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Nuclear Particle Transport with Emphasis 
on Monte-Carlo and Shielding Calculations 

by 

Peter Kirkegaard 

The Danish Atomic Energy Commission 
Research Establishment Risfl 
Reactor Physics Department 

Abstract 

A description is given of a number of methods of calculating the trans-
port of neutrons and Y-rays, mainly in reactor shields. Emphasis has been 
laid on the Monte-Carlo technique. All the methods described have been pro-
grammed for the electronic computer GIER at Riso, and some of them also 
for the IBM 7090 computer at the Danish Technical University, Lyngby. 

A simple bulk shield programme system has been developed which 
calculates the penetration of neutrons as well as Y-rays throughout a reactor 
shield. The neutrons are treated according to the removal-diffusion theory 
with one removal and one diffusion group. The Y-ray calculation relies on 
the build-up concept. 

Animproved removal-diffusion neutron shielding programme has been 
worked out, permitting an arbitrary number of removal and diffusion groups. 
A cross-section library with the elements most frequently encountered in 
shielding has been prepared. 

A general outline of the Monte-Carlo calculation method for problems 
in nuclear particle transport is given. Some minor reactor problems con-
cerning self-absorption of Y-rays in fuel rods and distribution of the energy 
deposition on the various components of a fuel lattice cell are solved by the 
Monte-Carlo method. 
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A Monte-Carlo Y-ray shielding programme has been written, espe-
cially suited for laminated shields, in which case it is superior to build-up 
methods. The programme calculates the energy deposition rate throughout 
the shield as well as the dose rate at the external surface. 

Finally, a Monte-Carlo method for computing the axial neutron flax 
distribution in a short, absorbing rod is presented. 

Whenever possible, the calculations described in this report have 
been supported by experimental results. 
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1. INTRODUCTION 

When the work described in this report started in the autumn of 1963, 
it was planned to develop a number of calculation methods for shielding pur-
poses, and to programme them for the electronic computer GIER at Riso. 
Up to that time, all shielding calculations at Riso had been made with paper, 
pencil and slide rule, and because of the troublesome and lengthy nature of 
such calculations the methods applied were restricted to rather crude ones. 
However, a draft of a computer programme system, worked out by A. Olsen, 
RisO, already existed. His methods closely followed mose applied in his 
hand calculations for the DOR-type reactor. It was decided, first of all to 
continue and complete his work. Therefore a reactor bulk shielding pro-
gramme system calculating neutron flux and Y-dose throughout the shield 
was made. It was recognized, however, that this programme system would 
be suitable only for rough estimates, not for detailed and reliable shielding 
calculations. This is due to several shortcomings and oversimplifications 
in the models applied; examples are the division of the neutrons into only 
two energy groups, and the application of the build-up concept in the Y-cal-
culations. Therefore it was planned to replace the simple methods by some 
other methods giving more accurate and reliable answers. Special attention 
was given to the possibility of introducing the Monte-Carlo calculation method, 
which possesses great versatility and is thus superior to most other methods. 

It turned out that the shielding calculation methods for Y-rays could 
advantageously be replaced by Monte-Carlo. Concerning the neutrons, the 
choice of method is not so clear. Owing to the huge number of cross-section 
parameters necessary to describe the neutron transport in a Monte-Carlo 
model, it was decided not to apply Monte-Carlo. Instead, a multi-group 
method was chosen. 

When the investigations of the prospects of Monte-Carlo started, this 
method was new at Riso, at least in the field of reactor physics. Consequent-
ly it was necessary to do some work to gain knowledge of the proper use of 
the method, and to apply it to rather simple problems so as to gather enough 
experience to solve problems of some complexity. It is therefore natural 
mat a description of the theory behind the Monte-Carlo technique and of a 
number of applications to problems in reactor physics should be included in 
this report. 

The first problem in this wor*c solved by the Monte-Carlo technique 
was a calculation of the fraction of Y- energy escaping from a long rod in 
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which fission occurs. This simple problem is very instructive as it involves 
many of the standard devices in the Monte-Carlo technique. The next prob-
lem was the calculation of the distribution of the energy deposition on the 
various components of a fuel lattice cell. 

Finally, the report describes Monte-Carlo methods for the solution 
of two problems considerably more involved than those described above. 
One is the Y-shielding problem mentioned previously, and the other concerns 
the longitudinal neutron flux distribution in a short, absorbing rod. 

Digital cmputers have played a very important role for the project 
in so far as they have been used to carry out almost all the calculations. 
When the project started, the GIER computer had recently been acquired by 
Riso. This computer has a small fast memory storage, and it turned out 
that more complex problems, especially those tackled by the Monte-Carlo 
technique, required excessive computing time. Fortunately, in the autumn 
of 1965, an IBM 7090 computer was installed at NEUCC (Northern Europe 
University Computing Center) at the Technical University of Denmark in 
Lyngby, and became available also for RisO. A translation of the larger 
programmes for use in this computer was then carried out with the result 
that they are now working satisfactorily. 
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quirements for the lie. techn. degree. It was made possible by a grant 
from the Technical University of Denmark and by the support of the Danish 
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ment, RisO, and to P. B, Suhr, A. Olsen, B. Micheelsen, and H. Neltrup, 
all of the Reactor Physics Department, RisO. 

Finally, the careful measurements by W. Buck, Reactor Physics 
Department, in support of the Monte-Carlo calculations in section 7 are 
acknowledged. 
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2. A SIMPLE BULK SHIELD PROGRAMME SYSTEM 
FOR NEUTRONS AND Y-RAYS 

In almost all reactor shielding design calculations, only neutrons 
and Y-rays need be taken into account. Other types of radiation, such as 
a- and p-rays, are easily stopped by a few mm of normal shielding material. 
In a power reactor the neutrons in the shield originate from fission. General-
ly, minor effects like those of photoneutrons can be neglected. The Y-rays 
in the shield originate both from the reactor core and from the shield itself. 
In the core, Y-rays are produced almost instantaneously by the fission pro-
cess , further during the decay of the fission products, and by neutron cap-
ture in the structural materials of the core, such as Al. The Y- sources in 
the shield itself are due to capture of thermal (and epithermal) neutrons. In 
thermal shields of power reactors, iron i s a frequently used component, and 
this metal has a very hard capture-Y line (7.5 MeV). In many reactors 
these Y-rays give a predominant contribution to the dose rate at the external 
surface of the biological shield. The following subsections describe simple 
methods of calculating the attenuation of the neutrons and Y-rays throughout 
a bulk shield round a reactor and the Y heat generation rate in the shield. 

2 .1 . REMTHERM, A Multi-Layer, Simple Removal Programme forNeatrons 

The programme REMTHERM carries out calculations based on simple 
removal theory of the fast and thermal neutron flux throughout a shield. 

The core-shield configuration may be either a sphere, an infinite cy-
linder or an infinite slab system. The core is assumed to be a homogeneous 
medium with a spatially constant volume source of fast neutrons. The sur-
rounding shield must consist of a finite number of symmetrical, homogeneous 
layers. Any reflectors, if present, are considered part of the shield. The 
result of the calculation is the fast and thermal neutron fluxes in an arbitrary 
number of shield points. 

The simple removal theory adopted here is valid only for mixtures 
(or laminations) of materials with heavy and light nuclei respectively (e. g. 
iron and hydrogen). It i s then a fair approximation to consider only two 
groups of neutrons. In the first group are kept those neutrons which have 
not collided at all, or which have been scattered elasticaUy through a small 
angle. This flux, called the removal flux, is calculated as the uncollided 
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flux of source neutrons, the total cross section 23. being replaced by 2 , the 

so-called removal cross section, which is smaller than 21. E is an empir-

ical cross section, experimentally adapted for shielding applications. In the 

second group a re kept all neutrons "removed" from the first group (fast ab-

sorption neglected). These neutrons will have a rather small age to thermal 

energies because of the light nuclei present; therefore they can simply be 

considered as thermal neutrons and be treated by the aid of diffusion theory. 

The definitions of removal flux and removal cross section are some-

what ambiguous and depend on the applications. Although the simple removal 

theory outlined above is rather crude, this approach is certainly better than 

two-group diffusion theory. This is due to the fact that the cross section 

often decreases rapidly in the MeV-region so that at large distances from 

the sources there a re relatively many "penetrating" fast neutrons from the 

core. On account of the marked anisotropy, this penetrating flux cannot be 

adequately treated by diffusion theory, but is well described as a virtually 

uncollided flux. 

In the following, analytical expressions for the removal flux • , a r e 

given in the three geometries. 

Spherical geometry 

0 isrr ro 

Arc sin • 

sin 0 j l - exp [- 2 2 r o ^ a ^ ^ s i n 2 © ] ! ' exp 

r 
\{P)P dp 

& * sin 6 

.dO 

(2.1) 

Infinite cylinder: 

a 

• - So 1 **r7 |Ki2(f(x, r)) - K i 2 (22 r o )(a2-x2 + f(x, r))l 

with f(x,r)» J S r(P) P d p 

dx 

\T~2 2 \r -x 

(2.2) 
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Infinite slab: 

* 1 s 7fT- ( E 2 ( S ) " E 2 ( S + 2 Z r o a ) ) v ( 2 ' 3> 
ro 

In these formulas. £ and £ a re the removal cross sections in the 
* ro r 

core and the shield respectively, 2a i s the core thickness, 5 the strength 

of the volume source of fast neutrons in the core, r the distance from core 

centre to shield point, and S the optical distance ( J £ r dr) from core surface 

to shield point. Finally, E (x) and Ki (x) denote the exponential integral 

function and the Bickley function respectively: 

En(x) = x11"1 

00 -J 

^ d t , Kin(x) = e 
c o s * c o s n - ^ d«p.<2.4) 

All the three expressions for • . a re obtained by integrating the 

simple exponential attenuation kernel over the core volume. 

The thermal flux $., i s calculated as the solution of the diffusion 

equation 

D V 2 * 2 - S a 0 2 + Q » 0 ; (2.5) 

D is the thermal diffusion coefficient and 2 the thermal absorption cross 

section. 

The source term Q is set equal to 2_ • • j . The previously obtained 

expressions for $ , a re too complicated to be used in the solution of (2.5). 

Instead, ^ is approximated by simple functions, depending on the actual 

geometry, as described later. The number of equations (2.5) to be solved 
i s equal to N, the number of shield layers. The solution of each equation 
involves two arbitrary constants; this makes altogether 2 N constants to be 
determined. The N-l shield interfaces yield 2N-2 boundary conditions 
(continuity of flux and current); hence two more conditions are required. 
One is a prescribed thermal flux value at the core - shield interlace. The 

other i s that the thermal flux must vanish at the extrapolated external shield 
boundary. Now, the 2N constants can be determined by solution of a system 
of 2N linear equations. Owing to the usually large variation in the order of 

magnitude of the coefficients, only special methods will succeed in the 



- 1 0 -

numerical solution ol these equations. In this programme, a method sug-

gested by Crout and programmed by Lang Rasmussen, Riso, i s applied. 
In the following, the solution of equation (2.5) i s given separately for 

the three geometrical cases. The solution concerns a definite layer (no. i) . 

(1) Spherical geometry 
2 

2 ** * 2 2 *** 2 
The use of V •» = -- -g + — -• •• yields 

dr 

2 
d • , 0 dø , 0 Q. 

