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We present results for three charmonia states (¢, x., and J/¢) in d + Au collisions at |y| < 0.35 and
/Sny = 200 GeV. We find that the modification of the ' yield relative to that of the J/4 scales
approximately with charged particle multiplicity at midrapidity across p + A, d + Au, and A + A results
from the Super Proton Synchrotron and the Relativistic Heavy Ion Collider. In large-impact-parameter
collisions we observe a similar suppression for the ¢’ and J/¢, while in small-impact-parameter
collisions the more weakly bound ' is more strongly suppressed. Owing to the short time spent
traversing the Au nucleus, the larger ¢/ suppression in central events is not explained by an increase
of the nuclear absorption owing to meson formation time effects.

DOI: 10.1103/PhysRevLett.111.202301

Understanding the evolution of heavy quark-antiquark
pairs into bound color singlet quarkonium states represents
a challenge within quantum chromodynamics. An excel-
lent tool for probing the time scale for this evolution is the
measurement of production rates for multiple quarkonium
states, with different physical sizes and binding energies, in
proton- or deuteron-nucleus collisions. The evolving
quark-antiquark pair must traverse the target nucleus, and
by varying the path length in the nucleus one can probe this
time scale.

Measurements of J/i¢ and ' production rates at
JSvn = 38.7 GeV, as a function of Feynman-x (xp), in
proton-nucleus collisions by E866/NuSea [1] show a
greater suppression of ¢/ compared to J/¢ production
near xrp =~ (0, and a comparable suppression for xp > 0.
Similar measurements by NASO [2] at \/syy = 27.4 GeV
and xy = 0 show a stronger suppression of ', compared
to J/ i production for larger nuclei. This has been inter-
preted as an effect of the charmonia formation time [3].
When the time spent traversing the nucleus by the c¢ pair
becomes longer than the charmonia formation time, the
larger ' meson will be further suppressed by a larger
nuclear breakup effect. It is critical to test these assump-
tions at the collision energies provided by the Relativistic
Heavy Ion Collider (RHIC), where the time spent travers-
ing the nucleus is expected to be much shorter than this
formation time.

Also, the binding energy of the ¢’ (= 0.05 GeV) is
significantly smaller than that of the y,. (= 0.20 GeV) or
J/ ¥ (= 0.64 GeV) [4], and may play an important role in
understanding the effects of producing quarkonia in a
nuclear target.

The PHENIX experiment has previously reported mea-
surements of J/ ¢ production rates in d + Au collisions at
JSvnv = 200 GeV using data collected in 2008 [5,6]. Here,
we present measurements of ¢/ production rates, as well as

PACS numbers: 25.75.Dw

the fraction of J/ i yield which comes from y, decays, in
d + Au collisions at midrapidity from the same data set.
Using the corresponding measurements in p + p collisions
by PHENIX [7], we construct the nuclear modification
factor, Ry, for ¢/ and y, production and compare it
with the measurements of the J/i¢ R a, at the same
energy.

The PHENIX detector is described in detail in Ref. [8].
The data presented here were collected using the two
PHENIX central arms, each of which detect electrons,
photons, and hadrons over |n| <0.35 and A¢ = 7/2.
The d + Au data used in this analysis were recorded using
a minimum bias (MB) trigger in coincidence with an addi-
tional electron level-1 trigger. The MB trigger requires at
least one hit in each of the two beam-beam counters
(BBCs) covering 3 < |n| < 3.9. This MB selection covers
(88 = 4)% of the total d + Au inelastic cross section of
2.26 barns [9]. The electron trigger requires a minimum
energy deposited in any group of 2 X 2 towers in the
electromagnetic calorimeter and an associated hit in the
ring imaging Cerenkov counter. Thresholds of 600 and
800 MeV were used, each for roughly half of the data
sample. The data set represents analyzed integrated lumi-
nosities of 62.7 and 66.2 nb~! for the ¢/ and y,. analyses,
respectively.

