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INTRODUCTION

The nuclear hormone receptors are transcriptional
regulators that activate gene expression upon binding
of their respective ligands. A new class of protein,
termed coregulators, has emerged during the last few
years. These proteins have the faculty to repress
(corepressors) or to enhance (coactivators) the activity
of genes regulated by nuclear hormone receptors in a
ligand-dependent fashion. In this review we describe
most of these coregulators and discuss their mode of
action. In particular, we comment on the link between
coregulators and histone acetylation, which is a crucial
event in the transcriptional response within chromatin.
We describe novel alternative pathways, which elicit
the recruitment of coregulators independently of the
presence of any ligand and speculate on how the
convergence of ligand-dependent and -independent
mechanisms might enhance the transcriptional re-
sponse of target genes.

DESCRIPTION OF THE NUCLEAR HORMONE

RECEPTORS

Nuclear hormone receptors are ligand-inducible tran-
scription factors that are involved in a number of phys-
iological and cellular events (see Table 1 for nuclear
receptor nomenclature). Together, they form a super-
family, which includes the classic steroid receptors
(androgen, estrogen, glucocorticoid, mineralocorti-

coid, and progesterone receptors), the thyroid, vitamin
D, and retinoid receptors, as well as many others that
have been characterized more recently. All of them
share common functional domains named A to F. The
N-terminal A/B region is weakly conserved among the
members of the superfamily, has a variable length, and
contains an autonomous activation function (AF-1).
The conserved C domain is the DNA-binding domain,
which consists of two zinc-finger-like motifs. The D
domain is a variable hinge. The multifunctional C-ter-
minal half of the protein (domain E) encompasses the
ligand-binding domain (LBD), a second activation
function (AF-2), a dimerization domain, and a region
involved in nuclear localization. The AF-2 autonomous
activation domain (AF-2 AD) is composed of an am-
phipathic a-helix that is highly conserved among nu-
clear receptors and is critical for transcriptional acti-
vation (1–4). The most C-terminal region (domain F) is
variable and has no known function. This domain is
absent in some receptors such as the progesterone
receptor (PR), peroxisome proliferator-activated re-
ceptors (PPAR), and retinoid receptors [retinoic acid
receptor (RAR), retinoid X receptor (RXR)].

Transcriptional activation by both AF-1 and AF-2 of
the estrogen receptor (ER) is cell type specific and
relies on the promoter context of the hormone-
response element (HRE) (5). This suggests the exis-
tence of different mediating or coactivating proteins,
several of which have been identified to date (see
below). These mediators interact with the LBD and
some are capable of increasing the AF-2 response in
a ligand-dependent fashion. On certain promoters,
AF-1 and AF-2 must synergize to reach efficient trans-
activation.
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NUCLEAR RECEPTOR COACTIVATORS

The observation of transcriptional interference or
squelching between steroid hormone receptors pro-
vided evidence for the existence of limiting common
transcriptional cofactors that mediate AF-2 function (6,
7). The subsequent biochemical identification of sev-
eral nuclear receptor-interacting proteins in a ligand-
dependent manner supported this hypothesis (8) (Ta-
ble 2). These mediators or coactivators are required to
achieve efficient transcription (reviewed in Refs. 9–11).

COACTIVATORS, A GROWING FAMILY

Numerous potential receptor-interacting proteins were
identified and described in the past few years (Table
2), and many others will certainly be discovered in the
near future. This rapid increase has led to some con-
fusion in the nomenclature and raised questions about
the definition of a coactivator. A real coactivator must
fulfill certain requirements. First it must interact directly
with the activation domain of a nuclear receptor in an
agonist-dependent manner (but not in the presence of
an antagonist), leading to enhancement of the recep-
tor activation function. Most of the potential cofactors
meet this definition. A coactivator should also interact
with components of the basal transcription machinery.
Finally, coactivators should not enhance the basal
transcriptional activity by their own, although they
contain an autonomous activation function (12, 13).
Indeed, in the absence of a nuclear hormone receptor,
coactivators cannot be recruited to promoters and
therefore cannot coactivate transcription. Here, we will
first discuss some well characterized coactivators and
then we will comment on proteins whose coactivator
status is not clearly established.

SRC-1/CBP/p300/pCAF: A COACTIVATION

COMPLEX?

Among all the described coactivators to date, SRC-1
(steroid receptor coactivator 1) has attracted much
attention. The human SRC-1 was first discovered as a
ligand-dependent interacting protein for the proges-
terone receptor (14). It appeared, however, that the
original cDNA clone was truncated at the N terminus
(15, 16). In addition to the full-length SRC-1 (mSRC-
1a, NCoA-1), several splice variants have been de-
scribed, e.g. SRC-1b, -c, -d, and -e (15, 17).

The isoform SRC-1e is a more potent coactivator for
ER than SRC-1a (13). For instance, the estrogen-reg-
ulated rat oxytocin promoter (2363/116) is coacti-
vated by SRC-1e but not by SRC-1a, as analyzed by
transient transfection assay in Cos-1 cells. On the
other hand, both SRC-1 isoforms stimulate ER-medi-
ated transcription from an artificial ERE-containing
promoter. Thus, coactivation by SRC-1a appears to
rely on the promoter context of the receptor target
gene. Both isoforms contain three nuclear receptor-
interacting motifs (LXXLL) found in many co-factors
(18). SRC-1a however possesses a fourth LXXLL motif
at its C terminus (13). The function of this additional
motif is unclear since its mutation does not affect
transcription. The difference in activity results most
likely from the presence of two distinct activation do-
mains in SRC-1. The first domain interacts with the
mediator CREB-binding protein (CBP)/p300, whereas
the second domain activates transcription indepen-
dently of CBP/p300. It seems that the extra C-terminal
portion of SRC-1a, which is not present in SRC-1e,
represses this CBP/p300-independent activation do-
main. The fact that the promoter context influences the
ability of SRC-1a to coactivate ER suggests strongly
that the recruitment of p300/CBP by SRC-1 is not
always sufficient on some promoters. The target factor
of the second activation domain is not known to date.

