
(14) 

where t=t(T) and R=R(T) are functions of T determined by the condition (13). 
The integration ,in momentum space can be performed immediately 

(15) 

where 

(16) 

and 

(17) 

As we are not taking into account the so-called gradient corrections, which give rise 
to surface contributions, the equilibrium density consistent with our model is a spherical 
square density 

(18) 

where Pa(O) and R are determined by minimizing the energy, taking into account the 
conservation of the particle number. The nuclear radius R is fixed by Pa(O) and by the 
particle number A. 
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Since the interaction through 0 function forces leads to a constant selfconsistent 
potential we chose to consider, due to its simplicity, the following trial distribution 
function: 

/= e(R~-r) , 

1 +exp[ (fm - S-')/T'J 
(19) 

where R', S-' and T' are only parameters. In particular, the parameter T' should not be 
interpreted as the temperature. 

The distribution function /0, characterizing the state of equilibrium, is determined by 
requiring that the energy is stationary with respect to a canonical transformation. A 
canonical transformation is a coordinate transformation that preserves Poisson bracket 
relations. We consider the following coordinate transformation: 

P ------->R r; , x-------> r;x , (20) 

where r; is an arbitrary quantity. Under this transformation the distribution function 
becomes replaced by 

/ 
e( ~' -r) 

(21) 

Thus the canonical transformation (20) leads to the following replacements: 

(22) 

The quantities Po and To are easily obtained replacing the expression (21) in the 
definitions (16) and (17). The integration in momentum space is done with the well
known formula, which applies to degenerate Fermi gases,13) 

l ""dE g(E) 
o 1 +exP[(E- OIT] (23) 

Since we are only· interested in low temperatures we will keep only the terms up to the 
order T4 in the expansion of thermodynamic quantities. Taking into account (23), we 
obtain 

where 

( Jiii)3 
a=47f/2g 27fYz . (26) 

Let Q be the volume of the nucleus, 
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(27) 

The particle number A remains constant when we change 7J. Thus we have 

(28) 

We will now determine the canonical transformation which minimizes E by considering 
arbitrary variations with respect to 7J 

(29) 

Thus for a given temperature T( = 7J2 T') the parameter ?; ( = 7J2 s') appearing in the 
equilibrium distribution function /0 (Eq. (14)) is determined by introducing po and ro, as 
given by Eqs. (16) and (17), in the equilibrium condition 

(30) 

Once we know the quantity?;, for a given temperature T, it is straightforward to 
obtain the density Po and the kinetic energy density r 0 corresponding to the equilibrium 
state. These results are the generalization of previous results derived in Ref. 9) for T=O. 
Equation (30) insures the stability of the thermal Hartree-Fock state. At a finite tempera
ture we find from Eq. (30) the following expression for s: 

where 

;t=B/D, y=C/D, 

B = - 6ttO) [ ?;1/2(0) + S-1/2(0) ~ ad 6(6; 1) ( a ~ S3/2(0) r-1J ' 

C=- s(;) 3 {S1/2(0)[t(?;(0) ;2Y+112 S(0) ;2-1:40J 
+ ?;-1/2(0) ~a<16(6-1)( a ~. ?;3/2(0) ) <1-1 

(31) 

(32) 

(33) 

(34) 
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Nuclear Fluid Dynamics at a Finite Temperature 867 

Since the interaction is constructed in terms of 0 forces, it follows from (10) that the 
single particle hamiltonian has the following expression: 

(35) 

Taking into account the definition of S, and the expression (35) for the single particle 
hamiltonian, we see that the chemical potential f1.( T) is obtained adding to S (T) the 
selfconsistent potential 

(36) 

§ 3. Lagrangian, equations of motion and boundary conditions 

We shall now be concerned with the time dependent problem, namely we will be 
interested in small amplitude oscillations around the equilibrium state due to a small 

. external perturbation. For studying the detailed response of the system to a given 
external field, it is desirable to derive and solve dynamical equations of motion, rather 
than imposing an apriori specified form of motion. The linear response relies on a cutoff 
of the expansion in powers of the generator 5 at the leading order. Taking the classical 
limit of (4), with the generator 5 given by (6), we obtain, in an analogous way to Refs. 
6) ~ 11), the nuclear fluid dynamical lagrangian 

(37) 

