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Several fundamental problems on a two-nucleon system in the momentum space are dis
cussed with the view that they will be useful for treating the two-nucleon problem completely 
nonstatically, i.e. without making use of the expansion in terms of the inverse of the mass 
of the nucleon. 

General forms for a two-nucleon potential in the momentum space are derived, and the 
integral equations which are the Fourier transform of the Schrodinger ·equation and their 
solutions are briefly discussed. Formulas for matrix elements of the most general types of 
potentials are evaluated and are applied to the nonstatic one-pion-exchange potential. 

§I. Introduction 

As has been stressed by Taketani and Machida,I> one of the most important 
problems in the theory of nuclear forces will be to evaluate the nonstatic effects 
in a consistent way, especially avoiding the expansion with respect to the inverse 
of the mass of the nucleon. One way to do so will be to treat the problem in 
the momentum space throughout. It is the aim of this paper to give fundamental 
formulas to carry out such a program. 

First, we will derive in § 2 the most general expression for a potential in the 
momentum space, which has been used by Hoshizaki and Machida2> ·3> (hereafter 
referred to as HMI and HMII respectively). In § 3, the integral equations in the 
momentum space, which are the Fourier transforms of the Schrodinger equations 
in the configuration space, are discussed, and after separating the angular variables, 
scattering amplitudes are connected with phase shifts. In § 4, formulas for matrix 
elements of the most general forms of a potential in the momentum space will be 
given, and in § 5 we will apply these formulas to the one-pion-exchange potential 
with full recoil in the case of the pseudoscalar coupling, and in § 6 the phase 
shifts in the Born approximation will be obtained. Actual solutions of the integral 
equations derived in § 3 will not be given in this paper, but will be reported in 
a forthcoming paper. 

§ 2. General forms of a potential in the momentum space 

We consider the nucleon-nucleon scattering as shown in Fig. 1 in the centre-

* This work has been done as a part of the 1960~61 Annual Research Project on Nuclear 
forces or~anized bf the Research Institute for Fundamental Ph?'sics, K?'oto Universit!· 
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Nuclear Forces in the 1\domentum Space 

of-mass system, and define the following quantities: 

and 

k l=--
Jkl ' 

(1/2) (p+p') ==q, p-p'==k, 

m = __!1_____ and n 
Jql ' 

kXq 
jkXqj 

pXp' 
jpXp'j 

Then, the most general form of the potential between two particles 
with spin one half in the momentum space is as follows: Fig. 1 

(2·1) 

65 

where V 0, ···, V 5 are real functions of k2
, q2 and (kX q) 2

• In order to derive 
Eq. (2 ·1) we have assumed invariance4>' 5>' 6> with respect to translation, Galilei 
transformation, the exchange of two particles, rotation, space reflection and time 
reversal, and Hermiticity of the potential. 

Okubo and Marshak7
> first derived this general form which corresponds to the 

Fourier transform of Eq. (2 ·1) with respect to k. Since we will need the relation 
between x-representation and p-representation which is not necessarily trivial (see 
the Appendix of HMI), it will be convenient to derive the above formula in our 
own way. 

Consider the matrix element of a potential operator, v, from a two-nucleon 
state with momenta Pt and P2 to the one with momenta p/ and p/, which may 
be written as the Fourier transform of a nonlocal potential in x-space in general, 

(p/, p/lvJpb P2)-
1 f dr/ dr/ dr1dr2(r/, r/lvl r1, r,) 

, (2n) 6 J 
Xexpi(p/ ·r/ +p/ ·r/ -p1·r1-p2·r2). 

(I) Translation invariance 

We have 

(2·2) 

(2·3) 

where a is an arbitrary vector. Inserting Eq. (2 · 3) into Eq. (2 · 2), we obtain 

(p/, p/jvjpl, p2)=(p/, p/jvjpl, P2)·exp[ -i(p/+p/-pt-p2)a]. 

Therefore, one may write 

where 

(p/, p/lvlpt, p2)=o(p/ +p/ -pl-p2)(p/, p/l Vlp1, p2) 

=()(Q' -Q) V(Q, P', P), 

Q=pt+p2, Q'=p/+p/, 

P= (1/2) (p1-p2) ~ P' = (1/2) (p/-p/). 