The interaction of SRC-1 with the estrogen recep-
tors depends on ligand and the integrity of helix 12
within the LBD and requires the presence of two func-
tional AF-2 domains in a receptor dimer (13). The
ligand-dependent interaction between SRC-1 and TR
was analyzed in detail (19). Five independent muta-
tions within the LBD of TR abolished SRC-1a binding.
These mutations include residues from helix 3, 5, and
12, which form a small interaction surface encircling a
hydrophobic cleft. A similar mutation (K366 in helix 3)
in the mouse ER was shown to interfere with SRC-1
recruitment (20). More recently, a complex containing
the liganded PPAR-g LBD (homodimer) and a portion
of human SRC-1(623–710) was resolved at 2.3 Å (21).
The crystal structure showed that each member of the
receptor dimer interacts with a single and different
LXXLL motif of the same SRC-1 molecule. The hydro-
phobic face of the LXXLL helix packs into a hydropho-
bic pocket formed by helices 3, 4, 5, and 13 (H12 in
other receptors) of PPAR-g. The nuclear hormone re-

Table 1. Nomenclature According to the Nuclear
Receptors Nomenclature Committee, 1999

Trivial Names of Receptors Mentioned
in this Review New Nomenclature

TRa, TRb NR1A1, NR1A2
RARa NR1B1
PPARa, PPARg NR1C1, NR1C3
RevErba NR1D1
VDR NR1I1
HNF4 NR2A1
RXRa NR2B1
COUP-TF NR2F3
ERa, ERb NR3A1, NR3A2
GR NR3C1
MR NR3C2
PR NR3C3
AR NR3C4
NGF1-B NR4A1
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Table 2. Nuclear Receptor Cofactors—Part I

Proteins Interaction
(in Vitro)

Coactivation
(in Vivo) Comments References

SRC1 PR, RAR, RXR,
TR, PPAR

ER, GR, PR, TR,
RXR

Identified by yeast two-hybrid (bait: hPR
LBD)

13, 14, 16, 24, 38

NCoA-1 Agonist-dependent interaction and
coactivation

Histone acetyltransferase (H3/H4)
Interact with CBP
Isoforms 1a and 1e differs in their ability to

coactivate ER
Autonomous activation domains
Contains LXXLL motifs

ERAP160/p160 ER, RAR, RXR ER Identified by GST pull-down with MCF-7
whole-cell extract (bait: hER LBD)

8, 15, 25

Agonist-dependent interaction
Interact with CBP
p160 encoded by SRC-1 gene (variants

1b, 1c, 1d)
Part of an estrogen receptor co-activator

complex with ERAP140 and proteins of
300 (CBP), 100, 90 and 30 kDa?

GRIP1/TIF2 ER, AR, GR, TR,
PR, RAR, RXR

ER, AR, GR, PR Partial clone identified by yeast two-hybrid
from 17-days old mouse embryo cDNA
library (bait: mGR LBD) (GRIP1)

12, 118–121

SRC-2/NCoA-2 PPAR Ligand-dependent interaction
But not TR, VDR,
RAR, RXR

Autonomous activation function

Highly related to SRC-1/NCoA-1
GRIP1 stimulates ER AF-1
TIF2 contains LXXLL motifs and mediates

transcription through CBP binding
dependent and -independent pathways

ACTR/AIB1/RAC3 ER, PR, TR, VDR,
PPAR, RAR, RXR

ER, PR, TR, RAR,
RXR, VDR

First identified by yeast two hybrid from a
human brain cDNA library (bait: full
length hRAR) (RAC3)

41, 122–125

SRC-3/TRAM-1 But not COUP-TFI Related to SRC-1, GRIP1/TIF2 and p/CIP
Agonist-dependent interaction and

coactivation
SRC-3 coactivates ERa

AIB1 amplified in breast and ovarian
cancers

ACTR is an histone acetyltransferase
ACTR and TRAM-1 recruit CBP and P/

CAF

p/CIP ER, RAR ER, PR, TR, RAR Identified by screening of CBP interacting
proteins (NCoA-1/SRC-1 and NCoA-2
were fished during the same procedure)

32

Alternative splice form of the murine
homologue of RAC3?

Highly related to SRC-1/NCoA-1 and TIF2/
NCoA-2

Interacts with a significant portion of CBP
in the cell

Ligand-dependent interaction and
coactivation

CBP and p/CIP are required together for
nuclear receptor activation (functional
complex)
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Table 2. Continued

Proteins Interaction
(in Vitro)

Coactivation
(in Vivo) Comments References

ERAP140/p140 ER Not available Identified by GST pull-down with MCF-7
whole cell extracts (bait: hER LBD)

8, 25

Estrogen-dependent interaction
Part of an ER coactivator complex with

ERAP160 and proteins of 300, 100, 90
and 30 kDa?

RIP140 ER, PPARa, TR,
RAR, RXR

ER Identified by GST pull-down with COS-1
cell extracts (bait: mER LBD)

59–61, 126, 127

Differs from ERAP140
Agonist-dependent interaction and

coactivation (modest)
Two distinct nuclear receptor interaction

sites
Antagonizes SRC-1 coactivation of PPAR

(competition?)
Mouse homolog is a co-repressor for

nuclear orphan receptor TR2 (testis)

RIP160/p160 ER Not available Identified by GST pull-down with COS-1
cell extracts (bait: mER LBD)

59

Differs from ERAP160

P/CAF ER, AR, GR,
RAR/RXR

RAR/RXR Identified on the basis of an analogy with
yGCN5 and various protein databases.
Cloned from human cDNA libraries.
hGCN5 was cloned during the same
procedure

31, 33, 117

Interacts with CBP/p300 (competes for
CBP/p300 with E1A)

Histone acetyltransferase (H3/H4)
Part of a larger complex which contains

TAFs

CBP/p300 ER, GR, TR, RAR,
RXR

ER, TR, RAR, RXR Identified by GST pull-down assay
between fragments of CBP and hRAR

15, 16, 25, 26,
33, 37, 40

Ligand-dependent interaction and
coactivation

Interacts with SRC-1/ERAP160 and P/CAF
Interacts with numerous transcriptional

activator
Interaction with ER involves also SRC-1/

ERAP160
Histone acetyltransferase (all core histones

in nucleosomes)