- r + l T F 2 - « ! V i r • • <2-6> 
dr i 

2 2 a i 
with X. » -j^i . 

i 

Further, on the substitution » 2 - * : 

£ - V ' T T J -o. 
dr a 

Qi 
It is now convenient to approximate the source term r • «->. 

Q. -b r 
by an exponential: r • yr- » c. e 

u i 

The constants c. and b. are uniquely determined by requiring 

^ * E r i ' *1 

at the two boundaries of the layer. 

The approximated form of the diffusion equation is now 

£j- X. 2y+c. e " b i r - 0 
drZ * 1 

with the general solution 

X.r - x . r c i -bjr 
y * A « e + B. e + —n w- e 

i Di 
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or 

. x.r -TLr c. -b.r. 

V - "i 

(2) Infinite cylinder 

2 ^ d • 2 1 d * 2 
The use of V »j * g + 7 -jgr* yields 

dr 

d • ? 1 d * 2 2 Of 
^ z r dr 1 2 D å 

Qi Here the source term w- is approximated by a modified, zero-order 
Bessel function of the second kind: 

Q4 
3- » C i K0 (b.r) . 

The constants c. and b. are uniquely determined by requiring 

Q i - 2 r i ' * l 

at the two boundaries of the layer. The approximated diffusion equation is 
now 

d 2 * 2 j d * , 2 

-JT + 7 "Tr1 * *i *2 + ciKo(bir> " ° 

with the general solution 

c 

•2 " V o < V > + BiKo< V > + H?1 u5 W J ; ( 2*9 ) 

x i - b i 
I0 is the modified, zero-order Bessel function of the first kind. 

(3) Slab 2 

2 d *2 
The use of V * 2 * T T y i e l d s 

dr 



12 

(2.10) 

9l -b_.r 
Here, -yj- t& c. e * , and the approximated diffusion equation is 

d2 •„ n -b.r 

dr 

2 r x / • , + c. e x = 0 , 

where c. and b. are determined as before. The general solution of this 
equation is 

H.r - x . r c -b.r 
• 2 « A . e x •*• B . e * + y ; e . (2.11) 

* i " b i 

2.2. PRIGAM, a Multi-Layer, Build-up Programme for Core V-Rays 

It i s often necessary to know the heat generation rate in the shield of 
a power reactor in order to design a proper thermal shield and avoid cracks 
in the biological concrete shield. 

In this subsection is described a programme, PRIGAM, which com-
putes the heat production in a shield from core Y-rays. In subsection 2.3 
are described analogous programmes computing the heating in the shield 
from capture Y-sources in the shield itself. 

PRIGAM is able to handle a number of shield layers and a number of 
Y-energy groups. The geometry (fig. 2.1) i s the same as for REMTHERM 
in the slab case. However, for large core dimensions the code will be suit-
able also for a spherical or cylindrical geometry; the errors will then be 
small, especially for shield points near the core, where the prediction of 
heat production is most important (e. g. in the thermal shield and inner parts 
of the biological shield). 

On the addition of an air or tissue layer outside the external surface 
of the biological shield, PRIGAM may also be used for dose rate calculations. 

PRIGAM assumes the sources of Y-rays to be spatially constant over 
the core. The heat generation from each energy group is calculated separate-
ly and the results are added up. 

The sympol u (with or without indices) will in the following denote the 
total linear Y-absorption coefficient (in cm" ), It includes absorption pro-
cesses by the photoelectric effect and by pair production, as well as Compton 
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scattering (without coherent scattering). 
The core is assumed opaque to the Y-rays, which permits the back-

face correction to be ignored. Under this condition, the volume source S 
3 ^ 

(photons/cm /sec) in some energy group (g) can be replaced by an equivalent 
surface source 

Sv 2 

S , = (photons/cm /sec) . (2.12) 
P̂  "core 

The calculations are based on the build-up concept, i. e. the desired 
quantity i s calculated from the uncoliided Y-flux and then multiplied by a 
build-up factor B to compensate for the scattered radiation. The build-up 
factor of choice is in our case the energy build-up factor for the point-iso-
tropic source. 

In this work, a quadratic build-up factor 

B(D) » 1 + pD + YD2 (2.13) 

was applied, p and Y are energy-dependent coefficients, while D denotes 
the optical distance (number of Y-relaxation lengths) in the medium between 
the source point and the shield point. This medium should be infinite and 
homogeneous, which are the conditions for the point-isotropic build-up 
factor to be valid. However, neither of these conditions is fulfilled in our 
problem. First, the shield terminates at the external surface. This causes 
an overestimation of the flux near this surface. Secondly, the shield may be 
composed of laminae of different materials. To get round this problem in 
a simple way, one replaces (2.13) by the expression 

n n 
B(D) = 1 + I P i ^ d . * I Yjt^dj)2 , (2.14) 

i = l i = l 

where p. and Y. are quadratic build-up coefficients for the material in shield 
layer no. i. The other symbols are explained in fig. 2 .1 . (2.14) implies 
that B for a lamination of layers is approximately equal to the product of the 
B.'s for the individual layers provided none of the B.'s are much greater 
than one. 

This method of constructing build-up factors for laminations is 
merely a computational trick and has little physical background. Clearly, 
in this approach, the penetration does not depend on the order of lamina« 
tions; this is , however, a very crude approximation. 
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The surface source S , causes an effective Y-flux at shield point P 

(fig. 2.1): 

2 

(2.15) 

r *W 
S I -X 

• ( t ) » - f i E1(X) + ^ r ZhXi+ 1 2 e"X(l + X) 
L i x 

(2.15) is obtained by integration of the expression 

g 
- P i - - . e " D • BCD) (2.16) 
4 ltd'5 

over the source plane. 

The heat generation rate at P from energy group g is 

Wg(t) • * g ( t ) - F E a • E , (2.17) 

where u~ i s t n e Y-energy absorption coefficient at P for energy E. 

The total heat generation rate at P is 

W(t) - I Wg(t) . (2.18) 

g 

The Y cross sections in this work a r e calculated by the programme 

itself once the concentrations and atomic numbers of the constituent elements 

of the layers are given. This was made possible by a study by A. Olsen, 

Ris5, who fitted the Y cross sections of all elements to analytic expressions 

based on formulas from quantum mechanics. The expressions a r e in general 

only valid for E > 0.5 MeV because of the absorption edges at lower energies. 

However, energies below 0.5 MeV are not very important for shielding 

design calculations. 

2.3, SEGAM I and SEGAM II, Programmes for Capture Y-Rays 

A prominent radiation source in power reactor shields is the Y-radi-

ation from neutron capture in the shield itself. Such capture processes a re 

mainly caused by thermal neutrons. 

The programme SEGAM I calculates the heat production in an infinite 

slab of shield material from capture Y-rays in the layer itself (fig, 2, 2.1). 

SEGAM II calculates the heat production in a number of adjacent slabs from 

capture Y sources in an exterior slab (fig. 2. 2.2). 



- 1 5 -

The thermal flux, as calculated with REMTHERM (eq. (2.11)), was 
in each shield layer a sum of exponentials: 

•m<*>" I V k e"kt • ( 2 1 9 ) 

Then the capture Y sources, 2 . . ••«(*)# ^ w e source slab will also be 
a sum of exponentials, both for SEGAM I and SEGAM II: 

Q(t) » I Qo^e'1"* . (2.20) 

As in the PRIG AM case, the Y-sources may be distributed over a 
number of energy groups. 

The heat generation is calculated for each exponential term and each 
energy group and then summed over terms and groups to give the total heat 
generation rate in a shield point. 

The build-up factor applied in the flux calculations is the same as for 
PRIGAM. 

The resulting expression for the effective Y-flux due to one exponential 
-kt term O . e and one group energy E i s for the SEGAM I case 

0 ( t ) » ^ ° ' k ^ n " V b 1 ( X . v ) + FjCXj-X, -V)+ ^ Y l j ^ j f t f 1 ^ 1 

l - e x p ( - ( v + l ) ( X r X ) n 
+ v + 1 j 

|xexp(jy-l)X) ( ^ - X l e x p H v + l K ^ - X ) ^ lm9Epl^.m 
+ Y 

l-expt-tv+lKXj-X)) 

( v + l ) z 

X 

. (2.21) 

The function F1(X,v ) i s defined as the integral f e v t E 1 ( t )dt . 

0 

The other symbols are explained in fig. 2 . 2 , 1 . 
For the SEGAM II case the effective Y-flux at P (fig. 2.2.2) i s 

• W - ^ N e a i K v X J E j W . B ^ a - v J X ) - exp(vX»)E1(X») + E ^ l - v ^ ' H 
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+ (B2+VX'2)(<acrtx?"vEX') - ^X^1"V^XV(B1-i-vB2-pX'+vYX'2-2YX')(%((l-VpC') 

-Ejid-vJX))* [ P " f ? ' * Y + — ^ - 7 ] (exp(-d-v)X') - exp(-(l-v)X)) 

+ Y(X'exrt-(l-v)X') - X e ^ - ^ l - v T O j . ^ . ^ ( 2 2 2 ) 

The heat generation rate is calculated from the flux as in (2.17). 
SEGAM I and SEGAM n have the same shortcomings due to the 

build-up factor as PRIGAM. One of the consequences of mis i s that, e. g. 
in the SEGAM I slab, the result i s independent of the media outside the slab. 

2 .4. Calculation Results 

The programme system described in this section has been used to 
carry out shielding calculations on the Swedish R2-0 reactor, for which 
rather comprehensive experimental results are available. 

The description of these calculations and comparisons with measure-
ments are presented at the end of sects. 3 and 6, where they are discussed 
in connection with the results obtained by the more advanced methods 
described in this report, 

3. A MULTI-GROUP BULK SHIELD PROGRAMME FOR NEUTRONS 

This section describes an improved calculation method for neutron 
bulk shield problems. A computer programme, REMD1FF, has been worked 
out which is superior to REMTHERM in the following respects: 

(1) It operates with a number of removal groups and a number of dif-
fusion groups instead of only one of each. In this way a rather detailed 
picture of the neutron spectrum can be obtained. This is desirable in prob-
lems with deep penetration of fast neutrons and in radiation damage problems. 
(2) It permits a spatial variation of the fission sources. In many ap-
plications, the source density in the outer parts of the core, which give the 
main contribution to the flux in the shield, i s very different from the average 
density over the whole core region. 
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(3) An improved method is used to solve the diffusion equations. The 
improvement consists in the fitting of the diffusion source term to a sum of 
two expressions rather than to only one. The effect of this change is marked 
for thick shield layers. 

A drawback of the REMDIFF programme is that it handles only slab 
geometry. For problems with cylindrical or spherical geometry, one pos-
sible approach is to calculate the energy spectrum with REMDIFF and then 
calculate the geometrical corrections with REMTHERM. On the other hand, 
REMDIFF i s provided with an option for the approximate handling of finite 
slabs. 

3 .1 . The REMDIFF Method 

The geometry is shown in fig. 3 .1; it i s basically the same as the 
REMTHERM geometry in the slab case. 

REMDIFF operates with a number of removal groups, G , and a 
number of diffusion groups, g_ . 

