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A theoretical study is made on the nuclear spin relaxation in magnetic crystals mar 

their Curie temperatures. The exchange narrowed hyperfine broadening of the NMR line width 

is shown to increase due to the slowing down of a certain part of the electron spin fluctu

ations as the transition point is approached, giving rise to the line width whose asymptotic 

value near the transition point is proportional to [T a! (T- T 0 ) ] 3/ 2 in cubic ferromagnets and 

to [TN/(T-TN)]l/2 in cubic arttiferromagnets. The spin-lattice relaxation rate is dominated 

by this mechanism and has the same value as the above contribution to the line width. 

The effect of the anisotropy and the external magnetic field on this mechanism is also dis

cussed. The indirect nuclear spin interaction via the hyperfine interaction is treated from 

a general point of view by using the wavelength dependent susceptibility. The susceptibility 

is calculated with the use of a molecular field approximation. Since the spatial correlation 

between the spins becomes long ranged as the transition point is approached, the indirect 

nuclear spin interaction becomes long ranged at the same time. In non-cubic crystals this 

interaction gives rise to the line width whose asymptotic value near the transition point (both 

above and below T 0 ) is proportional to [T0 /IT-T 0 1]114 both in ferro- and antiferromagnets 

and the coefficient of this t~mperature factor is of the same order of magnitude as those in 

the first mechanism. In cubic crystals this effect vanishes or is reduced by orders of mag

nitude. The theory is compared with the F19.resonance experiments in MnF2 and the 

agreement is not unreasonable. 

I. Introduction 

Nuclear spin relaxation mechanisms in magnetic crystals have been studied 

extensively in recent years.J)~ 7 J The important mechanisms may be classified 

into the following three: 1. hyperfine (electron spin-nuclear spin) interaction 

modulated by the exchange and other interactions between the electron spins and 

by the lattice vibrations; 2. indirect nuclear spin interaction via the hyperfine 

interaction; 3. nuclear dipole-dipole interaction and other mechanisms in which 

the electron spins do not take part. Here we are interested in the first and the 

second mechanisms through which we can look into the properties of magnetic 

crystals. The contribution from the third mechanism may easily be evaluated 

by standard ~ethods. 8 l Theoretical studies of the first mechanism have been made 

at high temperatures in the paramagnetic region and at low temperatures in 

ferro- and antiferromagnets where the spin wave approximation can be applied.1J2JnJ 

It was poi~ted out recently that at very low temperatures in certain antiferro" 

magnets the mixing of the phonon and magnon modes is important.6l The 
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372 T. Moriya 

second mechanism has been studied at. first at 0°K in ferro- and antiferrromagnets 

where the virtual excitation of the spin waves due to the hyperfine interaction 

gives rise to the indirect nuclear spin interaction.4J,oJ This mechanism has been 

studied also in certain paramagnetic salts and it was pointed out that the coupl

ing constant is inversely proportional to the square of the temperature at high 

temperatures. 7l The region near the transition point has not been studied theore

tically so far. 

·Recently several studies have been made as to the line width of the nuclear 

resonance in antiferromagnetic crystals near the Neel temperature. Heller and 

Benedek9l as well as Baker, Lourens and Ste~enson 10 l studied the nuclear re

sonance line width of P 9 in MnF2 near the Neel point. They observed an 

anomalously sharp increase of the resonance line width as the temperature ap

proaches the Neel point both in the paramagnetic and antiferromagnetic region. 

A similar phenomenon has been observed in NiF2 by Shulman.11l In CoO 

Shulman studied the nuclear resonance of Co59 in paramagnetic state and observ

ed the increase of the line width as the Neel point is approached, though the 

temperature dependence is not so striking as in MnF2•12l 

In this article a theoretical study is made on the first and second mechanisms 

particularly near the transition point in ferro- and antiferromagnets. The anoma

lous broadening of the line width may be expected both from the first and 

the second mechanisms on the following reasons : At high temperatures the 

line width as well as the spin-lattice relaxation rate is dop1inated by the 

electron spin motion due to the exchange and other spin-spin interactions. The 

motion of the electron spins is generally very rapid at high temperatures as 

compared with the nuclear spin motion under the hyperfine field and the hyper

fine broadening is extremely narrowed by the exchange interaction. Near the 

transition point, however, certain modes of the electron spin motion slow down 

and the exchange narrowing effect will be reduced, thus giving rise to a broaden

ing. As is known in the theory of critical scattering of neutrons, the macro

scopic spin diffusion rate in a ferromagnet becomes zero at the Curie point and 

the decay time of the antiferromagnetic mode of the spin flucuation becomes 

infinity at the Neel point in an antiferromagnet. The indirect nuclear spin in

teraction may also give the anomalous broadening near the transition point since 

the correlation between two electronic spins becomes long ranged as the transition 

temperature is approached. It will actually be shown that the indirect nuclear 

spin interaction is of screened Coulomb type and the screening factor goes to 

zero as the temperature approaches the transition point. 

In the following we shall treat the first and the second mechanisms in II 

and III, respectively. In order to calculate the line width and the spin-lattice 

relaxation time due to the first mechanism, the time dependent correlation 

functions of the electronic spins must be evaluated first. The spatial correlation 

functions are related with the wavelength dependent susceptibilities which are 
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Nuclear Magnetic Relaxation near the Curie Temperature 373 

calculated by a molecular field approximation. The form of the time dependence 

of the correlation functions has been given by the phenomenological theories13>· 14> 

for the long wave Fourier components of the ionic spins in a ferromagnet and 

for the antiferromagnetic Fourier component in an antiferromagnet. They are, 

however, insufficient for the present purpose. Recently Mori and Kawasaki16> 

developed a microscopic theory of spin diffusion in ferromagnets by using 

- a method in the statistical mechanics of irreversible processes developed by Kubo, 

Tomita16>· 17> and others. We shall here make use of their method in discussing 

the time correlation of the spins in ferro- and antiferromagnets. Quantitative 

expressions are given for the line width 1/T2 and the spin-lattice relaxation time 

T 1 near the transition point in ferro- and antiferromagnets. The influence of the 

external magnetic field and the anisotropy energy is discussed. The indirect 

nuclear spin coupling is treated from a general point of view. The coupling 

constants are expressed in terms of the wavelength dependent susceptibilities. 

The indirect nuclear spin coupling particularly near the transition point is thus 

calculated and the line width coming from this interaction is discussed. The 

anisotropy of the crystal is particularly important in this mechanism. It turns 

out that this mechanism of line broadening is unimportant in cubic ferro- and 

antiferromagnets, while it may be important in crystals with lower symmetry. 

Finally in IV a comparison between the theory and the available experimental 

data is made. 

II. Effect of Hyperfine Interaction modulated by Electron Spin .Motion 

I. General formula 

The formulas have been given earlier1> for the nuclear resonance line shape 

and the spin-lattice relaxation time in magnetic crystals where the effect of the 

hyperfine interaction modulated by the exchange interaction is predominant. 