ARA70 AR AR Identified by yeast two-hybrid from a
human brain cDNA library (bait: hAR
LBD)

128

But not RXR, TR4 ER, GR, PR (weak) 99% homology with RET-fused gene
(RFG) which is expressed in thyroid
tumor

Ligand-dependent interaction and
coactivation

Ada3 ER, TR, RXR ER, RXR Identified by yeast two-hybrid from a yeast
genomic library (bait: mRXR LBD)

55, 129

But not RAR Component of yeast Ada coactivator
complex

Ada3, Ada2 and Gcn5 required for
maximal AF-2 activity in yeast and Ada3
coactivates in mammalian cells
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Table 2. Continued

Proteins Interaction
(in Vitro)

Coactivation
(in Vivo) Comments References

Ligand-dependent interaction and
coactivation (yeast)

Human counterpart of yAda3 not yet
identified

Rap46 ER, AR, GR, PR,
TR

Not available Identification after screening of a human
liver lgt11 expression library with
baculovirus expressed mGR

50

Ligand-independent interaction
Interaction depends on prior receptor

activation (i.e. no HSP)
Residues 61–274 have 80% sequence

identity to mBAG-1 which interact with
the cell death repressor, Bcl-2

GRIP170 GR GR Identified by in vitro interaction of DNA
bound hGR with HeLa nuclear proteins

130

(in vitro with purified
GRIP170 containing
fraction)

Proteins of 95 and 120 kDa identified at the
same time as GRIP170

No data available on ligand requirement

TRIP1/SUG1 ER, TR, VDR,
RAR, RXR

Not available Identified by yeast two-hybrid from HeLa
cDNA library (bait: rTRb D-E-F domains)
(Trip1)

54–57, 131

See comments Ligand-dependent interaction
But not GR Similarity to ySUG1 (76%) which is a

component of the yeast RNA pol II
holoenzyme and of the PA700
proteasome regulatory complex

Overexpression inhibits transactivation
Interacts with TBP and TFIIB (SUG1)

PGC-1 ERa, PPARg,
RARa TRb

PPARg/RXRa,
TRb/RXRa

Identified by yeast two-hybrid from a murine
brown fat cell cDNA library (bait: mPPARg

amino acids 183–505)

132

RXRa (very weak) Ligand-dependent interaction increased for
ER, RAR, and TR but not for PPAR

Involved in thermogenesis (PGC-1 mRNA
expression is increased in brown fat and
skeletal muscle upon cold exposure

PGC-2 PPARg, ERa, TRb PPARg, ERa Identified by yeast two-hybrid from a
adipocyte library (bait: PPARg A/B
domain)

133

Ligand-independent interaction with PPARg

A/B domain
Ligand-dependent increase of the

transcriptional and adipogenic activities of
PPARg

SPT6 ER ER Identified by functional test of hER in the
yeast spt6 mutant strain

134, 135

Ligand-dependent interaction and
coactivation (yeast and CV-1)

Involved in nucleosome assembly and
interacts with H3

TIF1a ER, PR, VDR,
RAR, RXR

No coactivation
described

Identified by a yeast genetic screen with a
P19 embryonal carcinoma cell cDNA
library and a chimeric receptor (hER DBD
fused to mRXR LBD)

53, 55, 136
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Table 2. Continued

Proteins Interaction
(in Vitro)

Coactivation
(in Vivo) Comments References

TR (weak) Ligand-dependent interaction
Interacts with two heterochromatin proteins

(HP1, MOD1)
Binding of TIF1 to liganded nuclear

receptors may promote the conversion
from an inactive heterochromatin-like
structure to an active euchromatin-like
structure (release of HP1 and MOD1)?

Partial identity to T18 oncogene

SW12/SNF2
Brahma

GR (SWI3) ER, GR, RAR Initially identified as required for HO (SWI2)
and SUC2 (SNF2) genes transcription in
yeast

62–66, 137–139

ER Homolog of Drosophila brahma (regulator of
homeotic genes such as Src and Antp)

Ligand-dependent interaction between ER
and SNF2a (hbrahma) or SNF2b (BRG1)

Subunit of the SWI/SNF chromatin
remodeling complex

SWI1, SWI2, SWI3 are required for GR and
ER ectopic activation in yeast

SNURF With DBD of
AR, ER, PR

AR Identified by yeast two hybrid from a mouse
embryo E10.5 cDNA library (bait: hAR
DBD)

140

Interacts with DBD as well as with TBP
Enhances both steroid-dependent and basal

transcription
Does not contain a LXXLL motif
Activates AP1 and SP1

RSP5/RPF1 No direct interactions
(M. Imhof, personal
communication)

GR, PR Identified by genetic screening in yeast
(hPR)

35, 51, 141

Increases efficiency of weak agonists
But not ER Agonist-dependent coactivation

Synergizes with SPT3 (TAFII18)
Is a ubiquitin ligase
Part of a coregulator complex with E6-AP?

TRAP220 TR, VDR, RAR, RXR,
PPARa, PPARg

TR cDNA isolated from a Jurkat library on the
basis of amino acids sequences derived
from polypeptides in the immunopurified
TR-TRAP complex

48

Contains two LXXLL motifs
ER (weak) Ligand-dependent interaction and

coactivation
Part of TRAP complex with TRAP100 (10

proteins)

TRAP100 ER, RXR, PPARa,
PPARg

Not available Isolated during the same procedure as
TRIP220

48

Contains six LXXLL motifs
Ligand-dependent interaction (marginal)

DRIP TR, VDR PPARg VDR Complex isolated from nuclear extracts from
human Namalwa B cells with GST-VDR-
LBD

46, 47, 49

But not ER Complex of at least 13 polypeptides ranging
from 33 to 250 kDa

12 out of 13 subunits are shared with the
activator-recruited cofactor (ARC)
complex

MOL ENDO · 2000 Vol 14 No. 3
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ceptors contain similar LXXLL motifs within their own
AF-2. Surprisingly, the crystal structure of the unligan-
ded PPAR-g homodimer indicates that the AF-2 helix
of one receptor can interact with the LBD of a second
receptor (21). This suggests that the ligand-dependent
activation leads to the displacement of the AF-2 helix
from the LBD of the other receptor in favor of the
recruitment of an LXXLL motif of SRC-1. This model
was also proposed for the RXR/RAR heterodimer (22).