The intrinsic energy functional £[8] constains all 8 dependent terms of tr (DH), 

Here and hereafter we employ the summation convention over repeated vector indices. 
The linear terms in the energy functional £[8] vanish in view of Eq. (30). This equation 
also enables us to eliminate the surface term, envolving de/dr, 

~ jd 3x(f7' 8)8' f7 [2~0 + ~a<1(J-1)po<1 ] ' (39) 

in the energy functional £(2)[8]. We see that, for finite temperatures, the structure of the 
fluid dynamical lagrangian is the same as in the zero temperature limit. 6) The essential 
difference to this limit lies in the fact that Po and fo depend on the temperature T. At this 
point we introduce a slight generalization of the model of Ref. 6) by allowing for an 
arbitrary field s, instead of restricting 8 to be irrotational. We will find out the macro
scopic fields which satisfy the equations of motion and boundary conditions obtained from 
arbitrary variations of the dynamical fields which in this case are X and 8. In fact nothing 
implies that the field s should be taken as irrotational. Allowing for arbitary variations 
of 8 we obtain a fluid dynamical description which is more gene~al than the scheme 
proposed in Ref. 6) where the scaling field. is restricted to the form 8 = f7 F. Arbitrary 
variation of X leads to the continuity equation 
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(40) 

and arbitrary variation of s leads to the Euler type equation 

(41) 

where Pap is the pressure tensor and has the following expression: 

(42) 

Equations (40) and (4l), together 'with the analytical form of the quantities Pa and r a, are 
sufficient to determine the eigenfrequencies (j)k as well as the corresponding eigenfields X(k) 

and S(k). All other quantities with physical meaning, such as the transition density OP and 
the current j are determined by X and s (see Ref. 6)). If we had taken into consideration 
a force with a finite range, or if we had taken into account the gradient corrections, then 
the expressions for E(O), E(2) and L (2) would be different, and in particular the selfconsistent 
density Pa would have a smooth profile. Still we would obtain the equations of motion 
from the variation of X and s and as long as the equilibrium state is known these equations 
are sufficient to determine the normal modes. 

Due to the special form of Pa and ra, which in our approach are constant for r..:;,R and 
zero for r > R, it is clear that the following boundary conditions are contained in the 
equations of motion (40) and (41) 

x·(Pas + ~ P x)1 =0, 
r=R 

(43) 

XaPapl =0. 
r=R 

(44) 

The analytical expression of s, for an arbitrary eigenmode, may be written in general 
as 

where wE; have assumed an harmonic time dependence which is factorized out in the time 
dependent function fj(t) (/i(t) = _(j)2fj(t)). 

and 

From Eqs. (40) and (41) we can write 

PaP· S +&L1X=O m 
(46) 

(47) 

Taking the time derivative of Eq. (47) and inserting the analytical expression (45) for s 
we obtain 
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-aipoP x= -1o~g {(2fO+ ~aO"O'(O'-l)poO") P('YIKL2jl(KLr) Y1m) 

+ ~ f oJ7 ('Y32(21 +3) U + 1) rl Ylm)} . 

869 

(48) 

We now consider the divergence of Eq. (48) and we substitute PoLlx by - mpoP· s (see 
Eq. (46) ) obtaining 

aimS (t) ('YIKL2jl(KLr) Ylm) 

= 1o~g (2fo(0) + ~aO"O'(O'-l)poO"(O)) 'YIKL 4 jl(KLr) Y 1m . 

We observe that fo(O) = fo(r)lr=o. From Eq. (49) we obtain 

2fo(0) + ~aO"O'(O'-l)poO"(O) 
2 OK 2 0" 

W = L mpo(O) 

and therefore the sound velocity is 

From Eq. (48), taking into account that w2=KL2CL2, we obtain that 

where, for w2 *' 0, 

4 fo(O) ( )( ) 
3 mpo(0)w2 21+31+1 'Y3. 

(49) 

(50) 

(51) 

(52) 

(53) 

Inserting the expressions (45) and (52) in the boundary condition (43) we obtain 

(54) 

Finally, we insert the analytical expression for s, given by Eq. (45), in the boundary 
condition (44), XaPaplr=R=O( =PI(R)opY1m + P2(R)xpY1m). For 1~1 we must have PI(R) 

=0 and P2(R) =0 which reduce respectively to the following equations: 

(55) 

and 

21U+1)+-.i:1]·(K) r2 rur Jl Lr 

(56) 

where obviously Eq. (55) (derived from the requirement PI(R) =0) does not apply for 1=0. 