Denoting the interaction between the p-th nuclear spin and the j-th ionic spin 

as 

(1) 

where FPJ is a tensor, we have 

"' 
I(w) = )exp [i(w-wo)t-¢(t)]dt, (2) 

with 

t 

¢(t) =h_2 fdt(t-r):E :E {cFP1) •• (Fp1,) •• , J j,jl IJ, IJI 

0 
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374 T. Morzya 

(3) 

and 

"' 
1/T1 = (1/2h2) f dt c~s (w0t) :E :E [ (F'P1) "'" + i (F'P1) y.] J j,jl p,vl 

(4) 

where I(w) is the line shape function, w0 the nuclear resonance frequency, and 

T 1 . the spin-lattice relaxation time. The z direction IS albng the average local 

field at the nucleus, v and v' represent x, y, z, and 

(5) 

< ) means the thermal average and {AB} = (AB + BA) /2. · 
From (2), (3) and (4) we see that the line width and the spin-lattice re

laxation time are expressed in terms of the correlation functions of the ionic 

spin components. It is convenient here to introduce the Fourier transform in 

space of the ionic spin variables. Let us for brevity consider the case where 

there is only one magnetic ion in a unit cell and define 

S~c = N-112 :ES1 exp (ik · R1), (6) 
j 

where k is a wave number vector and N the number of magnetic Ions m a 

crystal. The correlation function between the j th and the j' th ionic spins can 

then be expressed as follows : 

When we consider only an isotropic hyperfine interaction between the nuclear 

and the electronic spins, i.e. when F Pi= AI) Pi> (3) and ( 4) are simply reduced 

to 

t 

cp (t) = (A/h) 2idr- (t- r-) [ ( {8S1, (r-) as1.}) + (1/2) exp (iw0r-) ( {8Si+ (r-)aS1_})], 

0 ~) 

"' 
1/T1 = (N/2 h2) idt cos (w 0t) ( {6S1+ (t) 8S1_} ). 

Now let us introduce a relaxation function defined as follows: 

where 

/3 

cas" (t), as_") = J di.(as" (t- ihi.) as_"), 
0 

ask(t-ihi.) =exp (i./G) asl,(t)exp ( -J./C) ' 

{1=1/ksT, 

(9) 

(10) 
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Nuclear Magnetic Relaxation near the Curie Temperature 375 

.!}{ and kn being the Hamiltonian of the electronic spin system and the Boltzmann 

constant, respectively. In the classical limit, which is a good approximation at 

high temperatures, the correlation function is equal to knT times the correspond

ing relaxation function. We shall use this approximation in the following dis

cussions.*> Since the relaxation function for t =0 is related with the static 

susceptibility by a well-known relation, the correlation functions are written as 

follows: 

<{aS ~c. (t) as_~c.}) = (knT IY2f.l.n2) X. (k)f~cz (t), 

. ( {aSlc+ (t) i3S_~c_}) = (knT IY2P.n2) X+ (k)f~c+ (t), 

with 

f~c. (t) = C as1c. (t), as_~c.) I C as1c., as_~c.), 

fTc+ Ct) =cask+ Ct), as_k_) 1 casTe+, ;;s_Tc_), 

where the wavelength dependent susceptibility X (k) is defined by 

(M~c)=YP.n(S~c)=X(k) ·H~c, 

X.(k) =X •• (k), X+ (k) =X:c:c(k) + Xyy(k). 

(11) 

(12) 

(13) 

(14) 

H1c is the Fourier component with the wave vector k of the external magnetic 

field. 

2. Spatial correlation above the transition point 

The spatial correlation of the wavelength dependent susceptibility near the 

critical point can be calculated by various methods. This problem has been studied 

in connection with the critical scattering of neutrons from magnetic crystals. van 

Hove13J gave a phenomenological theory. Elliott and Marshall18J made a statis

tical mechanical calculation of the space correlation functions in ferro- and anti

ferromagnets. de Gennes and Villain14l used a molecular field approximation in 

the same problem in ferrimagnets. Their results are qualitatively the same and 

are supported by a critical scattering experiment of neutrons.19J Here we shall 

show the results of the molecular field calculation. 

*l This may be justified for our purpose. For. the calculation of T 1, we can easily see that 

the replacement of the correlation function by knT times the corresponding relaxaticn functicn 

is almost exactly correct if the Curie temperature is not teo low, since we have17l 

with 

EfJ(w) = (hw/2) coth ([jhw/2), 

and w0 is negligible as compared with knT 0 . For the line width the high frequency components 

of the correlation functions are not effective either and the approximation is justified as well. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

8
/2

/3
7
1
/1

8
4
6
5
5
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



376 T. Moriya 

A. Cubic crystals 

For a cubic crystal we have a scalar susceptibility, 

(15) 

where a is the susceptibility per ion of the crystal when there is no interaction 

between the spins, i.e. 

a=g2 J1B 2S(S+1)/3kBT, 

and J(k) is the Fourier transform 

J(k) =J( -k) = _'Eexp [ik· (R1-R1,)] J11, 
j 

(16) 

(17) 

of the exchange coupling constant defined by the following exchange coupling 

Hamiltonian: 

(a) Ferromagnets 

For a ferromagnet J(k) takes a maximum value at k=O and the Curie 

temperature is given by 

Ta=J(O)S(S+ 1)/3kB. 

Therefore, (15) can be rewritten as 

x (k) _ g2J1B2S (S + 1) /3kBTa 

- [(T-Ta)/Ta] + {1- [J(k)/J(O)]} 
(18) 

For small k the second term in the denominator is expanded in the following 

form: 

1- [J(k)/J(O)] =rk 2 +flk 4 +~2(k,/+ky 4 +k. 4 ) + ···. (19) 

(b) Antiferromagnets 

For an antiferromagnet J(k) takes a maximum value at k=K0 , which dif

fers from 0. For a simple cubic lattice of magnetic ions we have 

K 0 = ('n:/ a, n:/ a, 7r/ a), 

and for a body centered cubic lattice 

K 0 = (2rc/a, 0, 0). 

The Neel temperature is given by 

TN=J(K0)S(S+ 1)/3kB, 

and the susceptibility is written as 

(20) 
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Nuclear Magnetic Relaxation near the Curie Temperature 377 

The second term in the denominator can be expanded in terms of tc = k- K 0 as 

1- [J (k) / J (Ko}] = 7"2 + .;1"4 + .;2 (1C_,4 + 1Cy4 + 1Cz4) + ... ' 

when the spin arrangement below TN has a cubic symmetry. 

B. Crystals with lower symmetry 

(21) 

For a crystal with lower symmetry, the susceptibility X (k) generally is a 

tensor. ~en there is only one magnetic ion in a unit cell, we get from the 

molecular field approximation 

(22) 

where a is the susceptibility tensor per magnetic ion of the crystal without the 

influence of the spin-spin interaction, g the g-tensor and g (k) the Fourier 

transform: 

(23) 

of the spin-spin interaction tensor defined by the following spin-spin interaction 

Hamiltonian : 

(24) 

g (k) IS divided into two parts as 

J(k) =J(k) +9?(k), (25) 

where J (k) is the isotropic exchange interaction constant and 9?(k) the aniso

tropic spin-spin interaction constant to which the dipole-dipole and the anisotropic 

exchange interactions contribute. 

(a) Ferromagnets 

In a ferromagnet one of the principal values of g (k) takes a maximum 

value at k=O. Let us assume that the principal axes of a, g and 9?(0) coincide 

and denote the principal values of 9?(0) as P,(O), Py(O) and P.(O). The uni

form susceptibility X (0) has also the same principal axes and the principal values 

are given by 

(26) 

with n=x, y, z .. When the single ion anisotropy energy is expressed as 

(27) 

with 

D:JJ+Dy+D.=O, 

the susceptibility components of an isolated magnetic ion are given by 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

8
/2

/3
7
1
/1

8
4
6
5
5
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



378 T. Moriya 

Inserting (28) into (26), we see that the Curie temperature is g1ven by the 

largest value of 

Tn= [S(S+1)/3kB] [J(O) +Pn(O)]- (Dn/10kB) [4S(S+1) -3], (29) 

with n=x, y, z. In calculating X(k) for general k, let us simply assume that 

the principal axes x, y, z of the P(k) tensor are independent of k. We get 

Xn(k) =an[1- [S(S+1)/3kBT] [J(k) +Pn(k)] {1- (Dn/10kBT) 

X [ 4S (S + 1) - 3]}] -l • 

For small Dn/kBT, the above expression is written as 

(b) Antifermmagnets 

(30) 

For an antiferromagnet we get similar expressions to those for a ferromagnet. 

