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Nuclear Particle Transport with Emphasis
on Monte-Carlo and Shielding Calculations

by

Peter Kirkegaard

The Danish Atomic Energy Commission
Research Establigshment Risd
Reactor Physics Department

Abstract

A descriptionis given of a number of methods of calculating the trans-
port of neutrons and y-rays, mainly in reactor shields. Emphasis has been
laid on the Monte-Carlotechnique. All the methods described have been pro-
grammed for the electronic computer GIER at Ris8, and some of them also
for the IBM 7090 computer at the Danish Technical University, Lyngby.

A simple bulk shield programme system has been developed which
calculates the penetrationof neutrons as well as y-rays throughout a reactor
shield. The neutrons are treated according to the removal-diffusion theory
with one removal and one diffusion group. The y-ray calculation relies on
the build-up concept.

Animproved removal-diffusion neutronshielding programme has been
worked out, permitﬁnkmarbdtrary number of removal and diffusion groups.
A cross-section library with the elements most frequently encountared in
shielding has been prepared.

A general outline of the Monte-Carlo calculation method for problems
in nuclear particle transport is given. Some minor reactor problems con-
cerning self-absorption of y-rays in fuel rods and distribution of the energy
deposition on the various components of a fuel lattice cell are solved by the
Monte-Carlo method.



A Monte-Carlo Y-ray shieldirg programme has been written, espe-
cially suited for laminated shields, in which case it is superior to build-up
methods. The programme calculates the energy deposition rate throughout
the shield as well as the dose rate at the external surface. )

Finally, a Monte-Carlo method for computing the axial neutron flux
distribution in a short, absorbing rod is presented.

Whenever possible, the calculations described in this report have
been supported by experimental resulis.
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1. INTRODUCTION

. When the work described in this report started in the autumn of 1963,
it was planned to develop a number of calculation methods for shielding pur-
poses, and to programme them for the electronic computer GIER at Rigo.

Up to that time, all shielding calculations at Risd had been made with paper,
pencil and slide rule, and because of the troublesome and lengthy nuture of
such calculations the methods applied were restricted to rather crude ones.
However, a draft of a computer programme system, worked out by A. Olsen,
Risd, already existed. His methods closely followed those applied in his
hand calculations for the DOR-type reactor. It was decided, first of all to
continue and complete his work. Therefore a reactor bulk shielding pro-
gramme system calculating neutron flux and Y-dose throughout the shield

was made. It was recognized, however, that this programme system would
be suitable only for rough estimates, not for detailed and reliable shielding
calculations, This is due to several shortcomings and oversimplifications

in the models applied; examples are the division of the neutrons into only

two energy groups, and the application of the build-up concept in the Y-cal-
culations. Therefore it was planned to replace the simple methods by some
other methods giving more accurate and reliable answers, Special attention
was given to the possibility of introducing the Monte-Carlo calculationmethod,
which possesses great versatility and is thus superior to most other methods,

It turned out that the shielding calculation methods for Y-rays could
advantageously be replaced by Monte-Carlo. Concerning the neutrons, the
choice of method is not so clear. Owing to the huge number of cross-section
parameters necessary to describe the neutron transport in a Monte-Carlo
model, it was decided not to apply Monte-Carlo, Instead, a multi-group
method was chosen,

When the investigations of the prospects of Monte-Carlo started, this
method was new at Risd, at least in the field of reactor physics. Consequent-
ly it was necessary to do some work to gain knowledge of the proper use of
the method, and to apply it to rather simple problems so as to gather enough
experience to solve problems of some complexity. It is therefore natural
that a description of the theory behind the Monte-Carlo technique and of a
number of applications to problems in reactor physics should be included in
this report.

The first problem in this work solved by the Monte-Carlo technique
was a calculation of the fraction of Y-energy escaping from a long rod in



which fission occurs. This simple problem is very instructive as it involves
many of the standard devices in the Monte-Carlo iechnique. The next prob-
lem was the calculation of the distribution of the energy deposition on the
various components of a fuel lattice cell. '

Finally, the report describes Monte-Carlo methods for the solution
of two problems considerably more involved than those described above.

One is the Y-shielding problem mentioned previously, and the other concerns
the Jongitudinal neutron flux distribution in a short, absorbing rod.

Digital ccaputers have played a very important role for the project
in so far as they have been used to carry out almost all the calculations.
When the project started, the GIER computer had recently been acquired by
Risd. This computer has a small fast memory storage, and it turned out
that more complex problems, especially those tackled by the Monte-Carlo
technique, required excessive computing time. Fortunately, in the autumn
of 1965, an IBM 7090 computer was installed at NEUCC (Northern Europe
University Computing Center) at the Technical University of Denmark in
Lyngby, and became available also for Ris8. A translation of the larger
programmes for use in this computer was then carried out with the resuit
that they are now working satisfactorily.
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2. A SIMPLE BULK SHIELD PROGRAMME SYSTEM
FOR NEUTRONS AND Y-RAYS

In almost all reactor shielding design calculations, only neutrons
and Y-rays need be taken into account. Other types of radiation, such as
a- and p-rays, are easily stopped by a few mm of normal shieiding material.
In a power reactor the neutrons in the shield originate from fission. General-
ly, minor effects like those of photoneutrons can be neglected. The Y-rays
in the shield originate both from the reactor core and from the shield itself.
In the core, Y-rays are produced almost instantaneously by the fission pro-
cess, further during the decay of the fission products, and by neutron cap-
ture in the structural materials of the core, such as Al. The Y-sources in
the shield itself are due to capture of thermal (and epithermal) neutrons. In
thermal shields of power reactors, iron is a frequently used component, and
this metal has a very hard capture-Y line (7.5 MeV). In many reactors
these Y-rays give a predominant contribution to the dose rate at the external
surface of the biological shield. The following subsections describe simple
methods of calculating the attenuation of the neutrons and Y-rays throughout
a bulk shield round a reactor and the Y heat generation rate in the shield.

2.1. REMTHERM, A Multi-Layer, Simple Removal Programme for Neutrons

The programme REMTHERM carries out calculations based on simple
removal theory of the fast and thermal neutron flux throughout a shield.

The core-shield configuration may be either a sphere, an infinite cy-
linder or an infinite slab system. The core is assumed to be a homogeneous
medium with a spatially constant volume source of fast neutrons. The sur-
rounding shield must consist of a finite number of symmetrical, homogeneous
layers. Any reflectors, if present, are considered part of the shield. The
result of the calculation is the fast and thermal neutron fluxes in an arbitrary
number of shield points,

The simple removal theory adopted here is valid only for mixtures
(or laminations) of materials with heavy and light nuclei respectively (e. g.
iron and hydrogen). It is then a fair approximation to consider only two
groups of neutrons, In the first group are kept those neutrons which have
not collided at all, or which have been scattered elastically through a small
angle. This flux, called the removal flux, is calculated as the uncollided
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flux of source neutrons, the total cross section Zt being replaced by Z. the
so-called removal cross section, which is smaller than Z,. I, is an empir-
ical cross section, experimentally adapted for shielding applications. In the
second group are kept all neutrons "'removed" from the first group (fast ab-
sorption neglected). These neutrons will have a rather small age to thermal
energies because of the light nuclei present; therefore they can simply be
considered as thermal neutrons and be treated by the aid of diffusion theory.

The definitions of removal flux and removal cross section are some-
what ambiguous and depend on the applications. Although the simple removal
theory outlined above is rather crude, this approach is certainly better than
two-group diffusion theory. This is due to the fact that the cross section
often decreases rapidly in the MeV-region so that at large distances from
the sources there are relatively many "penetrating” fast neutrons from the
core. On account of the marked anisotropy, this penetrating flux cannot be
adequately treated by diffusion theory, but is well described as a virtually
uncollided flux.

In the following, analytical expressions for the removal flux 01 are
given in the three geometries.

Spherical geometry:
Arc sin 2

T r
S pypdp

4 =-2-22-— sin 8 <1 - exp [—2er \I al-r? sinzo] exp9 - () do
ro 2 rz . 2
0 a\{‘; -1*sin

(2.1)
Infinite cylinder:
a
S
¢, - E:?x-: Efiz(f(x. r)) - Ki (22, \laz-xz + f(x, r)il q_d:—:i
0 re-x
(2.2)
r

z.p) P dp

VoZ. o2

with 1(x,r)=



Infinite slab:
So ’
¢, = = (E,(S) - E,(S+ 25 a)) . (2.3)

In these formulas, ::r o and zr are the removal cross sections in the
core and the shield respectively, 2a is the core thickness, S o the strength
of the volume source of fast neutrons in the core, r the distance from core
centre to shield point, and S the optical distance (fr.r dr) from core surface
to shield point., Finally, E n(x) and Kin(x) denote the exponential integral
function and the Bickley function respectively:

© .1
x
-t - ————
E (x) = 1 L_dt, Ki(x)= e COBY cosn°1(p dy .(2.4)
0 n"
x 0

All the three expressions ior ¢1 are obtained by integrating the
simple exponential attenuation kernel over the core volume.

The thermal flux ¢ 2 is calculated as the solution of the diffusion
equation

02-za ¢2+Q=0; (2.5)
D is the thermal diffusion coefficient and Ea the thermal absorption cross
section,

The source term Q is set equal to X, - #,. The previously obtained
expressions for ¢, are too complicated to be used in the solution of (2. §).
Instead, ¢, is approximated by simple functions, depending on the actual
geometry, as described later. The number of equations (2.5) to be solved
is equal to N, the number of shield layers. The solution of each equation
involves two arbitrary constants; this makes altogether 2 N constants t~ be
determined. The N-1 shield interfaces yield 2N-2 boundary conditions
(continuity of flux and current); hence two more conditions are required.
One is a prescribed thermal flux value at the core - shield interface. The
other is that the thermal flux must vanish at the extrapolated external shield
boundary. Now, the 2N constants can be determined by solution of a system
of 2N linear equations, Owing to the usually large variation in the order of
magnitude of the coefficients, only special methods will succeed in the



- 10 -

nurnerical solution of these equetions. Ia this programme, a method sug-
gested by Crout and programmed by Lang Rasmussen, Risd, is applied.

In the following, the solution of equation (2.5) is givm separately for
the three geometrical cases. The solution concerns a definite layer (no. i).

(1) Spherical geometry

. e, , do,
The use of V 02=-—-2—- + & —y== Yyields

dr
a®e, , do, 2 Q
Tr2_+? - - % 02+5i-'=0
z

o 2

1

Further, on the substitution 9, = % :

2 .
d 2 Q
—} - N, y+ r = 0,
dr i 'D:

.0

It is now convenient to approximate the source term r °

Qi -b. r
» » 1
by an exponential: r D: aCy e

The constants ¢ i and bi are uniquely determined by requiring

Q=Z," ¢

at the two boundaries of the layer,
The approximated form of the diffusion equation is now

3—j§’- %y e e
with the general solution
nr - wr ¢y —bir
y=Ae t B e + W e

(2.8)
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or
n.r -Nr c -bh.r.
‘2'%(Aiei+Bie'1 +TT1 ib e ). (2.7
i ™M
{2) Infinite cylinder
e, de,

The use of V 2 ., '? +-lx: 55— Yields

2
a®e de Q
2 1 2 2 -

Here the source term g‘- is approximated by a modified, zero-order
Bessel function of the second lnj'ad

g‘l-i- n C; Ko (bir) .

The constants c; and b, are uniquely determined by requiring
Q=Zy 4

at the two boundaries of the layer. The approximated diffusion equation is
now

2
92,1 %% %20 4+ cK (br) =0
e 2 - B T

with the general solution
et
9, = AL,04r) + B K (%) T o Kol (2.9)
S |
Io is the modified, zero~order Bessel function of the first kind,

3) Slab 2

2 d"e,
Theuseof ¢ 02 ® — yields
' dr
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d° ¢ Q
2 2
- xS e, =0, . (2.10)
dr 1 2 i

._._,2_-)(1 ¢2+cie =0,

where c; and bi are determined as before. The general solution of this

equation is
n;r - Wr € -bir
‘2 = Aie +-'Bie +-;—2-—-b-2-e . (2.11)
i " i

2.2. PRIGAM, a Multi-Layer, Build-up Programme for Core Y-Rays

It is often necessary to know the heat generation rate in the shield of
a power reactor in order to design a proper thermal shield and avoid cracks
in the biological concrete shield.

In this subsection is described a programme, PRIGAM, which com-
putes the heat production in a shield from core Y-rays. In subsection 2.3
are described analogous programmes computing the heating in the shield
from capture Y-sources in the shield itself,

PRIGAM is able to handle a number of shield layers and a number of
Y-energy groups. The geometry (fig, 2.1) is the same as for REMTHERM
in the slab case, However, for large core dimensions the code will be suit-
able also for a spherical or cylindrical geometry; the errors will then be
small, especially for shield points near the core, where the prediction of
heat production is most important (e.g. in the thermal shield and inner parts
of the biological shield).

On the addition of an air or tissue layer outside the external surface
of the biological shield, PRIGAM may also be used for dose rate calculations,

PRIGAM assumes the sources of Y-rays to be spatially constant over
the core, The heat generation from each energy group is calculated separate-
ly and the results are added up.

The sympol p (with or without indices) will in the following denote the
total linear Y-absorption coefficient (in cm'l). It includes absorpton pro-
cesses by the photoelectric effect and by pair production, as well as Compton
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scattering (without coherent scattering).

The core is assumed opaque to the Y-rays, which permits the back-
face correctlon to be ignored. Under this condition, tne volume source S
(photons/ cm / sec) in some energy group (g) can be replaced by an eqmvalent
surface source

S
Sp1 = Pc:re (photons/cmzjsec) . (2.12)

The calculations are based on the build-up co_ncept, i. e. the desgired
quantity is calculated from the uncollided ¥-flux and then multiplied by a
build-up factor B to compensate for the scattered radiation. The build-up
factor of choice is in our case the energy build-up factor for the point-iso-
tropic source,

In this work, a quadratlc build-up factor

B(D) =1+ pD + YD? (2.13)

was applied. p and Y are energy-dependent coefficients, while D denotes

the optical distance (number of ¥-relaxation lengths) in the medium between
the source point and the shield point. This medium should be infinite and
homogeneous, which are the conditions for the point-isotropic build-up
factor to be valid. However, neither of these conditions is fulfilled in our
problem. First, the shield terminates at the external surface. This causes
an overestimation of the flux near this surface. Secondly, the shield may be
composed of laminae of different materials. To get round this problem in

a simple way, one replaces (2.13) by the expression

n n
BD) =1+ X B wd+ I Ynd), (2.14)
i=1 i=1

where B; and Yi are quadratic build-up coefficients for the material in shield
layer no. i. The other symbols are explained in fig. 2.1, (2.14) implies
that B for a lamination of layers is approximately equal to the product of the
Bi' for the individual layers provided none of the B,'s are much greater
than one, '

This method of constructing build-up factors for laminations is
merely a computational trick and has little physical background, Clearly,
in this approach, the penetration does not depend on the order of lamina-
tions; this is, however, a very crude approximation,



-14 -

The surface source Sp1 causes an effective Y-flux at shield point P
(fig. 2.1):

s X L Yi&z ‘
¢ (t) =—§3 [EI(X) + X IeX+ J‘;z— e (1 + x;J . {2.15)
: i

(2.15) is obtained by integration of the expression

S

2 P B (2.16)

4nd

over the source plane.
The heat generation rate at P from energy group g is

W) = 0.0 pg, - E, (2. 17)

where pp_ is the Y-energy absorption coefficient at P for energy E.
The total heat generation rate at P is

wit) = Y Wg(t) . (2. 18)
g

The ¥ cross sections in this work are calculated by the programme
itself once the concentrations and atomic numbers of the constituent elements
of the layers are given. This was made possible by a study by A. Olsen,
Ris®d, who fitted the Y cross sections of all elements to analytic expressions
based on formulas from quantum mechanics. The expressions are in general
only valid for E> 0.5 MeV because of the absorption edges at lower energies.
However, energies below 0.5 MeV are not very important for shielding
design calculations.

2.3, SEGAM I and SEGAM II, Programmes for Capture Y-Rays

A prominent radiation source in power reactor shields is the Y-radi-
ation from neutron capture in the shield itself. Such capture processes are
mainly caused by thermal neutrons.