In REMTHERM. the removal cross section Z for a definite shield 
r 

layer was given as an empirical value for the material in question (concrete, 
water, etc.) . REMDIFF calculates £ for each group and each layer from 
the concentrations of the constituent elements and the microscopic removal 
cross sections d . The following expression for d is used here: 

1 
« r s '»total - 2 T C f a e l ( p ) d p . (3.1) 

JHo 

This formula has been proposed by a Swedish group ', who recom-
mend a fixed value of H<) equal to 0.6; this value i s adopted here. d t o t a l i s 
the total microscopic cross section, ^git?) *be microscopic differential 
elastic scattering cross section per unit solid angle, and n the deflection 
cosine in the laboratory system of reference, n defines a cone into which 
the virgin neutrons may be scattered without losing their character of being 
virtually unscattered. To maintain the physical consistence it i s desirable 
that the energy degradation coupled to the deviation n is not strong enough 
to reduce the neutrons, originally having th* group energy E Q , to the next 
lower group energy E Q + . . This condition is met by the group structure of 
the cross-section library presented in subsection 3.2, even in the case of 
scattering on hydrogen. From (3.1) follows that absorption and inelastic 
scattering processes "remove" the neutrons from the virtually unscattered 
removal flux. 
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When Z » £ N. 6. has been calculated for the core and the 1 
r . i ri m 

shield layers in all G removal groups, one calculates the G removal 
fluxes throughout the reactor (REMDIFF treats the core just like the shield 
layers). Actually, the calculation is limited to the set S of points marked 
in fig. 3 .1: the half core is divided by half-points, and each shield layer is 
divided by third-points. The source of the removal flux calculation is the 
fission neutrons in the core, divided into G energy groups. Spatial varia-
tion of the source is allowed: the programme reads in the source (in fact, 
the thermal flux) in a number of core points, and makes a 6th order poly-
nomial least-square fit. The resulting polynomial, P(x), has no terms with 
odd powers owing to the requirement of symmetry. With this source, the 
removal fluxes in all points and groups are calculated as the integral 

« - i f P (x )dx- iE 1 (S (X,P) ) , (3.2) 
r.core J a 

where S(X, P) i s the optical distance ( JI dr) from the source element to 
P. (3.2) is calculated by numerical integration. A small numerical com-
plication arises if P is one of the three core calculation points; as titese lie 
in the source region, zero arguments occur in E , . This calamity is cured 
by integrating (3.2) by parts. The result i s essentially an integral like 
(3.2), but with E, replaced by the E.-function, which is regular for zero 
arguments. 

When the removal flux calculation sketched above i s finished for all 
G removal groups, one begins the calculation of the g diffusion fluxes 
in core and shield, starting at the fastest group, g • 1, and ending with the 
slowest, g « g , which is the thermal group. 

It i s characteristic of the REMDIFF method that each removal group 
gives a source contribution not only to the fastest diffusion group (the Eng-
lish method), but to all of mem. Further, outscattering from diffusion 
group g gives sources not only to the next slower group, g + 1, but to all 
the groups g + 1, g + 2, ...., g . This treatment of the transfer between 
groups was proposed by AB Atomenergi, Sweden '. The cross-section 
library, presented in 3 .2 , utilize« only partially the possibilities of the 
allowed group transfers. 

The diffusion equation in group no. g (1 4 g < g^J and layer no. 1 
(0*1 < l ) reads m 
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d2* 
M± D gl — 3 ^ - ( \ gi + £outsc, gl> • • gi + V X ) -° ' (3- 3 ) 

dx 

2 , is the absorption cross section. 2 * . is the cross section 

for scattering out of group g. D . is the diffusion coefficient, calculated as 

D g l = 7 I £ w i t h 2tr " \ + *outsc + W ^ -

where S (1 -u) = I N . d„ .(l-p.) is the group self-scattering cross section 
S ' X S_ X X 

i 
corrected for anisotropy. 

The source term Q , (x) is a sum of removal sources 

G m 

G-l 

and (if g > 1) diffusion sources 

g- l 

Qgi,dif<x)= £ *Cg • $ * « • t3.s) 

The removal -* diffusion transference cross sections z £ „ a r e 

elements of a G_ • g ^ matrix, while the diffusion—diffusion transference m °m * 

cross sections 2 ^ . , , are elements of a g „ • g^, matrix with zeros below 
r*g "at °m 

the diagonal. $ or™^31) an<^ $vi (x) a r e removal and diffusion fluxes respec-

tively. 

In the following, the technique applied in solving the system of g • 

(1 + 1) diffusion equations (3.3) is described. The order of solution is 

chosen so that first the equations with g a 1 a re solved for all regions 

(1=0 , 1, . . . . , 1 ), then all equations with g = 2, and so on, ending with 

the thermal group g « g . 

The equations with g * 1 contain only removal sources. By the aid 

of (3.4) these sources can be calculated at the same set of points, S, as the 

removal flux, see fig. 3 .1 . In each region is then constructed an analytic 

function of exponential or trigonometric type having the correct value at 

these points. This analytic function is simple enough to allow an analytical 

solution of the diffusion equation. The diffusion flux for g • 1 i s then cal-

culated in the points S, whereafter the sources for the equations with g • 2 
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at these points can be calculated from (3.4) and (3.5). The situation is now 
just the same as for the equations with g s 1« and one proceeds in the same 
way as described until all the equations down to g = g are solved. 

We now turn to the problem of constructing the analytical expressions 
for the diffusion sources mentioned above. 

Fig. 3. 2.1 shows a shield layer with calculated source values k, 1, 
m, n at equidistant points (separation h). It would be desirable to construct 
a function A eax + B e"x going through all the four points because such an 
expression yields very simple solutions of the diffusion equations. However, 
this is not always possible. Instead it can be shown that a function of one of 
the following four types: 

ax pxv TtX I : (A e U i + B e^A) cos - ^ 

II : A e a x + B e p x cos Jj£ 

III: 

IV: 

A e o x + B ePx 

A ea X cos(b + px) 
S 

(3.6) 

will have the desired property. Determination of the type of expression and 
the constants is carried out by Prony's method. In fact, one searches for 
an expression of type HI above, but accepts one or two complex exponents 
leading to the other three types. Then, if one puts e « y, e" * z, the 
following four equations must be satisfied: 

A + B » k 

Ay + Bz » 1 
2 2 

Ay + Bz « m 
3 3 

Ay + Bz • n . 

(3.7) 

Instead of solving for (y, z) one solves for (s.p s«), coupled to (y, z) by the 
requirement that the quadratic equation 

v + Sj v + s , s 0 (3.8) 

must have the roots (y, z). From (3. 7) and (3. 8) follows that 
2 2 

k ,s2 + 1 Sj + m • A(y + Sj y + s2) + B(z + Sj z + s2) » 0 
and 

2 2 
l s . + m s . + n « Ay(y + s< y + s„) + B z(z + s, z + 80) * 0 ; 
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(sl» s2^ a r e t b e n determined a s t h e solution of the equations 

k s , + i s , + m s 0 

l S g + n a S j + n ^ O , 

whereupon (y, z) are calculated from the symmetrical equations 

(3.9) 

y + z - - s. 
1 (3.10) 

yz * s2 

these give complex or real solutions for y * e and s * 
which in turn 

determine o and p. As mentioned, complex values for a or p lead to the 
types I, n or IV. Finally, A and B are easily determined from eqs. (3. ?) 

In. the corresponding problem for the core region (fig. 3 .2 .2) file 
desired function must have the value k at the core centre x = 0, 1 at x • h. 
and m at the core edge x • 2h. The choice of die function 

A(cos ox + cos px) ( S . U ) 

(a and p may be complex) ensures an expression symmetrical about x » 0, 
which i s a natural requirement. 

Of course, A = •». By putting cos ah * y, cos ph * z, one obtains the 

equations 

y + z 

y 2 f z 2 - 1 

> 21 
"T 

m 
(3.12) 

for the determination of (y, z). 
An analysis shows that the expression (3.11) may split into 

types of functions, all containing real constants: 

I 

n 
in 

IV 

V 

A(cos ox + cos px) 

A(cos ox + cos px) 

A(cos ox + cosh px cos •!*£» ) 

A(cosh oh + cosh px) 

1Ex 

A(cosh oh + cosh px cos f i x ) 

(3.13) 
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VI : A(cosh ox + cosh px) cos - ^ - i 

VII: 2A cos ax cosh px . S 

All the source expressions {3. 6) and (3.13) yield fairly handy solu-

tions of the diffusion equations (3.3). By dividing (3. 3) by D , and introducing 

x ^ - S a t g l ^ 2 o u t s c , g l ( 3 J L 4 ) 

and the constructed source function, one obtains a normalized equation with 

the common form (indices 

for the sake of clearness) 

the common form (indices g(l, . . . , g ) and 1 ( 0 , . . . . , 1 ) a re suppressed 

! • • - -H 2<t» + I aj exp(oiX) cos (b.+ p.x) = 0 ; (3.15) 
dx i = i 

(3.15) has the general solution 

xx, „ -Xx 
2 ( x 2 - 0 i

2 + p^Jcostb.* Pf) - 2 o.p. sinQM- p.x) 
* « A e x+ B e " x x + I a, exp(ax) n * 9-5 n—* 

iml ^ ^ ( x ^ - a ^ ^ M a ^ ^ 

(3.16) 

For each diffusion group g we get 1 + 1 flux expressions, so that 

2 1 + 2 arbitrary constants have to be determined. The requirement of 

symmetry at once yields A = B for the flux in the core; hence 2 1 + 1 

boundary conditions are necessary: 

$ and Dg~- have to be continuous at the 1 region interfaces. • 

must vanish at the extrapolated external boundary. 

The extrapolation length is taken to be 

d = M i * 2 .13D ; (3.17) 
t r 

D refers to group g and layer 1 . 
m 

The solution of the 2 1 + 1 linear equations for determining the A1 s 

and B's proceeds just as in REMTHERM. 

It was mentioned at the beginning of this section that REMDIFF could 

handle a finite slab geometry approximately. On the assumption of a rect-
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angular shape of the slabs (a x b) it does so by adding ( JL) + (•£-) to the 

expression for x , (3.14). 

The REMDIFF programme accounts for the resonance absorption in 
238 

the core by U in a way which will be discussed in 3. 2. 

3. 2. The Cross Section Library 

A cross section library containing some frequently encountered 

nucleides in shielding design has been worked out. These nucleides are 

given in table 3 .1 . 

Table 3 . 

Nucleide No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

1 

Symbol 

H 

D 

C 

O 

Mg 

Al 

Si 

Ca 

F e 

Z r 

Pb 

U-235 

U-238 

The group structure chosen is seen in fig. 3. 3. Although one has 

the liberty of choosing the energy group limits arbitrarily, it is practical 

to avoid "overlaps" between the removal and the diffusion groups. The 

present group structure has two removal groups and nine diffusion groups, 

the two highest of which have the same limits as the removal groups. The 

upper energy limit is 10 MeV. Apart from the two lowest diffusion groups, 

all the groups have a lethargy width of 2. 25. This value fits well into the 

structure of the GAM I library , which has provided much of the raw cross 

section information used in preparing the present library. The reason for 

choosing the lower limit of group 8 to be 0.414 eV was that this value is 

generally accepted as the upper limit of thermal energies. All the micro-
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scopic cross sections collected in tobies 3. 2 - 3. 6 are given in units of barn. 

Removal cross section.« 

The removal cross sections are calculated frem formula (3.1). A 
235 

weighted average, according to the fission spectrum of U , is calculated 

for each removal group. Raw cross-section information is taken mainly 

from ref. 2, and to some extent from ref. 3. Calculation of f d Jujdu 
Jp *o 

requires knowledge of the angular distribution (differential cross section). 

This knowledge is provided by ref. 4. 

In table 3. 2 the calculated removal cross sections are collected. 