(2·4) 

(i) 

(2·5) 
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66 J. Goto and S. Machida 

(II) Galilei · invariance 

The condition for Galilei invariance gives 

(2·6) . 

'\~There q is an arbitrary momentum vector and masses of participating particles 
are assumed to be equal. Eq. (2·6) gives a condition on V(Q, P', P), 

V(Q+2q, P', P) = V(Q, P', P). 

So we have, writing the spin dependence explicitly, 

V = V ( CT (1), CT (2), k, q) , 

where 

k=P-P'=p1-p/=- (p2-p/), 

q= (1/2) (P+P') = (1/4) (p1 +p/ -p2-p/). 

(III) Symmetry condition 

V is invariant when particles 1 and 2 are interchanged, i.e. 

V(u<l), u<2>, k, q) = V(u<2
\ u<1>, -k, -q). 

(IV) Rotation invariance 

Invariant functions are functions of k\ q2 and (kX q) 2
• 

(V) Space reflection invariance 

V(u<1>, u<2> k, q) = V(u<1>, u<2>, -k, -q). 

From (iii) and (iv), we have 

V(u<1>, u<2>, k, q) = V(u<2>, u<1>, k, q). 

(VI) Time reversal invariance 

V(u<1>, u<2>, k, q) = VT( -u<t>, -u<2>, k, -q). 

V T means to reverse the order of operators. 

(VII) Hermiticity 

(2·7) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

As we assume charge independence, V 0, • • ·, V 5 are divided into . 1-terms and 
( T<

1
> • T<

2>) -terms in isotopic space. As for the u-dependence, they are separated to 
the zeroth, the first and the second order terms with respect to CT. Then, the zeroth 
order term, V 0, is a function of k 2

, q2 and (kXq) 2 from (IV). In the first order 
term. of u, u<1> and u<2

> appear always in a formS= (1/2) (u<1>+u<2>), i.e. (S·kX q). 

And the second order terms of u may have the following factors, 

(u<1> ·u<2>), (u<1> ·k) (u<2> ·k), (u<1> ·q) (u<2> ·q), 

(u<1> · k) (u<2
> · q) + (u<1

> · q) (u<2
> • k) and (u<1> • kX q) (u<2

> • kX q). 
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Nuclear Forces in the Momentum Space 67 

Among the above five terms one may be expressed by other four types, so we 
take the next four terms as independent terms, 

Therefore, we have six independent types of potentials, V 0 , • • ·, V5, in general, as 
we see in Eq. (2 ·1). In the static approximation, only V 0 , V 2 and V 5 survive, 
and if we evaluate the potential up to the first order of the inverse of the mass 
of the nucleon vl appears. v3 and v4 appear as the second order correction to 
the static potential with respect to the inverse of the mass of the nucleon. As 
our intention is to take the nonstatic effects fully into account, it is necessary to 
treat all types of potentials on the equal footing. 

When we consider the matrix element of a potential, the energy conservation 
law does not hold in general. However, when we consider the scattering matrix 
for two nucleons, where the energy must be conserved, we have just five (instead 
of six) independent types and, furthermore, invariant functions are functions of 
k2 and q2 only. This is because of the identity, 

(u<1J • k) (u<2
> • k) · q2+ (u<tl · q) (a-<2> • q) · k2+ (a-<1> • kX q) (q<2l ·kX q) 

= (a-<1> • u<2l) (k X q) 2 + (k · q) { (u<1
> • k) (u<2

> • q) + (u<1> • q) (u<2
> • k)}, 

and equations 

It should be remarked that the assumption of the conservation of energy in the 
derivation of a non-static potential introduces serious errors in general (see HMI). 

§ 3. Integral equations in the momentum space and phase shifts 

In order to compare the potential in § 2 with the experiment, it is necessary 
to solve the integral equation which corresponds to the Schrodinger ,equation in 
the momentum space. We will discuss only the main points, which will be ne
ce~sary in our later, discussions, referring to a paper by Signell8

> for more detailed 
discussions. 