The results are obtained by replacing J(O) and Pn(O) in the above expressions 

for a ferromagnet with J(K0) and Pn (K0), respectively. As a numerical example, 

let us consider. the case of MnF 2 which has a rutile type crystal structure. The 

magnetic ions form a body centered tetragonal lattice and the susceptibility a 

has nearly tetragonal symmetry. The values of D and Pn(K0) are20l 

D 11 = -2Dj_ = -0.008cm-\ 

P 11 =P 11 (Ko) = -2Pj_ = -2P~(Ko) =0.21cm-1 • 

Inserting these values into (29), we get 

3. Spatial correlation below the transition point 

Below the transition point it is essential to introduce an anisotropy energy 

or an external field which stabilizes a particular orientation in space of the 

ordered spin array. For brevity let us take account of only anisotropic inter

actions between the spins. The Hamiltonian is 

where H1 is the external magnetic field at the j th spin. W~ assume as in the 

preceding paragraphs that all the anisotropic spin-spin interaction tensors have 

the same principal axes, x, y, z, and the z axis is the easy direction for the 

spin ordering. By using the molecular field approximation we have 

<St)/S=Bs(gp.BIH/1118/kBT), 

with 

(34) 
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Nuclear Magnetic Relaxation near the Curie Ten;zperature 379 

where S1 = JS1 J and B8 (x) is the Brillouin function. 

(a) F erromagnets 

The average values of the spin components are given by 

(Sjx>= -<Sj)Hj{//JH/111, etc. 

The components of the effective local field are given by 

gp.BH'}{1 = [J (0) + P. (0)] S 0 - I [J11, + (!J?JJ,) .] lJSp. + gp.BH1., 
jf 

(35) 

where S0 is the average value of the spin under no magnetic field and is given 

by 

(36) 

Near the Curie temperature this leads to 

S 0
2 = (20/3) {(S+1) 2/[(2S+1) 2 +.1]} (T/Ta) 2 [1- (T/Ta)]. (37) 

Neglecting the terms in (35) which are higher than the second order with re
spect to as,., S1,, S1y, and H1 , and solving the Fourier transforms of (35) for 

as,'", S~cx and S~cy, we get the following expressions for the susceptibility: 

x (k) _ g2p.B2S cs + 1) /3kBT a c3s) 
• - {[1- W(T)]/W(T)} +1- {[J(k) +P.(k)]/[J(O)+ P.(O)]}' 

X (k) _ g2fl-B2S (S + 1) /3kBTx t (39) 
"' - [(To-T,)/T,] +1- {[J(k) +P,(k)]/[J(O) +P,(O)]} 'e c., 

where 

W(T) = [3ToS/ (S+ 1) T]Bs' [ {J(O) + p.(O) }SSo/kBT]. (40) 

In this approximation the susceptibility perpendicular to the magnetization is in
dependent of temperature while, the susceptibility parallel to the magnetization 
decreases as the temperature is lowered. As T --'>0, X. (k) tends to 0 since 
W(O) =0. Near the Curie point we have 

[1- W(T) ]/W(T) ~2oj (1-3a), (41) 

with 

a= (To-T)/To. 

(b) Antifen-omagnets 

The average value of the j th spin under no external magnetic field is 

(SJz)=Soexp (iK0 ·RJ), 

with 
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380 T. Moriya 

The calculation of the susceptibility is similar to that for ferromagnets and 

the results are given by replacing T 0 , J(O) and Pn(O) in the expressions (38)

(41) for a ferromagnet by TN, J(K0) and Pn(K0), respectively. 

4. Time correlation 

The time dependence of the correlation functions has been calculated by a 

spin wave approximation at low temperatures1)-s) and by a moment expansion 

method at high temperatures.1l Near the transition point, however, these methods 

cannot be applied and the treatment becomes more or less qualitative. van 

Hove13) gave a phenomenological theory on the time dependence of the spin 

correlation functions in a ferromagnet on· the basis of thermodynamics of irre

versible precesses. He obtained for small k above T a 

f~c(t) =exp ( -Ak2t) 

with 

A=A/X(O), 

where X (0) is the uniform susceptibility of the ferromagnet and }. is a pheno

menological constant. de Gennes and Villain14l gave a phenomenological discus

sion on an antiferrofn.agnet and obtained 

fxo(t) =exp ( -A't) , 

where 

A'ocT-TN. 

They did not treat the k dependence of the correlation functions. These theories 

are insufficient for the present purpose even qualitatively. We need to know the 

k dependence better. A natural extension of these phenomenological theories 

may be to assume the following form of the time correlation function : 

(42) 

and expand ric as follows: 

(43) 

for a ferromagnet and 

Txo+lc=A' + fJ'k 2 + ··· (44) . 
for an antiferromagnet. A and A' tend to zero as the trans1t10n point is ap-

proached while fJ and 6' are considered to remain finite. From the expressions 

(42), (43) and (44) we can draw a qualitative conclusion as to the asymptotic 

behavior of the NMR line width and the spin-lattice relaxation time as temper

ature approaches the transition point. For a quantitative purpose, however, this 

argument is still insufficient so long as A and fJ are no.t evaluated. A calcula

tion of f~c (t) on a microscopic basis was made by de Gennes,21) though his theory 
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Nuclear Magnetic Relaxation near the Curie Temperature 381 

was confined to the high temperature limit. He employed a moment method 

and showed that at the high temperature limit the form ( 42) is reasonable for 

small k. It seems to be hard to extend the moment method to the temperature 

range near the transion point. Recently, Mori and Kawasaki15> developed a theory 

of spin diffusion, or a method of calculating f" (t), on a microscopic basis. 

They ingeneously replaced the correlation functions of the spins with those of 

the torques as follows : 

t 

fk(t) =1- Jdr(t-r) (Tkm(r), Tkm*)/(Skm> Skm*), (45) 

0 

with 

d 
Tkm(t) =-Skm(t), m=x, y, z. 

dt 

It was pointed out that in a ferromagnet f" (t) for small k may be approximate

ly written in the form of (42) since the decay in time of f"(t) for small k may 

be slower than that of the correlation function of the corresponding torque. In 

the NMR relaxation problem, where f" (t) for large t is important, f" (t) may 

generally be approximated by ( 42) with 

"' 
r" = J dt (Tkm (t)' Tkm *)I (Skm> Skm *). (46) 

0 

Assuming a Gaussian decay of the correlation function of the torque as 

(47) 

we obtain 

F"=Vrc r"(T"m' T/cm*)/2(8/cm, S1cm*). (48) 

r1c can in principle be calculated from the second moment of the frequency 

spectrum of TTcm(t), though it is practically very hard. (TTcm, T1cm *) can be ex

pressed in terms of the correlation functions of the spins by using the follow

ing relation17> : 

([$£,A], B)= -([A, B]). 

After a calculation ( 48) is reduced to 

F1c= [Vrc rTckBT/h2X(k)]N- 1 J.:.[J(q) -J(k+q)]X(q). (49) 
q 

The expressions ( 43) and ( 44) for ferro- and antiferromagnets are derived from 

( 49) as can easily be observed. 

We shall now consider a simple cubic and a body-centered cubic lattice with 

only nearest neighbor exchange jnteractions. We have 

J(q) =2J[cos(qxa) +cos(qya) +cos(q.a)], 
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382 T. Moriya 

and 

J(q) = 8J cos (qxa/2) cos (qya/2) cos (q.a/2), 

for s.c. and b.c.c. lattices, respectively. In this model rk can be obtained in a 

closed form. 