The programme SEGAM I calculates the heat production in an iniinite
slab of chield material from capture Y-rays in the layer itself (fig. 2.2.1).
SEGAM II calculates the heat production in a number of adjacent slabs from
capture Y sources in an exterior slab (fig. 2. 2.2).
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The thermal flux, as calculated with REMTHERM (eq. (2.11)), was
in each shield layer a sum of exponentials:

0,0 = E ik ekt (2.19)

Then the capture Y sources, anp. Oth(t), in the source slab will also be
a sum of exponentials, both for SEGAM I and SEGAM I:

Qt) = );_‘ Qo,ke'kt . (2. 20)

As in the PRIGAM case, the ¥Y-sources may be distributed over a
number of energy groups.

The heat generation is calculated for each exponential term and each
energy group and then summed over terms and groups to give the total heat
generation rate in a shield paint.

The build-up factor applied in the flux calculations is the same as for
PRIGAM.

The resulting expression for the effective Y-flux due to one exponential
term Qo. K e and one group energy E is for the SEGAM I case

_Qy exPl-vX) [
o(t) TR F

185 v )+ Fi(X, -X, -v)+ (p+Y) E‘Pé(!l-l)x)-l

s 1-up(-(v+1)(x1-x»}

v+l

+V{X_P_q._29?_ v-1 _(xl'x)e\”‘p:‘i"*”(xrx)’ o loexp({v-1)X)

(v-1) :

1-exp(- (v 1)(X, -X))
+ ) . (2.21)
(v+1) \
X

The function F (X,v ) is defined as the integral j eV'E, (hat .
0

The other symbols are explained in fig. 2.2.1.
For the SEGAM 11 case the effective Y-flux at P (fig. 2, 2. 2) is

Q, |
o= [%{exp(vX)El(x)-El((l-V)X) - exp(vX') E(X') + Elul-v)x'ﬂ+ |
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+ @y xSRIV ) 2xpl VIR (g + v B, -pxr+ vV 2 2000 ), (1 v)X)

-E ((1-v)X))*+ [P‘f"_’";‘ L = Yv)g] (exp(-(1-v)X') - exp(-(1-v)X))

+ Y(X'exp(-jl-\'lp.{'\)' -Xexy(-(l-vpg)] - exp(-vX) . (2.22)

The heat generation rate is calculated from the flux as in (2.17).

SEGAM I and SEGAM II have the same shortcomings due to the
build-up factor as PRIGAM. One of the consequences of this is that, e. g.
in the SEGAM 1 slab, the result is independent of the media cutside the slab.

2.4, Calculation Resuits

The programme system described in this section has been used to
carry out shielding calculations on the Swedish R2-0 reactor, for which
rather comprehensive experimental results are available,

The description of these calculations and comparisons with measure-
ments are presented at the end of secis. 3 and 6, where they are discussed
in connection with the results obtained by the more advanced methods
described in this report.

3. A MULTI-GROUP BULK SHIELD PROGRAMME FOR NEUTRONS

This section describes an improved calculation method for neutron
bulk shield problems. A computer programme, REMDIFF, has been worked
out which is superior to REMTHERM in the following respects:

(1) It operates with a rumber of removal groups and a number of dif-
fusion groups instead of only one of each. In this way a rather detailed
picture of the neutron spectrum can be obtained. This is desirable in prob-
lems with deep penetration of fast neutrons and in radiation damage problems,
(2) It permits a spatial variation of the fission sources. In many ap-
plications, the source density in the outer parts of the core, which give the
main contribution to the flux in the shield, is very different from the average
density over the whole core region.



-17 -

(3) An improved method is used to solve the diffusion equations. The
improvement consists in the fitting of the diffusion source term to a sum of
two expressions rather than to only one. The effect of this change is marked
for thick shield layers. )

A drawback of the REMDIFs" programme is that it handles only slab
geometry. TFor problems with cylindrical or spherical geometry, one pos-
sible approach is to calculate the energy spectrum with REMDIFF and then
calculate the geometrical corrections with REMTHERM. On the other hand,
REMDIFF is provided with an option for the approximate handling of finite
slabs,

3.1. The REMDIFF Method

The geometry is shown in fig. 3.1; it is basically the same as the
REMTHERM geometry in the slab case.

REMDIFF operates with a number of removal groups, G and a
number of diffusion groups, &

In REMTHERM, the removal cross section Z  for a definite shield
layer was given as an empirical value for the material in question {concrete,
water, etc.). REMDIFF calculates Z_ for each group and each layer from
the concentrations of the constituent elements and the microscopic removal
cross sections d . The following expression for ¢ r 18 used here:

1

r = O404ay - 2uf dey(m) dp . (3.1)
B

(o]

This formula has been proposed by a Swedish group:l ), who recom-
mend a fixed value of p equal to 0. 6; this value is adopted here. dtotal is
the total microscopic cross section, ¢ el(p) the microscopic differential
elastic scattering cross section per unit solid angle, and p the deflection
cosine in the laboratory system of reference, g defines a cone into which
the virgin neutrons may be scattered without losing their character of being
virtually unscattered. To maintain the physical consistence it is desirable
that the energy degradation coupled to the deviation Po is not strong enough
to reduce the neutrons, originally having the group energy Eg, to the next
lower group energy EG+ 1° This condition is met by the group structure of
the cross-section library presented in subsection 3. 2, even in the case of
scattering on hydrogen. From (3. 1) follows that absorption and inelastic
scattering processes ''remove' the neutrons from the virtually unscattered
removal flux,
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When Er = ¥ Ni drihas been calculated for the core and the lm

shield layers in all Clim removal groups, one calculates the Gm removal
fluxes throughout the reactor (REMDIFF treats the core just like the shield
léyers). Actually, the calculation is limited to the set S of points marked
in fig. 3.1: the half core is divided by half-points, and each shield layer is
divided by third-points. The source of the removal flux calculation is the
fission neutrons in the core, divided into Gm energy groups. Spatial varia-
tion of the source is aliowed: the programme reads in the source (in fact,
the thermal flux) in a number of core points, and makes a 6th order poly-
nomial least-square fit, The resulting polynomial, P(x), has no terms with
odd powers owing to the requirement of symmetry. With this source, the
removal fluxes in all points and groups are calculated as the integral

a
1 : 1

T — dx - x E,(S(X, P)) , 3.2

T, core J—a P 75 (¢-2)

where S{X, P) is the optical distance ( J' . dr) from the source element to
P. (3.2) is calculated by numerical integration. A small numerical com-
plication arises if P is one of the three core calculation points; as these lie
in the source region, zero arguments occur in El' This calamity is cured
by integrating (3. 2) by parts. The result is essentially an integral like
(3.2), but with E, replaced by the E,-function, which is regular for zero
arguments,

When the removal flux calculation sketched above is finished for all
G, removal groups, one begins the calculation of the Em diffusion fluxes
in core and shield, starting at the fastest group, g = 1, and ending with the
slowest, g = &> Which is the thermal group.

~ It is characteristic of the REMDIFF method that each removal group

gives a source contribution not only to the fastest diffusion group (the Eng-
lish method), but to all of them, Further, outscattering from diffusion
group g gives sources not only to the next slower group, g + 1, but to all
thegroups g + 1, g+ 2, ...., B This treatxr)ent of the transfer between
groups was proposed by AB Atomenergi, Sweden ’.  The cross-section
library, presented in 3.2, utilizes only partially the possibilities of the
allowed group transfers.

The diffusion equation in groupno. g (1 € g ¢ gm) and layer no, 1
(0€1 € lm) reads
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2
d”¢
1 . =
Dgl dxz - (za, gl + zoutsc, gl) ¢ gl + le(x) =0. (3.3)
Ea‘ gl is the absorption cross section. zouts ¢, gl is the cross section

for scattering out of group g. D _, is the diffusion coefficient, calculated as

gl

e
Dgl - 37"1::‘ with Z = 2, + Zoutse t 2T-w

where Esll-pl = ¥ Ni ds i(1 -pi) is the group seli-scattering cross section
i >

corrected for anisotropy.
The source term Q gl (x) is a sum of removal sources

G

Q x) = I x4 gI®Mmy (3.4)
G=1 G=~g Gl

gl, rem
and (if g > 1) diffusion sources

g-1 .
Qafd= I HI, oyt . (3.5)

The removal—diffusion transference cross sections Eai are
elements of a Gm - matrix, while the diffusion--diffusion transference

cross sections Zﬂi are elements of a €m " &m matrix with zeros below

the diagonal, oa‘;m(x) and ¢$§f (x) are removal and diffusion fluxes respec-
tively. .
In the following, the technique applied in solving the system of A
(lm + 1) diffusion equations (3. 3) is described. The order of solution is
chosen so that first the equations with g = 1 are solved for all regions
(t=0,1, ...., 1 m)’ then all equations with g = 2, and so on, ending with
the thermal group g = Eme

The equations with g = 1 contain only removal sources. By the aid
of (3. 4) these sources can be calculated at the same set of points, S, as the
removal flux, see fig. 3.1. In each region is then constructed an analytic
function of exponential or trigonometric type having the correct value at
these points., This analytic function is simple enough to allow an analytical
solution of the diffusion equatioh. The diffusion flux for g = 1 is then cal-
culated in the points S, whereafter the sources for the equations with g = 2
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at these points can be calculated from (3.4) and (3.5). The situation is now
just the same as for the equations with g = 1, and one proceeds in the same
way as described until all the equations down to g = g,, are solved.

We now turn to the problem of constructing the analytical expressions
for the diffusion sources mentioned above.

Fig. 3.2.1 shows a shield layer with calculated source values k, 1,
m, n at equidistant points (separation h). It would be desirable to construct
a function A ¢** + B ep x going through all the four points because such an
expression yields very simple solutions of the diffusion equations, However,
this is not always possible. Instead it can be shown that a function of one of
the following four types:

I: (A e?* + B eﬁx) cos —T{I—‘f h

Im: A e®* + B P* cos X (3.6)
m: Ae** + B ef* r .
IV: A e** cos(b + Bx) P

will have the desired property. Determination of the type of expression and
the constants is carried out by Prony's method. In fact, one searches for
an expression of type III above, but accepts one or two complex exponents
leading to the other three types. Then, if one puts e°h =y, eph = z, the
following four equations must be satisfied:

~
A + B = k
Ay + Bz =1
2 2 d (3.7)
Ay" + Bz" = m
Ay3 + st =1,
7

Instead of solving for (y, z) one solves for (sl, 32), coupled to (y, z) by the
requirement that the quadratic equation

v2+ 8y v+ s, =0 (3. 8)

must have the roots (y, z), From (3. 7) and (3. 8) follows that
k 152
and ‘

2
+ls;+m=A(y" + 5,5+ sz?+ B(zz-l- By z+ 52) = 0

1152+ ms; + n= Ay(y2+ 8,y + 512)4- Bz(zz+ 8z + sz)- 0;
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(51' sz) are then determined as the solution of the equations

ksz+ lsl + m=20

(3.9)
lsz+rns1 +n =0,
whereupon (y, z) are calculated from the symmetrical equations
yt+tzz=- Sy
(3.10)
yz = s,

these give complex or real solutions for y = e°'h and z = eph, which in turn

determine o and p. As mentioned, complex values for a or p lead to the
types I, Il or IV. Finally, A and B are easily determined from egs. (3.7)

In the corresponding problem for the core region (fig. 3.2.2) the
desired function must have the value k at the corecentrex = 0, latx=h,
and m at the core edge x = 2h. The choice of the function

A(cos ax + cos px) (3.11)

(o and p may be complex) ensures an expression symmetrical about x = 0,
which is a natural requirement.

Of course, A = -12:- By putting cos oh = y, ccs ph = z, one obtains the
equations

ye 2 -3

(3.12)

yz + z2 -1 = -%-
for the determination of (y, z).

An analysis shows that the expression (3.11) may split into seven
types of functions, all containing real constants:

N
1 : A(cos ax+ cos px)
I : A(cos ax + cos px)
Il: A(cos ax + cosh px cos EX.) f
. (3.13)
1v : A(cosh ah + cosh px) l
vV A(cosh ah + cosh px cos —'i!-) {
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Vi: A(cosh ax+ cosh px) cos %)—\- |

VII: 2A cos ax cosh gx . /l

All the source expressions (3, 6) and (3.13) yield fairly handy solu-
tions of the diffusion equations (3.3). By dividing (3. 3} by Dgl and introducing

=

+ =
X 21 - a, gl outsc, gl (3. 14)

gl
and the constructed source function, one obtains a normalized equation with

the common form (indices g(1, ..., gm) and 1(0,...., lm) are suppressed
for the sake of clearness)

2
2

.d_'..g;. - 2¢ + X a; exp(uix) cos (bi+ 6ix) =0; (3.15)

dx i=1
(3.15) has the general solution

2 ( 2 2, .2 .
n -a; “+p. " Jcos(b.+p.x) - 2 a.8. sin(b.+p.x)

¢ =Ae"*+ Be™*+ I g explqx) oy o y—.

R RN R
i=1 (W -0+ B;)" + 40, By

(3.16)

For each diffusion group g we get1l m T 1 flux expressions, so that
2 1+ 2 arbitrary constants have to be determined. The requirement of
symmetry at once yields A = B for the flux in the core; hence 2 1m +1
boundary conditions are necessary:

¢ and Dg)%- have to be continuous at the 1rn region interfaces. ¢
must vanish at the extrapolated external boundary.

The extrapolation length is taken to be

_0.m

tr

d = 2,13D ; (3.17)
D refers to group g and layer 1.

The solution of the 2 1+ ! linear equations for determining the A's
and B's proceeds just as in REMTHERM.

It was mentioned at the beginning of this section that REMDIFF could
handle a finite slab geometry approximately. On the assumption of a rect-



- 23 -

angular shape of the slabs (a x b) it does so by adding (l“;.)2 + ( -%-)2 to the
expression for ngf (3. 14).
The REMDIFF programme accounts for the resonance absorption in

the core by U238 in a way which will be discussed in 3. 2.

3. 2. The Cross Section Library

A cross section library containing some frequently encountered
nucleides in shielding design has been worked out. These nucleides are
given in table 3. 1.

Table 3.1

Nucleide No. Symbol

1 H
2 D
3 C
4 o
5 Mg
6 Al
7 Si
8 Ca
9 Fe
10 Zr
11 Pb
12 U-235
13 U-238

The group structure chosen is seen in fig. 3.3. Although one has
the liberty of choosing the energy group limits arbitrarily, it is practical
to avoid "overlaps" between the removal and the diffusion groups. The
present group structure has two removal groups and nine diffusion groups,
the two highest of which have the same limits as the removal groups. The
upper energy limit is 10 MeV. Apart from the two lowest diffusion groups,
all the groups have a lethargy width of 2. 25. This value fits well into the
structure of the GAM 1 libraryz), which has provided much of the raw cross
section information used in preparing the present library, The reason for
choosing the lower limit of group 8 to be 0.414 eV was that this value is

generally accepted as the upper limit of thermal energies, All the micro-



Scopic cross sections collected in tobles 3.2 - 3.6 are given in units of barn.

Removal cross sections

L I N T

The removal cross sections are calculated frem formula (3. 1). A
weighted average, according to the fission specirum of U235, is calculated
for each removal group. Raw cross-section information is takﬁn mainly
from ref. 2, and to some extent from ref. 3. Calculation of j del(p) dp

1)}

o
requires knowledge of the angular distribution (differential cross section).

This knowledge is provided by ref. 4.
In table 3. 2 the calculated removal cross sections are collected.

Fission sources

- > - — = - -

By integration of the fission spectrum over the two removal groups
it is found that 72. 0% of the neutrons are born in group 1, the remaining
28, 0% in group 2.

Removal -=diffusion cross section

e e e N S W S W MR e M AR WD N R e

Next, the transference cross sections ¢ :‘EJ for scattering from
removal group i to diffusion group j are calculated. On account of the open
group structure it is a good approximation to assume that all cross sections

rd rd
other than d, . and di—-i+ 1
made by weighting with the fission spectrum. The results are collected in
table 3. 3.

The reinaining cross sections concern the diffusion groups only, It

are zero. As before, the group averaging is

was decided not to prepare microscopic data for the thermal group (no. 9)
in the library, but instead to read into the programme the macroscopic
thermal data Ea and D for all the regions. The reason for this is that Ea
and D for thermal neutrons are not always uniquely determined from con-
centrations and microscopic data.

Proper averaging of the cross sections over the diffusion groups
requires knowledge of the energy spectrum. For group 1 this is assumed
to be a somewhat degraded fission spectrum, while for the groups 2-8 it is
assumed to be an 1/E-spectrum.