The ¢/ invariant yield is calculated as

le/,/ . CN(///

B ’
“ dy  Nyg€AAy

(D

where B,, is the i)' — e*e™ branching ratio, Ny is the
measured ' — ete” yield, Nyp is the number of
sampled MB events, and Ay is the width of the rapidity
bin. A GEANT-3 based model of the PHENIX detector
combined with measurements of the momentum depen-
dence of the single electron trigger efficiency, as described
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in Ref. [6], is used to calculate the product of the accep-
tance and efficiency €A, which includes the level-1 trigger
efficiency. This model is also used to estimate the detector
effects on the simulated signal and background line shapes
when fitting the measured dielectron signal. Following the
procedures described in Ref. [6], €A is found to have an
average value of 0.91% with a relative systematic uncer-
tainty of 6.4%. The correction factor ¢ accounts for the
trigger and centrality bias present in events which contain a
hard scattering [6]. The track multiplicity dependence of
the reconstruction efficiency is negligible in d + Au colli-
sions, and a 1% systematic uncertainty was assigned based
on the J/ i studies performed in Ref. [6].

The ' — ete™ yield is extracted from fits to the
unlike-sign (e e™) invariant mass distribution, after the
subtraction of the like-sign (e*e™ + e~ e™) background,
where at least one of the electrons fired the level-1 trigger.
The fit is performed over the mass range 2.0 <<
M, [GeV/c*] < 5.5, and includes line shapes for J/ ¢ —
ete” and ' — ete” decays, as well as the remaining
correlated background from open heavy flavor and Drell-
Yan decays.

The J/ and ¢’ line shapes include the natural line
shape, smeared based on the PHENIX mass resolution, and
radiative decays (J/¢ — e"e”y for E,> 100 MeV),
using calculations of the mass distribution from quantum
electrodynamics [10]. The line shape for Drell-Yan decays
was generated using PYTHIA-6 [11]. Line shapes for open
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F0-20% [ Total Fit ]
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35 P A
- 5 B -4 o w 7
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FIG. 1 (color online). The e"e™ mass distribution, after like-
sign subtraction, for (0-20)% (top) and (60-88)% (bottom)
d + Au collisions. The line shapes are those fit to the data to
extract the ¢’ yield. The simulated line shapes are drawn as lines
connecting yields integrated over the width of the bin and plotted
at the center of each bin, as is done with the data.

heavy flavor decays were generated using three different
Monte Carlo (MC) generators, including PYTHIA-6 in both
hard scattering and forced charm (or bottom) production
modes as well as the MC at next-to-leading-order
(MC@NLO) generator [12]. Input parton distribution func-
tions CTEQ6L and CTEQ6M [13] were used for PYTHIA-6 and
MC@NLO, respectively.

After applying the detector acceptance and efficiency
effects, the line shapes are fit to the invariant mass
distributions.

It was found that the heavy flavor line shapes generated
using PYTHIA-6 set to hard scattering mode gave the lowest
X’ per degree of freedom (68.5/68), while those generated
using PYTHIA-6 set to charm (bottom) production as well as
those generated using MC@NLO provided slightly poorer
agreements with a y? per degree of freedom of 79.1/68 and
83.4/68, respectively. The different line shapes resulted in
changes in the extracted i’ yield of less than 20% in
peripheral events. In central events a ' peak is barely
discernible. Fits using the different assumed shapes gave
' yields which varied by up to 83%; however, all required
a nonzero i’ yield within the fit uncertainty. In all cases,
the continuum line shapes were generated for p + p colli-
sions, and may be modified in d + Au collisions. The
effect of nuclear shadowing on the Drell-Yan and open
heavy flavor line shapes using the EPS09S parametrization
[14] was found to change the extracted ¢’ yield by less
than 5%.

Figure 1 shows the results of the fit for central and
peripheral d + Au collisions. The shaded bands represent
the combined uncertainty in the fit normalizations, as well
as changes in the shape of the correlated background
obtained using the three different sets of open heavy flavor
line shapes.

The resulting invariant yields are used, in conjunction
with the measured values in p + p collisions [7], to cal-
culate the nuclear modification factor R ;,,. The ¢/ R a, is
calculated as

, dNiiv/dy
jleu = Y pp ’ (2)
Ncollle/,/ /dy

where N is the mean number of nucleon-nucleon colli-

sions, and dNéé“/ dy and dN}/dy are the measured in-

variant yieldsin d + Auand p + p collisions, respectively.
The value of N is calculated using a Glauber MC model
coupled with a simulation of the PHENIX BBC response
(see [6] for details). The (0-100)% centrality integrated
Rﬁ;Au is given in Table L.

The feed-down fraction of the inclusive J/ ¢ yield from
X. decays in d + Au collisions (F f{f‘_”, sy is measured via
the y,— J/y +y— ete” + y decay channel, where
the e*e™ vy is fully reconstructed in the PHENIX central

arms. The procedure for extracting F i‘fﬂ 10 is the same as

that presented for p + p collisions in [7] for a data sample
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TABLE L.