(a) Ferromagnet 

For simple cubic and body-centered cubic lattices we have the following 

relation: 

L:;[J(q) -J(k+q)]X(q) = {1- [J(k)/J(O)]} L:;J(q)X(q). (50) 
q q 

From (18) we get 

(1/Ng2p.B2)L;J(q)X(q) = (1+13)/a-1, (51) 
q 

with 

13= (T-Ta)/To, (52) 

and 

18 = (1/N)L:;{(l+l3)- [J(q)/J(0)]}-1 • (53) 
q 

For a simple cubic and a body-centered cubic lattice, (53) leads to 

"' 
Ia (s.c.) = (Zrr) -sfH dxdydz { (1 + 13) - [(cos x +cosy+ cos z) /3]} - 1 (54) 

and 

"' 

I 8 (b.c.c.) = (2;r)-sfHdxdydz[(l+i3) -cosx cosy cosz]~ 1 , (55) 

.and their numerical values for 13=0 are15l 

Io (s.c.) = 1.52, 10 (b.c.c.) = 1.39. (56) 

The decay costant rk is given as follows: 

rk= [31/; •kkB2TT0/h2S(S+ 1)] [ (1 + i3)l8-l] {1 + 13- [J(k)/J(O) ]} 

X {1- [J(k)/J(O)]}. (57) 

(b) Antiferromagnets 

A similar calculation to that m a ferromagnet leads to the following re

results: 

rk= [31/; •kkB2TTN/h2S(S+ 1)] [(1+13)/5 -1] {1+13- [J(k)/J(K0)]} 

X {1+ [J(k)/J(K0)]}. (58) 
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Nuclear Magnetic Relaxation near the Curie Tempemture 383 

Here 18 is given by (54) and (55) ·for a simple cubic and a body-centered cubic 

lattice, respectively, and 

(}= (T-TN)/TN. 

The calculation of r k a is very difficult except for the high temperature limit 

where Mori and Kawasaki obtained for ferromagnets for small k 

rT; 2 =8z~S(S + 1)P/31t?, 

with 

~=1- (39/5z2) {1+ [3/26S(S+1)]}, 

where z is the number of nearest neighbors. We may expect, however, rk does 

not change seriously near the transition point and its order of magnitude remains 

to be ,..__,J/h. 

5. Relaxation times 

For brevity let us consider the case where the isotropic hyperfine interaction 

is predominant in the .nuclear relaxation mechanism. The line shape and the 

spin-lattice relaxation time can be calculated from (2), (8) and (9) by using 

the correlation functions for the spin components calculated in the preceding 

paragraphs. In this paragraph we shall neglect the influence of the external 

magnetic field and the anisotropy energy on the electron spin correlation func

tions. This effect will be discussed in the following paragraph. From (8), (9), 

(11) and (42) we get 

t 

cjJ(t) = (A2kBT/h2g2p.B2)N-1J;;{X.(k) Jdr(t-r)exp( -Tk0 lrl) 
0 

t 

+ (1/2)7..+ (k) J dr (t- r) exp C- rk +I •I + iwor)} , (59) 
0 

and 

00 

1/Tl = (A2kBT /h2g2fl-B2
) N-l L;:X (k) J dt cos (wot) exp (- rkltl)' (60) 

where w0 is the nuclear resonance frequency. For a cubic crystal (59) and (60) 

can be written as follows : 

sb(t) = (2NkBT/h2g2f1.B2)N-l L:;[X(k) {rkt-1 + exp( -rkt)} I rk2], (61) 
k 

and 

(62) 

where a small effect of (Vo is neglected. The calculation of T 1 can be carried 
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384 T. Moriya 

out and the result is 

1IT1 = (11T1oo) { [ CJo- Ia) I 62] + [(dial d6) I 6]} I zio [ (1 + 6) Ia -1], (63) 

for a ferromagnet and 

liT1 = (1IT1oo) { [ (10 +I a) I (2 + 6) 2] - [(dial d6) I (2 + 6)]} I zio [(1 + 6)Ia -1], (64) 

for an antiferromagnet, with 

(65) 

Tv., is the spin-lattice relaxation time at high temperature limit. In the above 

calculation we replaced '" with the average value <•"> independent of k. The 
temperature dependence of the spin-lattice relaxation time is generally given by 

(63) and (64). For a body-centered cubic lattice, for example, Ia is reduced to 

.. 
Ia = [2II'I'2 (1 + 6)] \ dxK[ cos2xl (1 + 6) 2], 

~ 

0 

where K(z) is the complete elliptic integral of the first kind, and T 1 can be 

calculated at any temperature by numerical computations. At temperatures near 

the transition point we can easily see that 1IT1 diverges as a~o or T~T 0 • 

The asymptotic behaviors are expressed as 

1IT1 = (11T1oo) [Vz IB"'Io (10 - i)] a-912 

= (0.124IT1"') a-312 (for s.c.), 

= (0.205IT1"') a-312 (for b.c.c.), 

for a ferromagnet and 

1IT1 = (IIT1"') [Vz l16;ri0 Cio -1)] a-112 

= (0.062IT1"') a-112 (for s.c.), 

= (0.103IT1"") a-112 (for b.c.c.), 

(66) 

(67) 

for an antiferromagnet. *> These expressions hold for small 6 which however 

is larger than ( (/)ol w.) 112 in a ferromagnet and (Vol (V, in an antiferromagnet, w. 

being the exchange frequency. It should be noted that the temperature depen-

*> This asymptotic temperature dependence may easily be seen from (62), since we have 

for small k 

for a ferromagnet and 

for an antiferromagnet. 
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Nuclear Magnetic Relaxation near the Curie Temperature 385 

dences in ferro- and antiferromagnets are different. This difference is considered 

to come from the fact that S (0) is a constant of motion while S (K0) is not. 

From (66) and (67) we see that the anomalous increase of the relaxation rate 

takes place in a very narrow temperature range. For an antiferromagnet with 

the Neel point at""'l00°K, the anomalous increase in the relaxation rate is ex

pected to be seen at T-TN<l°K, in agreement with Heller and Benedek's 

observation in MnF2 • For a crystal with a low transition point this temperature 

range is extremely narrrow. For example, in an antiferromagnet with the Neel 

point at 1 °K, the anomalous increase of the relaxation rate will be seen at 

T-TN<l0- 2 °K. 

As to the line shape and width, we may expect a Lorentzian line shape 

and 

l/T2=l/Tr, 

for cubic ferro- and antiferromagnets at temperatures not too close to the transi

tion point. For an antiferromagnet the above statement will hold in the range 

IJ>A/J(Ko), 

while in a ferromagnet the corresponding lower limit of a will be larger than 

in antiferromagnets. In the extremely narrow temperature range where the above 

relation does not hold, the line shape will be deformed from a Lorentzian shape 

and the line width will become larger than 1/T1 • · The calculation of the line 

shape and the width in this temperature range is very complicated and we will 

not get into this problem here. 

6. Influence of the external magnetic field and the anisotropy 

We shall discuss in this paragraph the influence of the external magnetic 

field and the anisotropy which is important in actual experimental situations. 

The influence of the external field is more important in ferromagnets than in 

antiferromagnets, since the uniform magnetization is influenced significantly by 

a uniform external field while the antiferromagnetically ordered spins are little 

influenced by a uniform external field. As a matter of fact, an external magne

tic field makes the ferromagnetic Curie point obscure, while it gives only a small 

shift to the N eel point in an antiferromagnet. The calculation of the correlation 

functions of the spins and the relaxation times can be carried out along the same 

line as in the preceding sections. Here only the results are described. 

with 

The time part of the correlation functions may be written as follows: 

fk. (t) =exp C- rkolt I), 

fk+(t) =exp(iwkt-rk+ltl), 

wk = g2f-lB2So/hXJ_ (k), 

Fk0 = [v;T ,ko kB T /h2X.(k) ]N-1 :E [J(q) -J(k+ q) ]XJ_ (q), 
q 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

8
/2

/3
7
1
/1

8
4
6
5
5
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



386 T. Moriya 

rl,+ = [v;- '"' + kB T /h2Xj_ (k) JN-1:E [J(q) -JCk+q) J [X.Cq) + x_L (q) J/2, 
q 

in the first approximation. X (k) in the above expressions is the differential 

susceptibility under the constant external field. So is the average spin moment 

under the external magnetic field H 0 and is given by 

w"' has been calculated from 

iw"' = (S"'+> S"'+ *)I (Sic+, S,C+ *). 