These appear from table 3. 4.
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238 do not include the

The quoted absorption cross sections for U
resonance absorption. Instead, the resonance escape probability p is taken
as an input quantity in the REMDIFF programme. In the present library it

is assumed that p can be written as
P = Pg Pg Py » (3.17)

where P5. Pg, Py are group escape probabilities for the groups 5, 6, 7, and
further that

3
Ps = Pg © Py = ﬁ . (3.18)

This is a rather crude approximation, but is justified by the minor
importance of the correct calculation of diffusion fluxes in the core for a
shielding design programme such as the present. The equivalent increment
of z for group g (g = 5, 6, T) is calculated as

3
Az, =X 1- \p . (3.19)

a,g outsc, g

Diffusion transference cross sections

The transference cross sections ¢ fij for scattering from diffusion
group i to diffusion group j are calculated under the same assumption as that
made for d;ij, namely that df—ii = 0 for j>i+1. Nucleide no. 7, Si,
forms an exception. Here, inelastic scattering in group 1 degrades the
energy so much that after the scattering it corresponds to group 4 or 5. The

cross sections are
.. ,dd _ : dd -

The cross sections d ?_(il and d(iiii 41 for all 13 nucleides are
found in table 3. 5.

Finally, table 3.6 shows the cross sections @ i(i:i-i (1-p). They are
used to calculate the diffusion coefficients.
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Table 3,4

Nuclelde 1 2 3 4 5 6 7 | 8 9 10 11 12 13

lar. No. 1 0 0 o | 0.0177] 0,0223 |0.0052 | o | o Jo.0018| o 0 0 0.1393
2 0 0 0 o |o.0722]0,0022 | o | o |0.0052|0.0178 0 | 0,0484 | 0, 1644
3 0 0 0 o |o0.3289|0.0t89 | o | o |o0.,0076 |0, 0789 0 | 0.4657 0, 0311
4 0 0 0 0 o |o.0122 | o | o [o.00800.3700 0 | 1.8411] 0, 0047
5 0 0 0 0 0 0 o | o |o,0222 |0, 6711 o | 80955 0, 0128
6 | o.0033 | o 0 0 o |o.0087 | o | o |0.0679 |o0,0022 | 0,0033}29,35000 | 0.0536
7 | o0.0278 | o 0 o |0,0083 00178 | o | o |o0.2089 |0,0144 | 0,014427, 2201 | 0, 2022
g | o.0820 | 0 0 o |o.0100]0.0600 [ o | o |o.,6130 0,030 0,0400]11,8520 | 0,4970

-Lz-



Table 3.5

Nucleide 1 2 3 4 5 6 7 8 9 10 11 12 13
No;

Gr. 1—=1 | 1.1010] 0.3968 | 1.6663 | 1.8992 | 2, 2173 | 2.6183 | 2.2032 | 2.9243| 2.4112 | 4. 2054| 5.1467] 41.4054| 5. 0050
1—=2 | 1.5720) 1.9376 | 0.2321 | 0.3221 | 0,1918 | 0,3231 | 0,0704 | 0.3262| 0.6544 | 0,6173] 0.4505 | 1,3467| 2.2690
22 | 4.6076 | 2.1740 | 3.3906 | 4.1302 | 5.5703 | 4.1777 | 2. 2050 | 1. 9740} 3,0803 | 8,2792| 6,9639 | 6.7795} ©.1239
2-=3 | 3.0412 1.0878 | 0, 2560 | 0.2326 | 0.1497 | 0,1472 | 0,0181 | 0.0260| 0,0576 | 0,0748| 0.0393 | 0.4560}10,0339
33 | 9.6048 | 2.2961 | 4.2698 | 3.4611 {6.1104 | 3,8931 | 1,4892 | 1,4670| 5.2991 |8.1631 10,5328 }10,26341],5182
34 | 6.3395 | 1,0961 | 0.3224 | 0.1949 | 0.1085 | 0,0386 | 0, 0541 | 0.0330| 0,0722 [0, 0854 | 0,0450 | %. (3991 0, 0496
4-=4 11,8673 | 2.3014 | 4.3605 | 3.4611 |3.3755 | 1,4017 | 2.3753 | 1.9530| 6,6208 |9,0383 10,6877 |:0.4604 14,4700
4-=5 | 7.8347 | 1.0986 | 0.3292 | 0.1949 | 0.1245 | 0,0472 | 0, 0803 | 0,0470| 0.1225 |0,0584| 0,079 | 0.0396| 0.0633
5-=5 |12.0480 | 2.3403 | 4.3784 | 3.4611 |3.3755 | 1.3744 | 2.3859 | 1.9420[10,1892 | 5.4467 11,1521 10,1604 |23, 6322
5-=6 | 7.9520 1 1.1171 | 0.3306 | 0.1949 | 0.1245 | 0.0456 | 0.0695 | 0.0580| 0.1730 | 0.0600| 0, 0479} 0.0396} 0,0335
6-=6 |12,0480 | 2.3210 |4.3795 | 3,4611 |3.3755 | 1.3680 | 2.1805 | 2.6370 (10,8270 |6,1400 |11,1521 12,1477(53,7272
67 | 7.9520 | 1.1079 | 0. 3306 | 0.1949 |0.1245 |0, 0453 | 0.0695 | 0.0630| 0,1730 |0,0600| 0,0479] 0.0401] 0, 0283
7-=7 |12.0480 | 2.3014 |4,3793 | 3.4611 |3.3755 |1.3696 | 2.1805 | 2.6370/10,8270 |G, 140011,1521 |11, 8861 11,8357
7-=8 | 7.9520 | 1.0986 | 0.3306 | 0.1949 |o0.1245 | 0.0460 | 0, 0695 | 0,0630| 0.1730 |0.0600| 0.0479 0,0483} 0.0309
g8-=8 | 8.5860 | 1.4280 | 4.1059 | 3.3448 |3, 2759 | 1.4311 | 2.1249 | 2.6120[10,7578 | 6, 1160 |11,1138 [13,7429) 8.2443
8—=9 [11.4140 |1.9720 |0.5941 |0.3552 |0.2241 | 0. 0889 |0.1251 | 0.0880( 0.2422 |0.0840| 0,0862| 0.0971} 0.0557




Table 3.6

Nucleide 1 2 3 4 5 7 8 9 10 11 12 13
No.

Gr. 1]0.3670 |0.3320 {1.5737 ) 1,4402]1,0479}1,2435 | 0,7508 |1,1212| 0,6947 | 1,2309| 2,.0276} 1,3390] 1,4875
211.5359 |1.8190 | 3.2021} 2,7189 | 3,7566 | 2,6123 |1,4937 |1.2503| 1,9655 | 4.9071| 4,1680| 3,7097| 4.4454
313.2016 |1.5307 ]| 4,0324 | 3.3168 | 5.9430 | 3,7969 |1,4555 |1.4426| 5.2360 | 8,1035110,4991}10,2347}11,4859
4 13,9558 {1,5354 | 4.1181] 3,3168 }3,2830| 1.3671 |2,3216 |1.9206] 6,5420 | 8,9723|10,6535]10,4311}14,4295
51{4,0160 |1.5602 | 4.1350| 3,168 ] 3.2830| 1,3405 |2,3320 |1.9098|10,0679 | 5,4069|11,1164|10,431123,5670
614.0160 {1.5473 | 4.1360 ] 3.3168 § 3.2830| 1,3342 |2.1312 ]2,5932]10,6982 ] 6,0952}11,1164]12,1137|5%,5768
714.0160 |1,5343 | 4.1358 | 3.3168 | 3,2830 | 1.3858 | 2,1312 | 2.5932]10,6982 | 6,0952]11,1164f11,8528|11, 8026
8 {2.8620 | 0.9520)3.8776 | 3.2053 | 3,1861} 1,3958 | 2,0769 | 2,5686(10,6298 | 6,0714|11,0782]13,7041| 8,2212
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3.3. Calcuiation Resulis

Calculations periormed b: iieans of REMDIEFF have been compared
with measuremenis carriedout on the Swedish reactor R2-0 at Studsvikls).
This reacior is a 100 kW swimming-nool reactor, intended primarily for
shielding experimenis and critical studies. The core is of box shape, with
the dimensions 61.7 x 60.0 x 32,4 cm.

Two of the mock-ups described in ref, 13 were selected for the pur-
pose of comparison between measurements and REMDIFF calculations,
These two configurations include two of the most common shieiding materi-
als, water and concrete. The arrangements are shown schematically in
figs. 3.4 and 3.5. The geometry is essentially one-dimensional slab geom-
etry. In configuration 1 (fig. 3.4) water is the only shielding material. In
configuration 2 (fig. 3.3), ‘the bulk shield of magnetite concrete { p = 3, 74)
is preceded by 20 cm water and 1 cm aluminium. The REMDIFF calcula-
tions were not carried out for more than about 1 metre of water or concrete,
although the actual thickness of the mock-ups was considerable greater.
This restriction on the calculation stems from iroubles caused by the rather
limited numerical range of the IBM 7090 computer. These iroubles have
now been overcome, but it was not found worth while to repeat the calcula-
tions with the increased shield thicknesses. In fact, good estimates could
be obtained by a simple extrapolation of the flux curves presented here.

The Swedish measurements comprise the thermal flux ch, the

epithermal flux per lethargy unit ¢ and the fast flux in the range 0.3 -

2 MeV, ¥, g Owing to the coarasee I;ltructure in the fast-energy range of
the present cross-section library of REMDIFF, comparative calculations
could not be made for ¢ fasps DUt were restricted to ¢ th and oep" The
thermal flux .th in some types of shield (iron, heavy concrete, etc.) has
a direct effect on the production of hard capture-Y rays, which in turn often
yield the dominant contribution to the total dose at the external surface of
the biological shield. Also the epithermal flux ¢ epi may be important in
shielding work as it is responsible for part of the damage to shield materials
like concrete. The measured epithermal flux is determined as that part of
15). The calculated value of ¢ epi is
obtained from the flux results in diffusion group no. 5 (130-1230 eV); the

flux results for the neighbouring groups 3, 4, 6, and 7 were almost the

the flux which has a 1/E-spectrum

same as that for no. 5, indicating a 1/E-spectrum in these groups.
The flux curves as obtained with REMDIFF were corrected for the
finite lateral extension of the core (61.7 x 60,0 cm). The correction factor
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described in ref., 16 fur ihe transicrmation from infinite plane source to
disk source was applied; its value varied from 1 near the core to about 1/3
far from the core.

The results of the comparison between calculations and experimeﬁts
are seen in figs. 3.4 and 3.5. The agreement is always inside a factor of
three, and in most cases much better. In shielding work such a result must
be considered very good, in fact beiter than one would expect for a calcula-
tion scheme like the presenf. The thermal flux points in the core, used as
input in REMDIFYF, are marked with crosses in figs. 3.4 and 3.5. One sees
that these points are very close to the calculated thermal flux curves in the
core region, indicating an internal consistency and soundness of the calcula-
tion method.

Also calculation results for the thermal flux obtained with the simple
removal-diffusion code REMTHERM mentioned in 2. 1 are shown in the
figures. ‘The results are corrected for the finite core just as in the case
of REMDIFF. The agreement with experiments is not good for the water
shield, but better for the zoncrete shield.

A proposal for improvements of the REMDIFF cross-section library
would probably include a more detailed group structure for the energy range
above 0.1 MeV, where most of the cross sections decrease rapidly with in-
creasing energy. The number of removal groups should probably be in-
creased from two to about five.

The REMDIFF programme is very fast. The two problems discussed
here were solved on the IBM 7090 computer in less than 20 seconds each.

4. GENERAL OUTLINE OF THE MONTE-CARLO METHOD IN
CALCULATING NUCLEAR PARTICLE TRANSPORT

The remaining part of the present repori is devoted to the Monte-
Carlo method and applications of it.

Monte-Carlo is often referred to as the method of random sampling,
in fact a very appropriate designation.

A most important field of application is problems in nuclear particle
transport, and only such problems will be considéred in this report.

However, also other soris oi problems, both in physics and in ap-
plied mathematics, have been solved successfully by means of Monte-Carlo.
Examples are problems in statistical mechanics, calculation ‘voi polymer
molecule structures, solution of very large equation systems; and calcula-
tion of multidimensional integrals. ‘

}
|
|
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Monte-Carlo problems must always be solved on digital computers,
preferably of high speed and large size.

4.1, Principle of the Monte-Carlo Method

Quite generally, the principle of Monte-Carlo may be explained as
follows: One wishes to calculate some quantity - say a multidimensional
integral or a neutron transmission - which is so complicated that an analytic
solution is impossible or not feasible. One abandons the calculation of the
exact (true) value Q of the quantity and instead tries to obtain a so-called

statistical estimate Q This estimate is calculated as an average:

est”
. N

Qest " =7 2 QB (4.1)
121

R, is a so-called "sample", which determines the representative value Q
of the quantity. In the first example, where the quantity was a multi-
dimensional integral, R, will be a multidimensional point. In the other
example, with neutron transmission R; is the "history" of a neutron, i.e. a
set of consecutive values of neutron energies, positions, anddirections, simu-
lating in some way the neutron events from birth to death. In both cases,
each sample R, will be constructed by the aid of a series of ""random num-
bers" iis Tip, -+, all lying between zero and one; their properties and
the production of them on digital computers will be discussed in 4, 2.

In most cases the estimate is "unbiased", i.e. the mean value of

Qegt 15 @

MQuy) = Q - (4.2)

(4. 2) holds in all our applications.

(Note the difference between the terms mean and average: the mean
value j refers to the theoretical probability distribution, while the average
(marked with a bar) is determined from the actual samples, )

Resiricting oneself to considering only applications in nuclear par-
ticle transport, one finds it tempting to define Monte-Carlo merely as a
gimulation of real particle histories: as each nuclear scattering event is
6f a probabilistic nature, it can be simulated by the aid of one or more
lrandom numbers. However, this definition of Monte-Carlo as a statistical
brocess by which one follows the particle from birth to death, is too narrow.
This ''random walk" or "direct simulation" method is only the simplest of
several possgible approaches in the field of Monte—Carfo, and - as will be
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discussed later - direct simulation is in fact unsuitable for problems of
some complexity, where it must be modified by the inclusion of variance-
reducing devices, to be discussed later.

The variance of Qest is defined as the mean square deviation:

var (Q ) = B(Qy - . (4.3)

where Q is the true valve of the quantity.

In an actual Monte-Carlo calculation one usually obtains a set of M
estimates ; st (1 £ j € M) of the type (4.1). Then the following formulas
will be approximately valid:

M
var(Qest) = M'}T' z (Q:ast - g’c )2 ’ (4.4)

©

and

var( )

var st) s __mEe_it_ . (4.5)
In these formulas, Qt is the set average,
1 M j

Qest = Z cz]est ) (2.6)

=1

For practical Monte-Carlo calculations concerning neutron or photon
transport, the number of histories, N, used to provide a single estimate
Qest will normally be of the order of a few thousand, while the number, M,
of independent estimates is, say, ten. The advantage of having several
independent estimates (M > 1) is obviously that it is possible to judge the
variance of the result (eqs.(4. 4) and (4. 5)).

A good Monte-Carlo calculation is one in which the variance of the
result as well as the computing time are small. This will be further dis-
cussed in 4. 6,

4. 2. Production of Random Numbers

As mentioned in 4.1, a Monte-Carlo calculation involves the use of
"random numbers"”. Customarily, these numbers are restricted to the
open interval between 0 and 1.

Random numbers have a probability density function of rectangular
shape.
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The production of random numbers is carried out on the digital com-
puter itself. A greal variety of random number generators exists, but most
of them are tailored for some specific computer type. A multiplicative
generator, suited for ALGOL and FORTRAN, has been proposed by L. Hans-
son, Risd, and has been adopted in all the Monte-Carlo calculations de-
scribed in this report.

The generatoy utilizes the following simiple algorithin:

Y=[AX/M]

Z = AX - MY (4.7)
r = Z[M

X=2

The square bracket stands for the largest integer £ the argument.
The integers A and M have the values 125 and 2, 796, 203 respectively. r is
the resulting random number, always satisfying the inequality 0< r <1,
The generator is started by assigning to X an arbitrary positive integer < M,
By a new ''call" of the generator, the foregoing X-value is used for calcu-
lating the new r-value. In this manner one can obtain an infinite number of
such r-values between 0 and 1, and ine sequence will be periodic with a
period of M-ls) calls. All the r-values within a period are different from
each other.

Such a series of r-values cannot be truly random because each r-
value is uniquely determined by the foregoing. However, the simulation of
random numbers is very well established by the algorithm (4. 7), provided
the total number of calls of the algorithm in the actual problem is below M.
If this is not the case, there is a risk of introducing a periodicity in the
whole Monte-Carlo calculation, Troubles from this periodicity did not
seem to occur in practical calculations till after at least several hours'
computing time on the same problem, run on the fast IBM 7090 computer.