For I =0, the terms in 'Y2 and 'Y3, appearing in Eq. (45), vanish. Then the values of KL, 

corresponding to different eigenmodes, are fixed by the boundary condition (56) which 
reduces to 
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(57) 

This boundary condition was derived for [=0 and for T=O in Refs. 15), 16) and 6). For 
[>0 the frequencyw and the constants h Y2, Y3 and Y4, corresponding to each eigenmode, 
are fixed by Eqs. (53) ~(56) and by the orthogonality relation17

) 

(58) 

where s(i) and i k
) are time 'independent eigenfields corresponding to the eigenmodes with 

frequencies Wi and Wk. 

It is instructive to examine the possibility of solutions with w = 0 for [;;::: 1. In this 
case Eq. (53) does not apply and we may consider Yl =0. Then we see from Eqs. (55) and 
(56) that, except for [=1, Y2 and Y3 must be zero and from Eq. (54) it follows also that Y4 

=0. Therefore for [>1 there is no nontrivial-solution with w=o. However for [=1 we 
obtain that Y3=0 and from Eq. (54) we have that Y4= Y2. Thus for [= 1 there exists a w=o 

solution, namely 

(59) 

This solution should appear and obviously corresponds to a uniform translation in space. 
At this point it is convenient to recall the expression for the current in order to allow 

for comparison with other nuclear fluid· dynamical schemes. The current is obtained 
integrating in momentum space the distribution function multiplied with p/m 

(60) 

Several authors have considered nuclear fluid dynamical schemes where the relation j 

= - PaS is assumed and in particular, in Ref. 6) this relation is directly derived from an 
action principle. It is however clear from Eqs. (45), (52), (53) and (60) that such a 
relation is not valid in this simplified scheme, except for [= 0 and also for [= 1 when w = O. 
In fact, since we· have allowed for arbitrary variations of s we expect that s will acquire 
rotational components which cannot contribute to j since the current is only determined 
by the scalar field x. . 

§ 4. Numerical results 

The numerical results presented in this section are for a spherical nucleus with A 
= 208. As a model for the collective dynamics we consider the system described by a 
purely zero range density dependent interaction previously considered in other fluid 
dynamical calculations6

)-11) and which implies the following potential energy: 

(61) 

where 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/75/4/862/1858560 by guest on 16 August 2022



J 

Nuclear Fluid Dynamics at a Finite Temperature 871 

a2= - ~ X 3075.8 MeV fm3
, 

a2+116= 116 X 2016.4 MeV fm3
+

112
• (62) 

Hereby we assume that the parameters a2 and a2+116 do not depend on T. 
In the present section results are presented in the temperature range from 0 to 6 MeV. 

As the temperature increases, there is a slight decrease of the equilibrium density. Since 
the particle number A remains constant there is also a slight growth of the nuclear radius. 
In Fig. 1 we show the nuclear radius as function of the temperature. Naturally, as the 
temperature increases there is also an increase of the energy E (see Eq. (15)) correspond
ing to the equilibrium state. In Fig. 2 we plot the dependence of the excitation energy E* 
on the temperature, where E* is defined as 

E*(T)=E(T)-E(O) . (63) 

For a finite temperature the nuclear incompressibility can be defined by 

(64) 

By similar arguments to the ones used in § 2, we find 

R [1m] 

I4 

o 4 T [MeV] 6 

Fig.1. Nuclear radius (A=208) as function of the 
temperature. 

600r----------------------, 

>' .. 
6 
-UJ 

400 

200 

Fig. 2. Excitation energy of the state of equilibrium 
(see Eq. (63)) as function of the temperature (A 

=208). 
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175,.--___ _ 

165 

155 

1450~ ---'-----'-----'------:-----"----~----'------c-----'----:':---T-;-[M-'e---,V];------,!6 

Fig. 3. Nuclear incompressibility (Eq. (65)) as function of the temperature. 

