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ABSTRACT

We report new observations from a systematic, spectroscopic, ultraviolet absorption-line survey that maps the
spatial and kinematic properties of the high velocity gas in the Galactic Center (GC) region. We examine the
hypothesis that this gas traces the biconical nuclear outflow. We use an ultraviolet spectra of 47 background QSOs
and halo stars projected inside and outside the northern Fermi Bubble from the Hubble Space Telescope to study
the incidence of high velocity absorption around it. We use five lines of sight inside the northern Fermi Bubble to
constrain the velocity and column densities of outflowing gas traced by O I, Al II, C II, C IV, Si II, Si III, Si IV, and
other species. We find that all five lines of sight inside the northern Fermi Bubble exhibit blueshifted high velocity
absorption components, whereas only 9 out of the 42 lines of sight outside the northern Fermi Bubble exhibit
blueshifted high velocity absorption components. The observed outflow velocity profile decreases with Galactic
latitude and radial distance (R) from the GC. The observed blueshifted velocities change from = -v 265GSR

-km s 1 at R≈2.3 kpc to = -v 91GSR
-km s 1 at R≈6.5 kpc. We derive the metallicity of the entrained gas along

the 1H1613-097 sightline, one that passes through the center of the northern Fermi Bubble, finding [O/
H]−0.54±0.15. A simple kinematic model, tuned to match the observed absorption component velocities
along the five lines of sight inside the Bubble, constrains the outflow velocities to ≈1000–1300 -km s 1, and the age
of the outflow to be ∼6–9Myr. We estimate a minimum mass outflow rate for the nuclear outflow to be

 -M0.2 yr 1. Combining the age and mass outflow rates, we determine a minimum mass of total UV-absorbing

cool gas entrained in the Fermi Bubbles to be  ´ M2 106 .

Key words: Galaxy: center – Galaxy: evolution – Galaxy: halo – ISM: jets and outflows – ISM: kinematics and
dynamics – quasars: absorption lines

1. INTRODUCTION

In the modern picture of galaxy evolution, the exchange of
gas between galaxies and their surrounding circumgalactic
medium (CGM) plays a crucial role in establishing the
properties of the galaxies. Feedback processes that regulate
these exchanges of gas are crucial for setting up the mass–
metallicity relation (Tremonti et al. 2004), the quenching of star
formation in massive galaxies (Tremonti et al. 2007; Tripp
et al. 2011), and explaining the mismatch between the Galaxy
stellar mass function and the dark matter halo mass function
(Oppenheimer et al. 2010). These powerful galactic outflows
also must suppress the inflow of gas into galaxies, constraining
the assembly of the baryonic component and regulating the star
formation in galaxies (Davé et al. 2011; Faucher-Giguère
et al. 2011).

The diffuse gas in the CGM can be detected as absorption
lines in the continua of background quasar spectra (e.g., Steidel
et al. 1994, 2002; Bowen et al. 1995; Chen et al. 1998, 2010;
Wakker & Savage 2009; Stocke et al. 2013; Tumlinson et al.
2013; Zhu & Ménard 2013; Bordoloi et al. 2014c). The
outflowing gas can be detected as blueshifted absorption

imprinted on the stellar continuum of the host galaxies

themselves (Weiner et al. 2009; Heckman et al. 2015; Bordoloi

et al. 2016b), giving the “down-the-barrel” view onto the

Galaxy in question, or of background galaxies offset by some

impact parameter (Steidel et al. 2010; Bordoloi et al. 2011).

These galactic outflows are primarily biconical in morphology,

both in nearby star-forming galaxies (see reviews by Heckman

2002 and Veilleux et al. 2005) and in high redshift galaxies

(Bordoloi et al. 2014a; Rubin et al. 2014). However, all of these

observational studies suffer from a major barrier that limits

what we can learn from them about galaxy-gas flows: they use

statistical sampling of one sightline for each of a sample of

galaxies.
Our vantage point inside the disk of the Milky Way gives us

a unique opportunity to break this deadlock and study the

outflowing gas from the Milky Way itself, along multiple lines

of sight. Using multiple background sources to study the

nuclear outflow of the Milky Way offers us a front row seat in

understanding these feedback processes in unprecedented

detail.
The Fermi Bubbles (FBs; Dobler et al. 2010; Su et al. 2010) are

giant 1–100 GeV, γ-ray emitting structures that extend up to

≈±55° above and below the Galactic Center (GC). These
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structures show enhanced emission in multiple wavelength ranges.
Spatially coherent emission features have been observed in hard
X-ray emission out to l≈20° (Bland-Hawthorn & Cohen 2003),
soft X-ray emission at their base (0.3–1.0 keV; Snowden et al.
1997; Kataoka et al. 2013), K-band microwave emission (23–94
GHz; Finkbeiner 2004; Dobler & Finkbeiner 2008), and polarized
radio emission at 2.3 GHz (synchrotron radiation; Carretti et al.
2013). Lockman (1984) also reported a lack of 21 cm emission H I

clouds near the center of the Milky Way and suggested that this
might be cleared away by a wind. New 21 cm emission surveys
toward the GC have further provided evidence for such a wind
(Lockman & McClure-Griffiths 2016).

The energetic origin and the source of the γ-ray emission
mechanism that illuminates the Fermi Bubbles are still being
debated today. There are two possible scenarios put forward to
explain the origin of the Fermi Bubbles. One scenario argues
that the Fermi Bubbles are the result of a recent explosive
outburst from the central supermassive black hole of the Milky
Way that happened a few Myr ago, and the observed γ-ray
emission originates from inverse Compton scattering of a
nonthermal leptonic population (Su et al. 2010; Zubovas et al.
2011; Fujita et al. 2013). The second scenario argues that the
Fermi Bubbles originate from the integrated effect of secular
processes taking place in the inner part of the Milky Way
(Thoudam 2013), or Galactic nucleus, such as tidal disruption
events regularly taking place every –10 104 5 years (Cheng et al.
2011) or the continuous and vigorous star formation activity
around the 200–300 pc diameter region around the central
black hole of the Milky Way (Lacki 2014), and that the
observed γ-ray emission is owing to hadronic collisions
experienced by heaver ions and a population of cosmic-ray
protons (Crocker & Aharonian 2011; see Crocker et al. 2015
for a discussion on the two scenarios).

Discriminating between any of these processes would
require knowledge of the kinematics of the Fermi Bubbles.
Knowing the kinematics would allow us to independently
constrain the age and spatial and kinematic extent of the cool
entrained material inside the Fermi Bubbles. However, to date,
no study has systematically mapped out the kinematics and
spatial extent of the possible nuclear outflow from the Milky
Way. Only a handful of individual lines of sight have been used
to trace the kinematics, ionization state, and elemental
abundance of the nuclear outflow (Keeney et al. 2006; Bowen
et al. 2008; Zech et al. 2008; Fang & Jiang 2014).

We have been conducting a survey with the Hubble Space

Telescope (HST) to systematically probe the kinematics and
physical properties of the warm and cool diffuse gas in the GC
region in absorption with UV spectroscopy (Program IDs [PID]
12936 and 13448). In a previous paper (Fox et al. 2015), we
reported the discovery of high velocity gas components
consistent with a biconical nuclear outflow being launched at
∼1000 -km s 1 via absorption-line detections of entrained gas
from the front and back side of the outflow cone along the inner
galaxy sightline to QSO PDS456.

In this paper we present a more comprehensive survey of the
northern Fermi Bubble. We trace the outflowing gas along lines
of sight inside and outside the northern Fermi Bubble and
constrain the radial profile and spatial extent of the nuclear
outflow in the Milky Way. The paper is organized as follows.
In Section 2 we describe the observations and the data
reduction. In Section 3 we present the UV absorption-line
spectra and discuss identification and measurement of the

outflowing components. In Section 4.1 we present the
incidence of high velocity absorption around the northern
Fermi Bubble. In Section 4.2 we present the radial absorption
profile, and in Section 4.3 we present the metallicity of the
outflowing gas. In Section 5 we present numerical kinematic
models of a nuclear biconical outflow that are motivated by the
component structure observed in our spectra. In Section 6 we
estimate the minimum mass outflow rates and the minimum
total gas mass in the Fermi Bubbles. In Section 7 we
summarize our findings.

2. OBSERVATIONS AND DATA REDUCTION

In this section we describe the different observations that are
used in this study and how the data are reduced.

2.1. COS Data

The UV observations for the background quasars were
obtained using the Cosmic Origins Spectrograph (COS; Green
et al. 2012) onboard the Hubble Space Telescope, under the
cycle 21 HST Program ID 13448 (PI A. Fox). For five quasars,
these observations used G130M/1291 and G160M/1600
grating/central wavelength settings and four FP-POS positions.
For one additional quasar, we obtained G160M/1600 grating/
central wavelength setting observation, for which archival
G130M observations existed from HST PID 12569 (PI S.
Veilleux). For 40 additional background sources, we had
access to archival G130M+G160M observations from HST/
COS (See Table 1). All the archival data were retrieved from
the Multi-mission Archive at Space Telescope (MAST) and
reduced using CALCOS v3.0 or higher (Debes et al. 2016). We
select all available UV bright QSO spectra with a HST/COS
spectra that are within ∣ ∣ <l 35° and >b 0°. The full target list
is shown in Table 1. All the targets are selected to lie both
inside and outside the northern Fermi Bubble (see Figure 1).
All the individual exposures were aligned in velocity space

using the centroids of known low-ion interstellar absorption
lines and co-added. For a number of lines of sight, intergalactic
absorption-line systems were also used for wavelength regions
without interstellar lines. The final science grade spectra have a
signal-to-noise (S/N) near the absorption lines of interest of
≈12–20 (per resolution element), have a velocity resolution
(FWHM) of ≈18–20 -km s 1 and an absolute velocity scale
uncertainty of ≈5 -km s 1, and cover the wavelength interval
≈1150–1780Å. The spectra were continuum normalized
around each individual absorption line using a polynomial fit
to the continuum. The resulting 1D spectra are binned to
Nyquist sampling, with three bins per resolution element for
display purposes. The analysis and the Voigt profile fits
(described later) were performed on the unbinned 1D spectra.
In addition, for the 1H1613-097 sightline we performed an

orbital night-only reduction of the COS data to remove
geocoronal airglow emission. To do this, the spectra were re-
extracted using only the time intervals when the Sun altitude as
observed by the telescope was less than 20 . This procedure
selects low-background intervals corresponding to the night-
side portion of the HST orbit. The spectral re-extraction was
conducted with the standard calcos pipeline. This process
was only conducted for the 1H1613-097 sightline, since this is
the only sightline in our northern Fermi Bubble sample with a
high velocity cloud (HVC) detected in H I 21 cm emission, and
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therefore where a constraint on [O/H] can be derived (see
Section 4.3).