An algorithm like (4. 7) may be characterized as a generator of
"'pseudo-random’ numbers,

The ""randomness'' of the numbers generated by (4. 7) has been tested
in several ways. One of these testss) is a Xz-test both of the rectangular
distribution of the r-values and of their independence of each other., The
result of this test was satisfactory.



4.3. Monte-Carlo in Nuclear Purticle Transnort

The further discussion of e Monte-Carlo method is restricted to
applications to the transport of nuclear particles, of which furthermore only
neutrons and photons are considered. These particles travel independently
of each other. The Monte-Carloe procedure then consists in the generation
of a set of independent particle histories. The particles are followed from
their birth at the source to their death, caused by absorption, escape or any
other ""category of loss'. Random numbers are used to sample path lengths,
energy degradation and angular deflection on collision with nuclei, and so on.
How this is done in detail, is discussed in the following subsections. As
mentioned previously, one seldom simulates slavishly all the events of the
particle history because the variance of the results is then too large. A
number of "tricks' are fréquently applied, some of which are mentioned in
4.6. .

The following question naturally arises: What kind of neutron- and
Y-problems can profitably be solved by Monte-Carlo? It is very difficult to
give a general answer, but one may mention the problems described in
sections 6 and 7 as typical examples of problems for which Monte-Carlo is
suitable. They are of moderate complexity, too involved to permit analytic
solutions, but simple enough to be solved by efficient Monte-Carlo methods.
On the other hand, in simple problems permitting solution by an analytic
method, the latter will generally be superior to Monte-Carlo.

4.4. Fundamental Sampling Principle

A standard problem in Monte~Carlo is the following:

Given the probability density function (pdf) for some variable; one
wishes to set up a procedure for obtaining a statistically correct sampling
of this variable by the aid of a random number r{0 <r <1),

Such a procedure must of course reproduce the original pdf; for a
very large number of samples, the values obtained of the variable in question
m 1st be distributed in close accordance with the pdf.

As an example, consider the selection of deflection angle 6, or rather
the cosine p of such an angie, for a certain scattering event when the angular
distribution is given (fig, 4.1) in terms of a pdf in p, denoted f(p), The first

step is to normalize f(p) so that
1

J f(p)dp = 1. (4. 8)
-1
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Next, one constructs the distribution function

}l
F(p) = J (p') ap' (4.9)
-1

with the properties F(-1) = 0, F(1) = 1.
Finally, one inverts the function r = F(p). The inverted function is

denoted

p= ¢, 0 <r <1. (4.10)

It is now shown that (4.10) is the statisticaily correct sampling rule
for » when r is identified as a random number:

If a large number, N, of p-values are sampled by means of N random
numbers, the number of r-values beiween r and r + dr is dN =~ N dr, while
the p-values obtained lie between p and p + du with p = ¢ (r}. The density
of p-samples at p is

S5 =N P =N ) (4.11)

so that _c_lll%{ = f(p)dp q.e.d.
The formula (4. 10) constitutes the fundainental sampling principle in
~ Monte-Carlo. The above treatment refers to a continuous pdf; however, the

discrete case is handled in quite a similar manner.

4.5. Standard Routines in Problems of Nuclear Particle Transport

A Monte-Carlo programme is construcied by linking together a
number of subroutines, each corresponding to a certain stage of the calcu-
lation, The programme is advantageously described in terms of a flow
diagram. The subroutines in such a diagram appear as single "boxes" or
as blocks of boxes. A number of the subroutines are common for a great
variety of problems,

The subroutines depend on the choice of the set of parameters used
to determine the history of the particle followed. These parameters in-
clude the particle energy E together with geometrical co-ordinates,

The geometrical co-ordinates are the momentary co-ordinates of
the position and the direction vector of the particle, As a rule, rectangular
co-ordinates are preferable, even in cases with cylindrical symmetry. Only

!
|
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for spherically symmetrical problems should other co-ordinates be used.

In cartesian space, the momentary state of the particle is characterized by

the seven-dimensional vector (E, X, ¥, 2, u, Vv, w). The direction cosines

u; v, w satisfy the relation uz + v2 + w:2 = 1, ‘
We now proceed to a description of the most common subroutines.

They are described more thoroughly in ref, 6.

Isotropic source

The problem is to select the direction cosines u, v, w for a starting
source particle with isotropic distribution. It is tantamount to choosing a
point (u, v, w) uniformly distributed on the unit sphere u2 +v2 4wl = 1.
This is done by selecting first the cosine w uniformly in -1 <w <1. The

corresponding formula is -

w.= 2r -1 (4.12)

here and in the following, r denoies a random number (0 <r <1), Thena
new random nurcber is used to select an angle ¥ from a uniform distribu-
tion in - T<PY ™

=T . (2r -1}, (4.13)

Finally, u and v are calculated as

41 - w2 cos P
(4. 14)
v = 41 - w2 sin ¢

1l

u

Sampling of particle flight distances

Consider an infinite homogeneous medium with a total macroscopic
cross section X for the particle in question, say a photon of energy E., The
problem is to select the free flight distance of the photon.

According to the fundamenta! sampling principle, we construct the
probability density function (pdf) f«r flight distances 1; it is

p(l) = 2+ exp(- Zi). ! (4. 15)
The distribution function is 1
l I

r = F(l) = J p(I)dl! = 1 - exp(-ZI) . (4.16)
o |
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By solving with respect {o 1 one obtains

1 = - -% In{l - 1) . (4.17)

The random number r may be replaced by 1 - r. The final sampling

formuia is simply

1=-lInr/x (4.18)

Decision of escape from a zone

An actual Monte-Carlo problem normally involves several zones
separated by boundaries, and hence one needs u routine which decides
whether such a boundary is crossed or not during the particle flight. The
routine is easily esiablished once the distance L along the flight to the
boundary is calculated; one simply compares L with the sampled track
length 1.

The calculation of L is normaily carried out by solving the flight
equations (x', y', z') = (x, y, z) + t{u, v, w) together with the equation for
the boundary, ¢ (x', y', z') = 0. Since (u, v, w) is a unit vector, the
resulting t-value is simply L. This shows one of the advantages of the
cartesian co-ordinate set (X, y, z, u, v, w) even in cases where the boundary
is, e.g., cylindrical,

If escape from one zone to another occurs, one “forgets' the previous
piece of flight and samiples a new flight distance from (4. 18), starting from
the boundary, but of course with unchanged (u, v, w). That this procedure
is statistically correct, follows both from the pdf, eq. (4.15), and from
physical considerations.

Selecting of nucleus type for collision

This problem arises when a mixture of different nuclei is present,
One then writes the total macroscopic cross section for the mixture as a
sum of components corresponding to each type of nucleus:

D AR SR B LT : (4.19)

Sampling of the type i, from these cross sections and the random
number r, is an example of the discrete analogy of the general sampling
problem for continuous variables (see 4. 4),

One first normalizes all the cross sections by division by Z:
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= X X PR
1-._.1 +“'+2‘i + ... F_n. (4. 20)
Then a table Sio 5 eees 5 is constructed so that
= = y¥ ;. = X ;3 =
S, =0, sp = X, 8, =8 * Xy, ..., s 1., (4. 21)

Finally, the type i is determined as that i-value which satisfies the
inequality

s, <r <s; . (4. 22)

Selecting of type of collision

Having determined the type i of nucleus in the collision (if several
nuclei are present), one may wish to select the type of collision event (ab-
sorption, elastic scattering, inelastic scattering, fission, etc.). This
procedure is exactly simiiar to the one discussed above.

Deflection angle in scattering

The sampling technique here depends on the physical problem; it
will be discussed in the following sections,

Direction parameters after the ccollision

Given the incident cosines of direction, u, v, w, and the scattering
angle ¢ (in the laboratory system) with cosine a. One wishes to set up
a routine to determine the direction cosines of the deflected line of flight,
uw', v', w'. We omit the derivation (given in ref. .6) and present the result:

(bcwu - bdw)/f ‘ll -w? + au

u' =
v = (bcwu + bdu)/ il -w2 + av (4. 23)
w'= -bec Jl-w2+ aw ,

Here, b = 41 - a2, c=cosb, d=(2r-1)w, d =(sgnd) 11-02.

1t is clear that § alone does not suffice to determine u', v', w'; therefore,
also the azimuthal scattering angle & must be fixed,

QOther subroutines

In the final flow diagram of the Monte-Carlo calculation some regi-
stration subroutines will appear.

A starting routine which counts the number of particles fed into the
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system must be present. This routine stops the calculation when the number
of particle histories has reached the prescribed figure.
In order to "kill" a particle which in some sense has become suf-
ficiently unimportant, one must have one or more cut-oif routines. '
Further, some scoring routines musi be present to account for
changes in the desired physical quantity {transmission, energy deposition,
etc. ) during the Monte-Carlo calculation.

4.6, Variance-ReducinJg Devices

As mentioned in 4.1, the resuilt of 2 Maonte-Carlo calculation has a

certain sampling variance

v =g?%, : (4. 24)

where 0 is the standard deviation.
V is inversely proportional to the total number of samples, i.e.
roughly to the computing time t:
vekt- 1
(4.25)
L
NVt
Sometimes the variance V in an actual calculation is larger than can

be tolerated. An obvious way of decreasing the variance is o increase the

computing time. However, eq. {4.25) indicates a rather low rate of con-
vergence, and a sufficient reduction of V frequently requires unacceptably
long computing times.

This calamity may often be cured by altering some of the subroutines
in the calculations. The modifications are carried out by introducing so-
called variance-reducing devices. A great variety of such devices have
been developed, and some of them are discussed in the following.

For the sake of simplicity, most of the discussion until now of the
various subroutines has referred to the "direct simulation" method, where
each elementary event is treated by a statistical game (call of a random
number) in close accordance with the real physical situation, As already
pointed out in subsection 4. 1, direct simulation is not sufficiently effective
for complicated problems. If instead one replaces part of the entirely
statistical calculation by analytical calculations, the resulting answer will
show reduced variance, but an unchanged mean value. In principle, there
is no limitation of this procedure: if one replaces ali the statistical calcula-
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tions by analytical calcu’ations, <12 obtains a "conventional” calculation,
and the variance is zeve. However, Monte-Carlo is applied in just the
problems in which analyuical solul ons are impossible or not feasible. Hence,
in each Monte-Carlo »roblem an opiumnum exists for the relative amounts of
"random walk" and anaiytical calcuwiations, '

We now proceed 1o describe various devices for reduction of the
variance. Mosti of them have been appiied in the work described in this

report.

Tie weight concepi

Utilization of most of the variance-reducing devices presupposes the
weight concept.

As a simple and illustrative example, consider a collision beiween
a neutron and a nucleus; the total cross section is the swn of an absorption
and a scattering cross section: S, =tz As described earlier, the
process type can be decided by a random number. Alternatively, one could
introduce a weight parameter W, ascribed to the neutron. Assuming W =1
before the collision, one now makes the assumption that the fraction Ea/ Z:t
of the neutron is absorbed, and the iraction Zs/ Z,is scattered; this scattered
part is then treated as a neutron with the reduced weight W = Zs/ Zt.
Fluctuations due to sampling of collision type are thus eliminated.

The use of the weight concept normally requires a cut -ofi value Wo
for the weight W. As the particle is killed if W drops below Wo' the com-
puter time spent on an unimportant particie (i. e. one of low weight) will be
saved.

Weight parameters may be assigned to a particle already at its birth
at the source. This facilitates the reproduction of a fission spectrum.

Importance sampling

This device consists in sampling from another pdf, fl (x), than the
correct one, f(x). Having sampled the quantity x, one has to multiply the
weight of the particle by f(x)/1, (x), correcting the distortion of the pdf. As .
one has the liberty of choosing f, (x) arbitrarily, it is possible to "emphasize'
a certain range of x-values, which explains the term ''importance sampling"‘.

An example in which this device is advantageous is the calculation of
a detector response to a source far away. The angular distribution of the

source particles is here transformed in order to emphasize directions
towards the detector,
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Another example is found in 7. 3.2, where track iengths are sampled

from the scattering cross section instead of from the total eross section.

Splitting

This technique consisis in splitting a single particle with the weight
W into n identical particles, each with the weight W/n. These n particles
are then treated as individual particles., For instance, one can choose n=2
and let the two split particles have c¢pposit~ directions. Such a procedure
has been applied successfully to criticality calculationss).

A technique related to splitiing has been applied in the solution of the

problem in subsection 5. 2 of this report.

Russian Rouleite

"Russian Roulette” is a siatistical game played in order to kill un-
important particles. This game gives the particle a certain surviving
probability p, but compensates by multiplying the weight of a surviving
particle by % This technique is applied in 6. 4.

Stratified sampling

Stratified sampling is a device which is normally restricted to source
routines. As an example, consider the emission of neutrons from a surface.
Insiead of the source points being sampled at random, the surface is divided
into a number of "strata', nos., 1, 2, ..., n. One starts by selecting a
source neutron in a point of region no. 1; after the history of this neutron
has terminated, ihe next neutron is selected in region no. 2, and so on, un-
til region no. n, whereafter the cycle is repeated. Weighis may be assigned
to each of the regions.

This device has a limited variance-reducing power, but is easy to
establish, and the use of it is therefore rather extended.

Stratified sampling is also possible for selecting of energies of
source particles,

The exponential transformation

When trying to solve deep-penetration problems by straightforward
Monte-Carlo, one often has to emit a prohibitively large number of source
particles o get a reasonable response far from the source. This trouble
may be overcome by transforming the Bolzmann transport equation by the
so~called exponential transformation, The random walk procedure is then
adjusted to the transformed equation. This method is applied for the solu-
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tion of the Y-shielding problem described in section 6.

The semi-analytic method

Sometimes it is possible to treat one or more particle parameters.
by completely analytic means so that sampling variations are restricted to
the remaining parameters. Such a procedure is described in ref. 5 for the
solution of a Y-shielding problem in slab geometry. It is here the collision
abscissae z that have been "separatcd" from the other variables and treated
analytically, so that the random sacpling is resiricted o energies and
deflection angles, The efficiency gain Dy this method is claimed to be very
large (2500),

Statistical estimates

This device concerns the scoring routines.

When the direct simulation method is used, the situation frequently
arises that the scoring events for some physical quantity to be calculated
occur too seldom.

A good example of this is the calculation of the neutron current
distribution on a black rod, which problem is treated in section 7. Here,
all collisions outside the rod will be ""dummies' in the direct simulation.
Only when a neutron hits the rod does scoring take place. The scoring
routine was therefore modified to permit a statistical estimate of the current
in every collision; this is done by letting the neutron lose part of its weight,
the loss being equivalent to the probability of hitting the rod after collision,
This "spray technique' is described in 7, 3.

Another example is the flux scoring routine for grey rods, described
in 7, 3. This examnple is the same as that mentioned in connection with im-
portance sampling., The point is here that for each track in a zone of the
rod one makes a statistical estimaie of the flux increment in that zone in-
stead of waiting until u collision takes place in the zone,

5., SOME MINOR PROBLEMS SOLVED BY THE MONTE-CARLO METHOD

This section describes the solution of some minor problems by
Monte-Carlo. The problems are so simple that crude Monte-Carlo (direct
simulation) works satisfactorily,
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5.1, Self-Absorption of Y-Rays in Fuel Rods

A GIER programme {MC3) has been written which finds the fraction
of Y-energy escaping from an infinile, cylindrical rod containing Y-sources.

The rod is assumed homogeneous and surrounded by vacuum, i.e.
backscattering is neglecied, This is often a good approximation. The Y-
source is assumed {o be a function of the radial co-ordinate r. The depend-
ence of r must be given as an arbitrary step function. The source spectrum
is assumed to be the Y-spectrum from fission, but other spectra, e.g. single
lines, may be handled by a slight modification of the library tape of the pro-
gramme. This library tape contains the Y cross sections of the five elements
H, C, O, Al U.

The photon collisions are assumed to result in only twe types of
process: Compton scattering and absorption. That is, the annihilation
radiation from pair production is assumed to be entirely absorbed by the
rod, The error hereby introduced is normally of minor importance.

Fig. 5.1 shows the flow diagram, which should make the calculation
procedure sufficiently clear.