}J [MeV] 

-14 

-15 

-16 

4 T [MeV] 

Fig. 4. Chemical potential, defined by Eq. (36), as 
function of the temperature. 

according to 

for local excitations 

oZE=Q( 3~7J)\ 1
9
0 ro(O) 

+ ~a()"(J((J-1)po()"(0)). (65) 

Then, for a finite temperature, the nuclear 
incompressibility may still be written as 

K= Po~O) egO ro(O) 

+ ~a()"(J((J-l)po()"(O)). (66) 

In Figs. 3 and 4 we plot respectively K and 
the chemical potential fl (see Eq. (36)) as 
functions of the temperature. 

Reduced B(El) values are calculated9
) 

(67) 

go=rzyoo, gl=jl(qr) YIO with qR=4.49 and gl=rly1o for ["22. (68) 

For comparison we give in Table I the energy and percentage of the energy weighted sum 
(EWS) corresponding to different eigenmodes for the temperatures T=O, T=3 MeV and 
T=5 MeV. We further give in Table II, for the same temperatures, model independent 
quantities (m31 ml) I/Z which indicate the position of a resonance that would exhaust both 
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Table I. For the states listed in the first column, energies (in MeV) and percentages of 
the EWS, for the excitation operators (68), are given. The second and third 
columns show the results obtained for T=O, the fourth and fifth columns show the 
results obtained for T=3 MeV and the sixth and seventh columns show the results 
for T = 5 Me V. A nucleus with A = 208 has been considered. 

T=O 
l" hw EWS hw 
01+ 13.70 0.974 13.38 
02 + 33.02 19.8X 10-3 32.54 
11- 0 0 0 
12 - 20.20 0.974 19.73 
13 - 40.37 21.5 x 10-3 39.76 
21+ 8.98 0.999 8.99 
22 + 26.89 0.35 x 10-3 26.32 
31- 14.14 0.999 14.15 
32- 33.39 0.56X 10-3 32.72 
41+ 18.99 0.999 19.01 
42 + 39.75 0.61 x 10-3 38.99 

Table II. For the multipolarities listed in the first 
column, the quantities (m3/ml)"2 are calculated 
for T=O, 3 MeV and 5 MeV respectively in the 
second, third and fourth columns, where ml and 
m3 are respectively the energy-weighted and the 
cubic energy-weighted sums calculated for the 
equilibrium distribution function (14) and the 
excitation operators (68). 

T=O T=3MeV T=5MeV 

I ./m3/ml ./m3/ml ./m3/m l 

0 15.33 14.92 14.16 

1 25.98 25.68 25.11 

2 10.32 10.33 10.33 

3 17.27 17.29 17.29 
4 23.98 24.01 24.00 

T=3MeV T=5MeV 
EWS hw EWS 

0.976 12.76 0.978 
18.8X 10-3 31.62 17.1 x 10-3 

0 0 0 
0.972 18.86 0.968 

23.1 x 10-3 38.63 26.1 x 10-3 

0.999 8.98 0.999 
0.39 x 10-3 25.25 0.50x 10-3 

0.999 14.15 0.999 
0.64X 10-3 31.46 0.81 x 10-3 

0.999 19.01 0.999 
0.69 x 10-3 37.54 0.89 x 10-3 

the ml (EWS) and the m3 (cubic weighted) 
sums. A main feature of Table I is that for 
each multi polarity there is a state (for 1*"1 
it is the one with lowest energy) which 
exhausts almost completely the EWS. Due 
to the severe constraint imposed on the 
generator 5, implied by Eq. (6), we obtain a 
small number of eigenmodes in comparison 
with more general schemes. 10

).11) Due to the 
small splitting of states obtained, most of the 

. strength associated with each multipolarity I 
and for the excitation operators (68) is con
centrated in a single state. Only for the 
cases where the RP A reproduces eigenmodes 

which exhaust a large fraction of the EWS, such as the isoscalar giant monopoie and 
quadrupole resonances6

) we can expect a good agreement when we compare the RP A 
results with the results of the present fluid dynamical approach. We will now proceed to 
a short discussion of the results obtained for different multipolarities. 