T 1 and cp (t) are given as follows : 

1/Tl = (2A2kBT /h 2g2flB2) N-1L:Xl (k) r"' + /[ cr"' +) 2 + w"'2], (68) 

"' 
t 

cp (t) = (NkBT /h2g2f1.B2) N-!l.t ft.. (k) fdr (t- r) exp (- F~c 0 [ r[) 
0 

t 

+ x_L (k) fdr(t- r)exp (iw"' ,_ r,,+ [r[)}. (69) 

0 

Now we shall discuss the cases of ferromagnets and antiferromagnets separately. 

(a) Ferromagnets 

Under a constant magnetic field H 0 , the singularity in the differential sus

ceptibility disappears. The differential susceptibiliy components of a cubic fer

romagnet parallel and perpendicular to the external magnetic field are given by 

replacing (T-T0)/Ta in (18) with a+11 11 and a+11.l, respectively, where 

and 

(70) 

In the limit of small H 0 , 11 11 and 11 .l naturally tend to zero. For a finite value 

of H 0 it can easily be seen that when ;r;::_gp.8 H 0/J(O), 11's are of the order of 

[gpBHo/J(0)]2 and for smaller values of a, l/s increase as a~o. The values of 

lin and IIJ_ for o=O or T=Ta are 

llu (Ho, Ta) =3{3[S 2 + (S+ 1) 2]/10S2 (S+ 1) 2} 113 [gp8 H 0/J(0)]2 13 , 

!.1 .L (Ho, T a) = !.1 11 /3 . 

T 1 can be calculated by using the above expressions and the result is 

(71) 

1/T- (1/T ) (zLr. ) -I N-1L:; 1- [J(k) /J(O)] 
1

- !oo O/+ k {r)+!.J_L+1-[J(k)/J(0)]} 2 [(2 +{1-[J(k)/J(0)]} 2] 

w~ ~~ 
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Nuclear Magnetic Relaxation n'ear the Curie Temperature 387 

and 

(73) 

Since v's are of the order of S0
2 , we see that for a>r: the expressions (63) and 

(66) hold, i.e. the effect of the external field is unimportant. For smaller values 

of a, 1/T1 levels .off and for a~o or T~To we get 

(1/Tr)rc= (1/Troo) [Vz (vo/a3)/411'2 n-I 0 ~+]C 312 • 

From this expression we may say that when [g,uBHo/ J (0)] is larger than ~ 10-2 

no anomalous increase of the relaxation rate near T 0 is expected. 

The line width may be given by 

1/T2 = (1/2T/) + (1/2T1), 

with 

(74) 

The line width, therefore, -is expected to continue to increase at the temperature 

range r:>a>v 11 as temperature is lowered. 

The effect of the anisotropy energy is to shift the Curie point. If we de

fine Til and T~ by the temperatures where XII (0) and x~(O) diverge, respec

tively, the shifts in T 11 and T~ due to the anisotropy energy are of the order 

of ~ E'"m/1 J (0). 1/T1 and 1/T2 may approximately be expressed by replacing 

a in (72) and (7 4) with (T- T ~) /T ~ and (T- T 11 ) /T 11 , respectively. 

(b) Antiferromagnets 

In an antiferromagnet the effect of the external magnetic field is mainly to 

shift the Neel temperature. Under the external magnetic field H 0 we shall de

fine Til and T~ by the temperatures where the susceptibilities XII (Ko) and x~ (Ko) 

parallel and perpendicular to the external field diverge, respectively. After 

calculation we get 

(75) 

The susceptibilities X11 (k) and x~ (k) for general k are given by replacing 

(T-TN)/TN in (20) by a+v 11 and a+v~, respectively. The expressions for 

the relaxation times are 

1/Tr= (1/Troo) (Vz /16n10 (I0 -1))aJ:112, 

1/T2 = (1/Troo) (Vz /16n-l0 (!0 -1)) (i3J:1' 2 + i3i[1' 2) /2 , 

for all, a_j_)[A/J(K0)], with 

.all= (T-Til)/Til, a_j_ = (T-T _1_)/T~. 

(76) 
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388 T. Moriya 

The effect of the anisotropy energy may also be expressed as the shift of 

T:c, Ty, and T. by amounts of r-JEams2/J(K0). Therefore, it can make 1/T1 

quite anisotropic while the anisotropy in the line width will not be so signi

ficant as that in 1/T1 • Let us consider the case of a tetragonal crystal with 

the easy direction along the tetragonal axis. When the external field is ap

plied parallel and perpendicular to the tetragonal axis, the line widths are given 

by 

and 

(1/T2) _L = (1/Troo) [Vz /16n-Io Cio -1)] ( a-l/2 + 313]:112) I 4 ' . (77) 

respectively, where a 1. = (T- T j_) /T j_. When T- TN is small, (1/T2) 11 is about 

twice as large as (1/T2) j_. 

III. Indirect Nuclear Spin Interaction 

I. General formula 

We shall assume that the time in which the electronic spin system attains 

to its thermal equilibrium is much shorter than the characteristic time of the 

nuclear spin motion. This assumption may always be satisfied in magnetic 

crystals which are not very dilute. We can then consider the free energy of 

the system as a function of the nuclear spin variables (adiabatic approximation). 

This free energy expression can be reg~rded as an effective Hamiltonian for the 

nuclear spin system. The part of the free energy which depends on the nuclear 

spins can be regarded as the polarization energy of the electron spin system 

due to the magnetic field coming from the nuclear moments. This observation 

makes it simple to calculate the indirect nuclear spin coupling of bilinear form. 

The magnetic field produced by the nuclear moments is written as 

(III ·1) 

where ~ (R, R1) is assumed to be a symmetric tensor. The polarization energy 

quadratic in the magnetic field is expressed by using a generalized magnetic 

susceptibility of the electron spin system as follows: 

E=- (1/2) HH(R) ·'X(R-R') ·H(R')dRdR', 

where the susceptibility 'X (R- R') is defined by 

M(R) = fx(R-R') ·H(R')dR', 

(III·2) 

(III· 3) 

M(R)" being the density of magnetization at R. From (III ·1) and (III· 2) the 

indirect nuclear spin coupling between two nuclei 11 and 12 is expressed as 
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Nuclear Magnetic Relaxation near the Curie Temperature 389 

with 

(III· 4) 

Thus the calculation of the indirect nuclear spin coupling is reduced to that of 

the magnetic susceptibility X (R) whose Fourier transform X (k) has been dis

cussed in the preceding section II. For example, when we consider only a 

contact type hyperfine interaction, i.e. 

~(R, R') = (A/v0)a(R-R'), 

the range of the interaction is simply given by X (R) : 

E12= (A/vo) 2ll·X(Rl-R2) ·l2. 

Even in more general cases the calculation is straightforward. We note that 

the polarization energy (III· 2) can also be written as 

E=- (1/2):EH(-k) ·X(k) ·H(k). (III·5) 
k 

The above formulas are quite general. When applied to a free electron 

gas with modified hyperfine interactions, they lead to the Ruderman-Kittel formula. 22> 

In ferro- and antiferromagnets at low temperatures, the susceptibility X (k) or 

X (R) can be calculated by a spin wave approximation and at 0°K (III· 4) is 

reduced to the Suhl-Nakamura interaction.4>,o> 

2. Magnetic susceptibility X (R) above the transition point 

X (R) can be calcul~ted by taking a Fourier transform of X (k) calculated 

in II-2 and II-3. 