SRC-1 is also capable of interacting with both the
A/B and D/E regions of PR and ER through multiple
receptor-interaction sites (23, 24). Furthermore, the
binding of SRC-1 to steroid receptors is more efficient
when both AF-1 and AF-2 are present. This could
potentially explain the transcriptional synergy ob-
served between AF-1 and AF-2 (5).

The ligand-dependent interaction between SRC-1
and nuclear receptors is established, but the way the
transcriptional activation signal is transmitted to the
transcriptional machinery remains obscure. One pos-
sibility is the direct binding of SRC-1 to the basal
transcription machinery through TFIIB or TATA-bind-
ing protein (TBP) (17). Alternatively, SRC-1 may be
part of a larger coactivator complex. Hence, upon
estrogen binding, ER becomes associated with nu-
merous proteins, including SRC-1 and p300 together
with proteins of 140 (ERAP140), 100, 90, and 30 kDa
(25). However, there is no clear evidence that these
proteins are part of the same complex. Nevertheless,
it was not surprising when SRC-1 was shown to inter-
act directly with a conserved region in the C terminus
of p300 and its homolog CBP (15, 16). Moreover,
CBP/p300 is a coactivator that binds to nuclear hor-
mone receptor in a ligand-dependent manner (26) and
enhances steroid-dependent transcription in synergy
with SRC-1 (27). However, there is increasing evi-
dence indicating that the limiting CBP/p300 factor
serves a broader function, i.e. as an integrator of many

different activation pathways (28–30). Indeed, CBP/
p300 has been shown to interact with an increasing
number of other DNA-binding factors and with com-
ponents of the basal transcription machinery. p300/
CBP-associated factor (P/CAF) and p300/CBP cointe-
grator-associated protein (p/CIP) are two other
nuclear hormone receptor coactivators that can asso-
ciate with CBP/p300 (31–33). Both CBP/p300 and
p/CIP, together with SRC-1 (NCoA-1), are required to
allow full ligand-activated gene transcription in several
cell lines (32). Finally, p/CIP and SRC-1 can bind
P/CAF (34). Despite all the described potential inter-
actions between all these cofactors, there is little bio-
chemical evidence of the existence of such a complex
in vivo. Some interactions may be mutually exclusive.
Alternatively, various combinations of subsets of these
coactivators may coexist in the cell, giving rise to a
number of possibilities in term of specificity of regula-
tion. In an attempt to isolate such complexes, cells
were recently subjected to biochemical fractionation
(35). This study indicates that the different cofactors
cofractionate in various stable subcomplexes. These
data also suggest that the liganded progesterone re-
ceptor recruits a preformed complex that contains
SRC-1 and TIF2. Although many receptors can bind to
a given coactivator, it is possible that they compete
with each other and that each has a different cofactor
affinity (36).

Interestingly, P/CAF, CBP/p300, and SRC-1 present
histone acetyltransferase activity (HAT) (33, 37, 38).
Since histone acetylation correlates with promoter ac-
tivation (reviewed in Ref. 58), it may explain how these
cofactors increase the transcriptional activation by nu-
clear receptors. But are all the different HATs required
for the coactivation or do they have some specificity?
It appears that inactivation of the HAT domains of CBP
or SRC-1 has no influence on the coactivation of RAR
(34). However, the HAT domain of P/CAF is indispens-

Table 2. Continued

Proteins Interaction
(in Vitro)

Coactivation
(in Vivo) Comments References

RAR and RXR associate
with a different complex

Strict ligand-dependent interaction

Purified DRIP lacks histone acetyltransferase
activity

DRIP100 which is part of the complex
contains LXXLL motifs

NSD1 ER, RXR See comments Identified by yeast two hybrid from a mouse
embryo cDNA library (bait: hRAR DBD)

142

TR, RAR (Bifunctional factor-
repression and
activation)

Ligand-dependent reduction of interaction
(TR, RAR)

Ligand-dependent interaction with RXR
(domains D/E) and ER (domains D/E/F)

See comments Contains a variant (FxxLL) of the LXXLL
motif

Contains separate repression and activation
domains
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able for nuclear receptor activation. On the other hand,
CREB (CRE-binding protein) function needs CBP-HAT
activity and not P/CAF-HAT. This suggests that there
is a selectivity in the specific HAT activity required for
the action of different classes of transcription factors.
In addition, P/CAF acetylates preferentially nucleoso-
mal histone H3, whereas p300/CBP acetylates all nu-
cleosomal core histones (SRC-1 and ACTR have a
specificity for histones H3 and H4) (33, 37, 38, 40, 41).
The presence of multi-HAT activities within a given
complex may lead to various patterns of histone acet-
ylation that are specific for a particular transactivator
or for a promoter context. Interestingly, P/CAF and
p300/CBP have the property to acetylate nonhistone
proteins such as TFIIEb, TFIIF (RAP74 and RAP30),
EKLF, GATA-1, and p53 (42–45).

Recently, VDR-interacting protein (DRIP) was iso-
lated and purified as a new coactivator complex (46,
47). Despite the lack of HAT activities, DRIP is a potent
coactivator of the vitamin D receptor in a chromatin
context. Any chromatin remodeling activity related to
DRIP (directly or not) has not been identified to date.
Interestingly, some DRIP subunits are homologous to
components of mediator complex that are found as-
sociated with the RNA polymerase II complex as well.
This finding gives us a clue as to how DRIP may target
the RNA polymerase II to the promoter. Surprisingly,
DRIP, and most probably its related TRAP (48) com-
plex, shares most of the subunits with yet another
complex, ARC (activator-recruited cofactor) (49). The
latter, however, is a coactivator for transcription fac-
tors such as SREBP-1a, VP16, and NF-kB (p65 sub-
unit) within chromatin. It appears likely that there is a
convergence in the coactivation pathways of many
transcriptional activators, the differences residing in
the fine composition of coactivator complexes or
subcomplexes.