2.2. GBT Spectra

We obtained deep HI 21 cm data for the four lines of sight
(PDS456, 1H1613-097, M5-ZNG1, and MRK1392) inside the
Fermi Bubble using the Green Bank Telescope (GBT) under
program GBT/14B–299, with the goal of detecting the high

velocity components in emission. The PDS456 21 cm spectrum

is presented in Fox et al. (2015). Multiple scans of the

sightlines were taken using the VEGAS spectrometer in the

frequency-switching mode. An unconfused velocity range of at

least 760 -km s 1 about systemic zero velocity at an intrinsic

channel spacing of 0.604 -km s 1 was obtained while perform-

ing the observations by frequency switching to either 3.6 or

4.0MHz. The spectra were Hanning smoothed to an effective

velocity resolution of 1.2 -km s 1, then calibrated and corrected

Table 1

List of Targets in and around the Northern Fermi Bubble

Object # Name l (Deg) b (Deg) zQSO Location wrt FBa GBT spectrumb

1 PDS456 10.4 11.2 0.1840 Inside Yes

2 QSO1500-4140 327.7 14.6 0.3350 Outside No

3 1H1613-097 3.5 28.5 0.0650 Inside Yes

4 M5-ZNG1 3.9 47.7 Halo Starc Inside Yes

5 PG1709+142 34.9 28.5 Halo Stard Outside No

6 MRK877 32.9 41.1 0.1124 Outside No

7 LBQS1435-0134 348.7 51.4 1.3077 Interface No

8 RX_J1605.3+1448 27.8 43.4 0.3721 Outside No

9 PG1522+101 14.9 50.1 1.3210 Interface No

10 PG1553+113 21.9 44.0 0.4700 Interface No

11 SDSSJ154553.50+093620.0 18.3 45.4 0.6650 Interface No

12 PG1435-067 344.0 47.2 0.1260 Interface No

13 SDSSJ151237.15+012846.0 1.8 47.5 0.2650 Inside No

14 3C323.1 33.9 49.5 0.2653 Outside No

15 MRK1392 2.8 50.3 0.0363 Inside Yes

16 SDSSJ151507.40+065708.0 9.0 50.4 0.2680 Interface No

17 SDSSJ150952.20+111047.0 13.6 53.8 0.2849 Outside No

18 RBS1454 5.6 52.9 0.2860 Interface No

19 SDSSJ150928.30+070235.0 7.8 51.6 0.4188 Interface No

20 MRK841 11.2 54.6 0.0364 Outside No

21 SDSSJ142614.79+004159.4 347.6 55.1 0.8950 Outside No

22 RX_J1429.6+0321 351.8 56.6 0.2530 Outside No

23 SDSSJ145450.10+111434.0 10.2 57.0 0.4681 Outside No

24 SDSSJ140655.66+015712.8 341.8 59.0 0.4270 Outside No

25 HE1340-0038 328.8 59.4 0.3260 Outside No

26 SDSSJ141949.40+060654.0 351.9 60.3 1.6380 Outside No

27 SDSSJ135726.27+043541.4 340.8 62.5 1.2340 Outside No

28 RX_J1342.1+0505 333.9 64.9 0.2660 Outside No

29 RX_J1426.2+1955 19.6 67.2 0.2100 Outside No

30 SDSSJ141542.90+163414.0 8.8 67.8 0.7430 Outside No

31 PG1424+240 29.5 68.2 0.5000 Outside No

32 KUV14189+2552 33.8 69.9 1.0530 Outside No

33 NGC5548 32.0 70.5 0.0170 Outside No

34 SDSSJ141038.40+230447.0 24.6 71.6 0.7960 Outside No

35 SDSSJ135712.60+170444.0 2.9 71.8 0.1500 Outside No

36 PG1352+183 4.4 72.9 0.1520 Outside No

37 PKS1354+19 9.0 73.0 0.7200 Outside No

38 RX_J1356.4+2515 29.3 75.3 0.1650 Outside No

39 RX_J1342.7+1844 0.2 75.5 0.3820 Outside No

40 SDSSJ135424.90+243006.3 25.9 75.6 1.8920 Outside No

41 SDSSJ131545.20+152556.0 329.9 77.0 0.4490 Outside No

42 SDSSJ134822.30+245650.0 26.4 77.0 0.2930 Outside No

43 PG1341+258 28.7 78.2 0.0870 Outside No

44 SDSSJ131802.10+262830.0 28.2 84.0 1.2350 Outside No

45 HS1302+2510 357.4 86.3 0.6020 Outside No

46 SDSSJ125846.70+242739.0 335.1 86.9 0.3710 Outside No

47 RX_J1303.7+2633 21.8 87.2 0.4370 Outside No

Notes.
a
Whether the line of sight is inside the Fermi Bubble.

b
Whether deep GBT HI 21 cm spectrum was obtained.

c
Distance from Sun=7.5 kpc.

d
Distance from Sun=21 kpc.
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for stray radiation using the procedure described by Boothroyd
et al. (2011). A fourth order polynomial was fit to emission-free
portions of the final average to remove residual instrumental
baselines. Such a polynomial fit over a spectrum spanning 760

-km s 1 in velocity will not compromise the measurements of
the H I lines, which are only ≈30 -km s 1 in velocity width. The
top panels of Figure 2 show the four baselines subtracted 21 cm
spectra along each sightline. The final spectra have typical rms
noise values ranging from 8.1 to 12.7 mK temperature
brightness per channel. This corresponds to a 1σ; NH I column
density of –» ´1.0 1.6 1017 -cm 2 for a 30 -km s 1 wide line.

2.3. STIS Data

For the Halo star M5-ZNG1, the HST/STIS observations
were obtained under the HST PID 9410. For details of the
observations, we refer the reader to Zech et al. (2008), where
this spectrum was published. In short, the observations were
taken in 5 orbits in the ACCUM mode with 0 2×0 2
aperture. Zech et al. (2008) used the E140M echelle grating to
disperse the light onto the far-ultraviolet Multi-Anode Micro-
channel-Array (MAMA) detector. The spectral resolution is
R≈45,800, which translates to a velocity resolution (FWHM)

of ≈6.5 -km s 1. The STIS data were retrieved from MAST and
reduced with the CALSTIS v2.23 pipeline.11 The individual
spectral orders were combined into a single spectrum using the
IRAF task splice.

3. MEASUREMENTS

3.1. GC Absorber Identifications

We visually inspect each spectrum to identify any absorption
components within ±400 -km s 1 of the systemic zero velocity
of the Milky Way. We search for absorption in low-ionization
(C II, Si II), intermediate ionization (Si III), and high-ionization
(C IV, Si IV) species in all lines of sight. We classify an
absorption system to be a high velocity one if it is detected in
multiple species (usually low-ionization lines such as C II, Si II,
Si III, but also in high-ionization lines such as C IV and Si IV),
and if the velocity centroid of that system has ∣ ∣ >v 100LSR

-km s 1. We also explore the effect of using a deviation velocity
definition of HVCs (see Section 4.1). We inspect each
individual spectrum and identify all detected absorption
features associated with the Milky Way, high velocity clouds,

Figure 1. Incidence of high velocity absorption toward the northern Fermi Bubble. Top panel: the all-sky Fermi image of the residual γ-ray intensity in the 3–10 GeV
range is shown as the yellow/orange map, in Galactic coordinates centered on the GC (adapted from Ackermann et al. 2014 and Fox et al. 2015). The Fermi Bubbles
are shown as twin lobes in dark orange at the center. The filled circles mark the position of the lines of sight through the northern Fermi Bubble. The filled black circles
represent no HVC detection; the filled blue and red circles represent detected blueshifted and redshifted HVCs, respectively. The circle with both blue and red
shadings represents the line of sight with both blueshifted and redshifted HVC. The red contours show the approximate boundary of the Fermi Bubbles. Bottom left
panel: zoomed in map of the top panel. The background sources are marked with their ID numbers from Table 1. Bottom right panel: schematic diagram showing the
HVC detection statistics in three different regions, using the same symbols, inside and outside the FBs (see text for more details).

11
http://www.stsci.edu/hst/stis
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Figure 2. HST UV spectra and 21 cm emission spectra of the five lines of sight within the northern Fermi Bubble. Normalized flux is plotted against the LSR velocity
for several UV transitions with their corresponding Voigt profile fits (solid black lines). The vertical red ticks indicate the centroids of individual Voigt profile

components. The spectra are re-binned in 3 pixel boxes for presentation. C II
*absorbs at approximately +264 -km s 1 in the rest frame of C II and is responsible for the

strong feature near that velocity. For PDS456, the apparent feature at +260 -km s 1 in the spectrum covering C IV at 1548 Å is really the negative velocity feature

coming from the C IV 1550 Å transition. We do not show the GBT spectra between +220 and +350 -km s 1, due to baseline subtraction issues.
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higher redshift intervening absorbers, and QSO features. We
mark the detected intervening higher redshift absorbers in
Figures 2 and 8. For each line of sight, we apply a shift to the
data to transform the heliocentric velocities provided by COS
and STIS to local standard of rest (LSR) velocities as follows:

( ) ( ) ( ) ( ) ( ) ( )

D = -
= + +

v v v

l b l b b9 cos cos 12 sin cos 7 sin . 1
LSR LSR helio

We also transform the LSR velocities to the Galactic standard

of rest (GSR) velocities with

( ) ( ) ( ) ( )= + -v v l b254 km s sin cos , 2GSR LSR
1

where the rotation velocity = -v 254 km sR
1 at the Sun’s

distance from the GC (Reid et al. 2009). The column densities

were determined by independently fitting Voigt profiles to each

ion with the VPFIT software12 (Carswell & Webb 2014), using

simultaneous fits to all available lines of a given ion. Note that

the line spread function (LSF) of the COS spectrograph is not a

Gaussian. For our Voigt profile fit analysis, the intrinsic model

profiles are convolved with the COS LSF, as given at the

nearest observed-wavelength grid point in the compilation by

Kriss (2011). For the STIS spectrum, the STIS E140M LSF

from the STIS Instrument Handbook13 was used.
The ionic column densities and Voigt profile fits for the

absorption components are reported in Table 2. For each ion,
the centroid of the best fit Voigt profile is used to define the
position of each absorption component.