Fission sources 

By integration of the fission spectrum over the two removal groups 

it i s found that 72. 0% of the neutrons are born in group 1, the remaining 

28. 0% in group 2. 

Removal-»diffusion cross section 

rd Next, the transference cross sections d - . for scattering from 

removal group i to diffusion group j are calculated. On account of the open 

group structure it is a good approximation to assume that all cross sections 

other than d. . and <?••+•% are zero. As before, the group averaging is 

made by weighting with the fission spectrum. The results are collected in 

table 3. 3. 

The remaining cross sections concern the diffusion groups only. It 

was decided not to prepare microscopic data for the thermal group (no. 9) 

in the library, but instead to read into the programme the macroscopic 

thermal data 2 and D for all the regions. The reason for this is that 2 

and D for thermal neutrons are not always uniquely determined from con-

centrations and microscopic data. 

Proper averaging of the cross sections over the diffusion groups 

requires knowledge of the energy spectrum. For group 1 this is assumed 

to be a somewhat degraded fission spectrum, while for the groups 2-8 it is 

assumed to be an 1/E-spectrum. 

Absorption cross section 

These appear from table 3. 4. 
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The quoted absorption cross sections for U do not include the 

resonance absorption. Instead, the resonance escape probability p is taken 

as an input quantity in the REMDIFF programme. In the present library it 

is assumed that p can be written as 

P = P5 P6 P7 , (3.17) 

where p5> Pg, p„ are group escape probabilities for the groups 5, 6, 7, and 

further that 

3 

P5 = P6 = P7 » fp • (3.18) 

This is a rather crude approximation, but is justified by the minor 

importance of the correct calculation of diffusion fluxes in the core for a 

shielding design programme such as the present. The equivalent increment 

of S for group g (g = 5, 6, 7) is calculated as 

3 
A I = Z t (1 - \TpJ . (3.19) 

a, g outsc, g * N y' x ' 

Diffusion transference cross sections 

The transference cross sections d . . for scattering from diffusion 

group i to diffusion group j are calculated under the same assumption as that 

madefor d ] ^ , namely that d ^ . = O f o r j > i + 1 . Nucleide no. 7, Si, 

forms an exception. Here, inelastic scattering in group 1 degrades the 

energy so much that after the scattering it corresponds to group 4 or 5. The 

cross sections are 

Si: d j i 4 = 0.1774 and <} d ^ g = 0.1276. 

The cross sections d . . and d . .. « for all 13 nucleides a re 

found in table 3.5. 

Finally, table 3. 6 shows the cross sections d , - (1-u). They are 

used to calculate the diffusion coefficients. 
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Table 3.4 

Nucleide 
No. 

Gr. No. 1 

2 

3 

4 

5 

6 

7 

8 

1 

0 

0 

0 

0 

0 

0.0033 

0.0278 

0.0620 

2 

0 

0 

0 

0 

0 

0 

0 

0 

3 

0 

0 

0 

0 

0 

0 

0 

0 

4 

0.0177 

0 

0 

0 

0 

0 

0 

0 

ITS
 

0.0223 

0.0722 

0.3289 

0 

0 

0 

0.0033 

0.0100 

6 

0.0052 

0.0022 

0.0189 

0.0111 

0 

0. 0067 

0.0178 

0.0600 

7 

0 

0 

0 

0 

0 

0 

0 

0 

8 

0 

0 

0 

0 

0 

0 

0 

0 

9 

0.0018 

0.0052 

0.0076 

0.0080 

0.0222 

0.0679 

0.2089 

0.6130 

10 

0 

0.0178 

0.0789 

0.3700 

0.6711 

0.0022 

0.0144 

0. 0340 

11 

0 

0 

0 

0 

0 

0.0033 

0.0144 

0. 0400 

12 

0 

0.0484 

0.4657 

1,8411 

8,0955 

29.5000 

27.22J1 

11.8520 

13 

0.1393 

0.1644 

0.0311 

0.0047 

0.0128 

0.0536 

0.2022 

0.4970 



Nucleid 
No. 

Gr. i—.1 

1—2 

2—2 

2—3 

3—3 

3—4 

4—4 

4—5 

5—5 
5—6 

6—6 

6—7 

7—7 

7—8 

8—8 

8—9 

e 1 

1.1010 

1.5720 

4 .6076 

3.0412 

9. 6049 

6.3395 

11 .8673 

7. 8347 

12 .0480 

7.9520 

12 .0480 

7.9520 

12 .0480 

7 .9520 

8 .5860 

11.4140 

2 

0.3968 

1.9376 

2.1740 

1.0378 

2.2961 

1.0961 

2.3014 

1. 0986 

2.3403 

1.1171 

2.3210 

1,1079 
2. 3014 

1.0986 

1.4280 

1.9720 

1. 
0. 

3 . 

0. 

4 . 

0. 

4 . 

0. 

4 . 
0. 

4 . 

0. 

4 . 

0. 

4 . 
0. 



Table 3.6 

Nucleide 1 
No. 

Gr. 1 

2 

3 

4 

5 

6 

7 

8 

0.3670 

1.5359 

3.2016 

3.9558 

4.0160 

4.0160 

4.0160 

2.8620 

2 

0.3320 

1.8190 

1.5307 

1.5354 

1.5602 

1.5473 

1.5343 

0.9520 

3 

1.5737 

3.2021 

4.0324 

4.1181 

4.1350 

4.1360 

4.1358 

3.8776 

4 

1.4402 

2.7189 

3.3168 

3.3168 

3.J168 

3.3168 

3.3168 

3.2053 

5 

1.0479 

3.7566 

5. 9430 

3.2830 

3.2830 

3.2830 

3.2830 

3.1861 

6 

1.2435 

2.6123 

3.7969 

1.3671 

1.3405 

1.3342 

1.3358 

1.3958 

7 

0.7508 

1.4937 

1.4555 

2.3216 

2.3320 

2.1312 

2.1312 

2.0769 

8 

1.1212 

1.2503 

1.4426 

1.9206 

1.9098 

2.5932 

2.5932 

2.5686 

9 

0.6947 

1.9655 

5.2360 

6.5420 

10.0679 

10.6982 

10.6982 

10.6298 

10 

1.2309 

4.9071 

8.1035 

8.9723 

5.4069 

6.0952 

G.0952 

6.0714 

11 

2.0276 

4.1680 

10.4991 

10.6535 

11.1164 

11.1164 

11.1164 

11.0782 

12 

1.3390 

3.7097 

10.2347 

10.4311 

10.4311 

12.1137 

11.8528 

13.7044 

13 

1.4875 

4.4454 

11.4859 

14.4295 

23.5670 

5^.5768 

11.8026 

8.2212 
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3. 3. Calculation Results 

Calculations performed b; >ueaiis of REMDIFF have been compared 
15} with measurements carried out on the Swedish reactor R2-0 at Studsvik ' . 

This reactor is a 100 kW swimming-pool reactor, intended primarily for 

shielding experiments and critical studies. The core is of box shape, with 

the dimensions 61. 7 x 60.0 x 32. 4 cm. 

Two of the mock-ups described in ref. 15 were selected for the pur-

pose of comparison between measurements and JIEMDIFF calculations. 

These two configurations include two of the most common shielding mater i -

als, water and concrete. The arrangements are shown schematically in 

figs. 3.4 and 3.5. The geometry is essentially one-dimensional slab geom-

etry. In configuration 1 (fig. 3.4) water is the only shielding material . In 

configuration 2 (fig. 3.5), the bulk shield of magnetite concrete (p = 3. 74) 

is preceded by 20 cm water and 1 cm aluminium. The REMDIFF calcula-

tions were not carried out for more than about 1 metre of water or concrete, 

although the actual thickness of the mock-ups was considerable greater. 

This restriction on the calculation stems from troubles caused by the ra ther 

limited numerical range of the IBM 7090 computer. These troubles have 

now been overcome, but it was not found worth while to repeat the calcula-

tions with the increased shield thicknesses. In fact, good estimates could 

be obtained by a simple extrapolation of the flux curves presented here. 

The Swedish measurements comprise the thermal flux • . . , the 

epithermal flux per lethargy unit •__,-, and the fast flux in the range 0.3 -

2 MeV, • - .. Owing to the coarse structure in the fast-energy range of 

the present cross-section library of REMDIFF, comparative calculations 

could not be made for • - ..., but were restr icted to • . . and * .. The 
fast' tn epi 

thermal flux • .. in some types of shield (iron, heavy concrete, etc.) has 

a direct effect on the production of hard capture-Y rays, which in turn often 

yield the dominant contribution to the total dose at the external surface of 

t he biological shield. Also the epithermal flux • . may be important in 

shielding work as it is responsible for part of the damage to shield materials 

like concrete. The measured epithermal flux is determined as that part of 
15) 

the flux which has a 1/E-spectrum '. The calculated value of • • is 
obtained from the flux results in diffusion group no. 5 (130-1230 eV); the 

flux results for the neighbouring groups 3, 4, 6, and 7 were almost the 

same as that for no. 5, indicating a 1/E-spectrum in these groups. 

The flux curves as obtained with REMDIFF were corrected for the 

finite lateral extension of the core (61. 7 x 60. 0 cm). The correction factor 
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described in ref. 16 for Lhe transformation from infinite plane source to 

disk source was applied; its value aned from 1 near the core to about 1/3 

far from the core. 

The results of the comparison between calculations and experiments 

are seen in figs. 3. 4 and 3. 5. The agreement is always inside a factor of 

three, and in most cases much better. In shielding work such a result must 

be considered very good, in fact better than one would expect for a calcula-

tion scheme like the present. The thermal flux points in the core, used as 

input in REMDIFF, are marked with crosses in figs. 3. 4 and 3. 5. One sees 

that these points are very close to the calculated thermal flux curves in the 

core region, indicating an internal consistency and soundness of the calcula-

tion method. 

Also calculation results for the thermal flux obtained with the simple 

removal-diffusion code REMTHERM mentioned in 2.1 are shown in the 

figures. The results are corrected for the finite core just as in the case 

of REMDIFF. The agreement with experiments is not good for the water 

shield, but better for the concrete shield. 

A proposal for improvements of the REMDIFF cross-section library 

would probably include a more detailed group structure for the energy range 

above 0.1 MeV, where most of the cross sections decrease rapidly with in-

creasing energy. The number of removal groups should probably be in-

creased from two to about five. 

The REMDIFF programme is very fast. The two problems discussed 

here were solved on the IBM 7090 computer in less than 20 seconds each. 

4. GENERAL OUTLINE OF THE MONTE-CARLO METHOD IN 

CALCULATING NUCLEAR PARTICLE TRANSPORT 

The remaining part of the present report is devoted to the Monte-

Carlo method and applications of it. 

Monte-Carlo is often referred to as the method of random sampling, 

in fact a very appropriate designation. 

A most important field of application is problems in nuclear particle 

transport, and only such problems will be considered in this report. 

However, also other sorts of problems, both in physics and in ap-

plied mathematics, have been solved successfully by means of Monte-Carlo. 

Examples a re problems in statistical mechanics, calculation of polymer 

molecule structures, solution of very large equation systems^ and calcula-

tion of multidimensional integrals. [ 



Monte-Carlo problems must always be solved on digital computers, 

preferably of high speed and large size. 