OTHER POTENTIAL COACTIVATORS

According to the definition stated earlier in this review,
a coactivator must interact directly with the activation
domain of a nuclear receptor in an agonist-dependent
manner but not in the presence of an antagonist.
Rap46 was shown to interact in vitro with numerous
receptors (ER, AR, GR, PR, TR) independently of the
presence of any ligands, agonist or antagonist (50), but
so far, no functional experiments have been per-
formed. Another protein, RSP5/RPF1, potentiates hor-
mone-dependent activation of transcription by GR and
PR (51), although no direct interaction with either re-
ceptors was ever documented (M.O. Imhof, personal
communication). Interestingly, in one case, there is
ligand-dependent release of a coactivator. The con-
stitutive androstane receptor b (CAR-b) is active in
absence of its ligand. Surprisingly, the addition of an-
drostenol or of androstanol promotes the dissociation
of the steroid receptor coactivor 1 (SRC-1) and leads
to transcriptional repression (52).

Another criterion for belonging to the coactivator
family is the ability to enhance receptor function. This
basic requirement is not observed with TIF1a, which
down-regulates transactivation by ER, RAR, and RXR
in Cos-1 cells (53). It is possible, however, that over-
expression of TIF1 titrates out an essential limiting
nuclear protein required for AF-2 activity. Proteins
such as SUG1 (suppressor of a mutation in the tran-
scriptional activation domain of the yeast activator
Gal4) and Trip1 (TR-interacting protein 1) interact with
several nuclear hormone receptors in a ligand-depen-
dent fashion as well as with TBP (54, 55). The fact that
SUG1 was proposed to be a component of the RNA
polymerase II holoenzyme reinforced its classification
as a coactivator (56). However, SUG1 is a subunit of
the 26S proteasome (57, 58) and Trip1 inhibits trans-
activation (54). Therefore, it is likely that these proteins
are not coactivators but rather are involved in receptor
degradation.

A third criterion is the requirement for a direct con-
tact between the cofactor itself and the basal tran-
scription machinery in light of the bridging model. This
aspect is difficult to assess and was not determined
for all potential coactivators. One can also envision
that individual cofactors are part of a larger complex,
limiting the need for a direct interaction with basal
transcription factors. Although RIP140 interacts with
several nuclear receptors in vitro and enhances weakly
ER function in vivo, it is not able to associate with
either TFIIB or TBP (59–61). Does this disqualify it as a
nuclear hormone receptor coactivator ? It is still pos-
sible that it interacts with other basal transcription
factors. Moreover, the fact that RIP140 inhibits tran-
scription upon overexpression argues in favor of the
need for another intermediary factor (60).

Finally, coactivators should not enhance the basal
transcriptional activity on their own, although they
contain an autonomous activation function (12, 13).
Indeed, in the absence of a nuclear hormone receptor,
coactivators cannot be recruited to promoters and
therefore cannot coactivate transcription.

The first described nuclear hormone-positive regu-
lators are members of the SWI/SNF family of proteins.
Ligand-dependent transcriptional enhancement of GR
or ER in yeast requires several SWI gene products,
such as SWI1, SWI2, and SWI3 (62), which are part of
a large SWI/SNF chromatin remodeling complex (63,
64). The human homologs of SWI2, termed SNF2a,
SNF2b, or brahma, were also shown to coactivate ER,
GR, and RAR in mammalian cells (65, 66). It has not
been established, however, whether or not the de-
scribed interaction between SW3 and GR (which re-
quires SWI1 and SW2) is direct (62). The finding that
SWI1 contains nuclear hormone receptor-binding mo-
tifs (LXXLL), present in many cofactors (18), is puzzling
and might suggest that it is potentially a coactivator
(67). However, the importance of these LXXLL motifs
was not tested for SW1.
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COACTIVATOR AND LIGAND-INDEPENDENT

TRANSACTIVATION

A list of nonsteroid compounds or extracellular signals
can efficiently activate the ER including dopamine (68),
EGF (epidermal growth factor) (69, 70), TGFa (tumor
growth factor a) (70), cAMP (69, 71), insulin-like growth
factor I (71), phorbol ester (tetradecanoylphorbol ace-
tate) (69), and many others. Since all these molecules
induce protein phosphorylation, it is likely that altered

phosphorylation of the receptors (and/or associated
proteins) is a key event in the ligand-independent ac-
tivation. Moreover, okadaic acid, an inhibitor of protein
phosphatases 1 and 2A, is also able to activate ER-
dependent transcription (69).

Ligand-independent phosphorylation of the steroid
hormone receptors has been known for a long time
(reviewed in Refs. 63 and 64). The ER is mainly phos-
phorylated on serines residues in the A/B domain (74)
although phosphorylation of a tyrosine residue in the

Fig. 1. The ER Can Activate Transcription Through Different Mechanisms.
A, Ligand-independent recruitment of coactivators by the ER. The MAPK-dependent phosphorylation of serine residues within

the AF-1 domain allows the functional interaction with SRC-1 (left panel). Alternatively, the need for a ligand is abolished by the
presence of cyclin D1, which acts as a bridging protein between the ER AF2 domain and SRC-1 and or P/CAF (right panel). In
the latter situation, the described synergism between estradiol and cyclin D1 might result from their cooperation in the recruitment
of SRC1. The presence of SRC-1 and/or P/CAF suggests that other components of a coactivation complex might be present as
well (dashed oval). B, Ligand-dependent recruitment of coactivators by the ER. The presence of the ligand induces a confor-
mational switch in the ER ligand binding domain that leads to the recruitment of a coactivation complex (left panel, see also Fig.
2) containing protein such as SRC-1, P/CAF, p300/CBP, p/CIP, and possibly many others (dashed oval). It is possible that
ligand-dependent and -independent mechanisms cooperate to provide maximal transcriptional competency to the receptor (right

panel).
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E/F domain was also reported (75, 76). The chain of
events linking EGF to ER phosphorylation has been
analyzed more extensively. EGF activates the Ras-
Raf-MAPK cascade through its membrane receptor
and leads to phosphorylation of hER on serine 118 and
to enhancement of transcription (69, 77). However, the
functional relationship between a particular phosphor-
ylation site and transcriptional activation remained elu-
sive until recently. Effectively, phosphorylation of two
ERb serines residues (Ser 102 and Ser 124 within the
AF-1 domain), via the MAPK cascade, promotes the
recruitment of SRC-1 in the absence of estrogen (Fig.
1) (78). Similar findings were made with the orphan
nuclear receptor SF-1 (steroidogenic factor 1). Intrigu-
ingly, phosphorylation enhances the recruitment of
both a coactivator [GR-interacting protein 1 (GRIP1)]
and a corepressor [silencing mediator for retinoid and
thyroid hormone receptor (SMRT)] to SF-1 (79). In this
particular situation, the functional importance of
phosphorylation in transcriptional activation appears
unclear.