A. Behavior- at high temperatures 

At high temperatures, where a is small, the expression (22) can be expand

ed as follows : 

The Fourier transform of this is 

X(R) =aaR,o+P."B2a·g-1·J(R) ·g-1·a+ ···. 

We may thus conclude generally that at high temperatures the R-dependent 

part of the susceptibility and therefore the indirect nuclear spin coupling constant 

is proportional to 1/T2 • This temperature dependence has already been obtained 

in certain special cases.7> 

B. Behavior near the transition point 

(a) Cubic crystals 
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390 T. Moriya 

The Fourier transforms of (18) and (20) can be calculated easily for 

large R. Since the contribution from the region for small k is important, we 

may take only the first term in the expansions (19) and (21). We get 

with 

A= [(T-Tc)/rTc]l 12, 

for a ferromagnet and 

X (R) = [g2flB2S (S + 1) vo/36nrkBT N] exp (iKo · R) exp (- AR) I R, 

with 

(III· 6) 

(III·7) 

(III· 8) 

(III· 9) 

for an antiferromagnet. Here v 0 is the volume per magnetic ion and r is given 

by 

r = J" (ko) /2J (ko)' (III·10) 

with k 0 =0 for a ferromagnet and k0 =K0 for an antiferromagnet. It is seen that 

X (R) is isotropic for large R and the range of interaction increases as the 

temperature approaches the transition point. When only the contact type hyper

fine interaction is taken into account, the nuclear spin interaction is of an ex

change or dot-product type and is ferromagnetic in. a ferromagnet and anti

ferromagnetic in an antiferromagnet. 

(b) Crystals with lower symmetry 

Let us consider the same simplified model as in II-2-B. A similar approx

imation to the above is possible in calculating the Fourier transform of (31) 

for large R. The second term in the denominator in (31) may be expanded as· 

follows: 

.:v,y,z 

1- {[J(k) + Pn(k) ]/[J(O) + Pn(O) ]} = L:rnmkm2 + ... , (III·ll) 
m 

where 

(III·12) 

X (R) for large R is written as follows : 

(III·13) 

where. 

and 
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Nuclear Magnetic Relaxation near the Curie Temperature 391 

R:c' = (r nlr nx) Rx, Ry' = (r nlr ny) Ry, R.' = (r nlr nz) R.. (III ·14) 

In an antiferromagnet we get the same expression as (III ·13) except for a factor 

exp (iK0 • R). 

Let us consider the case of MnF2 as an example. It is a good approxima

tion in this crystal to take account of only the next nearest neighbor exchange 

interaction.23J With the coordinate transformation: 

(III ·15) 

where a and c are the lattice constants for a tetragonal unit cell, we have 

r=a2/8, 

and the parallel and the perpendicular susceptibilities are written as 

X11 (R) = (2aa 11 T/3nTN)exp(iKo·R-A 11 R')/R', 

with 

(III·16) 

(III ·17) 

Since TN-T~ =1.36°K, the susceptibility is quite anisotropic near TN. At TN, 

4u vanishes while ).j_ =1/2.6a. 

3. Magnetic susceptibility X (R) below the transition point 

(a) F erromagnets 

Let us consider the same case as in paragraph III-2-b (II-3-a). The easy 

direction of the magnetization is assumed to be the z axis. Taking Fourier 

transforms of (38) and (39), we can easily see that X;, (R) tends to zero as T ~o, 

while Xx (R) and Xy (R) are temperature independent. Near the Curie point 

X. (R) for large R may be expressed by a similar expression to (III ·13): 

(III ·18) 

where 

J..= [(Ta-T)/r.TaJ1 12. 

The screening constant below the Curie point is V2 times as large as that 

·above the Curie point. The susceptibility components perpendicular to the easy 

direction is expressed for large R as 

(III ·19) 

with 

Axo=[(Ta-Tx)/rxTx] 11\ etc. 

This result agrees qualitatively (except for a numerical factor) with the spin 

wave calculation at 0°K. Vve also see that Xx(R) and Xy(R) are continuous 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

8
/2

/3
7
1
/1

8
4
6
5
5
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



'392 

through the Curie point. 

(b) Antiferromagnets 

T. Moriya 

The result is quite similar to that in the case of ferromagnets, except for 

a factor exp(iK0 ·R1) which gives + and - signs on the + and - sublattice 

points, respectively. 

4. Indirect nuclear spin interaction 

The indirect nuclear spin coupling constant can be calculated from (III· 4) 

and the results of the preceding paragraphs. The coupling constant 2{<Pl (R, R1) 

between the nuclear spin f/Pl of the p th kind and the ionic spin at R consists 

of two parts : 

(III·20) 

where the first and the second terms are the hyperfine and dipole coupling con

stants, respectively. They are written as 

(III·21) 

where Jljfl is a hyperfine coupling tensor between the electronic spin on the ion 

centered at R1 + r1 and the nuclear moment at R1 and r P is the gyromagnetic 

ratio of the nuclei of the p th kind. The calculation of the coupling constant 

between two nuclear spins f/Pl and I )1/l is carried out by using (III· 4) direct

ly or by using a method of Fourier transforms. We have 

(III·23) 

or 

(III·24) 

The largest contribution to the coupling constant @ comes from the term quadra

tic in the hyperfine coupling constant : 

(III· 25) 

As a simple example, when there is only one magnetic ion m a unit cell the 

coupling constant for the nuclear spins of two magnetic ions is written as 

[®12J hh = Jl. X (R1- R2) · Jl. 

For cubic crystals Jl and X are simply scalar and the coupling is of the ex

change or dot-product type. For an orthorhombic crystal the coupling is anisotropic 

and the principal values of the coupling constant are 

An2X,. (R1 - R2), (n = 1, 2, 3). 
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Nuclear Magnetic Relaxation near the Curie Temperature 393 

In crystals like MnF2 , where a fluorine nucleus has hyperfine coupling with the 

three neighboring Mn2+ ions, we need to make detailed calculation by using 

(III·25). 

The contribution of the next importance may be the terms bilinear in the 

hyperfine interaction and the dipolar interaction. The magnitude of this contri

bution is of th~ order of rh/v0A times the first one, i.e. roughly two orders of 

magnitude smaller than the first one. This term, however, is always anisotro

pic and may be important in cubic crystals where the first contribution gives 

only an isotropic coupling. This contribution is treated in the Appendix. 

5. Nuclear resonance line width 

The contribution of the above discussed indirect nuclear spin coupling to 

the NMR line. width may be calculated by using conventional methods. We shall 

here use the moment method. Let us consider a crystal with two kinds of nuclear 

spins. The first kind has a spin quantum number I and the coupling constant 

between the nuclear spins I/1l and I)~' of the first kind IS denoted by 

(III·26) 

The nucleus of the second kind has a spin quantum number I' and the coupl

ing constant between the nuclear spins I/l of the first kind and IP <2l of the 

second kind is written as 

( ru<1,2l) - G-jp t 
'&Jv :c:c- xx, e c. (III·27) 

When the magnetic field is applied in the z direction, the second moment of 

the NMR frequency of the first kind of nuclei is given by 

h2<ti) =[I (I+ 1) /12]L:; (G~;+ Gif: -2G~') 2 

Jl 

+ [I' (I'+ 1) /3] I:; (G{n 2• (III·28) 
• p 

As an example let us consider a crystal with only one magnetic ion in a unit 

cell. We further assume that only the nuclei of the magnetic ions have magne

tic moments, and take account of only the hyperfine interaction between the 

nuclear and the electronic spins. In a cubic crystal, where the coupling con

stant @ is a scalar, the second moment (III·28) (with G=O) vanishes. This 

means that the main contribution to the indirect coupling which is quadratic in 

the hyperfine . interaction do not contribute to the NMR line width. In crystals 

with lower symmetry, the second moment does not vanish. As we have studi

ed in III-2-B, one component of X (R) and therefore one component of the 

coupling constant @ for a long distance is of a screened Coulomb type near T c 

and the screening constant is 'proportional to /T-Tu/ 112• The second moment, 

therefore, diverges as the transition point is approached. We shall assume that 

the principal axes of Jl are the x, y and z axes and the principal values are 

A:>:, A 11 and As. The principal axes of X (R) are also assumed to be the same. 
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394 T. Mm-iya 

The second moment (III· 28) then is expressed as 

h\v2)= [I(I+l)/12]I;[A.,2X_,(R) +Ay2Xy(R) -2A,2X.(R)] 2, (III·29) 
R 

for Hollz-axis, etc. 