Figure 2 shows resonant UV absorption-line transitions from
HST/COS or STIS and H I 21 cm emission spectra from GBT
(or GASS for SDSSJ151237.15+012846.0; Kalberla & Haud
2015) of the five lines of sight within the northern Fermi
Bubble. For each of the absorption lines, their corresponding
Voigt profile fits are also shown. The velocity centroids of all
individual absorption components are shown with a vertical red
tick. Below we describe the absorption observed along these
five lines of sight, which clearly pass through the northern
Fermi Bubble in more detail.

PDS456: The absorption components observed along the
PDS456 sightline were described in detail in Fox et al. (2015).
To summarize, four absorption components (see top left panel,
Figure 2) are observed centered at vLSR=−235, −5, +130,
+250 -km s 1, respectively. We detect low-ionization (C II,
Si II), intermediate ionization (Si III, Al II), and high-ionization
(C IV, Si IV, N V) species, but the relative strength of absorption
differs between components. We detect the +250 -km s 1

component in the low and intermediate ions only (not in C IV,
Si IV, and N V). The Si III absorption component at −235

-km s 1 is blended with a b-Ly absorption line at z=0.176.
There might be another −77 -km s 1 absorption component
seen in weaker S II, P II, Fe II, and C II

* absorption. The left
panels of Figure 9 show additional high velocity blue and
redshifted absorption traced by Si II 1260, Si II 1526, Fe II
1144, and Al II 1670 ions. In the 21 cm GBT spectrum, we only
detect the Milky Way component of the H I emission. We do
not detect any H I components associated with the high velocity
absorption components down to a s3 upper limit <NH I

´3.0 1017 -cm 2.

Table 2

Voigt Profile Fit Parameters for Absorbers within the Fermi Bubble

Ion vLSR ( -km s 1)
a

b ( -km s 1) Nlog (cm−2
)
b

PDS456 á ñR c=2.27 kpc

Si III −197±2d 39.3±2.3 13.13±0.02
Si III −4±2 69.2±2.8 >14.04

Si III 145±2 28.9±2.8 13.06±0.04

Si III 259±2 18.2±2.2 12.85±0.04
Si IV −231±2 19.0±3.4 12.90±0.06

Si IV 1±1 45.0±1.4 >14.05

Si IV 146±32 107.7±44.6 13.03±0.16

Si II −223±2 13.2±3.9 13.02±0.08
Si II 6±1 45.4±0.9 >14.76

Si II 122±2 24.9±2.0 13.40±0.03

Si II 264±2 35.5±2.2 13.37±0.02

C II −220±6 19.9±8.0 13.80±0.14
C II −2±4 51.3±9.9 >15.44

C II 123±5 20.8±6.7 >14.14

C IV −233±2 31.9±2.1 13.79±0.03

C IV 0±1 51.0±1.1 >14.71

C IV 147±6 58.4±9.4 13.58±0.06

Al II 8±1 46.4±2.0 13.59±0.03

Al II 124±2 6.7±5.2 12.12±0.11
Al II 263±3 0.8±3.0 13.53±0.63

1H1613-097 á ñ =R 4.06 kpc

HIe −172.2±0.1 12.8±0.8 18.23±0.03

Si III −4±8 38.0±6.5 >13.94

Si III −164±12 35.5±8.3 >13.38

Si III −90±13 38.7±32.2 >13.33

Si IV −8±1 29.5±1.5 >13.73

Si IV −119±5 59.3f 13.33±0.04
Si II −176±1 22.1±1.5 13.83±0.03

Si II −110±2 22.8±3.1 13.32±0.04

Si II −10±1 37.4±0.9 >14.53

C II −162±5 31.3±5.7 >14.59

C II −100±4 18.9±6.6 >14.30

C II −6±3 35.9±8.2 >15.10

C II 83±4 14.9±5.2 13.88±0.11

C IV −140±3 59.3±5.1 13.98±0.03
C IV 7±1 29.7±1.6 >14.19

O I 13±1 31.7±2.6 >15.00

O I −32±15 67.5±8.9 14.63±0.13
O I −163±1 17.6±1.7 14.28±0.03

Al II −152±4 54.1±5.5 12.85±0.04

Al II 0±1 33.0±1.6 >13.41

Fe II −182±3 7.6±6.2 13.61±0.13
Fe II −1±2 28.2±2.2 >14.64

N I −174±3 32.1±4.2 13.92±0.05

N I 22±3 27.3±4.2 13.93±0.06

M5-ZNG1 á ñ =R 6.26 kpc

Si III −142±1 7.1±1.2 12.85±0.08

Si III −118±1 16.5±1.3 13.15±0.04

Si III −24±1 27.2±0.9 >14.10

Si IV −143±1 7.1±1.4 12.56±0.05
Si IV −111±2 11.3±2.9 12.43±0.08

Si IV −24±1 20.0±0.4 >13.74

Si II −145±1 2.4±0.5 12.98±0.09

Si II −130±1 16.9±0.7 13.08±0.02
Si II −61±1 10.5±1.6 12.72±0.06

Si II −7±1 20.4±0.5 >14.98

C II −17±1 23.1±0.6 >15.87

C II −129±1 17.7±0.5 >14.15

C II −143±1 4.3±1.1 >13.86

C IV −146±1 6.0±1.7 13.14±0.09
12

Available at http://www.ast.cam.ac.uk/rf̃c/vpfit.html.
13

Available at http://www.stsci.edu/hst/stis.
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1H1613-097: We detect three absorption components (see
top middle and top right panels, Figure 2) centered at
(measured from Si III 1206 transition) vLSR=−164, −90,
and −4 -km s 1, respectively. Some or all of these absorption
components are detected in low-ionization (O I, Fe II, C II,
Si II), intermediate ionization (Si III, Al II), and high-ionization
(C IV, Si IV) species, respectively (see Table 2 for measurement
details). A fourth +83 -km s 1 component is also observed in
the C II and possibly in Si II 1260 transitions. One H I 21 cm
emission line is detected at = -v 172LSR

-km s 1 along with
the Milky Way component, in the GBT spectrum. This H I

21 cm emission component translates to a measured
= Nlog 18.23 0.03H I . We note that the H I 21 cm emission

component is offset from the O I absorption component by
9 -km s 1. After accounting for the COS absolute velocity scale
uncertainty of ≈5 -km s 1 and the Voigt profile fitting error, this
offset is quite small (≈3 -km s 1) and probably is the result of a
COS calibration error or beam-smearing effects. The subpanel
at the top right panel of Figure 2 shows an enhanced version of
this H I 21 cm emission component. There is an emission bump
seen at −100 -km s 1; however, this emission is not statistically
significant to merit a detection. Fitting a Gaussian profile to this
excess emission yields a »Nlog 17.69H I at 2.85σ signifi-
cance. The detected O I, N I, Fe II, and Al II ions, along with
their best fit Voigt profiles, are also shown in Figure 2, top right
panel. Figure 9 shows additional spectra exhibiting blueshifted
high velocity absorption along 1H1613-097 in Si II 1260, Si II
1526, NI 1200c, and Fe II 1608 transitions.
M5-ZNG1: The absorption components, observed along the

M5-ZNG1 sightline with HST/STIS spectrum, were described
in detail in Zech et al. (2008). M5-ZNG1 is a halo star 7.5 kpc
from the Sun. Three Si III absorption components (see bottom
left panel, Figure 2) are seen centered at vLSR=−142, −118,
and −24 -km s 1, respectively. These absorption components
are also seen in low-ionization (C II, Si II, Al II) and high-
ionization (C IV, Si IV, O VI) species. We do not detect any
blueshifted H I emission component in the GBT spectrum,
down to a s3 upper limit of < ´N 4.8 10H

17
I

-cm 2; however,
Zech et al. (2008) examined a FUSE spectrum to estimate a
mean H I column density of = Nlog 16.50 0.06H I using the

Lyman series from H I 926 down to H I 918Å. Zech et al.
(2008) also measured the metallicity of these blueshifted
absorption components to be [O/H]=+0.22±0.10. Figure 9
shows additional STIS spectra exhibiting blueshifted high
velocity absorption along M5-ZNG1 in Si II 1260, Si II 1526,
Al II 1670, and Fe II 1608 transitions.
MRK1392: Along this line of sight, we detect absorption

components (see bottom middle panel, Figure 2), centered at
vLSR=−117, −83, and −9 -km s 1, respectively. Blueshifted
absorption components are detected in low-ionization (C II,
Si II, Al II and Fe II) and high-ionization (C IV, Si IV) ions. For
the Al II, Fe II, and Si IV transitions, only two absorption
components centered at ≈−83 and −9 -km s 1 are detected. No
blueshifted H I emission component is detected in the GBT
spectrum, down to a s3 upper limit of < ´N 4.8 10H

17
I

-cm 2.
Figure 9 shows additional spectra exhibiting blueshifted high
velocity absorption along MRK1392 in Si II 1260, Si II 1526,
Al II 1670, and Fe II 1144 transitions.
SDSSJ151237.15+012846.0: The HST/COS spectrum of

SDSSJ151237.15+012846.0 covers the G130M grating only.
Along this sightline we detect two C II, Si II, Si III, and Si IV
absorption components (see bottom right panel, Figure 2),
centered at vLSR≈−114, and 4 -km s 1, respectively. Along
this line of sight, we do not have any GBT spectrum. We
inspect the 21 cm GASS spectrum (Kalberla & Haud 2015),
and find no blueshifted H I emission down to a s3 upper limit

< ´N 3 10H
18

I
-cm 2. The top right panel in Figure 9shows

the additional Si II 1260 transition exhibiting blueshifted high
velocity absorption.