4 . 1 . Principle of the Monte-Carlo Method 

Quite generally, the principle of Monte-Carlo may be explained as 

follows: One wishes to calculate some quantity - say a multidimensional 

integral or a neutron transmission - which is so complicated that an analytic 

solution is impossible or not feasible. One abandons the calculation of the 

exact (true) value Q of the quantity and instead tr ies to obtain a so-called 

statistical estimate Q e s t - This estimate is calculated as an average: 

N 

%st = \ -i I W < 4 - x > 
i=i 

R. is a so-called "sample", which determines the representative value Q. 

of the quantity. In the first example, where the quantity was a multi-

dimensional integral, R. will be a multidimensional point. In the other 

example, with neutron transmission R. is the "history" of a neutron, i. e. a 

set of consecutive values of neutron energies, positions, and directions, simu-

lating in some way the neutron events from birth to death. In both cases, 

each sample R. will be constructed by the aid of a series of "random num-

bers" r . j , r . „ , , . , , all lying between zero and one; their properties and 

the production of them on digital computers will be discussed in 4. 2. 

In most cases the estimate is "unbiased", i. e. the mean value of 

Q e s t i s * 

u(Q e s t) - Q . (4. 2) 

(4.2) holds in all our applications. 

(Note the difference between the terms mean and average: the mean 

value u refers to the theoretical probability distribution, while the average 

(marked with a bar) is determined from the actual samples.) 

Restricting oneself to considering only applications in nuclear par-

ticle transport, one finds it tempting to define Monte-Carlo merely as a 

simulation of real particle histories: as each nuclear scattering event is 

of a probabilistic nature, it can be simulated by the aid of one or more 

random numbers. However, this definition of Monte-Carlo as a statistical 

process by which one follows the particle from birth to death, is too narrow. 

This "random walk" or "direct simulation" method is only the simplest of 

several possible approaches in the field of Monte-Carlo, and - as will be 
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discussed later - direct simulation is in fact unsuitable for problems of 
some complexity, where it must be modified by the inclusion of variance-
reducing devices, to be discussed later. 

The variance of Q e s t i s defined as the mean square deviation: 

v a r l Q ^ ) * u t Q ^ - Q ) 2 . (4.3) 

where Q is the true value of the quantity. 
In an actual Monte-Carlo calculation one usually obtains a set of M 

estimates 0 l s t (* < j ^ M) of the type (4.1). Then the following formulas 
will be approximately valid: 

M 

j=l 

and 

var(0 e . ) 
v a r f l Q «* | ^ S t - (4.5) 

In these formulas, O . is the set average, 

M 

^stB^r I i t - <4-6> 

For practical Monte-Carlo calculations concerning neutron or photon 
transport, the number of histories, N, used to provide a single estimate 
Q . will normally be of the order of a few thousand, while the number, M, 
of independent estimates is , say, ten. The advantage of having several 
independent estimates (M> 1) is obviously mat it is possible to judge the 
variance of the result (eqs.(4.4) and (4.5)). 

A good Monte-Carlo calculation is one in which the variance of the 
result as well as the computing time are small. This will be further dis-
cussed in 4. 6. 

4. 2. Production of Random Numbers 

As mentioned in 4 .1 , a Monte-Carlo calculation involves the use of 
"random numbers". Customarily, these numbers are restricted to the 
open interval between 0 and 1. 

Random numbers have a probability density function of rectangular 
shape. 



- 34 -

The production of random numbers is carried out on the digital com-
puter itself. A great variety of random number generators exists, but most 

of them are tailored for some specific computer type. A multiplicative 

generator, suited for ALGOL and FORTRAN, has been proposed by L. Hans-

son, Riso, and has been adopted in all the Monte-Carlo calculations de-
scribed in this report. 

The generator utilizes the following simple algorithm: 

Y = [ A X /M] 
Z = AX - MY 

r = Z/M 

X = Z 

(4.7) 

The square bracket stands for the largest integer^ the argument. 
The integers A and M have the values 125 and 2, 796, 203 respectively, r is 
the resulting random number, always satisfying the inequality 0 < r < 1. 
The generator is started by assigning to X an arbitrary positive integer < M. 
By a new "call" of the generator, the foregoing X-value is used for calcu-
lating the new r-value. In this maimer one can obtain an infinite number of 
such r-values between 0 and 1, and the sequence will be periodic with a 
period of M-l ' calls. All the r-values within a period are different from 
each other. 

Such a series of r-values cannot be truly random because each r-
value is uniquely determined by the foregoing. However, the simulation of 
random numbers is very well established by the algorithm (4. 7), provided 
the total number of calls of the algorithm in the actual problem is below M. 
If this is not the case, there is a risk of introducing a periodicity in the 
whole Monte-Carlo calculation. Troubles from this periodicity did not 
seem to occur in practical calculations till after at least several hours' 
computing time on the same problem, run on the fast IBM 7090 computer. 

An algorithm, like (4. 7) may be characterized as a generator of 
"pseudo-random" numbers. 

The "randomness" of the numbers generated by (4. 7) has been tested 
in several ways. One of these tests ' is a X -test both of the rectangular 
distribution of the r-values and of their independence of each other. The 
result of this test was satisfactory. 
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4. 3. Monte-Carlo in Nuclear Purucle Transport 

The further discussion of tiie .Moute-Carlo method is restricted to 

applications to the transport o: mtc'enr particles, of which furthermore only 

neutrons and photons are considered. These particles travel independently 

of each other. The Monte-Carlo procedure then consists in the generation 

of a set of independent particle histories. The particles are followed from 

their birth at the source to their death, caused by absorption, escape or any 

other "category of loss". Random numbers are used to sample path lengths, 

energy degradation and angular deflection on collision with nuclei, and so on. 

How this is done in detail, is discussed in the following subsections. As 

mentioned previously, one seldom simulates slavishly all the events of the 

particle history because the variance of the results i s then too large. A 

number of "tricks" a re frequently applied, some of which are mentioned in 

4 .6 . 

The following question naturally a r i ses : What kind of neutron- and 

Y-problems can profitably be solved by Monte-Carlo? It is very difficult to 

give a general answer, but one may mention the problems described in 

sections 6 and 7 as typical examples of problems for which Monte-Carlo is 

suitable. They a re of moderate complexity, too involved to permit analytic 

solutions, but simple enough to be solved by efficient Monte-Carlo methods. 

On the other hand, in simple problems permitting solution by an analytic 

method, the latter will generally be superior to Monte-Carlo. 

4.4. Fundamental Sampling Principle 

A standard problem in Monte-Carlo is the following: 

Given the probability density function (pdf) for some variable; one 

wishes to set up a procedure for obtaining a statistically correct sampling 

of this variable by the aid of a random number r(0 < r < 1). 

Such a procedure must of course reproduce the original pdf; for a 

very large number of samples, the values obtained of the variable in question 

m ist be distributed in close accordance with the pdf. 

As an example, consider the selection of deflection angle 6, or rather 

the cosine u of such an angle, for a certain scattering event when the angular 

distribution is given {fig. 4.1) in ferms of a pdf in u, denoted f{u). The first 

step is to normalize f(u) oo that 
1 

f(u)du = 1. (4.8) 
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Next, one constructs the distribution function 

P 
F(>0 = f % ' ) dp« (4.9) 

-1 

with the properties F(- l ) = 0, F{1) - 1. 

Finally, one inverts the function r = F(u). The inverted function is 

denoted 

U = <|) (r) , 0 < r <1 . (4.10) 

It is now shown that (4.10) is the statistically correct sampling rule 

for u when r is identified as a random number: 

If a large number, AT, of u-values are sampled by means of N random 

numbers, the number of r-values between r and r + dr is dN sa N dr, while 

the p-values obtained lie between u and u + du with u = (j; (r). The density 

of u-samples at u is 

§ - m r m J * ' F'(u) = N- f(u) (4.11) 

so that -jr - f(u) du q. e. d. 

The formula (4.10) constitutes the fundamental sampling principle in 

Monte-Carlo. The above treatment refers to a continuous pdf; however, the 

discrete case is handled in quite a similar manner. 

4. 5. Standard Routines in Problems of Nuclear Particle Transport 

A Monte-Carlo programme is constructed by linking together a 

number of subroutines, each corresponding to a certain stage of the calcu-

lation. The programme is advantageously described in terms of a flow 

diagram. The subroutines in such a diagram appear as single "boxes" or 

as blocks of boxes. A number of the subroutines are common for a great 

variety of problems. 

The subroutines depend on the choice of the set of parameters used 

to determine the history of the particle followed. These parameters in-

clude the particle energy E together with geometrical co-ordinates. 

The geometrical co-ordinates are the momentary co-ordinates of 

the position and the direction vector of the particle. As a rule, rectangular 

co-ordinates are preferable, even in cases with cylindrical symmetry. Only 
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for spherically symmetrical problems should other co-ordinates be used. 

in cartesian space, the momentary state of the particle i s characterized by 

the s even-dimensional vector (E, x, y, z, u, v, w). The direction cosines 
2 2 ^ 

u, v, w satisfy the relation u + v + w" = 1. 

We now proceed to a description of the most common subroutines. 

They are described more thoroughly in ref. 6. 

Isotropic source 

The problem is to select the direction cosines u, v, w for a starting 

source particle with isotropic distribution. It is tantamount to choosing a 
2 2 2 

point (u, v, w) uniformly distributed on the unit sphere u + v + w = 1 . 

This is done by selecting first the cosine w uniformly in -1 <w < 1 . The 

corresponding formula is 

w = 2r - 1 (4.12) 

here and in the following, r denotes a random number (0 < r <1). Then a 

new random number is used to select an angle V from a uniform distribu-

tion in - It < «P < it 

vp = TT • (2r - 1) . 

Finally, u and v are calculated as 

(4.13) 

u = tr~j cos <p 

= i 1 - w sin «P 
(4.14) 

Sampling of particle flight distances 

Consider an infinite homogeneous medium with a total macroscopic 

cross section 2 for the particle in question, say a photon of energy E. The 

problem is to select the free flight distance of the photon. 

According to the fundamental sampling principle, we construct the 

probability density function (pdf) for flight distances 1; it is 

p(l) = 2 • exp(- 21) . 

The distribution function is 
1 

F(l) p(l')dl» = 1 - exp(-Sl) , 

(4.15) 

(4.16) 
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By solving with respect to 1 one obtains 

1 - - •£. ln(l - r) . (4.17) 

The random number r may be replaced by 1 - r . The final sampling 

formula is simply 

1 = - l n r / E . (4.18) 

Decision of escape from a zone 

An actual Monte-Carlo problem normally involves several zones 

separated by boundaries, and hence one needs a routine which decides 

whether such a boundary is crossed or not during the particle flight. The 

routine is easily established once the distance L along the flight to the 

boundary is calculated; one simply compares L with the sampled track 

length 1. 

The calculation of L is normally carried out by solving the flight 

equations (x1, y' , z') = (x, y, z) + t(u, v, w) together with the equation for 

the boundary, <f (x', y' , z1) = 0. Since (u, v, w) is a unit vector, the 

resulting t-value is simply L. This shows one of the advantages of the 

cartesian co-ordinate set (x, y, z, u, v, w) even in cases where the boundary 

is , e. g. , cylindrical. 

If escape from one zone to another occurs, one "forgets" the previous 

piece of flight and samples a new flight distance from (4.18), starting from 

the boundary, but of course with unchanged (u, v, w). That this procedure 

is statistically correct, follows both from the pdf, eq. (4.15), and from 

physical considerations. 

Selecting of nucleus type for collision 

This problem ar ises when a mixture of different nuclei is present. 