The basic equation is the following, 

(3 ·1) 

where p and p' are momenta as shown in Fig. 1, Ep0= (1/2) E is the incident 
energy of each particle in the centre-of-mass system, and Ep1 = (1/2) H 0 where H 0 

is the free Hamiltonian. 
In order to separate the angular variables in Eq. (3 ·1), we expand the wave 

function and the potential into the spherical harmonics : 

(3·2) 
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68 J. Goto and S. Machida 

where9
l 

Y~l,s= ~ Czs(J, M; mz, ms) Y~l(Qv)'X;11 • 
mz, ms 

For simplicity we will treat the uncoupled states and give the relation hctween 
scattering amplitudes and phase shifts. The coupled states may also be treated by 
a slight generalization as discussed by Signell8>. Using the following matrix 
elements of the potential, 

{' 

Vz (p, p') == J Y:Y,ts(!Jv,) V(p, p') Y:Y,z,s(!Jv) dQv, d!Jp, (3 ·3) 

we can rewrite Eq. (3 ·1) in one-dimensional equation, 
{' 

(2Ev0 -2Evr)gz(p') = J p 2 dp Vz(p, p')gz(p). 

Thus the scattering solution is given by10
l 

and may also be written in the following way : 

gz(p') =f3(2Ev0 -2Epr) + P 1 fz(p'), 
2Ep0 -2Ev' 

where 
CXl 

fz(p') = 1p2 dp Vz(p, p')gz(p), 
0 

Using Eq. (3 · 5) and 

we obtain an equation satisfied by fz (p') , 

Ji (p') f!,B (p')+ p 1 p' dp ~ <~>:__ ~'}!! (p) ' 
O PO p 

where fz,n(P') is the amplitude in Born approximation, 

fz,n(P')- Po·EPo Vz(po, p'). 
2 

(3·4) 

(3·5) 

(3·6) 

(3·7) 

Now phase shifts, az, are defined by the asymptotic wave function in the con
figuration space, 

(3 ·8) 

Transforming this equation into the momentum space in the vicinity of the sin
gularity, we have 
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Nuclear Forces in the Momentum Space 69 

tan6~ p. __ 1 __ 
1 

+R(p'), 
n Po-P 

(3 ·9) 

where R (p') is a non-singular function at p0• 

It is seen that Eq. (3 · 5) is written as follows: 

Yz (p') ""'-'()(po-p') + P · 1 
1 

fz (po) + R (p'). 
Po-P 

(3 ·10) 

Comparing Eq. (3 · 9) with Eq. (3 ·10), the relation between the scattering solution 

and phase shifts is given by 

(3·11) 

In the Born approximation, we have 

(3 ·12) 

So we must solve Eq. (3 · 6) to obtain scattering phase shifts. Using 

for the nonrelativistic case, 

for the relativistic case, (3 ·13) 

we obtain 

f,(p') f,,B(p'H PI p'dp u;;~:)J~(p) , 
0 

(3·14) 

where U(p', p) is not singular anywhere (we assume U(p', p) IS bounded when 

p '--7 oo or p--7 oo) , and is defined by 

U(p', p) _ V(p', p) (3·15) 
Po-P 

Eq. (3 ·14) is a singular integral equation, the kernel of which has a pole of the 
first order at a fixed point p =Po in the range of the integration. The integral 
equation of this type is generally known to have a solution.11

l 

Eq. (3 ·14) is also easily transformed into. a Fredholm integral equation of 

the third kind with a symmetrical kernel, 
(X) 

I(p')Fl(p') fz,B(p') + 1 Vz(p', p)Fz(p)dp, (3 ·16) 
0 

where 
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70 J. Goto and S. Machida 

F (p) _ fz(P) . 
z I( ) ' p 

Eq. (3 ·16) may be solved by standard methods used to solve the Fredholm 
integral equation of the second kind. Evaluation of phase shifts will be treated 
m a separate paper making use of these integral equations. 

§ 4. General formulas for matrix elements of potentials 
in the momentum space 

In this section we calculate the matrix elements of the potentials by operating 
the most general potentials in § 2 to the eigenfunctions of a two-nucleon system. 

If we write 

Vz,u = i Yr:f.~,,s(S2p,) VYIJ,l,sU2p) dJ21, d!211 , 

there are four diagonal elements Vz,l> one for S=O and three for S=l with l=J, 
J ± 1. Also, there are two non-diagonal elements Vz u, for S = 1 between l' = J =F 1 

and l = J ± 1. There are, in all, five independent matrix elements, because Vl, u = Vu, 1• 

Vz,z and V1,u are real functions and they do not depend on M, the magnetic quantum 
number, owing to the rotation invariance and hermiticity of the potential. S is 
als9 conserved between two states before and after the potential operator because 
of parity conservation and charge independence. So we may use the following 
notation, 

Vz,z(p, p') == 1 YIJ.~.sU2p,) V(p, p') Y~.z.sU2p)dJ21,, d!2p, 

Vz,zr(p, p')-i Y!J.~r,s(Qp,) V(p, p') YJ,l,-':(!2p)dJ27,r d!21,. 