In the following we shall consider a crystal in which magnetic ions from 

a body-centered tetragonal lattice as in MnF2 • We asl;)ume X_,(R) =Xy(R) =Xj_(R) 

and A_,= Ay =A j_. Using (III· 16) and neglecting the difference between a 11 and 

aj_, we get 

h2(v2)~oll z = 4h2(v2)Ho.l• 

=[I (I+ 1) /3] (2aaT /3nTN) 2I; [ {A.l2exp ( -A.lR') /R'}- {A~ 1 exp(-A=R') /R'} ] 2• 

R an-~ 

The summation in (III· 30) can be evaluated, by replacing it with an integral, 

to be 

h2(v2)Houz= (4t/.2/27rr)I(I+l) [g2pB2S(S+l)/3kBTaJ2 

X {(Ai1/a) -4A~ 1 A}_l(a+a.l) + (A}_/a.l)}, (III·31) 

with a= (T-Ta)/Ta and aj_= (T-Tj_)/Tj_. This formula is applied both for 

ferro- and antiferromagnets. 

The contribution from the Mn55-Mn55 indirect coupling to the second moment 

of the NMR line of Mn65 in MnF2 can be estimated from the above formula 

directly. The contribution from the P 9-P9 indirect coupling to the P 9-resonance 

may also be estimated approximately. In MnF2 one fluorine nucleus has a hyper

fine interaction with three neighboring Mn++ ions of which two belong to one 

sublattice and one to the other in the antiferromagnetic state. The indirect 

coupling of this nucleus via one Mn++ has an opposite sign to those via the 

other two Mn++'s when the other nucleus is not too close to this ·one. For a 

long range interaction we can consider as if one fluorine nucleus has hyperfine 

interaction with only one Mn++ out of three neighbors. The hyperfine in

teractions in MnF2 are mainly isotropic and the coupling constants are given 

as follows24l' 25J : 

g,uBA(Mn++ -Mn56) =0.90 X 10-2cm-1 , 

gpBA (Mn++- P 9) = 0.16 X 10-2cm-1• (III·32) 

The contribution of the Mn55-Mn55 interaction to the second moment of Mn 55 ~ 

resonance line and the contribution of the P 9 - P 9 interaction to the second 

moment of P 9-resonance line are estimated as 

and 

[ (v2)u0 u z] Mn-Mn = 1.54 X 1080!' (I'+ 1) [gpBA (Mn++- Mn55) ] 4 

+ {(1/a 11 )- [4/(a 11 +aL)] + (1/a.l)}, 

= 1.4 X 1010 { (1/J 11) - [ 4/ (a 11 +a .l)] + (1/ a L)}, (III· 33) 
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Nuclear Magnetic Relaxation near the Curie Temperature 395 

[(z:; 2 )z£~.Loh-F = 2 X 1.54 X lOeo 1 (I+ 1) [gpBA (Mn + +- P 9)] 4 

x { (1/ a II) - [ 4/ c a II +a_~_) J + (1/ a_~_)} 

= 2.4 x 106 { (1/ r7 11 ) - [ 4/ ca 11 +a 1_)] + (1/ a_~_)}, (III· 34) 

where I' is the nuclear_ spin quantum number 5/2 of Mn155 • We took account 

of the fact that there are twice as many fluorine ions as manganese. 

Next we shall estimate the contribution from the Mn56- P 9 interaction to the 

second moment of the P 9 resonance line. As is shown in (III· 28) the inter

action between the different kinds of. nuclear spins always gives the broaden

ing of the resonance line. In a similar approximation to the above we estimate 

this contribution as 

[ (!.i2)Hollz]F-Mn = 1.54 X roeor (I'+ 1) [g 2(-tB2A (Mn++ -Mn55) A (Mn++- P 9) ] 2/fJII' 

= 4.5 X 108/an =3.7 X 109/ (T- TN) 1'2 ' 

and 

[(!.i2)u0_Lzh-Mn= (o.II/J_L) [(1.12)H0 11zh-Mn · (III· 35) 

Comparing the above two contributions to the second moment of the P 9-resonance 

line, we see that the P 9-Mn55 interaction is more than two orders of magnitude 

as effective as the P 9- P 9 interaction, so that the latter contribution is negligible. 

Taking square roots of (III· 35), we get 

or 

[(!.i2)Honz] 112 =6 X 104/(T-TN) 11\ 

[(!.i2)Hol_zJ112 =6 X 104/(T- T JY1\ 

[ ( (.dH) 2)Hollz] 112 = 15/ (T- TN) 11\ 

[ ( (L!H) 2)HoJzJ1'2 = 15/ (T- T _~_) 114 . (III· 36) 

Near the Neel temperature the line width depends on the direction of the ex

ternal magnetic field strongly. We have to mention here the effect of narrow

ing of the P 9-resonance line width discussed above due to the Mn66-Mn55 interac

tion. This may reduce the width by a factor 5 or so. 

Below the transition po,int, this mechanism gives a broadening of the NMR 

line width which is proportional to (TN-T) - 114 when the external magnetic 

field is applied along the easy axis. The coefficient of the temperature factor 

is 2-114 times as large as that above the transition point. 

IV. Comparison with Experiment 

We have seen in II and III that the contributions of the two mechanisms 

to the NMR line width have different temperature dependence. At temperatures 

close to the transition point the relaxation mechanism (hyperfine interaction 
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396 T. Moriya 

modulated by exchange) gives the temperature dependence of [ (T- Ta) /T a] - 312 

in ferromagnets and [(T-Tn)/Tn]- 112 in antiferromagnets, while the indirect 

nuclear spin coupling gives [ (T- T a) /T a] - 114 both in ferro- and antiferromagnets. 

The numerical coefficients of the above temperature factors in the two contri-' 

butions are of the same order of magnitude. Therefore, we cannot say in general 

which of these two contributions is more important. Though the first mecha

nism becomes more and more important than the second or the indirect coupling 

mechanism as the temperature approaches the transition point, there may be a 

temperature range where the indirect coupling mechanism is of significant im

portance. The spin-lattice relaxation is always dominated by tlhe first mechanism 

and it will be interesting to measure the difference between T 1 and T 2 • 

The only available experimental data for the comparison with the theory 

are those on P 9-resonance in MnF2•9>10> The two contributions to the line width 

may be written as follows: 

Holfc-axis 

(LJH) relax= 0.85 (LJH) "' [ (T- T n) - 112 + (T- T .L) - 112] /2, 

(LlH) indirect= 3 (T- T n) - 114 gauss, 

Ho.Lc-axis 

(LJH) relax= 0 ·85 (LJH) co [ (T- T n) - 1 /2 + 3 (T- T .L) 112] /4, 

(LlH) indirect= 3 (T- T .L) - 114 gauss, 

(IV ·1) 

(IV ·2) 

(IV ·3) 

(IV ·4) 

where (LJH) oo is the line width arising from the hyperfine irtteraction modulat

ed by exchange at high temperature limit. The observed value of (JH) oo is 43 

gauss.24> However, a fluorine ion in MnF2 has three neighboring Mn++ ions and 

the effect of the short range order is to give a tendency for one of them to be 

anti parallel with the other two, so that the effective valt~-e of (JH) oo to put into 

(IV. 1) and (IV. 3) may be smaller than the above value by a· factor "'2"'3.*> 

In the expressions (IV. 2) and (IV. 4) the narrowing effect due to the Mn55-Mnllll 

indirect coupling was taken into account. Since the coefficiehts in. (IV. 1) and 

(IV. 3) are about one order of magnitude larger than those in (IV. 2) and (IV. 