One then writes the total macroscopic cross section for the mixture as a 

sum of components corresponding to each type of nucleus: 

S » Z 1 + . . . + 2 ^ L + . . . + Z n . (4.19) 

Sampling of the type i, from these cross sections and the random 

number r , is an example of the discrete analogy of the general sampling 

problem for continuous variables (see 4.4). 

One first normalizes all the cross sections by division by 2 : 
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1 - 2 ^ + . . . + * < * + . . . + 2 * . (4.20) 

Then a table s , s, . . . , s is constructed so that 

s o = 0, sx = 2 * . s 2 = S l + 2 * . . . . , s n » 1 . (4.21) 

Finally, the type i is determined as that i-value which satisfies the 

inequality 

ai_1 < r < s £ . (4.22) 

Selecting of type of collision 

Having determined the type i of nucleus in the collision (if several 

nuclei are present), one may wish to select the type of collision event (ab-

sorption, elastic scattering, inelastic scattering, fission, etc .) . This 

procedure is exactly similar to the one discussed above. 

Deflection angle in scattering 

The sampling technique here depends on the physical problem; it 

will be discussed in the following sections. 

Direction parameters after the collision 

Given the incident cosines of direction, u, v, w, and the scattering 

angle (J> (in the laboratory system) with cosine a. One wishes to set up 

a routine to determine the direction cosines of the deflected line of flight, 

u', v', w'. We omit the derivation (given in ref. 6) and present the result: 

u' = (bcwu - bdw) / \| 1 - w + au "> 

v' = (bcwu + b d u ) / \1 - w + a v 

Vi 9 
w ' = - b c ' l - w " + a w . s 

(4. 23) 

Here, b = ^ 1 - a2 , c = cos 5 , 6 = (2r - l)i t , d =(sgn6) U - c 2 . 

It is clear that (j* alone does not suffice to determine u1, v' , w'; therefore, 

also the azimuthal scattering angle 5 must be fixed. 

Other subroutines 

In the final flow diagram of the Monte-Carlo calculation some regi-

stration subroutines will appear. 

A starting routine which counts the number of particles fed into the 



- 40 -

system must be present. This routine stops the calculation when the number 

of particle histories has reached the prescribed figure. 

In order to ' 'kill" a particle which in some sense has become suf-

ficiently unimportant, one must have one or more cut-off routines. 

Further, some scoring routines must be present to account for 

changes in the desired physical quantity (transmission, energy deposition, 

etc.) during the Monte-Carlo calculation. 

4 . 6 . Variance-Reducing Devices 

As mentioned in 4 . 1 , the result of a Monte-Carlo calculation has a 

certain sampling variance 

V = d 2 , • (4.24) 

where 0* is the standard deviation. 

V is inversely proportional to the total number of samples, i. e. 

roughly to the computing time t: 

V = k2 - I ^ 

VT 

(4.25) 

Sometimes the variance V in an actual calculation is larger than can 

be tolerated. An obvious way of decreasing the variance is to increase the 

computing time. However, eq. (4. 25) indicates a ra ther low rate of con-

vergence, and a sufficient reduction of V frequently requires unacceptably 

long computing t imes. 

This calamity may often be cured by altering some of the subroutines 

in the calculations. The modifications a r e carried out by introducing so-

called variance-reducing devices. A great variety of such devices have 

been developed, and some of them are discussed in the following. 

For the sake of simplicity, most of the discussion until now of the 

various subroutines has referred to the "direct simulation" method, where 

each elementary event is treated by a statistical game (call of a random 

number) in close accordance with the real physical situation. As already 

pointed out in subsection 4 . 1 , direct simulation is not sufficiently effective 

for complicated problems. If instead one replaces part of the entirely 

statistical calculation by analytical calculations, the resulting answer will 

show reduced variance, but an unchanged mean value. In principle, there 

i s no limitation of this procedure: if one replaces all the statistical calcula-
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tions by analytical calculations, ..u: obtains a "conventional" calculation, 

and the variance is LCIO. However, Moule-Carlo is applied in just the 

problems in which anal>ucui solu..op.a a re impossible or not feasible. Hence, 

in each Monte-Carlo problem an optimum exists for the relative amounts of 

"random walk" and analytical caic ^-tt4ons. 

We now proceed to describe various devices for reduction of the 

variance. Most of tlier.i have been applied in the v.crk described in this 

report . 

The weight concept 

Utilization of most of the variance-reducing devices presupposes the 

weight concept. 

As a simple and illustrative example, consider a collision between 

a neutron and a nucleus; the total cross section is the sum of an absorption 

and a scattering cross section: 2. = 2 + 2 . As described earlier, the 

process type can be decided by a random number. Alternatively, one could 

introduce a weight parameter W, ascribed to the neutron. Assuming W = 1 

before the collision, one now makes the assumption that the fraction 2 / 2, 

of the neutron is absorbed, and the Traction Z /ZLis scattered; this scattered 

part i s then treated as a neutron with the reduced weight W = 2 / 2 . . 

Fluctuations due to sampling of collision type a re thus eliminated. 

The use of the weight concept normally requires a cut -off value W 

for the weight W. As the particle i s killed if W drops below W , the com-

puter time spent on an unimportant particle (i. e. one of low weight) will be 

saved. 

Weight parameters may be assigned to a particle already at its birth 

at the source. This facilitates the reproduction of a fission spectrum. 

Importance sampling 

This device consists in sampling from another pdf, *i(x), than the 

correct one, f(x). Having sampled the quantity x, one has to multiply the 

weight of the particle by f(x)/f, (x), correcting the distortion of the pdf. As 

one has the liberty of choosing f,(x) arbitrarily, it is possible to "emphasize" 

a certain range of x-values, which explains the term "importance sampling". 

An example in which this device is advantageous is the calculation of 

a detector response to a source far away. The angular distribution of the 

source particles is here transformed in order to emphasize directions 

towards the detector. 
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Another example is found in 1.3.2, where track lengths are sampled 

from the scattering cross section instead of from the total cross section. 

Splitting 

This technique consists in splitting a single particle with the weight 

W into n identical particles, each with the weight W/n. These n particles 

a re then treated as individual particles. For instance, one can choose n = 2 

and let the two split particles have oposi t - 1 directions. Such a procedure 
5) has been applied successfully to criticality calculations ' . 

A technique related to splitting has been applied in the solution of the 

problem in subsection 5. 2 of this report. 

Russian Roulette 

"Russian Roulette'' is a statistical game played in order to kill un-

important particles. This game gives the particle a certain surviving 

probability p, but compensates by multiplying the weight of a surviving 

particle by —. This technique is applied in 6.4. 

Stratified sampling 

Stratified sampling is a device which is normally restricted to source 

routines. As an example, consider the emission of neutrons from a surface. 

Instead of the source points being sampled at random, the surface is divided 

into a number of "strata", nos. 1, 2, . . . , n. One s tar t s by selecting a 

source neutron in a point of region no. 1; after the history of this neutron 

has terminated, the next neutron is selected in region no, 2, and so on, un-

til region no. n, whereafter the cycle is repeated. Weights may be assigned 

to each of the regions. 

This device has a limited variance-reducing po-wer, but is easy to 

establish, and the use of it is therefore rather extended. 

Stratified sampling is also possible for selecting of energies of 

source particles. 

The exponential transformation 

When trying to solve deep-penetration problems by straightforward 

Monte-Carlo, one often has to emit a prohibitively large number of source 

particles to get a reasonable response far from the source. This trouble 

may be overcome by transforming the Bolzmann transport equation by the 

so-called exponential transformation. The random walk procedure is then 

adjusted to the transformed equation. This method is applied for the solu-
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tion of the Y-shielding problem described in section 6. 

The semi-analytic method 

Sometimes it is possible to treat one or more particle parameters 

by completely analytic means so that sampling variations a re restricted to 

the remaining parameters. Such a procedure is described in ref. 5 for the 

solution of a Y-shielding problem in slab geometry. It is here the collision 

abscissae z that have been "separated" from the other variables and treated 

analytically, so that the random sampling is restricted to energies and 

deflection angles. The efficiency gain by this method is claimed to be very 

large (2500). 

Statistical estimates 

This device concerns the scoring routines. 

When the direct simulation method is used, the situation frequently 

ar ises that the scoring events for some physical quantity to be calculated 

occur too seldom. 

A good example of this is the calculation of the neutron current 

distribution on a black rod, which problem i s treated in section 7. Here, 

all collisions outside the rod will be "dummies" in the direct simulation. 

Only when a neutron hits the rod does scoring take place. The scoring 

routine was therefore modified to permit a statistical estimate of the current 

in every collision; this is done by letting the neutron lose part of its weight, 

the loss being equivalent to the probability of hitting the rod after collision. 

This "spray technique" is described in 7. 3. 

Another example is the flux scoring routine for grey rods, described 

in 7. 3. This example is the same as that mentioned in connection with im-

portance sampling. The point is here that for each track in a zone of the 

rod one makes a statistical estimate of the flux increment in that zone in-

stead of waiting until u collision takes place in the zone. 

5. SOME MINOR PROBLEMS SOLVED BY THE MONTE-CARLO METHOD 

This section describes the solution of some minor problems by 

Monte-Carlo. The problems are so simple that crude Monte-Carlo (direct 

simulation) works satisfactorily. 
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5 .1 . Self-Absorption of Y-Rays in Fuel Rods 

A GIER programme (MC3) has been written which finds the fraction 

of Y-energy escaping from an infinite, cylindrical rod containing Y-sources. 

The rod is assumed homogeneous and surrounded by vacuum, i. e. 

backscattering is neglected. This is often a good approximation. The Y-

source is assumed to be a function of the radial co-ordinate r . The depend-

ence of r must be given as an arbitrary step function. The source spectrum 

is assumed to be the Y-spectntm from fission, but other spectra, e. g. single 

lines, may be handled by a slight modification of the library tape of the pro-

gramme. This library tape contains the Y cross sections of the five elements 

H, C, O, Al, U. 

The photon collisions a re assumed to result in only two types of 

process: Compton scattering and absorption. That i s , the annihilation 

radiation from pair production is assumed to be entirely absorbed by the 

rod. The e r ror hereby introduced is normally of minor importance. 

Fig. 5.1 shows the flow diagram, which should make the calculation 

procedure sufficiently clear. 
2) 

An energy group structure identical with the GAM-I structure ' was 

used. All groups have the same lethargy width, 0. 25. The upper limit i s 

10 MeV. Group g covers the interval 

10 exp( - j ) < E < 10 exp( i ^ S ) , E in MeV. (5. 1) 

A cut-off energy of nearly 0. 01 MeV was chosen. 

In the calculation, all energy values are transformed from MeV to 

"normalized units" (1 n.u. = 0. 51083 MeV). This simplifies the treatment 

of Compton scattering considerably. 

Some of the elements of the flow diagram are discussed in the fol-

lowing. 

The microscopic total Y cross sections were prepared from data in 

ref. 7 by double logarithmic interpolation. Compton cross sections were 

evaluated by means of the expression (ref. 8, p. 147). 

2E)* E" 2E l 
d (E) = 0.499 1 + E x + 4 j + E ""?F" 2 l n ( l+2E) 

1(1+ 2~%z m Z n-"å 
barn/electron 

(E in n. u . ) .(5. 2) 

The shape of the source spectrum was chosen as 

N(E) - const • e'1,1E (5.3) 
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(E in MeV). 
This expression fits rather well the sum spectrum of Y-rays from 

fission and from decay of fission products . The value of the constant i s 
not relevant for our purpose. 