Phosphorylation is not the only event that directs
ligand-independent transactivation. Cyclin D1 has
the property to potentiate the activity of the ER in a
cyclin-dependent kinase-independent mechanism
(80, 81). Interestingly, cyclin D1 is able to interact
with SRC-1 through a region that resembles the
receptor leucine-rich coactivator binding motif
(LLxxxL) in AF-2 (Fig. 1) (82). Cyclin D1 is essential
for proper recruitment of coactivators to unliganded
ER and functions as a bridging factor between the
receptor and SRC-1. Similarly, recent experiments
have shown that P/CAF associates functionally with
cyclin D1 (83). Thus, cyclin D1 plays a crucial role in
ER activation by recruiting HAT activities in the ab-
sence of any ligand. Altogether, these results indi-
cate that the activity of a receptor can be modulated
in multiple ways. The combination of various mech-
anisms could elicit widespread responses to differ-
ent cellular stimuli (Fig. 1).

NUCLEAR RECEPTOR COREPRESSORS

Transcriptional activation is mediated by the recruit-
ment of coactivators by the activated receptor.
However, nuclear hormone receptors can repress
transcription under various circumstances (reviewed
in Refs. 9 and 74). Repression occurs mostly in the
absence of a ligand or when an antagonist is bound
to the receptor. In the latter situation, the antagonist
competes away the natural ligand, preventing
proper activation. Transcriptional repression in-
volves several mechanisms (85). It may result from
the binding of a repressor directly to DNA, leading
either to a competition for the same DNA element
(thus preventing the binding of the activator), to an
interference with the activator function after binding
to a nonoverlapping site (quenching), or to the direct

silencing of the basal transcription machinery irre-
spective of the presence or absence of the activator.
Alternatively, repression may be achieved after the
recruitment of a limiting corepressor to the promoter
by protein-protein interaction with the activator (Fig.
2). In this situation, the corepressor is not able to
bind to DNA on its own. We will focus here on the
repression mediated by the recruitment of a core-
pressor (Table 3).

A true corepressor must fulfill several criteria. First it
has to interact directly with the unliganded receptor,
leading to enhancement of basal transcription repres-
sion. A corepressor should also interact with compo-
nents of the basal transcription machinery and pos-
sess an autonomous repression domain.

DISCOVERY OF COREPRESSORS

The active repression mediated by some members
of the nuclear receptor superfamily in the absence of
ligand has attracted a lot of interest. The unliganded
TR, which is able to bind DNA, is not only transcrip-
tionally incompetent but acts as a repressor (86–90).
The finding that TR-mediated repression is reversed
by cotransfection of either the unliganded RAR or
the C terminus of the oncogene v-ErbA (viral TR
homologue) revealed that TR corepressors might
exist within the cell (86). Three such corepressors
were then identified (Table 3): SMRT (91), N-CoR
(nuclear receptor copressor) (92, 93), and SUN-CoR
(small ubiquitous nuclear corepressor) (94). These
proteins have the characteristic to interact with the
unliganded TR or RAR associated with their RXR
heterodimeric partner on DNA. The C terminus of
N-CoR interacts with TR and RAR in a region en-
compassing the hinge domain (region D) and a por-
tion of the ligand-binding domain (92). Interestingly,
this interaction region (CoR box) is significantly con-
served only between TR, v-ErbA, and RAR but not
among the receptors that do not associate naturally
with N-CoR such as ER (see below). Silencing is
abolished upon ligand-dependent release of the re-
pressor from the receptor. Protease resistance as-
says have suggested that the release of SMRT from
TR is imposed by the conformational switch of the
LBD (helix 12) upon hormone binding (95). Impor-
tantly, the constitutively inactive viral oncogene v-
ErbA is associated with SMRT regardless of the
presence or absence of a ligand. The behavior of
v-ErbA argues that the release of SMRT is a prereq-
uisite for proper transcriptional activation. Interest-
ingly, the point mutant TR160 (Pro160-.Arg), which
is incapable of silencing but retains its ligand-de-
pendent transactivation, cannot efficiently recruit
SMRT, indicating that silencing is linked to the re-
cruitment of SMRT (91). The necessity for a receptor
to release a corepressor to activate transcription is
well illustrated with the RAR/RXR heterodimer. It is
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well documented that RXR and RAR activate tran-
scription from direct repeats when spaced by five
nucleotides (DR5), but not when spaced by only one
nucleotide (DR1) (96, 97). This differential regulation
stems from the incapacity of all-trans-retinoic acid
to dissociate N-CoR from the RAR/RXR heterodimer
on a DR1 DNA element and therefore to relieve
repression (93). It appeared that RXR and RAR oc-
cupy the 59- and 39-half-sites of a DR5 element,

respectively, whereas the polarity is inverted on a
DR1 element (98). The latter polarity is likely to im-
pose allosteric constraints on RAR, preventing the
release of N-CoR. However, the occupancy of either
a DR1 or DR5 response element by RAR/RXR has no
impact on the ligand-dependent recruitment of co-
activators (93).