An energy group structure identical with the GAM-I structure
used, All groups have the same lethargy width, 0.25., The upper limit is
10 MeV, Group g covers the interval

2) was

10 exp( - §) <E <10 exp( 58), E in MeV. (5.1)

A cut-off energy of nearly 0, 01 MeV was chosen,

In the calculation, all energy values are transformed from MeV to
"normalized units" (1 n.u. = 0. 51083 MeV). This simplifies the treatment
of Compton scattering considerably.

Some of the elements of the flow diagram are discussed in the fol-
lowing,

The microscopic total Y cross sections were prepared from data in
ref. 7 by double logarithmic interpolation. Compton cross sections were
evaluated by means of the expression (ref. 8, p. 147).

2 5 .
8 (E) = 0.499 [_I_E.,z I o 15 PR 23)] barn/electron
(1+2E)" E 2E (E in n.w.) .(5. 2)

The shape of the source spectrum was chosen as

N(E) = const - ¢ +1E (5. 3)



(E in MeV).

This expression {its rather weil the sum spectrum of Y-rays from
fission and from decay of fission products’), The value of the constant is
not relevant for our purpose.

Source energies were selecied by stratified sampling (see 4. 6).

Sampling of the start position was nol mentioned in the last section
and will therefore be brieity described here. One applies the fundamental
sampling principle to the given source distribution to set up a procedure
giving the radius p of the starting photon, see fig. 5.2 (the thermal fluxes
¢y, &y ..., & are proporticnal to the zone sources). As a result, the
following procedure is set up ior determining p : A set of numbers, Ty Ty,

eeey Ty, are constructed so that

O o
o 2 2 .
rperiatedlpr-pig). 1igm
" 5-4)
1 2 2 o -
where = = Y (P -p.%), yieldingr =1
i=1

After calling for a random number r, one selects the zone i by
finding the i-value which satisfies the inequality

r;1<r<r. (5.5)

The exact position p inside zone i is determined by

2
r-r. +c¢.p._
P =p<r>=ﬂ ”a., 171 (5. 6)
1

The remaining elements of the diagram fig. 5.1 have been discussed in the
last section except the sampling of the deflectiou angie 0 (a = cos 0) and the
energy degradation E - E' by a Compton scattering. It follows from Comp-
ton's formula

azi+g -3 (5.7)

where E and E' are in n.u., that one need sample only one of the quantities
a and E'., The procedure applied here is due to Bengt Carllons) . On the
basis of the Klein-Nishina formula for the differential scattering cross section
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d (E,a)=0.0397 . > :
(1+ E(1-2))° (1+a%){(1+ E(1-a))

barn/elec. /ster.

(5.8)

Carlson has constructed ain approxiraie sampling scheme for E'. His

formula reads

E': E 3 > (5-9)
l+s+r+ (2E-58) - r

E .
where s = T o560 and r is a random number,

(5.9) is used only up to E = 4 n.u. For E>4, E'is increased by
the quantity

AE =LE. g @-rd?. (5.10)

Carlson's approximate device is surprisingly simple in view of the
complexity of formula (5.8). It has been analysed for photons up to 10 MeV
(E = 20) and has been found to reproduce the distribution (5. 8) very wellg).

The running time for MC3 is about 3 min. on GIER, The programme
is well suited for calculation of Y-energy escape from fuel rods of either

uranium, uranium oxide or uranium carbide.

5.2. Energy Deposition on the Components of a Fuel Lattice Cell, for Y-Rays

The problem to be solved in thus subsection concerns the distribution
of the Y-energy deposited on the different atoms in a lattice cell which is
assumed to be infinitely long and part of an infinite square lattice in a critical
reactor, Ohly the primary energy exchange at the atoms due to the photon
collisions will be calculated,

The solution of this problem is useful as the starting point for cal-
culation of the energy deposition on the various components of a reactor.

The corresponding GIER-ALGOL programme has the name MCI1, In
order to have a fairly simple calculation model one devides the square cell
into two homogenized zones: a cylindrical fuel zone (1) and a surrounding
moderator zone (2) (fig. 5. 3).

The calculation results are given for each of the zones as the de-
posited Y-energy in MeV per type of atom per thermal fission,

Permissible isc “~nes are for zonel H, D, C, O, Al, Fe, Zr, y-235,
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U-238, and for zone 2 H, D, O.
In this problem the sources oi Y-radiation will be restricted to the
fuel zone, The radiation is naturally divided into four contributions ac-

cording to origin:

{a) Prompt Y-rodiation due to fission
(b) Y-radiation due to decay of fission products
{c) Y-radiation due to neutron capture (resonance and thermal)

(d) Y-radiation due to inelasiic scattering.

The total iiberated prompt ¥-radiation energy per fissionis 7.2 + 0.8
MeVB) with the spectrunm: given in eq. (5.3). The corresponding value for
the Y-radiation from fission products is 5.5 MeV/ fissiona), and the spectrum
should be nearly the same. Hence the contributions (a}) and (b) may be
treated as originating from a single source with the spectrum (5. 3) and the
total energy 12, 7 MeV liberated per fission,

In calculating the contribution from resonance capture, only U-238 is
taken into account as an absorber, Neglecting the neutron leakage and fast
fission eiffect, approximately v = 2.5 neutrons will enter the resonance
region per thermal fission. Of these, v (1-p) will be captured by resonance
absorption in U~-238, while v p become thermal (p = resonance escape prob-
ability), One thermai neutron causes fission in U-235; the remaining v p-1
are absorbed by H, Al, Fe, Zr, U-235, U-238, in accordance with the
respective thermal capture cross sections {flux depression neglected). On
the basis of these cross sections and the corresponding Y-spectralo' 11, 12),
both the magnitude and the spectral shape of the Y-radiation may be obtained.
In most cases, the contributions {c) will amount to about 6 MeV/fission.

The Y-ray contributions from inelastic scattering (type (d)) were left
out of consideration. This was decided after a test calculation with a special
version of MC2 (the neutron analogy to MC1, which will be described in the
next subsection).

The spatial distribution of the sources in zone 1 is given as annular
regions with constant source strengths, just as for MC3 (see 5.1), The
distribution follows that of the therinal neutrons.

In the Monte-Carlo calculation, the cell periodicity is taken into ac-
count simply by mirroring the paths of those photons which would otherwise
have escaped from the cell, in the plane cell boundaries (by reversing one
direction cosine).

The same assumptions for photon collisions are made here as in 5.1
for the MC3-problem,
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The Monte-Carlo calculation is mapped in the flow diagram fig. 5.4.
The energy group structure is ithe same as that in MC3. The library tape
of the programme contains ¥ cross sections in all groups, cross sections
and spectra for radiative neutron capture, and data of the Y-spectrum from
fission,

The Monte-Carlo technique applied in this problem is mainly direct
simulation, and the standard routines have been discussed previously. How-
ever, at one peint a deviation from airect simulation occurs; the collisions
of phoions with atoms are ireated as described in 4, 6 in the description of
the weight concept, so that one avoiis the decision of absorption or scattering
and instead always gets a scattered photon with the weight reduced by the
factor ZS/ (ZS + }_:a). Furthermore, since the Compton scatiering depends
essentially on the electrons only, not on the nuclei, the colliding photon may
be split into m photons (m = number of different atom types in the zone), each
carrying a weight Wi proportional to the concentration of elecirons belonging
to the atom type i, The partial pholon i is assumed to collide with an atom
of type i and to exchange energy with it. The variance-reducing power of
this device as compared with that of sampling of the target atom appeared
to be vary great, especially for the less abundant elements.

As an example of the use of MC1, a calculation for a DOR-type cell
was carried out. Here the moderator is D20; the fuel zone is limited by a
zirconium tube encircling a bunch of UOZ-rods surrounded by the organic
coolant C18 H1 4° In addition, some structural graphite is present in the
fuel zone, One wants to know the energy deposited in the coolant and that
deposited in the moderator, The calculation pro.edure is now to homogenize
zone 1, calculate the atomic concenirations, and use the programme., The
output in the DOR example was (MeV /thermal fission)

H D C O Al Zr U
fuel zone 0.52 0.42 0. 176 0,12 0. 69 11.5
moderator zone 0.89 3.7

For the moderator one simply adds the two contributions to obtain
the result 4.6 MeV/thermal fission. '

As regards the coolant in zone 1, the situation is a little more in-
volved. One has to correct the C-value (0.42 MeV) for the structural
graphite. The ratio of coolant-graphite to the total amount of graphite is
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in our example 0. 90. Then the Y-enerygy deposited in the coolant is 0. 52 +
0.42+ 0.90 = 0,90 MeV/thermal fission.
For a problem like the present the effect of homogenizing the fuel

zone is not believed to introduce any great error because the coolant is
weul distributed over the fuel zone. Incidentally, the energy deposition cal-
culated for Zr is too high because the Zr-tube is situated in a field of lower
gamma flux than the average {lux in zone 1.

In the example, the total Y-cuergy per fission is calculated to be
18.6 MeV, i.e. 13,5 MeV is absorbed by the fuel rods and various structural
materials,

The running time on GIER is about 20 minutes.

5.3. Energy Deposition on the Components of a Fuel Lattice Cell, for Neutrons

The physical preblem to be solved in this subsection is the same as
that described in 5. 2, except that neutron energy deposition instead of Y-
energy deposition is calcuiated. As the problem structure is the same as
for the Y-problem, no flow diagram is given., The GIER-ALGOL programme
MC2 has been worked out for routine calculations.

The source of fast neutrons originates from fission. The value 1, 98
MeV is used for the mean energy carried by a fission neutron1 0). If one
assumes V = 2,5, this means a total neuiron energy release of 5, 0 MeV per
(thermal) fission. The fission spectrum used in these calculations is that

proposed by Cranbergm):

N(E) = const. - exp( - zigge) - sinh {2.29E (EinMeV). (5.11)

MC2 deals with the same spatial source distribution as MC1; the
cell periodicity is taken into account by the same mirroring process as in
MC1.

For the fast neutrons in our problem, the Jollowing four reaction
types have sufficient importance to be taken into account:

(1) elastic scattering
(2) inelastic scattering
(3) fast fission

(4) absorption.

The last two reactions, however, play a rather limited role.
Different collision routines had to be prepared for the different
target nucleus types. This is in contrast to the corresponding gamma
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problem, and it compiicates the Monte-Carlo calculation very much. A
number of simplifying assumptions were made for the collisions in order
to limit the complexity of the programme structure, .

Elastic scattering is asswmed to proceed isotropically in the CM- .
systemm. This is quite a good approximation when the neutron energy is be-
iow 0.1 MeV, Above this energy an increasing anisotropy occurs. In deep-
penetration problems (e. g. shieiding problems) serious errors may result
from the isotropic assumption. However, our problem involves rather short
optical distances and no preferred directions, so the error is expected to be
of minor importance.

Inelastic scattering is normally accepted to proceed isotropically in
the CM-system. Here it is assumed isotropic even in the L-system, The
error thus introduced is tolerable because inelastic scattering is a rather
infrequent process. The accompanying Y-rays are neglected (cf. 5.2), which
makes the two programmes MC1 and MC2 independent of each other.

Fast fission in U~235 and U-238 leads to ejection of about three fast
neutronsz). In the present calculation it is assumed that the neutrons causing
fast fission continue with triple weight and unchanged energy. This approxi-
mation gives a rather good picture of the situation.

The energy group structure in MC2 is the same 27-group structure
as in MC1 and MC3 (the GAM-I siructure)., All neutron cross sections used
in the Library tape of MC2 have been taken from ref. 2.

In the Monte-Carlo calculation only the collision routines are dif-
ferent in MC1 and MC2. In the following, the Monte-Carlo treatment of the
two main reaction types, elastic and inelastic scattering, will be given.

Elastic scattering is treated according to the previously mentioned
isotropic assumption. For hydrogen, cspecially simple formulas are valid,
If E is the energy before, E' the energy after the H-collision, and r a random

number, one has

Er=E-r. (5.12)
The deflection cosine a in the L-system is

a= \r . (5.13)
with the saine r as hefore,
For the other nuclei, the reievant set of formulas is

'

p=2-r-1 (5.14)



E 2

E' 2 ———p (A + 1+ 2Ap) (5.15)
(A+1)

a = 1+ Ap__ . . (5.16)

\1+a%+ 24p

u is the deflection cosine in the CM-system, A the mass number of the
target nucleus. Other symbols are as before.

As mentioned above, inelastic scattering is assumed isotropic in
the L-system. The only problem is then the sampling of the energy after
scattering, This is done by the aid of the so-called inelastic scattering
matrix, giving cross sections dg--h for scattering from group g to group
h. Such matrices are listed in ref. 2. The sampling itself proceeds in
analogy with the "type sampling’, egs. (4.19) to (4.22).

As a calculation example for MC2 is taken the same DOR cell as in
5.2 for MCl. The resulis in MeV/thermal fission were

H D C O Al Zr U-235 U-238
Fuel zone 2.630 0.072 0.091 0,016 0.040 0,000 0,010
Moderator zone 1.850 0.227

In the saimme imanner as in 5.3 one obtains:

Neutron energy deposited in coolant = 2,630+ 0.072- 0.90 =
2. 69 MeV/thermal fission

Neutron energy deposited in moderafor = 2. 08 MeV/thermal fission .

The running time for MC2 is in mosi cases 1-2 hours,

6. A MONTE-CARLO BULK SHIELD PROGRAMME FOR Y-RAYS

As pointed out in section 2, the application of build-up methods (such
as PRIGAM, SEGAM I, SEGAM 1I} -n shielding calculations is rather doubt-
ful when the shield or part of it coasists of laminae of widely different ma-
terials., This is the case with iherinul shields #ith alternating layers of
water and iron or water and lead. Analytic methods for Y-transport cal-
culation, such as Laplace transforn:, the method ol successive scattering
and the method of moments, are not feasible for heterogeneous geometry


http://Luerii.ua

- 52 .

eit.hera). It seems that Monte-Carlo, owing to its great versatility, is the

best aliernative method,

6.1, Description of the Problem

A computer programme, MC4, has been worked out which carries
out a Monte-Carlo calculation of the heat generation rate throughout a
laminated shield and the external dose rate due to a distributed Y-source.
MC4 exists in GIER-ALGOL as well as in FORTRAN 1V for the IBM 7090.

The shield configuration consists of a number of infinite slabs (fig.
6.1). The slab system is at both sides adjacent to vacuum. The chosen
orientation of the z-axis depends on the natural penetration direction in the
problem, which also determines the surface where the dose rate will be
calculated (the "external surface'').

Each layer is homogeneous and may be composed of a number of
elements. The progra.mrhe is not able to handle all the elements; the
permissible elements are listed in table 6. 1.

The Y-source bas the form

S(E, 2) = S _expl-kiz-z,)) - § (E-E )phot. /(em®- sec- MeV),  (6.1)
21< z £ 2,

i, e. a single-line soucce with exponential spatial variation (fig. 6.1),

The core and reflector regions may be included in the calculations
as part of the shield.

By repeated application of MC4 it is possible to solve any problem
which can be solved by PRIGAM, SEGAM I and SEGAM II.

As was the case in the problems treated in section 5, the photon
collisions are assumed tc result in either Compton scattering or absorption,
that ig, the annihilation radiation from pair production is assumed to be
entirely absorbed at the photon collision point. The error hereby introduced
is normally of minor importance,

6.2. Application of the Exponential Transformation

As mentioned in 4. 8, an efficient device for deep-penetration prob-
lems is to modify the Bolzmann transport equation by an exponential trans-
formation and adjust the random walk procedure to the transformed equation.
As this method is described in detail in refs, 13 and 14, only a rather short
outline will be given here.
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The one-dimensional transport equation in plane geometry is
o 0EB0.2) + 2E, 200 (Bw.2) = [HUE,2)0 (BLw 2) -

- C(E,w'; E,w,z)dEdw'®+ S(E,w , 2) (6. 2)

in conventional notation. We introduce the substitutions

¢ (E,w,z) = ¢ *(E,w , z) exn(-cz) (6. 3)

ZMEw ,z)= E,z)-wc (6. 4)

CYELw'; Buw,z) = —2bei) _ c(EL0'; Euw,2) (6.5)
- KELw ', z)

SYE,w , z) = exp(cz) - S(E,w ,z) (6. 6)

and obtain a new transport equation, formally identical with eq. (6. 2)

w BEL D) 4 KB, 2) 0 Ew ,2) = [0, 20 B, 2)-
- CYE',w'; E0 ,z}dw'dE' + SYE,w,z). (6.7)

Note that Z* has an angular dependence through eq. (6.4). The con-
stant ¢ compensates for the normally steep source and flux variation. For
fixed (E,w ) the =" in (6. 7) takes on constant values Zf in each region (i
refers to region i).