(4·1) 

(4·2) 

Inserting Eq. (2 ·1) into Eqs. ( 4 ·1) and ( 4 · 2), we have carried out the integral 
of angular variables for each type of V 0, • • ·, V5, and the results are given in the 
following. Since Vi,s in Eq. (2·1) contain not only k 2 but also q2 and (kXq) 2 

(which correspond to the most general nonlocal and angular momentum dependent 
potentials in x space), their calculations are very troublesome though straight
forward. 

Two states before and after the potential operator may be designated by l, since 
J and S are conserved between an initial and a final state. For example, a matrix 
element for l=J in a spin singlet state of V 0 type is written as (jl V0 lj). 

(1) For spin triplet states : 

(J -11 VoiJ-1)=2nA~-I, 
(JI VoiJ)=2nA~, 

(J +II VoiJ + I)=2nA~+l, 

(J +II VoiJ -1)=--=:(J -II VoiJ +I)=O. 
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Nuclear Forces tn the Momentum Space 71 

For a spin singlet state: 

(jl Volj)=2nA/, 

where 

An°= i VoPn(z)dz, 

and V 0 is the same one as V 0 in Eq. (2·I), Pn(z)'s are Legendre functions of 
the first kind, and z==(p·p')/lpl·lp'l. 

(2) For spin triplet states : 

(J-IIV~IJ-I)=47r (J-I) [A/-AL2], 
(2J-I) 

<JIV IJ)=47r[- (J+I) A 1
J 1+ I A1 

] 1 (2J+I) 2 + (2J+I) J-l ' 

( J +II V I J +I)= 4n [ -- ( J + 2) A 1 +- ( J + 2) 1 
(2J +3) J+

2 
(2J +5) 

( J +II Vtl J -"-I)- ( J -II V1l J +I)~ 0. 

For a spin singlet state : 

where 

(3} For spin triplet states· 

- [ A2 (0) A2J(O) l 
(J-IJV JJ-I)=2n (p2+p'2

) __ J~-2pp'~---
2 (2J +I) (2J +I) -' 

(JIV21J)=2n[ (p2 +P'2)A~,CO> (
2
j!'I) {J·A~~>l+ (J+I)A}~H ], 

[ 
A2(0) A2<ol J 

(J+IIVIJ+I)=2n -(p2 +p'2) ·'+1 +2pp' J 2 
(2J+l) (2J+l) ' 

( J +II V2l J -I)== ( J -11 V2l J +I) 

_ 4nv J(J +I) LP'2. A:!~ +p2 A2(0) _ 2pp'. A2<0>J. 
( 2J + I) J 1 J + 1 J 

For a spin singlet state: 

(jl V2Jj)=2n[- (p2+ p'2)A7<0)+2pp' A7<1>], 
where 
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72 J. Goto and S. Machida 

( 4) For spin triplet states: 

(J -1\ V3\J -1)= 2n (p2 + p'2) J-t ~+- 2pp' , [ 
A:l(O) A~(O) J 

(2J+1) (2J+1) 

(J\Va\J)=2n[ (p2 +P'2)A~<0>+(:J!~ {J·A~~l+ (J+1) ·A~~l} ], 

(J+1\V3\J+1)=-2n[ (p
2
+P

12
) ( 2~~\) +2pp' ( 2~~)1 ) ], 

(J +1\ V3\J -1)==(J -1\ V3\J +1) 

_ 4n-V J(J + 1) [p'2. A:'~> +p2A:>co> +2pp'. Aaco>J. 
(2J + 1) J 1 J+l J 

For a spin singlet state : 

(j\ V3\j) = -2n[ (p2+ p'2) A~<o> + 2pp' · A1<1>], 

where 

A!<'> = J :: Pn ( z) zl dz . 