It was first reported that ER and PR are unable to
interact with either N-CoR or SMRT, in the absence

Fig. 2. Ligand-Dependent Switch between A Nuclear Hormone Receptor Associated Either with a Corepression or a Coactiva-
tion Complex

The nuclear hormone receptor (NR) is associated with a corepressor (N-CoR, SMRT), which in turn recruits a histone
deacetylase (HDAC) through its interaction with Sin3. Deacetylation of histone tails leads to transcriptional repression. Addition
of the ligand disrupts this repression complex in favor of the association of a coactivation complex (SRC-1, P/CAF, p300/CBP,
pCIP, and others). These proteins possess a histone acetyltransferase activity that allows chromatin decompaction through
histone modifications. The interaction between the nuclear hormone receptor AF-2 domain and the coactivation complex occurs
through the LXXLL motif found in many coactivators. The coactivator and corepressor complexes are represented with dashed

lines since their exact composition in vivo is not determined.
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Table 3. Nuclear Receptor Corepressors

Proteins Interaction
(in Vitro)

Corepression
(in Vivo) Comments References

SMRT/TRAC-2 RAR, TR, v-ErbA,
PPARg

RAR, TR Identified by yeast two-hybrid
(bait: hRXR)

91, 115, 143, 144

Ligand-dependent dissociation
(but weak effect with RXR)

RXR (weak) But not RevErb,
PPARg

Oncogene v-ErbA (TR mutant),
which has strong silencing
ability but no transactivation
activity, interacts strongly with
SMRT irrespective of the
presence or not of the ligand

SMRTe contains an N-terminal
extension related to N-CoR

N-CoR/RIP13 TR, RevErb, RAR, PPARg TR, RevErb, RAR Identified from CV-1 whole cell
extracts (bait: TR/RXR-
DNA(TRE) ternary complex
immobilized on a streptavidin-
agarose matrix

92, 93, 99, 115, 145

But not ER, PR, GR, VDR, RXR
(in absence of any antagonist:
see comments)

But not PPARg Cloned by yeast two-hybrid from
a mouse pituitary cDNA library

Ligand-dependent dissociation
of full length N-CoR when TR/
RXR or RAR/RXR
heterodimers are bound to
DNA

The interaction between N-CoR
and RXR/RAR on a DR5 DNA
element is released upon
ligand binding but not with
RAR/RXR is on a DR1 DNA
element)

N-CoR contains two separate
repression domains

Partial sequence of N-CoR
previously isolated as RIP13

Interacts with CoR box within TR
hinge region

CoR box not required for
interaction with RevErb
(encoded on the noncoding
strand of the TRa gene (c-
erbAa)

ER and PR interact with N-CoR
in the presence of the
antagonist tamoxifen and
RU486, respectively

SUN-CoR TR, RevErb TR, RevErb Identified by yeast two-hybrid
from a 17-day old mouse
embryo cDNA library (bait:
RevErb amino acids 376-614)

94

No homology with N-CoR or
SMRT

Small 16-kDa nuclear protein
Contains an intrinsic repression

domain
Potentiates repression (2- to b-

fold)
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Table 3. Continued

Proteins Interaction
(in Vitro)

Corepression
(in Vivo) Comments References

Interacts with N-CoR and SMRT in

vitro

Associates with endogenous N-
CoR in vivo

Thyroid hormone does not
dissociate TR/SUN-CoR
interaction

Expression induced during
adipocyte and myogenic
differentiation

Ssn6/Tup1 Notavailable ER, PR Identified by genetic screening in
yeast

104–106, 146

Ssn6 described previously as a
mediator of glucose repression
in yeast

Represses AF-1 but not AF-2
Ssn6 is part of a yeast repressor

complex which include Tup1
Tup1 interacts directly with

histones H3 and H4

TRUP TR TR, RAR Identified by yeast two-hybrid
from a human B-lymphocyte
cDNA library (bait: hTR168-259
(hinge region 1 portion of LBD))

102

But not ER, RXR Identical to surf-3, PLA-X and L7a
Represses transcription by

interfering with the receptor
binding on DNA (ligand has no
effect on DNA binding)

Calreticulin GR, AR GR, AR, RAR Isolated by affinity
chromatography from HOS cell
nuclear extracts with a synthetic
KLGFFKR peptide

101, 103

KLGFFKR is conserved among the
nuclear hormone receptors
DBDs (between the two zinc-
fingers)

Calreticulin also acts as a major
Ca21-storage protein (lumen of
the endoplasmic reticulum)

Ca21 has no effect on the
interaction with GR

Represses transcription by
interfering with the receptor
binding on DNA

REA ER ER Identified by yeast two-hybrid
from a MCF-7 cDNA library
(bait: dominant negative ER
mutant)

116

Specific for liganded receptor
(estrogen or tamoxifen)

Potentiates effectiveness of
antiestrogens

Competes for estradiol-occupied
receptor with SRC-1 at high
concentration

99% identical to BAP-37 (B cell
receptor-associated protein)
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of any ligand (92). It appeared, however, that their
respective antagonists (tamoxifen and RU486) in-
duce such an interaction. Interestingly, these antag-
onists switch into perfect agonists when the recep-
tor ligand-independent activation function (AF-1) is
activated by the MAPK pathway. This activation is
concomitant to the release of the corepressors and
to the recruitment of components of the coactivator
complex (99). This phenomenon may explain why
patients, treated for breast cancer, eventually ac-
quire resistance to tamoxifen. Intriguingly, a small
coactivator (L7 or SPA for switch protein for antag-
onist) has been recently identified and whose coex-
pression enhances transcription of antagonist-
occupied ER and GR (100). Surprisingly, L7/SPA
has no effect on agonist-dependent transcription by
these receptors. In light of these data, it is possible
that the cellular ratio between corepressors and co-
activators such as L7/SPA might determine whether
an antagonist-bound receptor would be active or
not.

The above mentioned corepressors interfere directly
with transcriptional activation. Transcriptional inhibi-
tion can also be efficiently achieved by preventing
nuclear receptor from accessing DNA. TRUP and cal-
reticulin are such proteins whose binding either to the
hinge-domain of TR and RAR (TRUP) or to the DNA-
binding domain of AR, GR, and RAR (calreticulin) in-
terferes with their DNA binding (101–103). However,
these proteins should not be considered as being real
corepressors according to its definition mentioned
earlier. Indeed, TRUP and calreticulin prevent tran-
scriptional activation by interfering with receptor bind-
ing but not by enhancing basal transcription
repression.