A comparison of the (0-100)% centrality integrated R,4, values for the different

charmonium states. The quoted uncertainties are statistical followed by systematic uncertainties.

The binding energies are taken from Ref. [4].

Charmonia state Binding energy [GeV/c] R a4

W' —ete 0.05 0.54 = 0.11+212
Xc—ete 0.20 0.77 £0.41 =0.18
Feed-down corrected J/ i — e*e” 0.64 0.81 =£0.12 £0.23

of comparable statistical precision. The final feed-down
fraction is found to be F;’({*ﬂ sy = 0.32 % 0.09(stat) *
0.03(syst).

Using the measured feed-down fraction in p + p colli-
sions and the J/ R,a,, the x. Rya, is calculated as

10 Fvare

e — pl/v " x—J

Rja, = Rip, FoP . 3)
Xc—J/ b

The nuclear modification of y. production in d + Au
collisions is given in Table L.

1-87 “‘HH‘ T \\\HH‘ T T T 1117
. 1 NA38 p+A
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1ab 0 HERA-B p+A
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- v NA38S+U
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0.8

Relative Modification (y'/J/y)
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FIG. 2 (color online). The relative modification of the ' to
the J/4 as a function of dN,,/dmnl,—o. The plotted data include
NA38 [2] p + A at [syy = 19.4 GeV, NASO [19] p + A at
JSvy = 27.4 GeV, HERA-B [20] p + A at \/syy = 41.5 with a
global uncertainty of *4.4%, PHENIX d + Au at ./syy =
200 GeV with a global uncertainty of *24%, NAS50 [21]
Pb + Pbat /syy = 17.2 GeV, and NA38 [21] S + U at \[syy =
19.4 GeV. The Super Proton Synchrotron (SPS) and Hadron-
Electron-Ring Accelerator (HERA-B) results are calculated using
the extrapolated p + p ' to J/ i ratios quoted in the respective
references. There is a common global uncertainty in the SPS
points of 5% owing to the uncertainty in the p + p'/J /¢ ratio.
The dashed line is included only to guide the eye.

With the ' and y, nuclear modification in hand, it is
possible to correct the measured modification of inclusive
J/ 4 production for their feed-down effects, thus giving a
closer representation of the modification of direct J/
production. Here we use the ¢’ and y,. feed-down fractions
in p + p collisions measured by PHENIX in Ref. [7]. The
corrected J/ iy modification is calculated as

inclJ/ ! 3
(RIHC - F RciﬁjAu - Fif—»]/z/ngAu)

R(Lilirectj /¢ _ VT dAu Y'—J /P
Au _ PP _ PP ’
= Fysyy = Fymi)

“

where RI[?;LJ/ Y =0.77 + 0.02(stat) = 0.16(syst) is the
modification of inclusive J/¢ production, reported in
Ref. [5]. The feed-down corrected J/¢ modification is
given in Table I. While there still remains a contribution
from B — J/i{ + X decays, its value is expected to be
small (= 2.7% [15]). When comparing the nuclear modi-
fication of the three charmonium states, we find that they
are consistent within the current uncertainties, though they
are also consistent with a decrease in suppression with
increasing binding energy. To reduce the systematic uncer-
tainties we proceed to take the ratio of nuclear modification
factors.

Figure 2 compares the PHENIX results to data taken at
different collision energies and species by plotting the
relative modification of ' to J/¢ production

(R:,”/;u /RZXLJ/ ¥) as a function of charged particle multi-

plicity calculated from HIJING [16]. In the ratio, Rijﬁtj/ v

is integrated only over 0 < p;[GeV/c] <5 to match the
pr range of the ' results. When taking the ¢’ to J/
ratio, a number of uncertainties cancel or are reduced, such
as the uncertainty in €A. Nuclear effects that are common
between the J/ i and ' (such as nuclear shadowing) will
also cancel. The trend observed in Fig. 2 may arise from a
mixture of cold (p + A) and hot (A + A) nuclear matter
effects. However, it may indicate that interactions with
final-state hadrons play a role even in smaller colliding
systems and in particular for the larger ¢/, as in the frame-
work of comover models [17]. The ¢’ Ry, is further
calculated for different centrality bins matched to those
used in the previous J/ ¢ analyses [5,6].