The random walk method can now be used to solve the transformed
problem, i.e, to find the Y-flux ¢ * in a medium with the cross section =*
and the collision kernel C¥, This procedure will be described in the fol-
lowing.

The first step is sampling of the starting position z of a new (source)
phcton. This is done according to the z-variation of s {eqs. (6.1) and (6. 6)):

Sx(z) = const - exp(-(k-c)z), z,€ z(z2 . (6.8)

The source directions are isotropically distributed, and the source
photons start with the weight W =1,

Sampling of flight length is the same for a new photon as for a photon
after colligion. We therefore discuss the probability density function (pdf)
for intercqllision distances x, This is the major problem in applying the
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exponential transformation. The sampling method described in the following
is due to M. Leimdbrferm).

Referring to fig., 6.1, the photon starts at Ps (collision or source .
point) in the direction w in the region s. According to (6. 2) the track length

in this region should have been sampled from the pdf
fs(x) = I exp(- st) . (6. 9)

where the subscript s refers to the region number.
As Zis replaced by =¥ when the exponential transformation is ap-
plied, (6.9) will be replaced by

f: _(x) = Z:exp(- L‘:x) {(6.10)

with ZX = Z_-wec.

One could then sample an x from (6. 10) and decide whetter the
region boundary is crossed. If so, a track length in the next region (i in
fig. 6.1) with the intersection point Pi as a new starting point could be
sampled from the pdf

f(x) = =} exp(-Z{ x) (6.11)

valid for region i. Repeating this procedure, one reaches a terminal point
B, or the photon escapes at E.

The transformed equation (6. 7) has another collision kernel than the
original equation (6.2), This difference must be compensated for at the
new collision point B by multiplying the photon weight by

Y=cC¥Cc=1x /3. (6.12)

The above sampling method for flight distances is simple, but it
suffers from a couple of drawbacks:

(a) =¥ = z-we may happen to be < 0, In this case (6.10), (6.11)
and (6. 12) become meaningless,

(b) The photons may travel through the whole configuration and
escape uncollided, This means waste of computing time.

In order to cure both the caixmities (a) and (b), Leimddrfer:?) fol-
lowed a somewhat chinged procedur , which is applied algo in the present
work:



The pdf in the starting region, eq. (6.10), is replaced by

<X

f:X(X) ) 1-exP("sz:Xs) eXP("Z:x): o X\<Xs ,' (6.'13)

where XS is > X, but otherwise, so far, arbifrary.

By means of eq. (6.13) a {light distance in region s is sampled. In
the case shown in fig. 6.1 the region boundary is reached. The probability
of this, according to eq. (6.13), is

X
5 1-exp(- Z5(X ;-x,))

Py <1 J )i = exp(- Zix,) —— BB S (6.14)
0 i 1-exp(-Z:Xs)

According to (6. 10) the correct probability of reaching the boundary
of region s was (in the fransformed problem)

xS
pF=1- J' *(x)dx = exp(-EF x ) . (6.15)
0
Therefore, at the intersection point Pi the weight must be multiplied
by
oF tewpl-ZEX)
Bg = 5 ° - . (6.16)
Py 1-exp{E(X -x.)

One then considers P; as the starting point for further track length
sampling. The sampling in an arbitrary intermediate region (no. i, fig. 6.1)
proceeds just as above, and equations quite analogous to (6.13) - (6. 16) are
obtdined by replacing index s by i:

pdf: f;m(x) = exp(-zf x), 0<x (Xi . (6.17)

i
1-exp(-=F X,
exp(-Z; X,) (x> x)

Transmission probability from (6. 17);

1-exp(-Z(X;-%,))

x-?
A L
p: =1~ £3(x)dx = exp(- ='x.)
i J i 171 1-exp(-1'."i‘ X,)
0
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Correct transmission probability from (6. 11):

X.
1

pp = 1- j £(x)dx = exp(-Z x;) . (6.19)
0

Weight mnltiplier:

p; 1-exp(- Z X,)
pi = XK = (6' 20)
P; 1-exp(- Z (X;-x;))
In the terminal region (n) one obtains:
- n
pdf: £(x) = exp(-Z; x), 0<x€X . (6.21)
1-exp(- 2: Xn)
X, > x)
Probability of collision at B per unit length, from (6. 21):
- 2 .
q = 1) = exp(-Z; x,) . (6.22)

l-exp(~ Z; Xn)

Correct probability of collision at B per unit length, from (6.11):
q, = f(x) = I, exp(-Z) x ). (6. 23)

Weight multiplier:
&
n
B, = -= l-exp(-‘ﬂﬁr1 Xn) . (6. 24)
%
Finally, we have the weighting factor Y {(eq. (6.12)) from the straight-

forward exponential transformation. The total weighting factor for the flight
is then

n-1 X .
1-exp(-ZXX.) z
F CXPl=Z; &40 | (1-exP(-f‘an))' - . (6. 25)
j=5 1-exp(-Z} (X,-x)) z

Regardless of the sign of the Z;‘ , P is certainly positive, The same
is true of the expressions for the pdf, eqs. (6.13), (6.17), (6.21). In this
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manner the drawback (a) is removed.
Until now, the only restriction on the Xj's has been Xj> x;. We now
assign to X; the value (see fig. 6.1) -

xj = PjE, s€j€n , ' - (6, 26)
where E is the escape point of the elongated photon path.
Since
X |
[ Py (x)x = 1, (6.27)
0

it is easily seen that the photons can never escape through the problem
boundary. Hence, drawback (b) is also removed.

Sampling of scattering angle and energy decrease is not affected by
the exponential transformation.

§.3. Calculation of Heat Generation and Dose Rate

On the basis of the results cf the Monte-Carlo calculations for the
"transformed problem", the problem is now to estimate some x"eal, physical
quantities. These guantities are the energy deposition rate in each of the
Srnax zonesx) into which the configuration has been divided (fig. 6.1) and the
dose rate at the external surface,

From eq. (6.8), which gives the spatial distribution of the emission
of source photons in the transformed problem, it follows that the number of
Monte-Carlo photons emitted between z and z + dz is

dN" = o exp(-k‘ z)dz ' (6. 28)
with k* =k-c (6. 29)
and c = N - kax‘ exp(k'zl) ; (8. 30)
z, 1-exp(-k* d)
exp(-k” z)dz
21

d stands for 2y-24. Nisa large number, equal to the total number of
Monte~Carlo photons emitted in a calculation.

x) Note the term "zones" for the result domaing, not to be confused with the
term ''region” for a physical layer.
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The number of photons in the real problem which corresponds to an™
in the transformed problem is

dN = dN® exp(-cz) = o exp(-kz)dz . (6.31)

However, it is known from eq. (6.1) that the number of photons
emitted in the real problem between z and z + dz per sec and per cm2 of a
plane perpendicular to the z-axis is

dN

1= S0 exp(-k(z-zl))dz . ’ (6. 32)

Hence, to convert from some energy quantity obtained by the Monte-
Carlo calculation to the corresponding energy quantity per cm2 per sec in
the physical problem, it is necessary to multiply by the ratio

dN; So(l-exp(-kxd))

f= IN = kax exp( czl) (6. 33)

In the Monte-Carlo calculation the accumulated score of transformed
deposited energy E;‘ in each zone and the accumulated transformed energy
escape E:s c have been recorded at the termination of the Nn photon histories.

E:s c is determined as

EX = ) X s (5. 34)

esc v esc,

where the summation extends over all collisions in the N* histories with a
final direction w > 0, each collision giving the statistical estimate e esc,v

To convert EJ to the real energy deposition per c:m3 per sec in
zone j, the first step is to calculate the quantity E which in the real problem
corresponds to EJ in the transformed:

Ej = E;‘ exp(-czj) ; (6. 35)

24 is the co-ordinate of a ""characteristic point” in zone j, to be discussed
later. By multiplication of Ej by f (eq. (6.33)), the energy deposition per
c:m2 per sec in zone j is obtained:

S X |
l-exp(~-k'd) x
. f = o - ] -
j N X Ej ezp(c(zl ZJ)) (6. 36)
The energy deposition wj per cm” per sec is found by dividing W
by Aj' the width of zone j. It is convenient to express vvj in the unit watt/

W

= E

3
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cm3/ sec, but to measure the Monte-Carlo energy E;‘ in "normalized units"
(n.u.). By the aid of the conversion relations

1n.u = 0,51083 MeV )
-13 : (6.37)
1 MeV/sec = 1,602 - 10 watt

(6. 36) is recast in the form

S
w, = 0.818. 1013 2 Loexp(-k7d) E} explolz; -z) (6. 38)
! N K" A,

3 Ejinn.u.).

(w. in watt/cm

The other problem is to convert E:s c to dose rate D at the external
surface in mr/h. Relating D simply to the escape energy means that the
current definition of dose rate (thin and flat detector) is used instead of the
flux definition (small spherical detector). The current method is the more
efficient of the two in the Monte-Carlo sensel?’).

In the range 60 keV - 7 MeV the following relation is valid with max,

25% error 8)

1 MeV/ cmz/ sec equivalent to 1.54 - 1073 mr/h, (6. 39)

The conversion from E: g 10 D is very similar to that from E;‘to
wjt First the equivalent escape energy in the real problem is calculated as

Egge ™ E:B o exp(-cZ) , (6. 40)

where Z is the co-ordinate of the external surface, The real energy escape
per cm2 per sec is then

Tege ® Eoge " 1 - (6.41)

Inserting the expressions for E esc and f and using the conversion
relation (6, 39), one obtains the dose rate formula

D = 0,000787 - N‘; 1—'-"-’-‘12‘5‘—--) EX__ exple(z,-2)) (6. 42)

(l? in mr/h, Eesc inn, u.) |
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6.4. The Programme

A flow diagram of the computer programme MC4.is shown in fig. 6. 2,
Some of the principal elements of this diagram will now be discussed.

The programme liibrary contains the iotal group cross sections of the
elements in table 6.1, calculated from data in ref. 7 by double logarithmic
interpolation. Compton cross sections were evaluated by means of expres-
sion (5.2). The energy group struciure is the same as in (5. 1).

After input of cross-section library and problem data, the programme
calculates for each group g and each region i the macroscopic total and
scattering cross sections E‘g“ﬁ and Z;f'i (1€ g€27, 1€ig ‘max)

Next, the exponential transformation constant c is calculated from
the formula

. <ot ‘ :
¢c=1.25 zgs, av (6.43)
where EtOt is the total cross section at the scurce energy, averaged

gs,av
over the entire configuration. This seems to be the optimum choice in most

practical cases in the sense that it gives the least variance of the results
for a given computer-time consumed.

The heart of the MC4 programme is mapped between the two dashed
lines in fig. 6.2. The starting position z of the source photons is sampled
on the basis of the pdf, eq. (6. 8 ). This z determines a region, i. An iso-
tropic starting direction was assumed, leading to the expression w = 2r-1
for the cosine of the angle between direction and z-axis (eq. (4.12)).

We have now come to the label "flightstart”" in the diagram. A cross
section I = z;‘:ti is ascribed to the photon, which is now characterized by
the quantities E,w , i, z, £, W, g. Next, the transformed cross section
* = X - wc is calculated. Now, depending on the sign ofw , there are
two possibilities in the flow diagram, The purpose of this distinction is to
suppress the backward direction (w < 0) and favour the forward one. In the
case W < 0, a game of "Russian Roulette'' (see 4. 8) is played with a surviving
probability p * E/Z*, This is done by sampling a random number r (0< r<
1) and examining whether r> p. If this is the case, the photon is killed, other-
wise it survives with its weight increased by the factor Z= Z/Z. In the case
w >0, one passes through a dose score routine, described below, Both
branches, w > 0 and w <0, lead to the label "Distance selecting”,

The dose score routine records the escape energy E:' o given by

(6. 34), e:'e v is calculated as
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x = EWexp(- L I} x

eest:, v i i) (6.44)

The exp-factor in (6. 44) contains the optical distance to the escape
point in the transformed problem and is formally equal to the probability of
uncollided escape, also in the transiormed problem.

The next step is sampling of a flight distance. This is done by the
aid of equations (6.13) - (6. 27). The previous description of these equations
should make it easy to follow the different links in the distance sampling
routine in the flow diagram. Therefore, at this place it should suffice to
discuss the sampling formulas applied in connection with (6.13), (6.17),
(6.21). A common form of these equations is

£5(x) = z exp (-Tx), 0&x€X . (6.45)
1-exp(- £X)

Such a truncated exponeniial leads to the sampling formula

1l
x= - = In 1-r(1-up(-z‘x))] . (6. 46)

{6.46) implies both an ln- and an exp-calculation. In ref. 14 is given
an alternative sampling formula:

(
%‘UDR {;lzﬂ'xﬂ} for X >0
X = (6. 47)

1 -In(r
X + = UDR for <0 .
= -z‘x}

“~

UDR stands for the undivided remainder, e.g. UDR (13;83) 1. 83

(6.47) involves no exp-calculation and is much faster than (6.46), It is ap-
plied in our case,
The collisions may be treated in two different ways:

(a) A game is played to decide whether an absorption or a scattering
occurs. '
(b) The collision is alwaye treated as a scattering, but the weight is
reduced to
et

W .
ot
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Normally, (b) is the more favourable method, but for photons of
little importence (small E and W) it is desirable to kil} the photon, and then
(a) is best. '

' In this work a combination of (a) and (b) is used. Above the energy
E.. = 1 n.u. (0.51 MeV), (b) is used, otherwise (a).

in both cases one easily accounts for the contribution to energy de-
position of the collision. In the case of scattering, the energy E' after col-
lision must be sampled. This is done by Carlson's method, see 5.1. The
cosine a of the defiection angle is calculated by means of Compton's formula

a-1+§-§,. (6.48)

From a and the direction cosine w before scattering, the direction
W' after scattering is sampied by m2ans of the formula

u; = a@ - ‘(l-:sf) (l-ai) - cos{rm) . (6.49)

(6.48) is a one-dimensional version of egs. (4. 23).

Finally, the new group number, g, determined by E’, is assigned
and one returns to "flightstart”, where a new flight starts, and so on.

When the prescribed number of photon histories is reached, one
jumps out from the heart of the programme, and the results as obtained by
the formulas (6. 38) and (6. 42) will be printed out. However, formula (6. 38)
is somewhat ambiguous owing to the Z5, the co-ordinate of a "characteristic
point" P.'i in zone j. The choice ofla-as the central point of the zone is not
adequate and will introduce a significant error, unless the thickness A i of
the result zone is much smaller than % {in most cases Aj and %u'e of the
same order of magnitude). A better estimate of z is obtained by assuming
constant density of energy deposition in the transformed problem. This
leads to the equation

+ A,
5+ 4
j exp{-cz)dz = Ajexp(-czj) . (6. 50)
%
where aj is the co-ordinate of the leit boundary of result zone j- When (6. 50)
is introduced into {G. 38), the latter equation is modified to
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S x l-exp(-cA.)
-13 Yo 1-exp(-k d) i X
. .818- 1 —— . bO -a.
w; = 0.818 - 10 x Y 3 exp{c(z, aJ))
N j
{6.51).
(wj in watt /cms, E;t inn.u.) ,

in which form we use it,

6.5, Calculation Results

Calcu.ations performed by means of MC4 have been compared with
measurements. The arrangement is the Swedish R2-0 reactor with a bulk
shield of magnetite concrete preceded by 20 cm water and 1 em aluminiam,
It is identical with the second of the two configurations studied in 3. 3,

The problem is to calculate the Y-radiation absorbed throughout the
concrete ghield, in watt/c'm3 or in mrad/h. In the MC4 calculations the
thickness of the concrete was limited to about 1 metre just as in the REMDIFF
problem discussed in 3,3. Also here the restriction is due to trouble, now
overcome, with the limited range of the IBM 7090,

The Y-radiation field in the concrete is almost exclusively due to two
sources., The first is the Y-source in the core; it originates from fissions,
from decay of fission products, and from neutron captures. The second is
the capture-Y source in the concrete shield itself,

The spectrum of the Y-source in the core region is given in a rather
detailed form in ref. 15. It appears reasonable to approximate the spectrum
with a single Y-line of 2 MeV energy. This source is assumed constant over
the source region (k = 0 in eq. (6.1)). In the same rhanner, the capture-Y
source in the concrete, mainly due to neutron absorption in the iron com-
ponent, i3 well approximated by a single Y-line of 7 MeV energy. Thespatial
variation of this source follows the thermal flux curve. Three points of the
latter are available as experimental results, see fig, 3.5. They lie approx-
imately on a straight line in this figure, so that the capture-Y source can be
approximated by a single exponential withk = 0.119 (eq. (6.1)). The
strengths of the Y-sources in core and concrete are calculated by meansg of
data from ref, 15. C

It was not found worth while to correct for the finite lateral extension
of the core as was done in 3.3 for REMDIFF. Of course, only the core-Y
radiation (primary radiation) should have been corrected, but at those
distances from the core where the correction factor becomes significant,
the primary radiation is weak as compared with the secondary (capture-Y)
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radiation,

The results of the calculations together with the R2-0 measurements
are presented in fig. 6.3. The figure shows the MC4 resulis for the primary
radiation (upper diagram), the secondary radiation (middle diagram) and the
si:m radiation {lower diagram). In the last curve, the absorbed radiation
energy (watt/ cm3) was converted to dose rate (mrad/h) by multiplication by

3.6 1011 11
—-‘—5-——- = 0.963 * 107". This curve can then be compared directly with

the three experimental points taken from ref. 15. The agreement is quite
satisfactory. No estimated statistical errors are given in fig. 6.3 because
they are small, in fact only slightly greater than the errors in drawing.