(5) For spin triplet states: 

(J-1\V41J-1)=2np2p'2[ 2 . A:P>+ (2J- 1) A~~l-A~~>l], 
(2J+1) (2J+1) 

<JjV4 \J)= 2np2p'2[-A~<o>+ (J+2) A4<1>+ (J-1) A4<t>] 
(2J + 1) J-l (2J + 1) J+l ' 

( J + 1\ V 4 \ J + 1) = 2n p2 p'2 
[ 

2 A4<l>_A4<2> + (2J+3) A4<o>J 
(2J + 1) ·' J+l (2J + 1) . J+l ' 

(J + 1\ V4\J -1) ==(J -1\ V4\J + 1)= 4n p_~p'
2 v J(~ + 1) [A~~>l_ A~~l]. 

. (2J +1) .. 

For a spin singlet state: 

(j\ V4\j)=27r p2
• p'2 

[-A'(O) + A;<2>]' 

where 

(6) For spin triplet states: 

(J -1 I V5\J -1)=2n A~-1, 

(JI V5\J)=2n AJ5
, 

(J + 1 I V51J +1)=27r A~+l, 

(J + 11 V5\J -1)==(J -11 V5JJ + 1)=0. 
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. For a spin singlet state: 

where 

§ 5. The one-pion-exchange potential (OPEP) 

In this paragraph we will consider the one-pion-exchange potential, V<2>, as

suming the pseudoscalar coupling.* The types 1'2, V 3, V4 and V5 appear of the 

six possible types of the potentials in Eq. (2 ·1), 

where 

V<2) = (CT(l) ·l) (0"(2
) ·l) v2 + (u(l). m) (0"(2

). m) Vs 

+ ( CT(l). n) ( 0"(2). n) v4 + ( O"(l) • 0"(2)) . v5 
(u<1>·k) (u<2>·k) V (u<1>·q) (u<2>·q) 

jk2J 2 + Jq2J Vs 

(u<1
> · k X q) (ul2> • k X q) + V4 + (u<1

> • o-<2>) · Vo, 
jk2J·Jq2 j·sin2 (k·q) 

V2=----k2 19+ q a , G { 2 ~ } 
A+Bz (k·q) 

V _ G 2 r k2 ·a } 
s- A+Bz q ir+ (k·q) ' 

V4- G k2 ·q2 ·sin2 (k·q)~-, 
A+Bz (k·q) 

V5=__£_ . - -2a- {k2-q2- (k·q)2}' 
A+Bz (k·q) 

G= _ _!_g2. (T(l) ·T(2)) ~ _{EP+l\IJ) (Epr+M) ' 
16 M Ev·Ep, 

A=p2+p'2+1u2- (Ep-Ep,)2, 

B=-2pp', 

1 
a=--~----

(1+(EP/M))2 
1 

(5 ·1) 

(5 ·2) 

* Properties of the one-pion~exchange potential, both in the cases of the pseudoscalar and 

pseudovector couplings, have been investigated in detail by HMT. 
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;74 J. Goto and S. Machida 

( 1 1 ·)
2 

r= 1f(Ep,/M) 1+(E7,,jM) . 
(5·3) 

g is the pseudoscalar coupling constant and fl is the mass of the piOn. ·These 
potentials contain nonstatic effects completely, i.e. they are not expanded with 
respect to the inverse of the mass of the nucleon. Only V2 term remains in the 

static approximation : 

v<2). =- (-g-) 2 
(r(l). 7"(2)) (u(l) ·k) (u(

2
) ·k) . __ 1_ 

stat1c 2M (k2+p.2) , (2n)3 

1 
(5·4) 

(2n) 3 

When we apply the general formulas in § 4 for the one-pion-exchange potential, 
we obtain the following matrix elements. From equations given in § 4, we get, 

for spin singlet states, 

(jJ V<
2
> (p, p') Jj) = i (2n) [- (p2+ p 12

) -ft- P,1 (z) + 2pp' ~2 PJ(z) · z J dz 

- j (2n-) [ (p'+ p") · :: P,(z) +2pp' · ~: P,(z) z ]dz 
+ [ (2n)p2p'2[- V4·PJ(z) 

J k2 ·q2 ·sin2 (k·q) 

-1 (6n) V 5 ·PJ(z)dz. (5·5) 

Inserting Eq. (5 · 2) into Eq. (5 · 5), and carrymg out the integral with respect to 

z. we obtain 

(JI v<2
> (p, p') IJ)=(JI v2<2)IJ)+(JI Va<2

> IJ)+(JI v4<2>IJ)+(JI v5<2)IJ), 

where 
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Nuclear Forces ln the Momentum Space 75 

=12nG ~ [ { 

4p2pl2 ( 1 )] 
(p2-p'2) xoaJ,o+3aJ,t ' (5·6) 

where QJ(x0) 's are Legendre functions· of the second kind. Then we find the 
result which agrees with Signell's results from Eq. (5·5) and Eq. (5·6), i.e. 