4. RESULTS

In this section we report the covering fraction, radial
absorption and velocity profiles, and metallicity of the high
velocity absorption components observed along the northern
Fermi Bubble directions.

Table 2

(Continued)

Ion vLSR ( -km s 1)
a

b ( -km s 1) Nlog (cm−2
)
b

C IV −113±2 22.7±2.5 13.69±0.04

C IV −26±1 29.4±0.8 >14.33

Al II −143±2 5.4±2.8 11.79±0.12
Al II −129±3 0.3±4.2 12.12±0.81

Al II −56±2 7.2±3.5 11.69±0.13

Al II −7±1 16.5±1.4 >13.96

Fe II −143±2 5.4±2.8 11.79±0.12
Fe II −129±3 0.3±4.2 12.12±0.81

Fe II −56±2 7.2±3.5 11.69±0.13

Fe II −7±1 16.5±1.4 >13.96

MRK1392 á ñ =R 6.5 kpc

Si III −86±24 54.1±21.4 12.71±0.23

Si III −14±2 35.3±1.7 >13.57

Si IV −100±6 21.2±8.8 12.40±0.13

Si IV −21±1 28.5±0.9 >13.71

Si II −120±2 15.8±0.6 12.64±0.47

Si II −88±1 14.2±1.8 12.69±0.03

Si II −12±1 25.6±0.5 >14.38

C II −9±1 37.3±1.1 >14.80

C II −83±1 7.5±2.2 13.68±0.05

C II −117±2 19.4±2.9 13.74±0.05

C IV −67±18 127.8±22.5 13.54±0.08
C IV −28±1 27.7±1.0 >14.20

Al II −93±3 6.3±7.5 11.80±0.14

Al II −16±1 29.8±1.4 13.37±0.03

Fe II −93±3 6.3±7.5 11.80±0.14
Fe II −16±1 29.8±1.4 >13.37

SDSSJ151237.15+012846.0 á ñ =R 6.31 kpc

Si III −114±5 30.3±6.7 13.3±0.1

Si III −15±3 19.5±16.7 >15.0

C II −114±9 25.0±10.0 13.65±0.30

C II 4±7 50.0±12.0 >14.80

Si II −119±3 7.0±10.2 12.93±0.18

Si II −3±4 37.9±6.1 >14.22

Si IV −112±9 29.0±12.8 13.1±0.2

Si IV 1±3 37.5±4.7 >13.8

Notes.
a
The random velocity error from the profile fit process is listed. The actual

velocity error must also include the ±5 -km s 1 COS velocity calibration error.
b
Saturated lines are indicated with > and give the lower limits on Nlog .

c
Mean radial distance from the GC.

d
Ly b contamination at z=0.175539.

e
H I measurements are from the 21 cm observations.

f
b parameter fixed with C IV value for better fit.
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4.1. Incidence of High Velocity Absorption

We measure the observed incidence of high velocity
(∣ ∣ >v 100LSR

-km s 1) absorption components inside and out-
side the northern FB. To quantify if a line of sight passes
through the FBs, we have to define their boundaries. These
boundaries are not well defined because of noise in the γ-ray
data. We therefore visually inspect the γ-ray map of the FBs
and approximately define the northern FB to be confined within
a circle of radius 26°, centered at l=0 and b=27°.

This boundary is shown with the red contours on Figure 1,
and allows us to divide the sightlines into three categories:
through the Bubble (5 sightlines), outside the Bubble (34
sightlines), and in the interface region (8 sightlines). The
interface sightlines straddle the boundary region of the northern
FB, and might probe the kinematics of cool and warm gas at
the edge of the northern FB. We will compute the incidence of
HVCs in three cases: case 1, where the boundary absorbers are
treated as being outside the FB; case 2, where they are treated
as inside the FB; and case 3, where they are omitted from the
calculation, to explore the sensitivity of the HVC covering
fractions to the definition of the boundary. The bottom right
panel of Figure 1 shows a schematic diagram of the HVC
detection statistics in these three regions. The three cases are
marked as 1, 2, and 3, respectively.

Case 1. We first assume that all the eight interface lines of
sight are passing outside the Fermi Bubbles (see Figure 1,
bottom right panel). In this case, all five lines of sight that pass
through the northern FB exhibit blueshifted high velocity
absorption, and 9 out of 42 lines of sight outside the northern
FB exhibit blueshifted high velocity absorption (see Figure 1).
To quantify this, we use the Wilson score interval to estimate
the underlying binomial hit rates. The five out of five lines of
sight with blueshifted high velocity absorption inside the
northern FB yield an incidence rate of 92±8%, and 9 out of
42 sightlines with blueshifted high velocity absorption outside
the FB yield an incidence rate of 22±6% (9/42). These are
shown in Figure 8, and the detections are tabulated in Table 4.

Inside the northern FB, only one line of sight (PDS456)
exhibits both blueshifted and redshifted high velocity absorp-
tion components, whereas none of the lines of sight out of the
42 outside the FB exhibits both blueshifted and redshifted high
velocity absorption. Inside the bubble, the presence of both
blueshifted and redshifted HVC components, which we
previously argued in Fox et al. (2015) may be like the
signature of the biconical outflow, is only seen in PDS456.
However, the lack of redshifted absorption components at
higher latitudes can be understood in the context of an outflow
model as a geometrical effect: at higher latitudes, the nearside
of the outflow cone is much closer to the observer than the far
side, and the lines of sight pass through only the nearside of the
outflow cone. Hence we only see the blueshifted HVCs (and
not the redshifted HVCs) for the three lines of sight inside the
FB at high latitudes. The low latitude lines of sight pass
through both sides of the outflow cone at similar z-distances,
resulting in our observing both blueshifted and redshifted high
velocity absorption components.

At <b 30° two out of four lines of sight exhibit redshifted
HVC absorption, with an incidence rate of 50±22%. One
redshifted absorber outside the FB (along QSO1503-4140) and
one inside the bubble (along PDS456) are detected. It should be
noted that the effect of galactic rotation must be accounted for
while analyzing the two low b directions outside the FB, as

foreground gas co-rotating with the Milky Way disk can
produce absorption at a range of observed velocities. Assuming
cylindrical co-rotation, a simple model of Galactic rotation can
be used to predict the maximal allowed velocities for a given
latitude and longitude (e.g.,Wakker & van Woerden 1991). We
find that the none of the extreme blueshifted or redshifted
velocities are consistent with co-rotating foreground gas. We
would require new data to better quantify the statistics of low b

redshifted HVCs. For all b, the incidence of redshifted HVCs
inside the northern FB is 25±17% (1/5), and outside the
northern FB it is 10±5% (4/42). The incidence of any
(blueshifted or redshifted) high velocity absorption inside the
FB is 92±8% (5/5), and outside the FB it is 31±7%
(13/42).
Case 2. We now extend the definition of boundary of the

Fermi Bubbles to explore the effect of assuming that the eight
boundary lines of sight are inside the northern FB (see Figure 1,
bottom right panel). In this case, 9 out of 13 lines of sight inside
the northern FB exhibit blueshifted high velocity absorption
and yield an incidence rate of 68±12%, and 5 out of 34
sightlines with blueshifted high velocity absorption outside the
northern FB show an incidence rate of 16±6%. For redshifted
HVCs, the incidence rate inside the northern FB is 11±8%
(1/13), and outside the northern FB is 13±6% (4/34). The
incidence rate of any (blueshifted or redshifted) high velocity
absorption inside the northern FB is 68±12% (9/13), and
outside the northern FB is 27±7% (9/34).
Case 3. Finally, as all the eight lines of sight that pass

through the boundary of the northern FB might contain
complex kinematics due to shocks from the nuclear outflow
terminating in those regions, we exclude these eight sightlines
while calculating covering fractions (see Figure 1, bottom right
panel). The covering fraction of blueshifted HVC absorption
outside the northern Fermi Bubble becomes 16±6% (5/34),
the covering fraction of redshifted HVCs outside the northern
FB becomes 13±6% (4/34), and the covering fraction of all
HVCs outside the northern Fermi Bubble is 27% (9/34)±7%.
Inside the northern FB, the covering fraction of blueshifted and
any absorbers is 92±8% (5/5), and the incidence of
redshifted HVC is 25±17% (1/5).
In all three cases, we see that the rate of incidence of

blueshifted HVCs inside the northern FB is always higher than
that outside the northern FB. In all three cases, we perform the
adjusted chi-square test with the Yate’s correction for
continuity on the blueshifted high velocity absorbers. The P

values for cases 1, 2, and 3 are 0.0018, 9.6784e–04, and
4.1584e–04, respectively. These P values suggest that we can
rule out the null hypothesis that the distribution of blueshifted
high velocity absorbers inside and outside the northern Fermi
Bubble are the same at more than 99.8% confidence level. We
further perform this test for any (blueshifted or redshifted) high
velocity absorption and find that the P values for cases 1, 2, and
3 are 0.011, 0.018, and 0.0068, respectively. These P values
indicate that we can rule out the null hypothesis that the
distribution of any high velocity absorbers inside and outside
the Fermi Bubble are the same, with a more than 98.2%
confidence level. The significantly higher incidence inside and
lower incidence outside the northern FB suggest that the FBs
contain a reservoir of entrained cool gas that is confined to the
same physical regions as traced by γ-ray emission maps.
Overall, the incidence of redshifted HVCs are not distinguish-
able inside or outside the FB. But we have very few redshifted
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HVCs detected in this survey. Particularly at lower galactic b,
new data would be required to improve on the statistics of
redshifted HVCs.