The same problem has been solved by the aid of the simple build-up
programmes PRIGAM and SEGAM 1 (sect, 1), The result of these calcula-
tions is shown as the three dashed curves in fig. 6.3. The agreement be-
tween the total dose curve and the experimental points is hardly inferior to
that in the MC4 calculation. This good agreement is not surprising in view
of the comments given in sect. 1 on the validity of the build-up codes: they
are valid for infinite, homogeneous shield layers, which condition is met to
a fair degree of approximation in the present bulk concrete shield.

Note that the energy deposition calculated with PRIGAM diverges at
the core-water interface. The reason for this is that PRIGAM operates
with an "equivalent surface source”, giving infinite flux at the surface itself,
PRIGAM results are only applicable some relaxation lengths from the surface.

While, as we have seen, the PRIGAM and SEGAM codes are quite
suitable for bulk shields, they cannot handle pronouncedly Jaminated shields
correctly, As an illustrative example, consider a shield composed of 2 cm
lead and 30 cm water. On one side of this system is situated a uniform
isotropic surface source of photons with the energy 0. 5 MeV, and one wishes
to find the dose rate at the opposite (external) surface. The answer to this
problem depends on the order of the laminae 8, 10). It is clear, however,
that a calculation with the build-up code (in this case SEGAM II) gives a
result independent of the order of the layers, unless special ""tailor-made"
build-up coefficients depending on the said order are applied; but such a
device does not fit well into the simple build-up programme system described
in sect. 1. On the other hand, MC4 is sensitive to the lamina order, as
seen from the results obtained with this code for the problem mentioned
above: .

Lead followed by water: Dose rate = 1,32+ 0,06 mr/h

Water followed by lead: Dose rate = 0,63 + 0.03 mr/h,
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The surface source strength was 107 photons/cmzl sec.

This result has not been tested expenmentally. but it is in harmony
with results from similar catlcuilat:oms8 10)

The running time for an MC4-problem m of the order of 10 min. on
the IBM 7090.

Table 6.1

Permissible Elements for MC4

Atomic no. Symbol

1 .

3 Li

4 Be

"5 B

‘6 c

T N

8 0

11 Na

12 Mg

13 Al

14 Si

15 P

16 S

19 K

20 - Ca

22 Ti .

24 Cr

25 Mn

26 Fe

27 Co

28 Ni

29 Cu

40 Zr
‘ 42 Mo’ 1
1 56 Ba 1
l 74 w l
l 82 Pb l
1 92 U 1



s b i o A O L &

- 66 -

7. MONTE-CARLO CALCULATION OF THE AXIAL NEUTRON FLUX
DISTRIBUTION IN A SHORT, ABSORBING ROD

In this section is presented a Monte-Carlo method for calculating the
relative axial neutron flux distribution in a finite cylindrical rod conéisti.ng
of a homogeneous, absorbing material,

The rod may be surrounded by either a homogeneous, purely scat-
tering medium or concentric layers of absorbing and scattering materials.

Also the relative surface distribution of the neutron current on black
cylindrical rods of finite length is calculated.

The computer programme exists in a GIER-ALGOL version as well
as in a FORTRAN IV version for the IBM 7090. ’

Comparison between calculations and measurements has been carried
out for a number of cases,

7.1. Description of the Problem

If a cylindrical rod of absorbing material is placed in a scattering
medium, it is a well-known fact that the axial neutron flux in the rod will
increase from its unperturbed value far from the ends to a snmewhat larger
value near the ends. This effect is sometimes referred to as Wilkin's ef-
fect, It plays an impcrtant role, e.g. for the heat production along a fissile
specimen in a reactor, and an estimate of its magnitude is therefore of
importance. |

The problem has previously been solved theoretically by using one-
group diffusion theory1 7). However, diffusion theory is a rather doubtful
method when applied to thin and strongly absorbing rods. This sectio;l
presents a Monte-Carlo method of solution..

In the following, relative one-group flux distributions are described.
The programme system (Monte-Carlo 5) is able to handle three types of
problems:

(a) Calculation of the neutron current along the surface of a black
rod surrounded by a homogeneous and isotropically scattering
medium without absorption. The source may be either a volume
source outside the rod or a surface source on a cylinder con-
centric with the rod. o

(b) Calculation of the axial flux distribution in a grey rod under the
same conditions as for (a).'
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(c) Calculation of the axial flux distribution in a periodic system of
grey rods separated by spacers and surrounded by a number of
concentric regions’ of diiferent materials. No source is allowed
in the column formed by the rods and the spacers between them.
Isotropic scatiering ie assumed, and each region is character-
ized by a scattering cross section {(corrected for anisotropy) and
an absorption cross section. This "heterogeneous" model can
also be used to solve single rod problems,

7. 2. Discussion of the Models

It is the grey rod calculations (types (b) and (c)) which are most im-
portant for the applications. However, as will be clear from the following,
an efficient method of solving these problems is to divide the calculation
into two steps, the first of which is a black rod calculation.

In the case of the grey rod in a homogeneous medium (type (b)) one
considers the whole number, N, of neutrons which in a certain time interval
pass into the rod region. These N neutrons can be divided into two categories:
those which have never been in the rod before (No) and those which have been
there before (Nl)' sothat N= N o T Ny.

The N0 neutrons can be interpreted as the svurce in the Monte-Carlo
calculation, This source is an inward-directed surface source, distributed
over the whole surface of the rod. The spatial and angular distribution of
the source is exactly the same as the distribution of neutrons on the surface
~f a black rod, with the same dimensions as the grey rod and immersed in
the. same medium. Thus, this method of treating the grey rod requires an
auxiliary calculation of the current distribution on the black rod, This
distribution is not uniform because of the shadowing effect, which decreases
towards the ends of the rod. Of course the grey rod problem could be solved
without any recourse at all to the black rod calculation, by direct simulation
of the source neutrons., From a computationa) viewpoint, however, the
method of introducing the black rod is much more favourable because in the
grey rod calculation one can save the computer time necessary to follow the
neutrons from their real source points to their entrance into the rod. Further-
more, the black rod problem is simple enough to permit a Monte-Carlo so-
lution, although several refinements of the straightforward Monte-Carlo
technique were necessary to avoid excessive computing time, The black
rod problems contains very few parameters: If the rod is not so short that
a coupling between the ends occurs, the result depends only on the quantity
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e =2aZX, (7.1)

i. e. the rod diameter measured in mean free paths of the surrounding medi-
um, If coupling occurs, the rod length will enter as ancother parameter.,
Owing to this small number of parameters, it is possible to run a number of
black rod calculations and to express the results in condensed form (poly-
nomial fits). These fits can be used for grey rod calculations. Thus, a
grey rod routine calculation involves only a calculation with a source on the
rod itself, which means favourable conditions for a Monte-Cario run.

In the heicrogeneous case (type (c)) a similar argumentation as above
leads to a model where the neutrons in the Monte-Carlo calculation start
uniformly distributed from the entire curved surface of the infinite cylinder,
of which the rod in question is a part - independently of the radial distribu-
tion of the sources outside this cylinder, ' The sources are of course as-
sumed to be axially uniformly distributed. The application of this model is
clearly restricted to cases where no sources are present inside the infinite
cylinder mentioned above.

7.3. Description of the Monte~-Carlo Methods

7.3.1. The black rod calculation

Fig. 7.1 shows the geometry in the black rod problem. The ex-
tension of the medium around the rod should be infinite, but application of *
the Monte-Carlo technique requires a spatial cut-off. This cut-off is chosen
as the surface of a large cylinder. In practice, the cut-off cylinder is
"large" when no part of it is nearer the rod than 2.5 - 3 mean free paths of
the medium outside the rod.

The black rod surface is divided into 2Z current scoring zones,
arranged symmetrically about the middle plane z = 0. Two types of zones
appear: plane end (radial) and curved (axial) zones., For an arbitrary col-
lision point (x, y, z) one has a set of probabilities pi(x , 2) of hitting zone i
in the next flight, and a total probability p(x,y,z) = % : pi(x, ¥, z) of hitting
the rod. Straightlorward Monte-Carlo would then kill the neutron if a
sampled random number r(0 <r <1} was less than p, and would otherwise
continue with the neutron without giving any contribution at all to the score
from this collision point., This method gives poor statistics, especially
for small rods, Another method was applied which in every collision gives
a contribution to the current in all the visible zones (the "spray method").
The neutron with the weight W, colliding at (x,y, z), will lose the fraction
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W . p(x, y, z) by absorption on the rod surface, and this amount of absorption
is distributed on all the zones visiile from ’(x, ¥, 2) according to the pi(x, y, z)~
. values, After that, a new flight direction Q is sampled (isotropic scattering),
and also a new track length 1. This flight may result in a hit of the rod. This
event must, however, be considered as forbidden because the amount of ab-
sorption has already been taken into account. It is therefore necessary to try
a new sampling ( {1 , 1) from the previous collisioci point, Sooner or later an
"allowed" sample is obtained, and the neutron then continues its history,
now carrying the reduced weight W - (1-p(x, y, z)). Escape through the cut-
off cylinder cannot occur because this surface is regarded as reflecting in
the optical sense., The only possibility of a termination of a neutron history
is then loss of weight to such an extent that W drops below a certain cut-off
value, Wé“lt.
= Epi are coniinuous functions of (x, y, z). One possible approach is to cal-

The previously mentioned probabilities pi(x, Y, z} and p{x,y,2)

culate these quantities whenever a new collision point (x, y, z) has been
sampled. This method is rather time-consuming. Instead, we have chosen
a discreie representation of the pi's and p's, corresponding to the network
shown in fig, 7.1. Because of the cylindrical symmetry, the network is
essentially plane (we set y = 0 at each new collision). It appeared to be
favourabie to have two different mesh systems, a fine network near the rod
and a coarse one farther from the rod, The mesh probabilities pijk (rod
zone i, mesh indices j, k) and Pjk (total hit probability from mesh jk) are
taken as the pi(étLy, z) and p(x, y, z), calculated in the middle point of the

mesh, pjk = izl pijk will be denoted p2L+1, ik All the pijk form a three-

dimensional set of numbers, which is calculated before the real Monte-Carlo
run and stored in the programme,

Calculation of these probabilities leads to double integrals. To be
specific, consider first the probability sp that a neutron, after being scat-
tered isotropically at P(x, 0, z) outside the rod (fig. 7.1), reaches a plane,
annular zone with the radii Pl and Pz on the end face z = k, Of course,
sp = 0 for z k. Assuming z >k, one has

~Zr df) = pd.pdecos 0 = 2-K
&, " J-e T With dQ r‘E andcos §=~—— .

® istheangular position of thearea elementdA= pdp de, andristhedistance
from P to dA..
Py T _ >r
- d |1 e
SP-J‘ T {z-k) J — dy ,
o

r
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and insertion of r2 - x2 + (z-k)2 + p 2
Py

2 2, .2 ‘ 1
sp_ _zz-ils pdp ex_p(-jz(x ﬂz-kl + p -2pxcos%[ /5&9 . (1.2)

o (x“+(z-k)°+ p“-2p xcosyp )
1 N

- 2p x cosw yields

0

The corresponding probability of hitting a cylindrical surface zone
on the rod limited by the planes z = 7y and z = z, is denoted s e We have
s, ™ 0if x ¢ a, where a is the radius of the rod, and for x > a:

adp dl cos B
r

Je'ng% with dQ =
Q

r
{ 1s the z-coordinate of the ares element a dpdf.

One now has

J ad( e-zrz_czgw_id.p with g_ = Arc cos 3,

r

and cos 8 = (x-acosg, -easing , 2-0) . (cosp , sing, 0) = X cgs =

2

and substitution of r2 ® x° + (z-t,')2 + a2 ~ 2ax cos ¢ yields

-L)° + a®-2ax cosyp)

z, ¥ ’
s ';'WJ. d;J ° (x cosv-)g;p( 2(x +§z-§ ! +a2-Zaxcos )1/2)(!\9
c

z, o

(7.3)

The Monte-Carlo procedure itself is mapped in the flow diagrams
fig. 7.4 (coarse diagram fig. 7.4.1, detailed diagram fig. 7.4.2).

The neutrons start either from the volume between the rod and the
cut-off cylinder or from the surface of the cut-off cylinder, according to
the type of source, The neutron has a weight parameter W, which is 1 at
the starting point. The y-co-ordinate of the source is always zero; further,
x and z are both positive. This is bound up with the cylindrical symmetry
of the problem. Referring to fig. 7.4.2, a neutron f'ight starts at the label -
"flight', either as a source neutron or as a scattered neutron. The co-
ordinates are in both cases normalized to the form (x, 0, z) withx >0, z> 0,
If x < a, one goes directly to the label "inner', The flight routine has a main
label "escol" (escape or collision), to which one jumps if the black rod is not
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hit. During the tracing of the flight, several possibilities of jumping to
"escol" occur.

If x> a, the following consecutive tests are made:

(1) Sign of x-direction cosine u, u> 0 leads to "escol”.

(2) Intersection of the flight line with the surface x2 + yz = az-. The
case of no intersection point leads to "escol".

(3) Comparison of the distances t along the flight path to the inter-
section point P_ with the sampled disposal length 1. t> 1 leads
to "escol". -

(4) z-co-ordinate z_ of intersection point P_. 1z ! > h leads to
"escol"”, while yz_| < k means hitting of the rod.

The third possibili?.y in test (4), k £ |z s' £ h, leads to entrance in-

2 ¢ y2 £ az, k €]z}<€ h. However, before
further tracing of such a neutron, one renormalizes Ps(xs, Vg :s) to the form

to the "inner" region, given by x

(a, 0, zs) by simultaneously transforming the components (u, v) of the direction
vector to (u', v') by rotating an angle -9 (tg ¢ = ;E) so that

ux_+vy VX _-uy,

(v, v') = (u, v) - exp(-i), leading to u'= : B vie sa

. (7.4)

The disposal length 1 is diminished by the "consumed” lengtht. We
are now at the label "inner" (fig. 7.4.2), and also in this case consecutive
testings for jumps to "escol' are made:

(1) Sign of w- z{(w= z-direction cosine). w- z>0 leads to "escol".
(2) Calculation of the distance t along the flight line to the inter-
section point Pp(x,y,, +k). t> lleadsto "escol".

2 2

(3) Situation of PR. X,

rod is hit,

+ yf > a“ leads to "escol”, otherwise the

~ Arriving at the label "escol”, one ascertains whether a collision or
a hitting of the cut-off cylinder has taken place. ' In the latter case, the
neutron is reflected optically in the cut-off cylinder. The planes z = +h
reflect the flight:simiply by reversion of the sign of w. The curved surface
reflection gives a slightly more complicated formula for the reflected di-
rection vector (u;, vy, W;):
“ux,-vy, VX -uy,

Uy R, V]S —p——, Wi;RW. (R = cut~off radius), (7.5)
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corresponding to a normalizing of the mirror point from (x_, Yor zc) to
(R, O, zc). If, on the other hand, col]ision. occurs, one EcCores zone currents
according to the previously mentioned "spraying" principle.