Figure 3 shows ' R s, as a function of Ny, with the
same centrality binning used in [5]. Also shown in Fig. 3 is
the previously published J/ Rya, [5], here integrated
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FIG. 3 (color online). The ¢’ and J/ i [5] R a, as a function
of N o Note that the J/ R 4, plotted here is not corrected for
¢’ and y,. feed-down, and the N values are shifted slightly to
aid in clarity.

over the full rapidity coverage of the central arm. We
observe a strong suppression of ¢’ production with
increasing N.y. The observed suppression in the
(0-20)% most central d + Au collisions (large N.y;) is a
factor of = 3 times larger than the observed suppression
for inclusive J/ production.

Reference [3] presents a model that explains the lower
energy E866/NuSea and NA50 results using an expanding
color neutral c¢ pair. As the c¢¢ expands, it has an increased
nuclear absorption owing to its larger physical size. Once
the time spent by the c¢c pair traversing the nucleus
becomes larger than the J/ i formation time, the ¢’ will
see a larger nuclear absorption owing to its larger size
(ro = 0.9 fm for the ¢’ and ry = 0.5 fm for the J/¢
[4]). This explains the transition from a similar level of
suppression between the J/ ¢ and ' at high x to a larger
suppression of the ' relative to the J/ at xp =0
observed by E866/NuSea.

This idea is tested at RHIC energies by calculating the
average proper time 7 spent in the nucleus by the quarkonia
(or c¢ precursor). The 7 is calculated as 7 = (L)/(B,7v),
where (L) is the longitudinal path of the ¢¢ through the
nucleus and S, is the velocity of the quarkonia along the
beam direction in the nuclear rest frame. Here, S, is
calculated using the {py) of the J/4. The (L) values for
each PHENIX centrality bin are calculated using the same
Glauber MC model used to determine N, and have a
systematic uncertainty owing to the Glauber input values
of less than 5%.

Figure 4 shows the relative modification of the i/ to the
J/¢ as a function of 7, where the E866/NuSea
and NAS5O results have also been included. The solid
curve is the calculation by Arleo et al. [3], which is
consistent with the trends observed by E866/NuSea and
NASO.

The values of 7 for the PHENIX data are similar to
the cc formation and color neutralization time of

—~ 1-6

= F ]
2 140 E
Z 12F E
c - .
S 1 3
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3 F :
§ 0.6 NA50 =
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2 g ® PHENIX d+Au 3
% 0.2 = —— F. Arleo et al. =
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Proper time in nucleus (t) [fm/c]

FIG. 4 (color online). The relative modification of the ¢ to the
J/ as a function of the proper time spent by the quarkonia (or
c¢ precursor) in the nucleus. The data include NA50 [19] p + A
at 400 GeV/nn, E866/NuSea [1] p + A at 800 GeV/nn and
PHENIX d + Au at ,/syy = 200 GeV which include a global
systematic uncertainty of *+24%. The E866/NuSea points are
calculated for ' and J/4 modifications in similar rapidity
intervals. The curve is a calculation by Arleo et al. [3] discussed
in the text.

=~ 0.05 fm/c, and well below the J/ ¢ formation time of
= 0.15 fm/c [3]. Therefore the model cannot explain the
strong differential suppression of the ¢’ in the PHENIX
data. We note that Ref. [18] shows that the extracted
breakup cross section for the inclusive J/i displays a
strong departure of the E866/NuSea result from 7 scaling
below =~ 0.05 fm/c, indicating the presence of different
effects that modify charmonium production at short time
scales. The PHENIX data further indicate that there are
effects at short crossing time scales that can differentially
suppress the ' relative to the J/ .

In summary, we have presented measurements of /'
production, as well as the J/¢ feed-down fraction from
Xc decays, in d + Au collisions at /syy = 200 GeV.
Using the corresponding measurements in p + p colli-
sions, we have obtained the nuclear modification factor
Ryay for ¢ and y,. production. We find that the relative
modification of ¢ to inclusive J/ ¢ measured by PHENIX
follows the same approximate scaling with the charged
particle multiplicity measured at midrapidity as lower
energy data. We further find that ¢’ production is heavily
suppressed in central d + Au collisions relative to J/ ¢
production. Because the nuclear crossing time is very
short, this cannot be explained by the difference in size
of the fully formed ¢’ and J/. It instead suggests that
there is a process occurring on the time scale of c¢c¢ for-
mation that differentially suppresses the i’
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