We further computed the incidence of high velocity
absorption using the deviation velocity method to identify a
high velocity absorber (Wakker & van Woerden 1997). We
quantify any absorber as a high velocity absorber if ∣ ∣ vdev 80

-km s 1. Using this method, we find that all five lines of sight
inside the northern Fermi Bubble are blueshifted HVCs with an
incidence rate of 92±8%. If we include the interface
sightlines to be outside the FBs, 13 out of 42 sightlines outside
the northern FB exhibit blueshifted HVCs, with an incidence
rate of 31±7%. Out of the eight interface sightlines, six
exhibit blueshifted HVCs, making the incidence of blueshifted
HVC in the interface region alone to be 72±15% (6/8). If we
do not count the interface sightlines as being outside the FB,
seven out of 34 sightlines show a deviation velocity HVC
outside the FBs (21± 7%). With both methods of identifying a
HVC, we see an excess incidence of blueshifted HVCs inside
the northern FB compared to outside of it. For redshifted
HVCs, incidence absorbers inside the northern FB are
25±17% (1/5), and those outside the northern FB are
10±5% (4/42). Using the deviation velocity method, the
incidence of any (blueshifted or redshifted) high velocity
absorption inside the FB is 92±8% (5/5), and outside the FB,
it is 31±7% (13/42).

Our GC sightlines pass above the Scutum–Centaurus spiral
arm, which may produce its own star formation–driven
outflows. These outflows represent a foreground signal to be
removed when searching for the absorption components, due to
the GC outflow. Spiral-arm outflows are known to produce
detectable signatures in UV absorption in sightlines toward
background targets (Tripp et al. 1993; Fox et al. 2003; Lehner
et al. 2011). These foregrounds are strongest at low latitude,
and are not modeled in depth here. However, the clear
difference we measure in the covering fractions for inside-the-
Bubble sightlines versus outside-the-Bubble sightlines supports
the interpretation that the HVC components trace the nuclear
wind and not a foreground.

4.2. Radial Dependence of Absorption

To show the gas kinematics and absorption strength of the gas
inside the Fermi Bubbles, we study the variation in kinematics
and column density of the blueshifted high velocity absorption as
a function of Galactic latitude for the five lines of sight that pass
through the northern Fermi Bubble. These five lines of sight are
roughly at similar galactic longitudes, which allows us to study
the variation of gas kinematics at different latitudes directly above
the GC. We use C II Voigt profile velocity centroids to quantify
the kinematics of the blueshifted high velocity absorption. This
line was chosen because it is a strong low-ion transition detected
in each sightline passing through the FB.

The left panel in Figure 3shows the radial velocity profile of
the blueshifted high velocity absorption inside the Fermi
Bubble as a function of Galactic latitude. Both the GSR (red
square) and LSR (blue square) velocities are shown. For three
lines of sight (1H1613-097, M5-ZNG1, and MRK1392), we
resolve the blueshifted C II high velocity absorption into two
individual absorption components. Such multiple blueshifted
absorption may represent gas that is entrained within the
bipolar outflow cone. In other words, we are perhaps seeing not
only gas at the edge of the outflow cone, but also some

absorption that is inside the outflow cone. We observe a trend
of decreasing blueshifted outflow velocity with increasing
Galactic latitude and radial distance from the GC. The observed
velocity changes from vGSR=−265 -km s 1 at b∼11° to
vGSR=−91 -km s 1 at b∼50°.
The right panel in Figure 3shows the radial absorption

profile of the same blueshifted high velocity absorption inside
the Fermi Bubble, as a function of Galactic latitude. We show
the observed column densities of Si II, Si III, Si IV, C II, and
C IV transitions, respectively. We do not see any radial trend of
absorption column density with galactic latitude. However, as
we probe > b 45 , marginally weaker Si III, Si IV, and Si II
absorption components are detected that are not seen in more
enhanced lines of sight. These findings show that the entrained
gas in the Fermi Bubble is seen at least out to a latitude of ≈50°
from the GC, beyond which the covering fraction of blueshifted
high velocity gas rapidly falls off.

4.3. Metallicity of the Outflowing Gas Along 1H1613-097

To constrain the chemical abundances in the GC HVCs, we
analyzed the O I/H I ratio in the component at −172 -km s 1

toward 1H1613-097 and in the −143 and −125 -km s 1

components toward M5-ZNG1. These three clouds were
chosen because they are the only HVCs in our northern Fermi
Bubble sample where both the O I and H I column densities are
securely measured. O I/H I provides a good metallicity
indicator, since O is relatively mildly depleted onto dust grains
(Cartledge et al. 2008; Jenkins 2009), and charge-exchange
reactions tie the two species together (Field & Steigman 1971).
However, an ionization correction (IC) may apply if the gas is
optically thin (e.g., Viegas 1995), defined such that

[ ] [ ] ( ) ( )= +O H O H IC O . 3I I

4.3.1. Methodology of Ionization Modeling

We used the photoionization code Cloudy (Ferland et al.
2013) to investigate the magnitude of the possible IC, using the
following steps:

(i) We constructed a grid of Cloudy models at values of log
N(H I) between 16 and 20 in 0.5 dex intervals, using an
ionization parameter logU=−3.0, where = gU n nH,
the ratio of the ionizing photon density to the gas density.
We adopt the position-dependent (3D) combined Galactic
and extragalactic radiation field presented in Fox et al.
(2014), based on Bland-Hawthorn & Maloney (1999) and
Fox et al. (2005), taken at a distance 10 kpc along the
1H1613-097 sightline. The gas is assumed to be at
uniform density. In principle, the value of logU in an
HVC can be derived from observations of the Si III/Si II
column-density ratio. However, in the HVC toward
1H1613-097, Si III 1206 appears saturated, and thus only
a lower limit on the ratio, N(Si III)/N(Si II)-0.45, can
be derived. Fortunately, the ratio is unlikely to be much
higher than this limit, as the Si III line is not strongly
saturated (Figure 2, top center panels).

(ii) We use the results of the Cloudy model to calculate IC(O)

and IC(S) at each value of log N(H I), producing the curve
shown in Figure 4.

(iii) We repeat steps (i) and (ii) with logU values of −2.5 and
−3.5, to investigate the sensitivity of IC to the choice
of U.
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4.3.2. Results of Ionization Modeling

The upper panels of Figure 4 show the run of IC(O) against

N(H I). We also include IC(S) for convenience, derived in an

analogous way for S II observations. The lower panels show the
dependence of the ion ratio N(Si III)/N(Si II) on logU for the
case of the HVC at −172 -km s 1 toward 1H1613-097. The
model implies log  -U 2.9. Although this is formally a limit,
it is close to values derived for many other Galactic HVCs
(Collins et al. 2005; Richter et al. 2009; Tripp & Song 2012;
Fox et al. 2014, 2016), and since the saturation in Si III is mild,
the actual value is unlikely to be much higher. This constraint
on logU translates to a constraint IC(O)+0.1. Thus the
measured oxygen abundance of [O I/H I]=−0.64 in the HVC
needs to be corrected upwards by 0.1 dex.
We use the stray radiation correction procedure described in

Boothroyd et al. (2011) on the data to account for the structure of
the GBT beam at 21 cm, and this procedure should remove any
radiation originating outside the main beam to the maximum
extent possible. However, since the H I measurement is derived
from radio observations using a finite beam, and the UV
observations are derived from effectively infinitesimal beams, a
beam-smearing error of ∼0.15 dex must also be taken into
account to account for potential small-scale structure in the beam
(Wakker et al. 2001). Therefore the ionization-corrected oxygen
abundance in this HVC is [O/H]−0.54±0.15. This is lower
than expected for material recently ejected from the GC, but it is
a lower limit, so the true value could be higher. Low metallicity
HVCs associated with the GC region have been reported before.
Keeney et al. (2006), studying a sightline (PKS 2005-489)
passing through the high-latitude southern GC region, also
reported HVCs with 10%–20% solar metallicity.
In the two HVCs toward M5-ZNG1, for which Zech et al.

(2008) report [O/H]=+0.22±0.10, the calculated14 IC is
larger, IC(O)=+0.25, for an assumed logU=−3.0, because
of the significantly lower H I column density, log N

Figure 3. Left panel: radial velocity profile of the blueshifted C II high velocity absorption inside the northern Fermi Bubble (sightlines located outside the northern
Fermi Bubble are not shown) as a function of Galactic latitude. The blueshifted outflow velocities decrease with increasing higher Galactic latitudes both in LSR
velocity (blue squares) and GSR velocity (red squares). The error bars are the uncertainty on the velocity centroid in the Voigt profile fits. For 1H1613-097, M5-
ZNG1, and MRK1392, we resolve the blueshifted high velocity absorption into two individual absorption components. Right panel: radial absorption profile of the
blueshifted high velocity absorption inside the Fermi Bubble as a function of Galactic latitude. The column densities are Voigt profile fitted column densities for each
species. The C IV column density profile is plotted with a 1° offset along the x-axis for presentation.

Figure 4. Upper panel: Ionization corrections IC(O) and IC(S) against H I

column density for a uniform-density photoionized cloud. The values of N(H I)

appropriate for the HVCs toward 1H1613-097 and M5-ZNG1 are shown with
dashed vertical lines. These corrections are used to convert [O I/H I] into [O/
H]. Lower panel: Dependence of the ion ratio N(Si III)/N(Si II) on log U for the

case of the HVC at −172 -km s 1 toward 1H1613-097. The measured value of
the ratio is used to constrain log U, which in turn is used to constrain IC(O).

14
[ ] ( ) ( )= -O H log O H log O H . Note that for ( )log O H , we adopt

the Asplund et al. (2009) value of −3.31. However, Zech et al. (2008) used the
Asplund et al. (2005) value of −3.34. A correction of 0.03 dex is needed for
fair comparison between the two measurements.
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(H I)=16.50±0.06 (Zech et al. 2008). However, in this low-

column-density regime, the IC is highly uncertain and subject

to charge-exchange reactions, so we quote a conservative

ionization-corrected [O/H]>+0.22 for this HVC. Therefore

the M5-ZNG1 HVC shows a considerably higher value of O/H
than the 1H1613-097 HVC, by >0.88 dex. There are several

plausible reasons for this difference. Most notably, the distance

to M5 (a globular cluster at 7.5 kpc; Harris 1996) may place it

in front of the Fermi Bubble; this would be the case if the radial

(line of sight) extent of the Fermi Bubble was the same size as

its tangential extent on the sky. In this case, the blueshifted

HVCs in this direction are foreground objects unrelated to the

GC or the Fermi Bubbles. It is also possible that the M5-ZNG1

HVCs are photospheric in origin (M5-ZNG1 is a post-AGB

star); while Zech et al. (2008) disfavor this idea based on path

length arguments, the HVCs could still be subject to unusual

ionization conditions. Further measurements of the chemical

abundances of HVCs in the GC region are needed, particularly

when derived in combination with ionization corrections.
We do not present a determination of [S/H] in the 1H1613-

097 HVC from the S II 1250, 1253, 1259 triplet, because the

S II 1259 line appears to be contaminated at the HVC velocity

and the 1250 and 1253 lines show no significant detection.