Source energies were selected by stratified sampling (see 4. 6). 
Sampling of the start position was not mentioned in the last section 

and will therefore be briefly described here. One applies the fundamental 
sampling principle to the given source distribution to set up a procedure 
giving the radius p of the starting photon, see fig. 5.2 (the thermal fluxes 
* 1 * *2» •*** * are proportional to the zone sources). As a result, the 
following procedure is set up for determining p : A set of numbers, r«, r . , 

. . . . r . are constructed so that 
* irr 

r = p = 0 o r o 

ri = r i - l + a * i ( < > i 2 - P i - l * ' 

m 

1 < i •£ m 

(5.4) 

1 V 2 ' 
where — = £. 4JL Pi - P ^ ) , yielding r m = 1 

i=l 

After calling for a random number r, one selects the zone i by 
finding the i-value which satisfies the inequality 

r t l < r < r± . (5.5) 

The exact position p inside zone i is determined by 

P - P (r) » \ 

r-r. , + u * . p . -

• • i 

The remaining elements of the diagram fig. 5.1 have been discussed in the 
last section except the sampling of the deflection angle 0 (a • cos 0) and the 
energy degradation E - E» by a Compton scattering. It follows from Comp-
ton1 s formula 

a « 1 + TE " S . <5-7> 

where E and E* are in n. u . , that one need sample only one of the quantities 
a and E'. The procedure applied here is due to Bengt Carlson \ On the 
basis of the Klein-Nishina formula for the differential scattering cross section 
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, 2 
d (E, a) = 0.0397 — 7 

E 2 ( l -a ) 2 
l T 

(l+a*)(l+E(l-a)) 
barn/elec. / s t e r . 

(5.8) 

Carlson has constructed an approximate sampling scheme for E' . His 

formula reads 

E' = S T , (5.9) 
1 + s • r + (2E - s) • r 

p 
where s ~ 4 . A- C M I W and r is a random number. 

(5. 9) is used only up to E « 4 n. u. For E> 4, E' is increased by 

the quantity 

A E' - -|(E - 4) (r - r 2 ) 2 . (5.10) 

Carlson's approximate device is surprisingly simple in view of the 

complexity of formula (5. 8). It has been analysed for photons up to 10 MeV 
9) 

(E B 20) and has been found to reproduce the distribution (5. 8) very »Yell ' . 

The running time for MC3 is about 3 min. on GIER. The programme 

is well suited for calculation of Y-energy escape from fuel rods of either 

uranium, uranium oxide or uranium carbide. 

5. 2. Energy Deposition on the Components of a Fuel Lattice Cell, for Y-Rays 

The problem to be solved in this subsection concerns the distribution 

of the Y-energy deposited on the different atoms in a lattice cell which is 

assumed to be infinitely long and part of an infinite square lattice in a critical 

reactor. Only the primary energy exchange at the atoms due to the photon 

collisions will be calculated. 

The solution of this problem is useful as the starting point for cal-

culation of the energy deposition on the various components of a reactor. 

The corresponding GIER-ALGOL programme has the name MCI. In 

order to have a fairly simple calculation model one devides the square cell 

into two homogenized zones: a cylindrical fuel zone (1) and a surrounding 

moderator zone (2) (fig. 5.3). 

The calculation results a re given for each of the zones as the de-

posited Y-energy in MeV per type of atom per thermal fission. 

Permissible isc ^ e s are!for zone 1 H, D, C, O, Al, Fe, Zr, U-235, 



- 47 -

U-238, and for zone 2 H, D, O. 

In this problem the sources of V-radiation will be restricted to the 

fuel zone. The radiation is naturally divided into four contributions ac-

cording to origin: 

(a) Prompt Y-radiation due to fission 

(b) Y-radiation due to decay of fission products 

(c) Y-radiation due to neutron capture (resonance and thermal) 

(d) Y-radiation due to inelastic scattering. 

The total liberated prompt Y-radiation energy per fission is 7. 2 + 0. 8 

MeV ' with the spectrum given in eq. (5. 3). The corresponding value for 

the Y-radiation from fission products is 5. 5 MeV/fission , and the spectrum 

should be nearly the same. Hence the contributions (a) and (b) may be 

treated as originating from a single source with the spectrum (5. 3) and the 

total energy 12. 7 MeV liberated per fission. 

In calculating the contribution from resonance capture, only U-238 i s 

taken into account as an absorber. Neglecting the neutron leakage and fast 

fission effect, approximately v B 2. 5 neutrons will enter the resonance 

region per thermal fission. Of these, v (1-p) will be captured by resonance 

absorption in U-238, while v p become thermal (p = resonance escape prob-

ability). One thermaj. neutron causes fission in U-235; the remaining v p-1 

are absorbed by H, Al, Fe, Zr, U-235, U-238, in accordance with the 

respective thermal capture cross sections (flux depression neglected). On 
the basis of these cross sections and the corresponding Y-spectra ' ' ' , 

both the magnitude and the spectral shape of the Y-radiation may be obtained. 
In most cases, the contributions (c) will amount to about 6 MeV/fission. 

The Y-ray contributions from inelastic scattering (type (d)) were left 

out of consideration. This was decided after a test calculation with a special 

version of MC2 (the neutron analogy to MCI, which will be described in the 

next subsection). 

The spatial distribution of the sources in zone 1 is given as annular 

regions with constant source strengths, just as for MC3 (see 5.1). The 

distribution follows that of the thermal neutrons. 

In the Monte-Carlo calculation, the cell periodicity is taken into ac-

count simply by mirror inr the paths of those photons which would otherwise 

have escaped from the cell, in the plane cell boundaries (by reversing one 

direction cosine). 

The same assumptions for photon collisions arc made here as in 5.1 

for the MC3-problem. 
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The Monte-Carlo calculation is mapped in the flow diagram fig. 5.4. 

The energy group structure is the same as that in MC3. The library tape 

of the programme contains Y cross sections- in all groups, cross sections 

and spectra for radiative neutron capture, and data of the Y-spectrom from 

fission. 

The Monte-Carlo technique applied in this problem is mainly direct 

simulation, and the standard routines have been discussed previously. How-

ever, at one point a deviation from direct simulation occurs: the collisions 

of photons with atoms are treated as described in 4. 6 in the description of 

the weight concept, so that one avoi is the decision of absorption or scattering 

and instead always gets a scattered photon with the weight reduced by the 

factor 2 /{Z + 2; ). Furthermore, since the Compton scattering depends 
S S oL 

essentially on the electrons only, not on the nuclei, the colliding photon may 

be split into m photons (m = number of different atom types in the zone), each 

carrying a weight W. proportional to the concentration of electrons belonging 

to the atom type i. The partial phoion i is assumed to collide with an atom 

of type i and to exchange energy with it. The variance-reducing power of 

this device as compared with that of sampling of the target atom appeared 

to be vary great, especially for the less abundant elements. 

As an example of the use of MCI, a calculation for a DOR-type cell 

was carried out. Here the moderator is D ? 0; the fuel zone is limited by a 

zirconium tube encircling a bunch of U02-rods surrounded by the organic 

coolant C j g H . . . In addition, some structural graphite is present in the 

fuel zone. One wants to know the energy deposited in the coolant and that 

deposited in the moderator. The calculation procedure is now to homogenize 

zone 1, calculate the atomic concentrations, and use the programme. The 

output in the DOR example was (MeV/tbermal fission) 

H D C O Al Zr U 

fuel zone 0.52 0.42 0.76 0.12 0.69 11.5 

moderator zone 0.89 3.7 

For the moderator one simply adds the two contributions to obtain 

the result 4. 6 MeV/thermal fission . 

As regards the coolant in zone 1, the situation is a little more in-

volved. One has to correct the C-value (0.42 MeV) for the structural 

graphite. The ratio of coolant-graphite to the total amount of graphite is 



- 49 -

in our example 0. 90. Then the Y-energy deposited in the coolant is 0. 52 + 

0.42« 0.90 = 0. 90 MeV/thermal fission. 

For a problem like the present the effect of homogenizing the fuel 

zone is not believed to introduce any great e r ror because the coolant is 

weil distributed over the fuel zone. Incidentally, the energy deposition cal-

culated for Zr is too high because the Zr-tube is situated in a field of lower 

gamma flux than the average flux in zone 1. 

In the example, the total Y-f aergy per fission is calculated to be 

18. 6 MeV, i. e. 13. 5 MeV is absorbed by the fuel rods and various structural 

materials . 

The running time on GIER is about 20 minutes. 

5. 3. Energy Deposition on the Components of a Fuel Lattice Cell, for Neutrons 

The physical problem to be solved in this subsection is the same as 

that described in 5. 2, except that neutron energy deposition instead of Y-

energy deposition is calculated. As the problem structure is the same as 

for the Y-problem, no flow diagram is given. The GIER-ALGOL programme 

MC2 has been worked out for routine calculations. 

The source of fast neutrons originates from fission. The value 1.98 

MeV is used for the mean energy carried by a fission neutron ' . If one 

assumes v = 2 . 5 , this means a total neutron energy release of 5. 0 MeV per 

(thermal) fission. The fission spectrum used in these calculations is that 

proposed by Cranberg ' ; 

N(E) = const. • exp( - •jyTrøj) • sinh \ 2. 29E (E in MeV). (5.11) 

MC2 deals with the same spatial source distribution as MCI; the 

cell periodicity is taken into account by the same mirroring process as in 

MCI. 

For the fast neutrons in our problem, the xollowing four reaction 

types have sufficient importance to be taken into account: 

(1) elastic scattering 

(2) inelastic scattering 

(3) fast fission 

(4) absorption. 

The last two reactions, however, play a rather limited role. 

Different collision routines had to be prepared for the different 

target nucleus types. This is in contrast to the corresponding gamma 
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problem, and it complicates the Monte-Carlo calculation very much.. A 

number of simplifying assumptions were made for the collisions in order 

to limit the complexity of the programme structure. 

Elastic scattering is assumed to proceed isotropically in the CM-

system. This is quite a good approximation when the neutron energy is be-

low 0.1 MeV. Above this energy an increasing anisotropy occurs. In deep-

penetration problems (e. g. shielding problems) serious e r ro rs may result 

from the isotropic assumption. However, our problem involves rather short 

optical distances and no preferred directions, so the e r ror is expected to be 

of minor importance. 

Inelastic scattering is normally accepted to proceed isotropically in 

the CM-system. Here it is assumed isotropic even in the L-system. The 

er ror thus introduced i s tolerable because inelastic scattering is a rather 

infrequent process. The accompanying "Y-rays a re neglected (cf. 5. 2), which 

makes the two programmes MCI and MC2 independent of each other. 

Fast fission in U-235 and U-238 leads to ejection of about three fast 
2) neutrons ' . In the present calculation it is assumed that the neutrons causing 

fast fission continue with triple weight and unchanged energy. This approxi-

mation gives a rather good picture of the situation. 

The energy group structure in MC2 is the same 27-group structure 

as in MCI and MC3 (the GAM-I structure). All neutron cross sections used 

in the library tape of ?,TC2 have been taken from ref. 2. 

In the Monte-Carlo calculation only the collision routines a r e dif-

ferent in MCI and MC2. In the following, the Monte-Carlo treatment of the 

two main reaction types, elastic and inelastic scattering, will be given. 

Elastic scattering is treated according to the previously mentioned 

isotropic assumption. For hydrogen, especially simple formulas a re valid. 