1=0+: Monopole modes are purely longitudinal. In this case the results obtained for T 
=0 are identical to previous results.6

).15),16) We see in Fig. 5 that, as temperature in
creases, the energy of the giant monopole resonance lowers from 13.70 Me V at T = 0 to 
12.76 MeV for T=5 MeV. For a local excitation operator g(x) the quantity m)ml is 
equal to (see Ref. 17)) 

h: E(2) [17 g] 
m3_ m 

ml h2jd3xf:nu7 g)'(J7g) ' 
(69) 
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Fig. 5. Energies of the isoscalar giant resonances as function of the temperature (A = 208). 

where E(2) is defined by Eq. (38). For I =0 we consider g(x) = r2 Yoo and therefore Eq. 
(69) reduces to 

m3 = 5 h 2 {lOro(O) +9~a0"6(6-1)poO"(0)} ( 

ml 3 m Po(O) R2 (70) 

We note that the curly bracket in Eq. (70) is equal to Po(O)K. It may be seen from Tables 
I and II that the energy of the giant monopole resonance shows a dependence on the 
temperature analogous to the one exhibited by (h2 K/ (m< r 2» )1/2. The quantity < r 2> 
denotes the mean square radius and, for the distribution function (14); <r2> is equal to 
3R2/5. 

For electric modes the flow field may always be decomposed in the following way in 
terms of vector spherical harmonics: 

(71) 

For 7=0 only the radial function j+(r) is different from zero. In Fig. 6 we compare the 
field j + ( r) corresponding to the giant monopole resonance for the temperatures T = 0 and 
T=5 MeV. In both cases the fields have been normalized according to the orthogonality 
relation (58). As it is clear from Fig. 6, the flow field maintains the same shape but its 
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1.0 

............. 

.. / ... ;~:T: 5 M.V) 

8 ,[1m] 

Fig. 6. The radial function of j, according to (71), of 
the isoscalar giant monopole resonance for a . 
system with A=208. The full line (hw=13.7 
MeV) refers to the temperature T=O and the 
dotted line (hw=12.76 MeV) refers to T=5 
MeV. The curves are normalized according to 
Eq. (58). 

0.5 

-0.2 

-0.4 

......... LlT.OJ 

.••....•.••.... 

jjT.5M.V) \ • 

... 
..... 

1' .. ; 1 A = 20a 

..............•.•..... ,:;;:; ~." 

8, [1m] 

Fig. 7. The radial functions of j, according to (71), 
of the giant squeezing dipole for A=208: The 
full lines (hw=20.2 MeV) refer to T=O and the 
dotted lines (hw=18.86 MeV) refer to T=5 
MeV. The curves are normalized according to 
Eq. (58). 

amplitude decreases by a small amount as the temperature increases from T = 0 to T = 5 
MeV. 

1"=1-: The lowest 1- mode is the uniform translation which occurs at w=O. The giant 
squeezing dipole occurs at 20,20 MeV for T=O. Again its energy decreases as the 
temperature increases reaching the value of 18.86 MeV for T=5 MeV (see Fig. 5). With 
respect to the velocity field it is clear from Fig. 7 that there are same changes similar to 
the ones exhibited by the giant monopole resonance. 

1"=2+,3-,4+: In Figs. 8 and 9 the flow fields for the lowest excited states with 1"=2+, 3-
are presented. It is most remarkable to which extent the Tassie relation/ 41 v OC J7 rl Y lm , 

is recovered (we note that in a square density model the flow field j is proportional to the 
velocity field v). In fact we conclude from the well-known formula 181 
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Il( d l+l) +V2T+T dr +~r- rpYI,I-l,m, (72) 

that the velocity potential of the giant resonances with l'?:.2 is approximately rlYlm since, 
as it is evident from Figs. 8 and 9, the field j+ remains always very close to zero and j- is 
approximately proportional to rH. Such velocity fields have been imposed in nuclear 
fluid dynamics with good results. However, in this model, they appear in an approximate 
way as solutions of the equations of motion and boundary conditions. In view of the 
well-known relation Llrl Y1m =0 it is also clear that these modes may be interpreted as 
surface modes (characterized by a velocity field v satisfying J7. v=O) since in the interior 
of the nucleus OP ~ 0 and at the surface OP is proportional to a 0 function, as may be easily 
seen if we introduce the velocity field (l/m)J7xcx::J7rIYlm in Eq. (40). This is in good 
agreement with the statement that, if there exists a single collective state which exhausts 
the EWS for the excitation operator rl Ylm, the velocity field for that state should be 
irrotational and incompressible. 19

) In fact if the velocity field for a given normal mode 
was exactly proportional to J7 rl Y1m, then due to the orthogonality relation (58), all the 
other normal modes would carry no strength for the excitation operator rl Y1m. Since this 
scheme fulfils the sum rules ml and m3 (see Ref. 17)) such a state would exhaust complete
ly these two sums and therefore its energy would be exactly equalto (malml) 112. 