(5·7) 

where 

_ p.2 +2(Ev·Ev,-M2
) 

Xo 1 , 
2pp 

_ p(Ev,+M) + p'(E1,+M) 
1J 2p' (Ev+ M) 2p(E11, + M) 

Other matrix elements for spin triplet states are also evaluated 1n the same way, 
and the results are given by 

(J-11 v<2>(p· p') IJ-1) 

= < J -11 v2 ('2) 1 J -1 > + < J -11 v3 <2> 1 J -1 > + < J -11 v4 <2> 1 J -1 > + < J -11 v5 <'2> 1 J -1 ), 

where 

< J -11 v2 (!!) 1 J -1 > 
=2nG[ (p2+ p'2) { ( (p2+ p'2) 2pp' a ) ( -2) . 

(2J+ 1) (9+ (p2-p'2) a+ (p2-p'2 ) Xo ~-QJ-t(Xo) 

4pp'a a } 2pp' {( (p2+p'2)a 2pp'a ) 
+ (p2-p'2)B J,l (2J+ 1) (9+ (p2-p'2) + (p2-p'2) Xo 

X _(:- 2) QJ(xo) + 4PP' a a }] 
B (p2- p'2)B J,O ' 

(J-11 v3<2>JJ-1) 

=27rG[ (p2+p'2) {(. (p2+p'2) 2pp'a ) (-2) 
(2J + 1) r + (p2- p'2) a (p2- p'2) Xo B QJ-1 (xo) 

4pp' a " l 2pp' { ( (p2 + p12)a 2pp' a ) 
(p2- p'2)B oJ,lf + (2J + 1) r + --(ji- jl2)- (p2- p'2) Xo 
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( -2) 
X ------y;-- O.r (xo) 

< J- II. v4 (!l) 1 J -I> 

=2nG[ 8p?,p'2a ( 2A OJ(xo)+~o,o)+ 4p2j_/~a-~~J-I)_ 
(p2- p'2) (2J +I) B2 -- B . . (p2- p'2) (2J + 1) 

< J'- II v5 (2) 1 J- I> 

+ 2x0 " 2 " )] ~-OJ 1 +--OJ 2 
B ' 3B ' . 

From this we obtain 

(J-IIVI2liJ-I)= (L) IQ.r(Xo) -'lQ.r-i_(xo)] . 
471" 2rrEpE1, (2J +I) 

Also, for L=J +I, we obtain 

< J + II v<2
) (p, p') 1 J +I> 

· =<J +II V2 12)IJ +I)+(J+ II v3<2liJ + I)+(J +II v4
12>JJ + I)+(J +II v5<2liJ +I), 

where 

(J+ II v2<2lJJ+I) 
' '\ . 

_ [ _ (p2+p'2) f (p2+p'2)a, ( _ 2 ) _ (p2+p'2) 2pp'a 
-2nG ~(2J+If-- ·1t9+ (p2-p'2) f --B- QJ+l(xo) (2J+I) (p2-p'2) 

X(~ 2xo_QJ+l (xo)) + 2pp' Jt9+ (jJ2?+ p'~) a l (.-=-~) Q.r (xo) 
(. B (2J+l) t (p~-p'2) f : B · 

4 p
2 
p

12 
a ( - 2x0 2 -, ) J 

: (2J+I) (p2-p'?Y B OJ(xo) +-Bo.r,o '. 