The yeast protein Ssn6 was isolated as a negative
regulator of the estrogen and progesterone receptors
(104). It appeared to repress the ligand-independent
activity of ER-AF-1. It is not clear whether Ssn6 should
qualify as a nuclear hormone corepressor especially
because it affects AF-1 but not AF-2. In addition, there
is no study available that could indicate whether Ssn6
fits all the criteria of the corepressor family, and since
the steroid hormone receptors are not naturally ex-
pressed in yeast, it is unclear whether a similar mech-
anism would occur in mammals. Interestingly, Ssn6 is
involved in glucose-mediated gene repression and re-
quires a partner, Tup1, to achieve full repression (105).
Tup1 has been shown to mediate repression by its
ability to interact directly with histones H3 and H4
(106). This suggests that repression involves some
chromatin components.

SMRT AND N-CoR MEDIATE TRANSCRIPTIONAL

REPRESSION THROUGH THE RECRUITMENT OF

A HISTONE DEACETYLASE COMPLEX

Immunoprecipitation experiments have revealed
that N-CoR and SMRT are components of a cellular

complex containing the proteins Sin3A/B and his-
tone deacetylases (107–109). The N terminus re-
pression domain (SD-1) of SMRT interacts with
Sin3A, which in turn associates with the histone
deacetylase HDAC-1 through one of its two silenc-
ing domains (110). No evidence of a direct interac-
tion between HDAC-1 and SMRT was observed,
suggesting that Sin3 acts as a bridging molecule
between SMRT and the deacetylase complex. These
findings argue that at least part of the silencing
mediated by nuclear hormone repressors involves
the deacetylation of histones through the recruit-
ment of a histone deacetylase complex (Fig. 2).

The importance of histone deacetylation associated
to corepression has been highlighted recently in hu-
man leukemia (111, 112). Two forms of acute promy-
elocytic leukemia (APL) are caused by chromosomal
translocations that create oncogenic fusion proteins
between RAR and either PML (promyelocytic leuke-
mia) or PFLZ (promyelocytic leukemia zinc finger).
Both PML-RAR and PFLZ-RAR recruit the corepres-
sor-deacetylase complex through RAR in a ligand-
independent fashion. These interactions are abolished
with high-dose retinoic acid. However, PFLZ-RAR is
also able to associate constitutively and stably with
corepressors and deacetylases through the PFLZ moi-
ety, irrespective of the presence of the ligand. This
explains why PML-RAR APL patients usually recover
after treatment with retinoic acid but not PFLZ-RAR
patients. These data strongly suggest that leukemia
induced by PML-RAR and PFLZ-RAR is derived from
aberrant chromatin deacetylation.

Chromatin modification through acetylation cannot
account solely for the repression of transcription me-
diated by unliganded receptors. Silencing is indeed
observed in systems that are devoid of proper chro-
matin such as transient transfections and in vitro tran-
scription (86, 87, 89). Therefore, alternative silencing
pathways must exist and function independently of the
recruitment of any histone deacetylase. Early results
have suggested that TR silencing is mediated by its
direct interaction with the general transcription factor
TFIIB and that thyroid hormone is able to decrease this
interaction (113). In agreement with these results,
TFIIB was recently demonstrated to interact with the
corepressors N-CoR and SMRT as well as with Sin3
(110). It appears that TFIIB binds in vitro to the same
silencing domain (SD-1) of SMRT as does Sin3 (see
above). It is not clear to date whether the binding of
TFIIB and Sin3 to SMRT are mutually exclusive. Inter-
estingly, overexpression of SMRT reduces the tran-
scriptional activity of TFIIB tethered to a promoter
indicating that their physical interaction is functional.
In another study, N-CoR was shown to make simulta-
neous and noncompetitive contacts with the general
transcription factors TFIIB, TAFII32, and TAFII70 (114).
In this case the binding of TFIIB with N-CoR can occur
in the presence of Sin3B and HDAC-1. The seques-
tration of TFIIB and TAFII32 by N-CoR inhibits the
functional interactions of the two former factors, which

MOL ENDO · 2000 Vol 14 No. 3
342

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
e
n
d
/a

rtic
le

/1
4
/3

/3
2
9
/2

7
4
7
8
4
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



is crucial for transcriptional initiation. SMRT contains
two silencing domains within its amino-terminal re-
gion, namely SD-1 and SD-2, but only SD-1 reportedly
interacts with Sin3A or TFIIB (110). Similarly, Sin3A
possesses two silencing domains, one of which inter-
acts only with the histone deacetylase HDAC-1. More-
over, the histone deacetylase inhibitor, trichostatin A,
has no notable effect on the Sin3A ability to repress
transcription. These results suggest that, in addition to
the recruitment of either TFIIB or HDACs, other un-
identified alternative silencing pathways may exist.

CONCLUDING REMARKS

The increasing number of described cofactors adds to
the complexity of the transcriptional regulation medi-
ated by nuclear hormone receptors. One of the future
challenges will be to determine the specificities of the
coregulator family. There is strong evidence that co-
regulators do not modulate the activity of all nuclear
hormone receptors. For instance, it is known that nei-
ther SMRT nor N-CoR represses PPARg activity al-
though they interact in solution (115). In fact, the
PPARg/RXRa heterodimer fails to recruit these core-
pressors once bound to DNA, at least at the acyl CoA
oxidase gene promoter. More interestingly, N-CoR but
not SMRT potentiates RevErb repression indicating
that these two corepressors do not possess redun-
dant functions. Similarly, the recently described “re-
pressor of estrogen receptor activity” (REA) appears to
be selective for the liganded ER (116). Thus, the first
level of specificity might be achieved by the selective
recruitment of a given cofactor. We now know that
some coregulators are part of multisubunit complexes
such as DRIP and P/CAF (47, 49, 117). The presence
of various accessory proteins within these complexes
or alternative subcomplexes will likely influence the
specificity of transcription. We have also seen that
some coactivators possess a HAT activity. Finally,
posttranslational modifications of coregulators or of
other components within their complex may as well
prove to be important for proper regulation. All these
potential levels of regulation increase not only the
complexity but also the number of possibilities avail-
able for a better tuning of transcriptional control. The
active research in the nuclear hormone receptor dur-
ing the last decade has dramatically changed the sim-
ple view of the mechanism of receptor action. More
surprises are likely to come in the near future.
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92. Härlein AJ, Näär AM, Heinzel T, Torchia J, Gloss B,
Kurokawa R, Ryan A, Kamei Y, Sädersträm M, Glass
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