However, we still show the behavior of IC(S) with N(H I) on

Figure 4, since this may be useful for abundance studies in

other HVCs, where S II is reliably detected.

5. MODELING THE ABSORPTION

We interpret absorption features in terms of simple models

inspired by the observations and theories described earlier. Our

goal is to develop the transformations from three-dimensional

velocity vectors at different locations to the (scalar) radial

velocities that we can measure. We start with the expected

behavior of outflowing material moving at a velocity v along a

trajectory directly away from the GC into the halo. We assume

that there is no coupling of this gas to Galactic rotation, which

seems to be supported by observations of compact neutral

hydrogen clouds above and below the Galactic plane

(McClure-Griffiths et al. 2013). These models are mathemati-

cally identical to the simple models first described in Fox et al.

(2015), which in turn were based on the Mg II outflow models

of Bordoloi et al. (2014b).
In the simplest picture, the motions are along the edges of

nested cones, all of which have their vertices at the GC and

axes perpendicular to the plane of the Galaxy. In a refinement

of this picture, we acknowledge that perhaps the gas is not

ejected from just the nucleus of our Galaxy, but instead could

originate from inside a small, circular zone in the plane of the

Galaxy that is centered on the GC. This picture is consistent

with the proposals that the Fermi Bubble outflows are

generated by a central region of our Galaxy that has rapid

star formation (Bland-Hawthorn & Cohen 2003; Carretti et al.

2013; Lacki 2014; Crocker et al. 2015). For models that favor

SgrA* as the origin (Zubovas et al. 2011; Guo & Mathews

2012; Bland-Hawthorn et al. 2013; Mou et al. 2014;

Ruszkowski et al. 2014), one could envision that an initial

spherical outflow is shaped into a conical form by resistance

from the static gaseous layer in the Galactic plane.

5.1. Conical Outflow from the GC

We define a coordinate system centered on the Sun that has
an x-axis that points toward the GC, a y-axis toward the
Galactic coordinates ( ) ( )=  ℓ b, 90 , 0 , and a z-axis toward
= b 90 . We then initially imagine the presence of two vectors

that start at the location of the Sun and point toward the GC:
one of them that we call v1 has a length =R 8.4 kpc equal to
the distance from the Sun to the GC (Reid et al. 2009), and the
other, called v3, has a length , which can be either greater or
less than R. If we now rotate v3 about the y-axis by a Galactic
latitude angle b and follow this with a rotation about the z-axis
by a Galactic longitude angle ℓ, we then have transformed v3 so
that it ends at some location on a conical surface that has its
vertex at the GC, where

( ) ( ) ( )


= =
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝
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⎞

⎠

⎟
⎟v R Rℓ b

ℓ b

ℓ b

b

0

0

cos cos

sin cos

sin

. 4z y3

To find the distance r from the vertex of the cone to the end
of v3 and the opening half-angle of this cone, we evaluate the
properties of a vector v2 that extends from the GC to the
endpoint of v3, which is simply given by vector difference

( )




= - =
-⎛

⎝

⎜
⎜

⎞

⎠

⎟
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ℓ b R

ℓ b

b
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. 52 3 1

The length of this vector is given by

( ) r= - +r R ℓ b R2 cos cos , 62 2

and the half opening angle is given by

( ) ( )= -OA b r2 cos sin . 71

If the gas parcel is traveling with a radial velocity vr, the
projected velocity along the line of sight is given by

( )b=v v cos , 8rGSR

where β is the angle subtended by the radial velocity vector

with a vector from the Sun toward the gas parcel and is defined

as

ˆ · ˆ ·

( )

( )
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



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-
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cos cos .
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This equation is algebraically identical to one defined earlier by

Keeney et al. (2006)15 but is much simpler in form. In the

discussion that follows, we will compare the model predictions

given by Equation (8) to the observed HVC kinematics in the

LSR velocities given by Equation (2).

5.2. Conical Outflow from a Circular Zone

The outflow from the interior of a circular zone of radius rc
in the plane of the Galaxy can be characterized by a flow
originating from a virtual point on the opposite side of the
plane. This vertex point is located at a perpendicular distance

15
There is a typographical error in this equation (Equation (1)) of Keeney

et al. (2006) that was recognized and corrected by McClure-Griffiths
et al. (2013).
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a=z r cotc max from the Galactic center, where amax is the
half opening angle of the widest of the nested cones. To
account for this displacement, we add a value of -z to the
(original zero) z-axis term in the expression of v1. We rewrite
Equation (5) with an extra z term,

( )




=
-

+

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

v

ℓ b R

ℓ b

b z

cos cos

sin cos

sin

, 102

and modify Equations (6), and (7) to read

( ) r= - + + +r R ℓ b R z b z2 cos cos 2 sin , 112 2 2

and

[( ) ] ( )= +-OA b z r2 cos sin . 121

We rewrite Equation (9) for a conical outflow from a circular
zone as

ˆ · ˆ ( ) ( )b = = - +v v R ℓ b z b rcos cos cos sin . 132 3

5.3. Wind Models

We consider four wind models as described as follows. For
each case we assume a singular isothermal sphere (SIS) density
profile given as

( ) ( )r
s
p

=r
Gr2

, 14
2

2

where σ is the velocity dispersion for the Milky Way halo.
Momentum driven. We first consider a momentum driven

wind model, where the outflow climbs ballistically out of the
Galactic potential well after being given an initial impulse (e.g.,
by ram pressure from a hot wind). The equation of motion of
such a wind is given by (see Equation (13) of Dijkstra &
Kramer 2012)

( )
( )=

-
+ a-dv

dt

GM r

r
Ar . 15

r

2

We assume α=2, which makes this equation equivalent to

Equation (24) of Murray et al. (2005). The launch velocity is

defined as ( )a= -a-v Ar2 1L min
1 . For a bipolar conical

outflow from the GC, we study two momentum driven models;

the model (M1) is with »v 1000L
-km s 1, and the second

model (M2) is with »v 1300L
-km s 1. Further, we study

another model (S) that represents the geometry of a conical

outflow from a circular zone of radius 200 pc around the GC. In

this case we assume a launch velocity of »v 1000L
-km s 1.

All the launch velocities are chosen to approximately bracket

the observed velocity kinematics.
Constant Energy. We further define a model that is launched

with a constant energy explosion (model E), for which we
define the equation of motion as

( ) ( ) ( )pr h=r v r r E
4

3
, 16r

2 3
0

where E0 is the total energy of the explosion and η is the

efficiency parameter that controls the fraction of the total energy

that drives the wind. We assume that = ´E 6.7 100
55 erg, the

total energy of the Fermi Bubble (Crocker et al. 2014 and η=1).
Constant Luminosity. Lastly we study a model which drives

a wind with constant luminosity (model L), and the equation of

motion is given as

( ) ( ) ( )pr h=r v r r L
4

3
, 17r

3 2
0 0

where L0 is the total luminosity that is generated and h0 is the
efficiency parameter that controls the fraction of the total

luminosity that drives the wind. We assume L0 is the Eddington

luminosity of the GC black hole and h = 2.50 .
We compare these models to the observations along the five

lines of sight inside the northern Fermi Bubble. Figure 5
shows the model vLSR velocities for the five lines of sight as a
function of half opening angles of the bicone. We use the C II

1334 velocity centroids to compare the model to the
observations. (For redshifted PDS456 component, we use
Si III 1206, as C II

* contaminates the redshifted component.)
The horizontal dashed lines mark the centroids of the
observed absorption along the five lines of sight. The gray
band shows the half opening angle range of ∼55°, which
matches the X-ray bicone seen in the ROSAT data (Bland-
Hawthorn & Cohen 2003). The intersection of the horizontal
dashed lines with the colored model curves denote the model
opening angles at which an observed absorption component
exists. If a horizontal dashed line intersects with a colored
model curve (model prediction) to the left of the dashed band,
then the observed absorption component kinematics along
that line of sight can be explained by that model. In such a
scenario, the cool outflowing gas is entrained inside the X-ray
bicone and not along the edge of the X-ray bicone. If a
horizontal dashed line intersects a colored model curve inside
the vertical gray band, then the observed absorbing gas
resides along the edge of the X-ray bicone. If the line
intersections are to the right of the gray band, or the model
curves do not intersect the observed velocity ranges, then this
model fails to reproduce the observed kinematics.
In all cases, the constant energy model (E, green line) fails to

represent the kinematics of the Fermi Bubble. At high latitudes,
this model predicts that any entrained outflowing gas would be
observed at vLSR=0 -km s 1; hence we rule out this constant
energy model to explain the observed kinematics of the Fermi
Bubble. The momentum driven wind model M1 (solid blue line)
satisfactory predicts the velocity ranges where all the absorption
components along PDS456 and 1H1613-097 are observed.
However, M1 cannot reproduce the velocity ranges where the
most blueshifted absorption components for M5-ZNG,
SDSSJ151237.15+012846.0, and MRK1392 are seen. The
Model M2 (dashed blue line) recovers the kinematics for all
five lines of sight, and predicts extended blue and redshifted
kinematics for the two low latitude lines of sight. In all the
models discussed, we assume that the filling factor of entrained
gas inside the bicone to be unity. In reality, the entrained cool gas
clouds will be clumped together in small substructures. It is
plausible that the reason that the predicted extended blue and
redshifted kinematics are not observed is owing to the non-unity
filling factor of entrained material inside the outflowing bicone.
The observational geometry makes these observations orthogonal
to the traditional down-the-barrel observations of galactic winds,
as we are probing the cool gas entrained in the nuclear outflow at
different scale heights from the disk of the Milky Way, whereas
in down-the-barrel observations, the integrated effect of all
outflowing gas is observed as blueshifted absorption/emission
wings against the stellar continuum of the host galaxy. The
covering fraction computed for such observations gives the
fraction of continuum source that is covered by the blueshifted
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outflowing gas (e.g., Rupke et al. 2005). These estimations are