The output is processed in the usual way for the estimation of mean
values and variances. g

7.3.2. The grey rod in a homogeneous medium

The Monte-Carlo run of this problem is mapped in the flow diagram
fig, 7.3. The neutrons start from the whole rod surface. Stratified sampling
of position is feasible in this problem. The surface source strength should
have the distribution calculated in the black rod problem. However, we de-
cided instead to sample from a constant source and then compensate by a-
scribing the weight W(P) to the neutron. W(P) is a function of the points P
on the total rod surface, normalized to an average value of unity over the
rod. W(P) is given by the black rod calculation. The source directions are
chosen from an inward cosine distribution, which is a good approximation in
this problem. A track length l in the rod is sampled. One ascertains wheth-
er the neutron has collided in the rod or escaped from it. If a rod collision
occurs, the score in the zone containing the collision point is increased by
W. The weight after collision is

E - E

Wy,
where zao and z:o are the absorption and the total cross section of the rod.
W < W_, ., one returns to "start", otherwise one proceeds to the isotropic
scattering routine, after which a new flight in the rod is sampled, and so on.
If the neutrons pass out from the rod, one applies a similar flight routine for
the medium outside the rod (total cross section £, no absorption). After a
certain number of collisions here, the neutron will hit either the rod or the
cut-off cylinder. In the former case one continues to trace the neutron in
the rod. In the latter case the neutron is transferred to a random point P of
the rod surface, from which it starts with inward cosine distribution and the
weight multiplied by W(P). The contents of the box in fig. 7.3 labelled
"entrance in rod 2" are exactly the same as shown in fig. 17.4.2 for the black
rod. : ' '
The flow diagram fig. 7.3 refers to the simple flux score routine
discussed above. However, this routine has recently been modified. Instead
of scoring the zone collisions, one makes a statistical estimate of the zone
flux increment for every track length occurring in the zone. This procedure



-73 -

is carried out in the following way: Track lengths in the rod are sampled
from the scattering cross section Z_ i.nste;d of the total I This incorrect
method of sampling is corrected 7.5 follows: each time a neutron track 11 in a
zone i ceases - either by escape i~om the zone or by a collision - one mul-
tiplies the neutron weight W by exp{- o li). “The statistical estimate of
the flux increment in zone i is then W(l-exp(- r'ao . li)). This modified flux
scoring device, which is also introduced in the "heterogeneous" problem,
has increased the calculation efficiency by a factor 4 for rods with rather
thin zones. :

7.3.3. The grey rod in a heterogeneous medium

Fig. 7.2 shows the geometry of this problem, and the Monte-Carlo
run is mapped in fig. 7.5... The rather involved structure of this diagram
derives from the routines which decide the momentary zone of the neutron,
These routines are described in ref. 6,

The neutrons start stratified from the cylinder surface xz + yz = az,

z h. (2h = height of cut-off cylinder.) The directions have an inward

cosine distribution. The planes z = + h act as mirrors, while the neutrons,
when passing through the curved surface of the cut-off cylinder, are killed.

7.4. The Computer Programme System

- The computer programme system includes five codes:
(1) NETPROB, in GIER-ALGOL, preparing auxiliary input for MCSA.

(2) MCSA, in FORTRAN IV, solving problems of type (a) (subsec.
7.1).

(3) FITAB, in GIER-ALGOL, which processes the output of MC5A
to be used as input in MC5B1, '

(4) MC5B1, in GIER-ALGOL and FORTRAN IV, solving problems
of type (b) (subsec. 7.1).

(5) MC5C1, in GIER-ALGOL and FORTRAN 1V, solving problems
of type (c¢) (subsec. 7.1).

The GIER-ALGOL programmes are run on the GIER computer at
Riso, while the FORTRAN IV programmes are run on the IBM 7090, installed
at the Technical University of Denmark in Lyngby.

NETPROB calculates the mesh probabilities to be used as input in
MCS5A.
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MCSA gives as output the values for the neutron current (n/mzlﬁme
umt)inthendhln'snutheuiﬂzonu.

FITAB is discussed in some detail below. It is a link code bctvnn
MC5A and MC5B1, It carries out a smoothening of the stepwise varying
currents which MCSA gives as output.

Fig. 7.8 shows a graph of such an output. The level is u'bitrary
This representation is replaced by expressions of the form

Fl(z) = A:) exp(-A‘z(k-!zl)) + A:l (axial current) - (7.6)

and  Gy(x)=B. + Byx

2 (radial current) , (7.7)

the fits be).ng least square-fits. After this one must normalize to an overall
" incoming current of the average unity, thus obtaining the final expressions

F(z) = A exp(-A,(k-1zI)+ A,  -kgzgk (7.8)
G(x) =B, + B,x° , x<a . (7.9)

The forms of the fitting expressions above seem to be the simplest
possible to extract the main features of the black rod current distribution
obtained, If k is large enough to exclude coupling between the ends, then
F(z)=s A4 will be valid for a range of z~values, i.e. the rod has a middle
part with no axial perturbation of the flux. The only essential drawback of
the form (7. 8) is that F(z) has abend at z = 0; however, this only matters
if the rod is very short.

In order to obtain the form (7. 6) in a straightforward manner, we
simply set A4 L (fig. 7.6). Clearly, this requires that the level 1, is
sufficiently stable statistically, and that k-z1 is large enough to ensure that
the axial flux perturbation is small at z,. These conditions should be borne
in mind when one uses MC5A. The least square condition to be met by the
axial fit is now applied to the logarithms of increments fi - f1 :

& "i{aig-4) - 1n AL + A} (ket))* = min, (7.10)
with 1} = gz, + 2_))

A natural choice for the weights w, is o |
Wi L (f’- - ‘1) s (21 "' 21-1) . : . (7- 11)
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The solution of (7.10) is

Zw, [i Zw; ‘i - Tw; vai;j !i co. (1.12)
Iw; Zw, !i - (‘.*.‘.\.\ri Ci) ’

(7.13)

' zw.qi+A'2r.w.§.
and Ao .exp [ 1 tw]: 1 1]

with the abbreviutions Li = k-t, and M, = In(f,-f,).

The summations extend fromi=2toi =n.
The form (7. 7) is obtained by applying the least square condition to
the integrated zone currents. This gives the equation

m By 4 4. 2 ,
iEi -z—(xi - i_1) B (~x 1) gl(x ::1 1) = min, {7.14)
(notation, see fig. 17.86).

As the detailed shape of the radial fit is not very important, no
weights have been carried along. The solution of (7. 14) is

. bshy-hohs , . Byb-hgh,
B, = B (7.15)
2 T T3

hyh,-h; o hih,-h,

with the abbreviations
h, = o2, h, = Za,p = Ta.p.g., h, » g2, h. = xpl
1 = oy, hy = Zo;p;, by iPiBi» By ™ 2Py, By 1 &

1, 4 4 2 2
o = y(x;-x; 4), BytEX-X L,

the summation extending from 1 to m.

The normalized expressions (7. 8) and (7. 9) are finally obtained by
requiring '

(A, A, A, B, By) = (kA', A}, kAy, kB, kB}) (7.16)

' ' k a
and j (B oF Bzxz)fmxdx + J (A o exp(-Az(k;z))-i-A4) 2n adz = J 2 xdx +I 2r ad:
0 o

(7.17)
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The final expressions (7. 8) and (7. 9) constitute the function W(P) in
7.3.2, and the constants (Ao' A, A4, B o ABZ) form the input of MC5B1,

However, MC5B1 has an option permitting automatic calculation of
(Ao, Az, A4, B o Bz). This has been possible after a parameter study of
black rod calculations, by varying a (eq. (7.1)). The said study has only
been completed where there is no coupling between the ends of the rods and
in cases with surface sources.

Both MC5B1 and MC5C1 give as output mean volume fluxes over the
cylindrical zones into which the rod is divided. The_divisioh into zones is
arbitrary apart from the requirement that the zones must lie symmetrically
about the centre of the rod '

FITAB and the GIER version of MC5B1 and MC5C1 also present the
output in graphic form by means of a plotter.

Running times:

NETPROB about 2 hours

MC5A " 2 hours

FITAB " 1 min,

MC5B1 n 10 min, on IBM 7090, 3 hours on GIER
MC5C1 " 20 min. on IBM 7090, 5 hours on GIER.

All the figures for running times refer to typical cases with reasonably
good statistics,

7.5, Presentation of Calculations and Comparisons with Experiments

7. 5.1.

In this subsection a number of calculations are presented, and some
are compared with measurements.

As the literature available on such experiments was very limited, it
was decided that supplementary experiments should be carried out in the
Risd facilities. The measurementis were performed in a heavy-water ex-
ponential facility, A description of the experiments is given in 7. 6.

Table 7.1 gives a summary of the comparisons.
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Table 7.1
Model Code Experimental set-up Carried out Results °
: at in fig.

Black rod MC5A Cadmium cylinder, 2.5 c¢m Risd 7.9.1

dia,, in heavy water

(exponential facility)
Grey rod in Natural wrazium rod, . ANL 7.10.1
hom. medium MC5B1 1,796 cm dia., in graphite

{thermal column)

-". - do., 2.54 cm dia. - 7.10.2
Grey rod in Copper rods (1. 27 cm Risd 7.11.1
het. medium MCS5C1 dia.) with lead spacers and

heavy water outside
(exponential facility)
- " S L do., 2.54 cm dia. -". 7.11.2

The experiments at ANL are described in ref. 18. This report also
describes a number of experiments on rods with cadmium as the main ab-
sorbing component. However, it was recognized that thermal Cd-experi-
ments were not feasible for testing one-group models because of the rapidly
varying cross-section curve of Cd.

Most of the digital computer calculations have been performed at
NEUCC (Northern Europe University Computing Center), Technical Uni-
versity of Denmark, on an IBM 7090 computer.

In the following, a short description of the results is given.

7.5.2. Black rod, o = 1, surface source. Comparison with Risd

e_xgeriment

Fig. 7.9.1 shows the measured as well as the calculated axial current
distribution on a black rod (Cd) in heavy water. The diameter of the rod was
2.5 em. The scattering cross section (corrected for anisotropy) of the heavy
water was taken to be 0,4012 cm™ ). So, in this case, o ® 2.5 - 0,4012=1,00,

In both experiment and calculation the current values were normalized
to unity at the midpoint on the curved surface, where the current is essenti-
ally constant, As can be seen from fig. 7.9.1, a finer zone division wasused
in the experiment than in the calculation, Therefore a''converted" experi-
mental curve has been drawn to meet the zone specification in the calculation.
This curve agrees quite well with the calculated distribution. No statistical
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error limits have been stated in the Monte-Carlo calculation because the
error is here very small (~0.3 pct. ).

The calculations were made with MC5A, a constant surface source
on the cut-off cylinder being used to simulate the actual physical conditions.

7.5.3. a-parameter study on black rods (surface source)

, To make possible an automatic black rod calculation preceding a
routine grey rod calculation (see 7. 2), a number of black rod calculations
with different a-values (see 7. 2) were carried out. The values a = 0.5, 1,
2, 3 were considered. The calculations refer to cases with no coupling
between the ends and to cases where the surface source model is valid. The
results of this parameter study are shown in figs.7. 7 and 7.8. The radial
distributions shown are not very reliable because of statistical errors. It
is seen that the flux perturbation increases steadily with increasing a.

To extract the essential feature of these calculations, FITAB was
used to smoothen the stepwise varying currents by fitting them to simple

. analytic expressions.

If one renormalizes the expressions (7.14) and {7. 15) to the forms

f(z) = a_ exp(-a, By, (7.18)
. x 2
glx) = b+ by(3) (7.19)

{a = rod radius, k = half rod length),

corresponding to the current density unity at the midpoint of the axial

surface (z = 0), then the constants (a o 220 Py b,) will depend only on o,

provided the rods are long enough to exclude end coupling effects, and

these constants themselves can be fitted to simple polynomial fanctions of a.
~ Our calculation gave the result shown in fig. 7.12, which shows both

the 4 - 4 calculation points and the graphs of four fits, the equations of

which were chosen as follows:

a, = 0.0233 a? + 0,1466 a (7. 20)
a, = 0.20 + 0.85 (7.21)
by =1+ 0.12a | (7.22)

0.02916 o> + 0.02418 a .

=3
]

(7.23)
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ay for a = 0.5 could be determined only very crudely from the MC5A result,
The expression (7. 21) is used for all a £ 3 because the perturbation is in
any case small (a small) for small a-values. -

These functions have been built into MC5B1 to be used when an auto-
matic black rod calculation is to precede a grey rod calculation.

The formulas (7. 22), (7. 23) for the constants in the radial distribu-
tions are not claimed to be very reliable, owing to statistical errors.

The Risd experiment mentioned in 7. 5. 2 has been used to make a
test of the formulas (7. 20) to (7. 23). The mean radial current jr and the

mean axial current jz ,

a k
i 2 d j 2ra d
o Jx) 2mx dx L i(z) 2ra dz (a = rod radius,
I = 3 ~e 1 F 3 k = half length) , (7. 24)
J 2nx dx Jzna dz
o 0

are found both from the experiments and from the fits (7. 20) to (7, 23). i
and j z are in units of the current at the midpoint of the curved surface
(z = 0). The results are seen in table 7, 2.

Table 7, 2
iy i
experimental 1,047 1,138

fits (7. 20) to (7.23) 1.049 1,147

The agreement is satisfactory.

A parameter study for the corresponding problems with volume
sources instead of surface sources has not so far been made, However,
in a single case (a = 3), a calculation with constant volume sources between
the rod and the cut-off cylinder was made and compared with the result for
surface source, see fig. 7.9.2. It appears, as would be expected that the
perturbation is not so great for volume sources as for surface sources.
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7.5.4. Calculations on grey rods in a homogeneous medium,

Comparisons with ANL measurements

Some calculations have been made with the code MC5B1 with the
built-in formulas (7. 20) - (7.23). The calculations refer to the two rods
(table 7.1) for which ANL measurements have been reported. Results of
Monte-Carlo calculations as well as of ANL measurements appear from
fig. 7.10. There seems to be a slight gradient in the experimental flux at
distances where the end effect cannot be significant. This complicates the
comparisons somewhat. Otherwise the agreement seems to be satisfactory.
In the calculations, the macroscopic cross section of natural uranium re-
ported in ref.18 was applied, and for graphite the scattering cross section
(corrected for anisotropy).was taken to be 0.3748 em™t,

7.5.5. Calculations on grey rods in a heterogeneous medium,

Comparisons with Risd experiments

The heterogeneous model (MC5C1) has been compared with Risb ex-
periments with copper rods of 8 cm length, separated by lead spacers of 10
cm length and surrounded by heavy water. Two diameters of the rods, 0,5"
and 1", havB been considered. The cross sections applied in the calcula-
tions are Z_ 201 1) = 0. 4012 em~?, ZEP(1-p) = 0.303 em™’, sz= 0. 005
cml, zfu (1-p) = 0.604 erl,  2CU'=  0.285 em™!. For Pb, the
scatiering cross section has been obtained by averaging over a Maxwell
spectrum,

7.8. The Ris®d Measurements

7.6.1, Measurements on a black rod

The experimental arrangement was as follows:

A cadmium cylinder (diamcter 2.5 cm, length 10 cm) standing on
four legs was placed centrally on the bottom of the exponential tank men-
tioned in 7.5 (diameter 76.4 ¢m, height 170 cm), This tank, filled with
heavy water, is situated on the top of the DR1 rcactor, Between the reac-
tor core and the bottom of the tank there is 120 cm of graphite, In the ac-
tivation position the cadmium ratio R cg Ve > 4500,

It is assumed that all neutrons entering the cadmium are absorbed.
The scattering effec* in the Cd-cylinder is neglected., This is a very good
approximation, Manganese foil detectors (50 mg/ cmz) were glued to the
Cd-cylinder both along a cylinder generator and on the end face. Their



- 81 -

activities are proportional to the neutron current perpendicular to the surface.
The result for the longitudinal distributicn appears from fig.7.9.1.and
was discussed in 7.5.2. The radial distribution was inte'grated over the
surface as mentioned in 7. 5. 3 (table 7. 2).
The neutron flux at the bottom of the tank was about 107 n/ t::m_,2 /sec.
After activation for two hours the activity of the Mn-foils was measured with
a gas flow counter,

7.6.2. Measurements on grey rods

The geometry was described in 7. 5.5, and the set-up was identical
with that in 7.6.1. The subdivision of the Cu-cylinder appears from fig. 7.11.
The activity of the middle zone was used to normalize the results.

The irradiation time was 3 hours, and as before the neutron flux was
107 n/cmzlsec.

As seen from fig, 1. 11, the measurements were made in five zones.
The corresponding five Cu-pellets were dissolved in nitric acid; thus the
mean value of the absorption in the pellets was obtained. The Y-activity of
this solution was measured in a Nal crystal with a well. '

The figure shows good agreement between experiment and calculation.
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