Although this scheme preserves the energy-weighted and cubic energy-weighted sum 
rules/7

) it may be seen from Table II that the quantities (m3/ml)1/2 have in general 
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different values from the lowest energy levels for each multipolarity. The reason why the 
energies of the giant resonances do not coincide with (m31 ml)112 is due to the distribution 
of strength over several levels. It is interesting to note that for I ~ 2 the energies of the 
giant resonances (see Table 1) and the quantities (m31 ml) 1/2 do not seem to be affected in 
a significant way by the temperature. If we consider an excitation operator g(x) = rl Y1m , 

we obtain4
) from Eq. (69) 

(73) 

where < t> = Qr 0(0) is the total kinetic energy of the nucleus. Therefore, the fact that the 
quantity (malml)I/2, evaluated for an excitation operator of the form g(x)=rly1m , does 
not depend on temperature in a significant way, is related to the fact that the equilibrium 
condition (30) and the zero range force here considered imply in an approximate way that 
the total kinetic energy < t> is proportional to the square of the nuclear radius (see Fig. 10). 

Finally we would like to note that fluid dynamical calculations as well as RP A 
calculations show that, for 1=1 and I ~ 3 the strength is distributed covering a wide energy 
region. ll) Our present results mean that the parametrization of 5, through a scalar field 
x(x, t) and the generalized scaling field s(x, t), is not adequate to describe the fragmenta· 
tion of strength, especially when a low lying state exists. In particular, we observe that, 
for T=O, a variational scheme,9)-Il).20).21) based on a more general choice of 5, l).amely 5 
= x+s' p+ (II 2) PaPp(j!ap, provides a good description of the case 1=1, since it succeeds in 
reproducing a low-lying mode and the giant squeezing dipole in agreement with the RPA 
(see table 1, p. 483, in Ref. 11) and Refs. 20) and 21)). 
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§ 5. Conclusion 

A variational formulation of nuclear fluid dynamics has been presented which is valid 
both for zero and finite temperatures. The equations of motion and boundary conditions 
for small amplitude vibrations around a stationary state were derived from an appropri
ate lagrangian. This formulation can be regarded as an approximation to a quantal 
treatment of the equations of motion as described for instance in the time dependent 
Hartree-Fock Theory or equivalently in the RPA. In fact in order to account for all the 
high multipolarity distortions of the Fermi surface predicted for example by Landau's 
zero sound theory we should not impose the severe ansatz (6) for the generator Sand 
instead we would have to allow for a completely general generator. Fluid dynamical 
schemes involving larger variational spaces, than the one implied by (6), have already 
been considered for T = 0 in Refs. 9) ~ 11). 

We have obtained the dependence on the temperature of the energy levels predicted 
by this model. We also obtained the dependence of the strength function on the tempera
ture. We have therefore achieved a variational formulation of nuclear fluid dynamics 
where temperature effects are most easily incorporated. This preliminary calculation 
aims only at illustrating the power of the method proposed. The natural way to improve 
the description of the strength distribution is to generalize the formulation presented here 
by including in the generator S the next term in an expansion in the momentum coor
dinate, namely (1/ 2)PaPpqJap (see Refs. 20) and 21)). In fact the truncation of an expansion 
of S in momentum space seems to be an adequate method of extracting important degrees 
of freedom for the collective motions, from the complicated nuclear system. A main 
feature of the results presented in this note and in Refs. 20) and 21) is that the energy of 
surface modes remains rather stable, when the temperature increases from zero to 5 MeV, 
in contrast with the behaviour of compression modes which show a significant dependence 
of the energy on the temperature. 

Nuclear fluid dynamics has the advantage of being a simple and physically transpar
ent formulation which is entirely selfconsistent and does not require complicated numer
ical calculations. We believe that nuclear fluid dynamics leads to a better understanding 
of nuclear collective motion which is one of the main themes of nuclear physics. 
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