(J+II Vs<2liJ +I) 
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+ 2x0 " + 2 , " ) J ~---OJo -OJl 
B ' 3B ' ' 

and 

And, for L = J~ ·we obtain 

where 

(JI v2<2>1J) 

=2rrG[(p2~ p'2) 1(3+ (p2+p'2)a l (-__l__QJ(xo)) +J.pp'(p2+p'2)a 
I (p2 _ p'2) J B (p2 _ p'2) 

X (-__l__xoQJ(x )) __ _Q,_p_f!l_ J/g+Jp
2

+ p'
2)a} 

B 
0 

(2J+1) t (p2 -p'2
) 

\ 

X {J · (- !-) QJ+l(xo) + (J + 1) (- ~) QJ-t(Xo)} 

_ (2pp') (2pp' a) J J (- 2 x Q (x )) 
c2J + 1) Cp2- p'2) l B o J+l o 

+ (J +1) (- ~ xoQJ-I(xo) + ~ oJ,1) ~ J, 
(JI v3<2

> IJ) 

=2n:G[(p2+ p'i) (r+ (p2+p'2)a) (-__l__QJ(xo)) _J_pp'(p2fp'2)a 
(p2 _ p'2) B (p2 _ pn) 

X (--~-0 (x) x) + (_'!-_p_p_' ) (r + (p
2 + p'

2)a) 
B ~J o o 2J + 1 - (p2- p'2) 

X { J ( -__'!-__) QJ+l (xoY + (J + 1) ( _ __1__) QJ-1 (xo)}- _____Qp~?-
, B B (2J.-1) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/25/1/64/1943483 by guest on 25 August 2022



78 J. Goto and S. Machida 

X (2PP' a)- j J ( -~) x 0 QJ+l(x0 ) + (J +I) ('-~xoQJ-1 (xo) +~lJJ 1)}], 
(p2-p'2) l ' B R B , 

(JI v4<2)IJ) 

=2rrG[ (;:~;:) 1-(- ~) QJ(x0)+ g)~2i) (- 2
;

0 
QJ_1 (x0)+ ! <lJ,l) 

(J-I) ( 2 Q ( ))\] + (2J+I) -Bxo J+l Xo J , 

(JI v5<2) IJ) 

=2rrG[ 

so we obtain 

<JI v<2
) (p, p') rJ> 

= ~ (L) [ (2J"±l)_'1QJ(.t;o)- JQJ+t (xo)- (J + 1) QJ-t (xo)] . 
4rr 2rrEPEr (2J +I) 

For a non-diagonal element, we have 

(J+II v<2) (p, p') IJ-I)==(J-II v<2) (p, p') IJ +I) 

= < J +II v2 <2) 1 J -I>+< J +II v3 <2) 1 J -I>+< J +II v4 <2> 1 J -l ), 

where 

(J+1l v2<2>IJ -I) 

= 4rrG ~~ft_~ [ 1P + <~,+!);x } 1 p" (- ! ) Q, _, (x.) + p' (- ! ) Q, +' (x,) 

- 2pp' (- ~ ) QJ(xo) J + (;f!_~~2) {P'2 
(- ~ ) XoQJ-1 (xo) + ~ lJJ,l 

+ p 2 
(- ~ -) x 0 QJ+t (x0)- 2pp' ( (- ~ ) XoQJ(xo) + ~ llJ,o)} J, 

( J + 1\ Va (2) I J -1) 

=4rrGV J(J +I)[{--+ (p2+ p'2)a 1 ~p'2 (-~) Q - (x) +p2 (-~) Q (x) 
(2J+I) I (p2-p'2) f \ B J 1 0 B J+1 0 

+ 2pp' (-~?-) QJ(x0) l 2PP' a ·fp'2 (-~xoQJ t(Xo) +~lJJ ~-) 
, B J (p2

- p'2
) B - B ' 
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so we obtain 

< J + ll v (2) (p, p') I J -1 > = - ( 4g; ) VI J ( J + 1) 
2n E 7,EP, (2J + 1) 

x[ P,(Epr+M) QJ+l(xo) + p'("F._l'_±M)_QJ-l(xo) -2QJ(xo)]. 
p (Ep+M) p(Epr+M) 