4), we may say that the indirect coupling mechanism is relatively unimportant 

as compared with the relaxation mechanism in the broadening of P 9-resonance 

in MnF2 • 

Heller and Benedek9> made analysis of their data by using the following 

empirical formula : 

*l As a matter of fact the decrease of the line width in a rather high temperature range as 

temperature is lowered24l may be explained by this effect of the short range order. A detailed 

calculation by using the present theory may be possible though we will not work it out here. 
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Nuclear Magnetic Relaxation near the Curie Temperature 397' 

above the Neel point. The numerical values of the coefficients were determin

ed as follows : 

a=O.l gauss/degree, 

p=0.85, K=9.9 gauss degP, L1H0 =20.2 gauss, for Holle, 

p=0.95, K=3·0 gauss degP, L1H0 =19.5 gauss, for Halla. 

Below the Neel point they obtained 

Llv=K(TN-T)-p, 

with 

K = 500 kc/sec, p= 0.53, for H 01ic. 

Baker, Lourens and Stevenson10J obtained (T- TN) -l;s dependence above TN· 

The theoretical values (IV. 1) and (IV. 3) give right orders of magnitudes and 

qualitatively right dependence on the direction of the external magnetic field of 

the NMR line width. The theoretical temperature dependence gives an asymptotic 

form which diverges as temperature approaches the tninsition point in agreement 

with the data of Heller and Benedek and that of Baker et al. The theo

retical temperature dependence, however, seems to be a little weaker than the 

Heller and Benedek data though weaker dependence than the latter has been 

reported by Baker et al. It may not be so surprising even if the the0retical 

temperature dependence does not give an excellent agreement with the experi

mental data, since in our theory the effect of the short range order may not 

be taken into account sufficiently. It can easily be seen that the use of Elliott 

and Marshall's resultl8l for the space correlation functions instead of the mole

cular field results will not alter the asymptotic form of the temperature depen

dence of the relaxation times. We might need a better approximation particularly 

near the transition point. We might also say. that at present the experimental 

data are rather scanty to make a full test of the present theory. Future experi

ments on a variety of crystals are expected. 
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Appendix 

Let us consider here the effect of the dipole interaction between the nuclear 

and electronic spins on the indirect nuclear spin interaction in cubic ferro- and 

antiferromagnets. 
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398 T. Moriya 

(a) Ferromagnets 

Let us for brevity consider the case where only one kind of nuclei (transi

tion element nuclei) have magnetic moments. The hyperfine coupling constant 

is isotropic and we have 

%C(k) =A+D[1- (3/k2)kk], (A·1) 

where 

D=47qh/3vo, (A·2) 

v 0 and r being the volume per magnetic ion and the nuclear gyromagnetic ratio, 

respectively. The second term of (A ·1) is the Fourier transform of the dipole 

interaction tensor calculated approximately by replacing a summation over the 

lattice points with an integral over infinite space. This approximation is good 

for small k. In antiferromagnets where %( (K0 ) is important, (A ·1) is, of course, 

not a good approximation. From (A ·1) and (III· 24) we get 

@12 =A2X(R) + (2AD/N)L;exp (ik·R) X(k) [1- (3/k2)kk] 
lc 

+ (D2/N) I;exp (ik·R) X(k) {2- [1- (3/k2)kk]}, (A·3) 
lc 

where 

R=Rl-R2. 

In cubic ferromagnets X (k) for small k is a function of k = lkl as was shown in 

II-2-A. Inserting (18) and (19) into (A· 3), we get for large R 

(A·4) 

with 

F(R) =- (v0aT /4n-rT0R)[ (3/..l2R 2){l-exp( -..lR)} -(3/..lR)exp ( -..lR)-exp( -AR)], 
(A·5) 

where X (R) is given by (III· 6) . We see that the first term of (A· 4) gives an 

isotropic or dot-product type interaction while the second term gives the dipolar 

type interaction with the R-dependence given by (A· 5). We note that both 

F (R) and X (R) tend to 1/ R as the temperature approaches the Curie point. 

(b) Antiferromagnets 

The expression (III· ~4) for the indirect nuclear spin coupling constant will 

be evaluated here for· an antiferromagnet. In the summation in (III· 24) the con

tribution from the part of the k space near K 0 , the antiferromagnetic vector, 

is important. Expanding %Ca(k) around K 0 , we have 

%Cd(k) =%Ca(Ko) +0(tc2), IC=k-Ko. 

The second term is of more than the second order in IC and gives the indirect 

nuclear spin coupling of shorter range than the first term. Let us for brevity 

neglect the second term. The coupling constant then is expressed in a simple 
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Nuclear Magnetic Relaxation near the Curie Temperature 399 

form as follows : 

(A·6) 

It should be noted that if the ·crystal has a high symmetry and there are more 

than one equivalent K 0's, we have to sum up the contributions from all the K 0's 

in (A· 6). Let us first consider a simple cubic lattice consisting of magnetic 

ions. The antiferromagnetic spin arrangement in this case is given by K 0 = (;r/ a, 

7r/a, 7r/a) where a is the lattice constant. In this case ~a(K 0 ) =0 and there is 

no dipolar contribution to the long range indirect nuclear spin coupling. The 

same is true for a body-centered cubic lattice with K 0 = (0, 0, 2:r/ a). For a face

centered cubic lattice we have several possible spin arrangements in the anti

ferromagnetic state. When the spin arrangement below TN has cubic symmetry, 

the dipolar contribution to the long range indirect nuclear spin coupling vanishes. 

Let us consider the case where the spin arrangement below TN has trigonal 

symmetry. There are four equivalent K 0's : 

(a/7r)Kol = (1, 1, 1), (a/:r)K02 = ( -1, 1, I), 

(a/7r)Kos= (1, -1, 1), (a/7r)K04 = (1, 1, -1). (A·7) 

These vectors of course represent four different spin arrangements. From 

Cohen-Keffer's table.26l we get 

~a(Ko.) =- (3·615rh/vo) [(3/1Ko.[ 2)Ko.Ko.-1]. (A·S) 

Assuming that X (K0• + rc) is a function of only tc = [rc I , the coupling constant rs 

given by 

®12= L:;exp (iKo. ·R) Xo(R) [A+ Wa(Ko.)] ·[A+ 2IaCKo.)], (A·9) . 
where 

with 

A= [(T-Ta)/rTa]. 112 

Now we shall take the three fundamental vectors which define the unit cell of 

a face-centered cubic lattice as follows : 

a 1 = (a/2, a/2, 0), a2 = (0, a/2, a/2), a 3 = (a/2, 0, a/2). (A·IO) 

When a vector R = R 1 - R 2 is expressed as 

the indirect nuclear spm coupling constant is given as follows: 

@12 = [N+2(3·615rh/v0) 2]X0 (R) (exp i'lrn1+exp i'lrn2) (l+exp irr(ndn3)) 

+ [2A (- 3.615rh/ vo) + (3.615rh/ vo) 2] Xo (R) 
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400 T. Moriya 

x [ (e~p i1rn1- exp i1rn2) {1 + exp i1r (n2 + ns)} (xy + yx) 

+ (exp i'1rn2- exp i'lrns) {1 + exp i'lr (ns + nl)} (yz + zy) 

+ (exp i1rns-expi1rn1) {1 + exp i1r(n1 + n2)} (zx+ix)J, 

where x, y, z are unit vectors in the x, y, z directions, respectively. 
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