model dependent and can be estimated by solving the radiative

transfer equations given in Hamann et al. (1997). In Chisholm

et al. (2016), it was shown that for low ionized gas, the covering

fraction of the outflowing gas in a local starburst galaxy is close

to 100%. It is comparable to the covering fraction estimated in

Section 4.1, where we find that the covering fraction of cool gas

seen as blueshifted HVCs inside the FB is unity. We are probing

a radial distance of up to≈7 kpc from the disk of the MW. Hence

we are observing similar gas covering fractions as seen in the

case of down-the-barrel spectroscopy of starburst galaxies in the

local universe. However, both down-the-barrel and our orthogo-

nal observations cannot yet constrain the detailed kinematic

structure of the outflowing gas (e.g., filling factor of entrained

material inside the outflowing bicone). It is also probable that

there were two separate events of momentum injection which

happened ≈6 and 4 Myr ago. The first event represented by M2

can explain the kinematics of M5-ZNG1 and MRK1392, and the

second event represented by M1 can explain the kinematics of

PDS456 and 1H1613-097, respectively.
Both the constant luminosity model (L, red line) and the

model of conical outflow from a circular zone (S, dotted orange

line) can recover the observed kinematics of all the five lines of

sight, and again predict extended blue and redshifted

kinematics for the two low latitude lines of sight. These

predicted extended kinematics might not be observed owing to

the non-unity filling factor of entrained cool gas in the outflow.

The constant luminosity model (L) argues for a super

Eddington luminosity AGN being active in the GC for ≈5–6

Myr, and the model of conical outflow from a circular zone (S,

dotted orange line) predicts an event of momentum injection

that happened ≈6–7 Myr ago.
For each model we have a radial profile, and we can compute

the time taken for outflowing gas to be launched from the GC

Figure 5. Kinematic models of the Galactic biconical nuclear outflow, some of which can explain the observed absorption-line centroids for the five lines of sight. The
centroids of the observed absorption components in the five spectra are shown with horizontal dashed lines. The colored lines correspond to the predicted velocities as
a function of distance from the Sun, along that sightline. The colored lines at negative and positive vLSR correspond to the nearside and the far side of the outflow
bicone, respectively. »v 0LSR corresponds to a distance directly above the GC. The gray band shows the opening angle range that matches the X-ray bicone. If a
horizontal dashed line intersects a solid line (model prediction) to the left of the dashed band, the model predicts the kinematics of the observed absorption component

along that line of sight. Models M1 and M2 are momentum driven models with launch velocities of »1000 and 1300 -km s 1, respectively. Model E is the constant

energy, and model L is the constant luminosity model, respectively. Model S is a momentum driven model with a launch velocity ≈1000 -km s 1 from a circular zone
of radius 200 pc around the GC.
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to any arbitrary radial distance R. This time is computed as

( )ò=T v dr1 . 18
R

r
0

Again assuming that the opening angle of the outflowing gas is

well represented by the half opening angle of the X-ray bicone,

we compute the mean radial distance from the GC to each line

of sight. These are tabulated in Table 2.
The left panel of Figure 6 shows the time taken by the

outflowing gas to reach any radial distance from the GC. The
mean radial distance to the five lines of sight are shown as
vertical dashed lines. The momentum driven wind models (M1,
M2), the conical outflow model from a circular zone (S), and
the constant luminosity model (L) will need to drive the

outflow for ≈6 to 9 Myr to reach the absorption seen in

MRK1392.
The right panel in Figure 6 shows the radial distance traveled

by the outflowing gas, after 20 Myr. The outflowing gas

launched by the constant energy model E has not traveled

sufficient radial distance to reach PDS456 in 20 Myr. All the

other wind models have driven the outflowing gas enough to

reach all the five lines of sight studied here. The radial profile

of the constant energy model E falls off sharply at 1.5 kpc.

Even if the outflows driven by this model reach the four lines of

sight, their projected velocities will be close to zero (see

Figure 5). Hence, we can rule out model E as driving the

outflows observed in the Fermi Bubble.
Figure 7 shows the radial velocity profiles (left panel) and

absorption profiles (right panel) inside the northern FB as a

Figure 6. Left panel: the time taken for the five outflow models as a function of radial distance along the outflow cone. The vertical lines show the mean radial distance
of the outflowing gas parcel from the GC. The momentum drive wind models (M1, M2), outflow from a circular zone around GC (S), and the constant luminosity
model (L) will need to drive the outflow for ≈6–9 Myr to reach the absorption seen in MRK1392. The constant energy model (E) will need to drive the outflow for
≈400 Myr to reach the absorption seen in MRK1392. Right panel: the radial profile of the four outflow models after driving outflows for 20 Myr.

Figure 7. Left panel: radial velocity profile of the blueshifted C II high velocity absorption inside the Fermi Bubble as a function of mean radial distance from the GC.
Right panel: radial absorption profile of the blueshifted high velocity absorption inside the Fermi Bubble as a function of mean radial distance from the GC. In both
panels the symbols are the same as in Figure 3.

14

The Astrophysical Journal, 834:191 (21pp), 2017 January 10 Bordoloi et al.



function of mean de-projected radial distance from the

GC. The symbols are the same as in Figure 3. These profiles

show the de-projected radial kinematic and absorption profile

of gas inside the northern FB from 2.3 kpc from the GC to

6.5 kpc.

These models and the kinematic observations do not allow us

to distinguish between an AGN driven or star formation–driven

origin theory of the Fermi Bubble. However, they provide us

with an independent measure of the age of the Fermi Bubble. We

find that any energetic event that created the Fermi Bubble must

Figure 8. HST-COS spectra of the Si III and C II transitions for lines of sight outside the northern Fermi Bubble. The vertical ticks indicate the centroids of individual
Voigt profile components. Both the redshifted components (red ticks) and blueshifted components (blue ticks) are flagged. For sightlines with COS/G160M data only,
we show the corresponding Si II and C IV transitions, respectively.
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have been short (∼6–9 Myr). Hence we can rule out a sustained

>108 years star formation as the origin of the Fermi Bubble.

Recent works have shown evidence of both AGN and starburst-
driven winds from the ionization structure around local galaxies

(Sharp & Bland-Hawthorn 2010). Recently, Miller & Bregman
(2016) used X-ray data and independently estimated the age of

the Fermi Bubbles to be ≈4.3 Myr. With completely different

methods, we are estimating a very similar Fermi Bubble age, as

in Miller & Bregman (2016).
In this section, we restrict our analysis to compare these

models with observations along lines of sight that are only

passing through the northern Fermi Bubble. Our models

Figure 8. (Continued.)
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are too simplistic to explain the complex kinematics that
might be associated with the boundary regions of the Fermi
Bubbles. The complex gas kinematics seen along these
sightlines would be dominated by shocks from the nuclear
outflow terminating in those regions, along with local
instabilities (Bordoloi et al. 2016a; Thompson et al. 2016).
Any modeling of such complex physical processes would
require more sophisticated modeling and is beyond the scope
of this work.

6. ENTRAINED MASS IN THE FERMI BUBBLE

The amount of gas ejecta carried out by the nuclear outflow
is of great importance, as such mass flows are believed to be
regulating the evolution of galaxies. Given that we can
constrain the half opening angle of the nuclear outflow from
the X-ray bicone to be α≈55°, we can estimate the cold gas,
mass outflow rate for such a scenario. From Section 5, we
know the average distance of the gas clouds from the GC, and
the de-projected radial velocities of the outflowing gas.

Following Bouché et al. (2012), we can express the mass
outflow rate at a distance b kpc from the GC as

˙ ( ) ( )
p
a=M b N b v

2
. 19rout H

Here, NH is the total H column density. Inserting numerical
values, Equation (19) can be rewritten as

˙ ( )
( )

( )


m a

=


´

-
-

-

M b M
N b

b v
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1.5 30 10 cm
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, 20

r

out
1 H

19 2

1

where μ is the mean atomic weight. We stress that these mass

flow rate estimates are highly uncertain and model dependent,

and should only be taken as the rough back of the envelope

calculation, prone to systematic uncertainties. Keeping this

caveat in mind, we report the minimum mass flow rates as

follows.

Figure 9. HST-COS spectra of additional transitions for the five lines of sight inside the northern Fermi Bubble. The vertical ticks indicate the velocities of HVCs
along these directions. Both the redshifted components (red ticks) and blueshifted components (blue ticks) are flagged.
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Following Section 4, for the most blueshifted absorption

component of 1H1613-097, we assume the most conservative

value of vr from the momentum driven wind scenario (M1), and

get vr=410 -km s 1 at a mean radial distance of b=4.06 kpc.
To estimate the minimum NH column density for all the high

velocity clouds along this line of sight, we sum the HVC Si

column densities (i.e., = + +N N N NSi Si Si SiII III IV). By

summing over Si stages II + III + IV, we effectively are

performing an ionization correction, and assuming that all the Si

atoms exist in these phases. The total NH column density is given

as ( ) ( )= + +N Nlog log 0.54 4.49H Si , where we assume that

[Si/H]≈[O/H]≈−0.54 (without any correction to account

for depletion onto dust grains), and (Si/H)e=−4.49 (Asplund

et al. 2009). This yields a total hydrogen column density of

 ´N 1.1 10H
19 -cm 2. Inserting these values into

Equation (20) yields a minimum mass outflow rate of
˙  -M M0.22 yrout

1. We also estimate the minimum momen-

tum flux carried out by the outflowing gas as ˙ ˙P M vout out out

dynes. For the 1H1613-097 sightline, the minimum momentum

flux carried out by the outflowing gas is  ´7.2 1032 dynes.
Similarly, we estimate the minimum mass outflow rate along

the PDS456 direction to be ˙  -M M0.2 yrout
1. Here also we

assume the most conservative value of vr=479 -km s 1 from the

momentum driven wind scenario (M1), at a mean radial distance

of b=2.27 kpc. We add up all the HVC Si column densities as

before, and estimate a total hydrogen column density of

 ´N 1.3 10H
19 -cm 2. For the PDS456 sightline, the minimum

momentum flux carried out by the outflowing gas is ´7.6 1032

dynes. Table 3 shows these mass outflow rate estimates.
If we assume that the Fermi Bubble has existed for at least

the amount of time it takes for outflow to reach MRK1392, the

highest latitude of our inside-the-Bubble sightlines, we get the

most conservative age from the M2 model of ≈6 Myr. Now if

we assume that there was an outflow for that duration of time

with an average mass outflow rate 0.2 
-M yr ,1 then

assuming mirror symmetry, the total minimum mass of cool

gas entrained in both the Fermi Bubbles is  ´ M2 106 .
As we discuss in the previous section, we cannot distinguish

between AGN and SF from pure kinematics alone. However,

these kinematics allow us to constrain the outflow velocity and

mass flow rates of the FB. Our kinematic age estimate shows

that the event that created the FB must be short (<6–9 Myr).