§ 6. Phase shifts in the Born approxi~ation 

Phase shifts for the most gen~ral potential in the Born, approximation are given 
without solving the integral equations. Using Eq. :(3 · l2) and Blatt-Biedenharn 

phase parameters/2
l we obtain the following results, where IPI = IP'I Po; 

for a spin singlet state 

tan1 a1,n=- np~Po (jl V(po, Po) Jj); 

for spin triplet states 

so we have 

tan3 aJ,n= 

XJ-1,B=-

rrp; Epo ( Jj V (po, Po) I J)~ 

npoEPo (J-1jV(po, Po)IJ-1), 
2 

XJ+1,n=- np~Po (J+l\V(po, Po)JJ+l), 

YJ-t,n= + _!!P_~Po (J+ljV(po, Po) JJ-1), 

YJ+I,B = + np;F;_!!L(J-ljV(po, Po) JJ+l), 

The results may be written in the following way: 

(1) V 0 type 

tan1 a1,n= -n2 poEPoA/, 

tan3 aJ,n= -7l'
2 PoEPoA/, 

XJ-1,B= ~7!:2 PoEp0 AL1, 

X.J+t,n= -7!:
2 poEr)0 A~+t7 
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where 

(2) vl type 

tan3 lJJB=-2~r2 poEp0 [-~_iJ+_Q_AL1+ 1 A~-IJ, ' (2J+1) 2 (2J+1) 

2 (J-1) 1 XJ-1 B= -2.-:- PoEpo [A}-AJ-2], ' . (2J-1) 

XJ+1 B= -2:72 PoEPo[ _ ___Q_-+ 2) -AL2+ (J+ 2 ) A/], 
' (2J +3) (2J +5) 

where 

A 1 = f- V Jp_D__l_~l_P_'ft_(z )_ dz 
n J sin (p · p') 

provided that /p/ = /p'/ Po· 
(3) v2 type 

1 " 2 E [ A2<0> + A2<1>] tan o1,B= -II' Po Po - J .T , 

tanao = -n2p E, [A2<0> ___ J __ A2<0> _ __i{j-ll____A2<o>J J,B o ro J (2J + 1) J+1 (2J + 1) J-1 ' 

_ 2 E [ 1 A2<o> 1 A2co)] XJ-1,B--1r Po Po ~-(2J+D J-1-- (
2J+ 1) J , 

_ ,.,.2 E [ 1 A2co> + 1 A2co>] XJ+1,B--,. Po Po - (2J+I) J+1 -(2J+D~ J , 

YB = 7r2j>o Er, ~J ( { j- fY [ A~~f + A~<Oi- 2A~<0>] 0 (2J + 1) . + ' 

where 

(4) V3 type 

tan1a1,B= 4r.2 p0Ep0 [A~<o> + A;}-<1>], 

tan3 aJ B=- 4n2 poEp [A;}-<0> +~________!__--~A;}-~~i + (J - 12--A}~i] 
• 

1
. · 

0
._ (2J+1) (2J+1) ' 
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X.r-l,B=-4n
2poEr>o[ ( 2J~l) AY'!{+- ( 2J~l) A:~(O)J, 

X.r+1,B= 4n
2 
PoE110 [ (

2
J ~ l) A:~~0{ +-(2J~ l)AY

0)l 
-4 2 p E vJT!_l__l).[-A;<o)+A'<O) +2A;<olj-YB- 7r o ~Po J-I . .J+l .r , 

(2J+l) -

where 

(5) v4 type 

tan1 a j, B = - 7r
2 Po EPo [- Aj<O) + Aj<2l], 

tan3lJ = -rc2p E [~ A4(0) + ---(J +2L_A4(1) + _ _iJ -1l__Act(l)J 
J,B 0 1'0 ,J (2J + 1) .T-1 (2J + 1) .T+l ' 

_ 2. E [ 2 At(l)+ (2J-1) 
X.r-1,B--'!r Po Po ( 2J+ 1y- .r ( 2J+l) 1 4(0) _ A4(2)l 

• .7-1 ,J-l , 
_I 

where 

provided that 

IPI=Ip'I-Po· 
(6) v5 type 

1' 3 2 E A5 tan oj,B= 7r Po Po 1 , 

3' 2 EA5 tan O.r,B= -Jr Po 1'o - .r' 

yB=O, 

where 

An5= J V5(po, z) p,Jz) dz. 

The authors would like to thank Professor M. Taketani for his stimulating 
discussions, One of the (luthors (S. J\1) takes this opl?ortunity to rec(lll with 
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pleasure several interesting discussions with Professor R. E. Marshak and Dr. 
P. S. Signell ~while he was staying in U.S.A. 
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