Knowing the total entrained mass and outflow velocity of the

wind allows us to estimate the total kinetic energy associated

with the FB to be ( )~ ´ ´E 1 2 Mass Velkin
2
∼(2×106)×

(13002)∼6×1055 ergs. Though it is a very rough “back of the
envelope” calculation, this energy budget indeed argues for

AGN activity powering the bubbles.

7. SUMMARY

In this paper, we have studied the kinematics and properties
of the entrained gas inside the northern Fermi Bubble as traced
by the UV absorption lines of O I, Al II, C II, C IV, Si II, Si III,
Si IV, and other species. This analysis is based on a sample of
46 extragalactic sightlines observed with HST/COS and one
sightline observed with HST/STIS. This is the first work that
fully characterizes the velocity profile and spatial extent of the
entrained absorbing material driven by the nuclear outflow
from the GC. The main findings of this work are as follows:

1. All five lines of sight passing through the Fermi Bubble
exhibit blueshifted absorption, whereas 9 out of the 42
lines of sight outside the Fermi Bubble exhibit blue-
shifted absorption. Inside the Fermi Bubble, only
PDS456 at low galactic latitudes exhibits both blueshifted
and redshifted high velocity absorption components,
which can be understood as tracing the front and back
side of the outflow. The incidence of any (blueshifted or
redshifted) high velocity absorption inside the Fermi
Bubble is 92±8% (5/5). The incidence of blueshifted
high velocity absorption outside the Fermi Bubble is
22±6% (9/42), and any high velocity absorption is
31±7% (13/42). For all cases, adjusted chi-square tests
show that we can rule out the null hypothesis that the
distribution of blueshifted high velocity absorbers inside
and outside the northern Fermi Bubble are the same at
more than 99.8% confidence level.

2. We characterize the observed velocity profile of the
outflowing gas as a function of Galactic latitude and the
de-projected radial distance from the GC. We observe a
monotonically decreasing blueshifted outflow velocity with
increasing Galactic latitude and distance. The observed
blueshifted velocities change from = -v 265GSR

-km s 1 at
a radial distance of 2.3 kpc to = -v 91GSR

-km s 1 at a
radial distance of 6.5 kpc. This spatial constraint matches
the Fermi Bubble observed in γ-ray emission.

3. By combining HST/COS observations of O I 1302 with a
Green Bank Telescope detection of H I 21 cm emission, we
estimate the metallicity of the blueshifted HVC along the
1H1613-097 sightline, finding [O/H]  - 0.54 0.15.
This implies that the derived metallicity is 30% solar.

4. We develop simple kinematic bipolar outflow models to
explain the observed kinematics of the high velocity
clouds inside the Fermi Bubble. We rule out a constant
energy explosion model as the origin of the nuclear
outflow. We find that two momentum injection events at
∼4Myr and ∼6 Myr ago with launch velocities ≈1000
and 1300 -km s 1 can satisfactorily explain the kinematics
of all the four lines of sight inside the Fermi Bubble.

Table 3

Minimum Mass Outflow Rate Estimates

QSO Name ˙ ( 
-M M yrout
1)
a vr (km -s 1)

b
R (kpc)c ( )-Nlog cmH

2 ˙ ( )P dynesout
d

PDS456 0.20 479 2.27 19.1 6×1032

1H1613-097 0.28 410 4.06 19.04 7.2×1032

Notes.
a
Minimum mass outflow rates for the two lowest latitude lines of sight.

b
Radial outflow velocity from model M1 at a radial distance R.

c
Mean radial distance (R) from the GC.

d
Minimum momentum flux carried out by the outflowing gas from the GC.
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Table 4

HVC Detections in the Northern Fermi Bubble Regiona

Sightline l b -v
b

+v
b á ñvLSR

c á ñvdev
d Line Log Na

e Location Notes

(°) (°) (Na in cm−2
)

SDSSJ141038.40+230447.0 24.6 71.6 135 200 166 163 C II λ1334 -
+13.56 0.12
0.09 Outside Complex K?

Si III λ1206 -
+12.39 0.16
0.12

RXJ1426.2+1955 19.6 67.2 −150 −95 −113 −113 C II λ1334 -
+13.97 0.05
0.05 Outside Complex K?

Si II λ1260 -
+12.48 0.10
0.08

Si III λ1206 -
+12.36 0.14
0.10

SDSSJ135726.27+043541.4 340.8 62.5 −160 −75 −115 −110 C II λ1334 -
+14.06 0.04
0.04 Outside ...

Si II λ1260 -
+12.92 0.05
0.04

Si III λ1206 >12.90

C IV λ1548 -
+13.60 0.06
0.06

C IV λ1550 -
+13.48 0.16
0.12

SDSSJ141949.40+060654.0 351.9 60.3 −160 −75 −107 −104 C II λ1334 >14.25 Outside ...

Si II λ1260 -
+12.97 0.08
0.07

Si II λ1193 -
+13.05 0.17
0.12

Si II λ1190 -
+13.27 0.20
0.14

Si III λ1206 -
+12.95 0.08
0.07

C IV λ1548 >13.52

C IV λ1550 <13.86

HE1340-0038 328.8 59.4 −160 −70 −107 −99 C II λ1334 -
+14.22 0.03
0.03 Outside ...

O I λ1302 -
+14.13 0.10
0.08

Si II λ1260 -
+13.15 0.05
0.03

Si II λ1193 -
+13.53 0.05
0.04

Si II λ1190 -
+13.31 0.11
0.09

Si II λ1526 -
+13.69 0.12
0.10

Si III λ1206 -
+12.92 0.05
0.04

MRK841 11.2 54.6 155 235 198 193 C II λ1334 -
+13.91 0.04
0.04 Outside East of Complex K

C II
* λ1335 -

+13.26 0.20
0.13

O I λ1302 -
+13.78 0.13
0.10

Si II λ1260 -
+12.62 0.04
0.04

Si II λ1193 -
+12.79 0.13
0.10

Si II λ1190 -
+13.03 0.15
0.11

Si II λ1526 -
+13.14 0.21
0.14

Si III λ1206 -
+12.37 0.12
0.09

SDSSJ150928.30+070235.0 7.8 51.6 −150 −90 −114 −114 C II λ1334 >14.29 Boundary East of Complex K

O I λ1302 >14.40

Si II λ1260 -
+12.98 0.07
0.06

Si II λ1193 -
+13.12 0.12
0.09

Si II λ1190 -
+13.26 0.17
0.12

Si III λ1206 >13.11

Si IV λ1393 -
+12.74 0.25
0.16

RBS1454 5.6 52.9 −140 −75 −103 −103 C II λ1334 -
+13.73 0.09
0.08 Boundary East of Complex K

Si II λ1260 -
+12.66 0.14
0.10

Si III λ1206 -
+12.75 0.08
0.07

SDSSJ150952.20+111047.0 13.6 53.8 195 265 232 225 C II
* λ1335 -

+13.65 0.09
0.08 Outside East of Complex K

O I λ1302 -
+14.39 0.09
0.08

Si II λ1260 >13.19

Si II λ1193 >13.33

Si II λ1190 <13.24

Si III λ1206 -
+12.83 0.10
0.08

SDSSJ154553.50+093620.0 18.3 45.4 −175 −125 −145 −145 Al II λ1670 >12.54 Boundary East of Complex K

Si II λ1526 -
+13.67 0.12
0.09

PG1522+101 14.9 50.1 −135 −95 −108 −108 C II λ1334 -
+13.70 0.06
0.05 Boundary East of Complex K

O I λ1302 -
+13.89 0.18
0.13

Si II λ1260 -
+12.68 0.06
0.05

Si II λ1193 -
+12.75 0.11
0.09

Si II λ1190 -
+13.12 0.10
0.08

Si II λ1526 -
+13.17 0.13
0.10

Si III λ1206 -
+12.54 0.07
0.06

C IV λ1548 -
+12.96 0.16
0.12
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Alternatively, a constant luminosity AGN active at the
GC for ≈5–6 Myr can also explain the observed
kinematics of the Fermi Bubble.

5. These kinematic models constrain the age and spatial
extent of the UV-absorbing gas within the Fermi Bubble
to be ≈6–9 Myr and ≈6.5 kpc, respectively. Therefore
the UV-absorbing gas seems to be confined to the same
spatial regions as the γ-ray emitting gas, even though it
traces a very different temperature plasma.

6. Using the observed metal column densities and velocities,
and a simple kinematic model, we estimate the minimum
mass outflow rate from the nuclear outflow to be 0.2


-M yr 1. The total minimum mass of cool gas entrained

in the Fermi Bubble is  ´ M2 106 .
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APPENDIX

In the Appendix we present the HST-COS spectra of the 42
QSO sightlines outside the northern Fermi Bubble within 35°
longitude of the GC.
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