If E is the energy before, E' the energy after the H-collision, and r a random 

number, one has 

E' - E • r . (5.12) 

The deflection cosine a in the L-system is 

a - VF (5.13) 

with the same r as before. 

For the other nuclei, the rr 'evant set of formulas is 

u * 2 • r - 1 (5.14) 
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E' = E * (A2 + 1 + 2 Au) (5.15) 

(A+ir 

a • 1 + A ^ - ; (5.16) 

\l + A2 + 2 Au 

u is the deflection cosine in the CM-system, A the mass number of the 

target nucleus. Other symbols are as before. 

As mentioned above, inelastic scattering is assumed isotropic in 

the L-system. The only problem is then the sampling of the energy after 

scattering. This is done by the aid of the so-called inelastic scattering 

matrix, giving cross sections d _^ for scattering from group g to group 

h. Such matrices are listed in ref. 2. The sampling itself proceeds in 

analogy with the "type sampling'1, eqs. (4.19) to (4. 22). 

As a calculation example for MC2 is taken the same DOR cell as in 

5. 2 for MCI. The results in MeV/thermal fission were 

H D C O Al Zr U-235 U-238 

Fuel zone 2.630 0.072 0.091 0.016 0.040 0.000 0.010 

Moderator zone 1.850 0.227 

In the same manner as in 5. 3 one obtains: 

Neutron energy deposited in coolant = 2.630+ 0. 072 • 0. 90 = 

2. 69 MeV/thermal fission 

Neutron energy deposited in moderator = 2. 08 MeV/thermal fission . 

The running time for MC2 is in most cases 1-2 hours. 

6. A MONTE-CARLO BULK SHIELD PROGRAMME FOR Y-RAYS 

As pointed out in section 2, the application of build-up methods (such 

as PRIG AM, SEGAM 1, SEGAM II) n shi elding calculations is rather doubt-

ful when the shield or part of it consists of laminae of widely different ma-

terials. This is the case with Luerii.ua shields ,vith alternating layers of 

water and iron or water and lead. Analytic methods for Y-transport cal-

culation, such as Laplace transform, the method of successive scattering 

and the method of moments, are not feasible for heterogeneous geometry 

http://Luerii.ua
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either '. It seems that Monte-Carlo, owing to its great versatility, i s the 
best alternative method. 

6.1. Description of the Problem 

A computer programme, MC4, has been worked out which carries 
out a Monte-Carlo calculation of the heat generation rate throughout a 
laminated shield and the external dose rate due to a distributed Y-source. 
MC4 exists in GIER-ALGOL as well as in FORTRAN IV for the IBM 7090. 

The shield configuration consists of a number of infinite slabs (fig. 
6.1). The slab system is at both sides adjacent to vacuum. The chosen 
oiientation of the z-asris depends on the natural penetration direction in the 
problem, which also determines the surface where the dose rate will be 
calculated (the "external surface"). 

Each layer is homogeneous and may be composed of a number of 
elements; The programme is not able to handle all the elements; the 
permissible elements are listed in table 6.1. 

The Y-source has the form 

S(E,z) = Soexp(-k(z-Zl)) • 6 (E-EQ)phot./(cm3 • sec- MeV), (6.1) 

z1 < z 4 z 2 

i, e, a single-line source with exponential spatial variation (fig. 6.1). 
The core and reflector regions may be included in the calculations 

as part of the shield. 
By repeated application of MC4 it i s possible to solve any problem 

which can be solved by PRIGAM, SEGAM I and SEGAM n. 
As was the case in the problems treated in section 5, the photon 

collisions are assumed to result in either Compton scattering or absorption, 
that i s , the annihilation radiation from pair production is assumed to be 
entirely absorbed at the photon collision point. The error hereby introduced 
is normally of minor importance. 

6.2. Application of the Exponential Transformation 

As mentioned in 4. 6, an efficient device for deep-penetration prob-
lems is to modify the Bolzmann transport equation by an exponential trans-
formation and adjust the random walk procedure to the transformed equation. 
As this method is described in detail in refs, 13 and 14, only a rather short 
outline will be given here. 
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The one-dimensional transport equation in plane geometry is 

w 6*<E
6^*Z* + Z(E, z)* (E,u> . z) = J s ( E ' , z) • (E'.w ' . z) • 

• C ( E \ u ) ' ; E .u^zJdE 'dw '+ S(E,us , z ) (6.2) 

in conventional notation. We introduce the substitutions 

• <E,w . z) = * *(E,u> , z) exp(-cz) (6. 3) 

Z*(E,w , z) = 2(E, z) - w c (6.4) 

CK(E', u ' ; E, (i>, z) = j * E ' ' z ) C(E',o» » ; E,w , z) (6. 5) 

S ^ E ' , « ' , z) 

S*(E,o>, z) = exp(cz) - S(E,» , z) (6. 6) 

and obtain a new transport equation, formally identical with eq. (6. 2) 

w 6»x(E/tf,z) + 2K ( E ( i ) ^ z ) Q*^^ t z ) = JzF(E',w ' , a)**<E'#««. z)-

• C*(E',a> • ; E,(il ,z)du>'dE» + S*(E,u),z) . (6.7) 

Note that if has an angular dependence through eq. (6.4). The con-

stant c compensates for the normally steep source and flux variation. For 

fixed (E,w ) the Z* in (6. 7) takes on constant values ZT in each region (i 

refers to region i). 

The random walk method can now be used to solve the transformed 

problem, i . e. to find the Y-flux • in a medium with the cross section 2 s 

and the collision kernel CK. This procedure will be described in the fol-

lowing. 

The first step is sampling of the starting position z of a new (source) 

phcton. This is done according to the z-variation of S (eqs. (6.1) and (6.6)): 

SK(z) »const • exp(-(k-c)z), z ^ z < z o • (6.8) 

The source directions a re isotropically distributed, and the source 

photons start with the weight W = 1. 

Sampling of flight length is the same for a new photon as for a photon 

after collision. We therefore discuss the probability density function (pdf) 

for intercollision distances x. This is the major problem in applying the 
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exponential transformation. The sampling method described in the following 
14) is due to M. Leimddrfer ' . 

Referring to fig. 6.1, the photon starts at P (collision or source 

point) in the direction u> in the region s. According to (6. 2) the track length 

in this region should have been sampled from the pdf 

fs(x) = Zg exp(-Zgx) , (6.9) 

where the subscript s refers to the region number. 

As Z is replaced by Z* when the exponential transformation is ap-

plied, (6. 9) will be replaced by 

£.(x) = Z*exp(-Z^x) (6.10) 

with Z* = Z - u) c. 
s s 

One could then sample an x from (6.10) and decide whether the 

region boundary is crossed. If so, a track length in the next region (i in 

fig. 6.1) with the intersection point P. as a new starting point could be 

sampled from the pdf 

f*(x) » Z*exp(-Z*x) (6.11) 

valid for region i. Repeating this procedure, one reaches a terminal point 

B, or the photon escapes at E. 

The transformed equation (6. 7) has another collision kernel than the 

original equation (6. 2). This difference must be compensated for at the 

new collision point B by multiplying the photon weight by 

Y = C*/C = 2 n / Z * . (6.12) 

The above sampling method for flight distances is simple, but it 

suffers from a couple of drawbacks: 

(a) Z* - Z-OJC may happen to be < 0. In this case (6.10), (6.11) 

and (6.12) become meaningless, 

(b) The photons may travel through the whole configuration and 

escape uncollided. This means waste of computing time. 

In order to cure both the calamities (a) and (b), LeimdBrfer ' fol-

lowed a somewhat changed procedur , which is applied also in the present 

work: 
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The pdf in the starting region, eq. (6.10), is replaced by 

f P ( x } = I s expf-zjx). 0« x«X„ , (6.13) 
s l-exp(-Z*X s)

 s s 

where X is > x , but otherwise, so far, arbitrary. 

By means of eq. (6.13) a flight distance in region s is sampled. In 

the case shown in fig. 6.1 the region boundary is reached. The probability 

of this, according to eq. (6.13), is 

XK = j I ^{x)dx s e Xp(-z£x ) J S S . (6.14) 
J 0 * l -exp(-ZfX s ) 

According to (6.10) the correct probability of reaching the boundary 

of region s was (in the transformed problem) 
x s 

p = 1 *s f J (x )dx-exp( -zJx B ) . (6.15) 

Therefore, at the intersection point P. the weight must be multiplied 

by 

p j l - e x p ( - S * X ) 

One then considers P. as the starting point for further track length 

sampling. The sampling in an arbitrary intermediate region (no. i , fig. 6.1) 

proceeds just as above, and equations quite analogous to (6.13) - (6.16) a re 

obtained by replacing index s by i: 

pdf:ff*(x)= — i - exp(-zfx) , 0< x <X. . (6.17) 
1 l -exp(-Z*X.) x x 

( X ^ x , ) 

Transmission probability from (6.17): 

x. 

XX , 

Pi - 1 -

xx _K l-exp(-Z*(X rx.)) 
f*K(x)dx - exp(-zjx.) J . * l . (6.18) 

l-exp<-2* X.) 
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Correct transmission probability from (6.11): 

p* - 1 j ff(x)dx = exp(-2^ X i) . 

Weight multiplier: 

x 

P. . E L . 
*1 XX 

1-expt-Z^Xj) 

p. l-eXp(-2f(Xrx.)) 

In the terminal region (n) one obtains: 

(6.19) 

(6. 20) 

pdf: f**(x) " - exp( -Z^x) , 0<x<£X . 
l-exp(-Z*X ) n n 

(X n >x n ) 

Probability of collision at B per unit length, from (6. 21): 

(6.21) 

C - *>n> " l -exp(-Z" Xn) 
n n' 

(6. 22) 

Correct probability of collision at B per unit length, from (6.11): 

qK = f*(x ) ~ £* expf-Z* x ) Mn TV n' n ^x n n' (6. 23) 

Weight multiplier: 

P n ' l i = l - e X p ( - ^ X n ) . 

*n 

(6. 24) 

Finally, we have the weighting factor Y (eq. (6.12)) from the straight-

forward exponential transformation. The total weighting factor for the flight 
is then 

Y-i^tSa^ If ' J J • (l-exp(-2*X )) • -S . (6. 25) 

Regardless of the sign of the 2? , F is certainly positive. The same 
is true of the expressions for the pdf, eqs. (6,13), (6,17), (6.21), In this 



- 57 -

manner the drawback (a) i s removed. 
Until now, the only restriction on the X.'s has been X.> x.. We now 

assign to X. the value (see fig. 6.1) 

X^-P^E, s < j < n , (6.26) 

where £ is the escape point of the elongated photon path. 
Since 

rXi 
pf(x)dx - 1 , (6.27) 

it is easily seen that the photons can never escape through the problem 
boundary. Hence, drawback (b) is also removed. 

Sampling of scattering angle and energy decrease is not affected by 
the exponential transformation. 

6.3. Calculation of Heat Generation and Dose Bate 

On the basis of the results cf the Monte-Carlo calculations for the 
"transformed problem", the problem is now to estimate some real, physical 
quantities. These quantities are the energy deposition rate in each of the 

i m „ zones") into which th . configuration ha. been divided (fig. 6 .1 , and the 
dose rate at the external surface. 

From eq. (6.8), which gives the spatial distribution of the emission 
of source photons in the transformed problem, it follows that the number of 
Monte-Carlo photons emitted between z and z + dz i s 

dN* • oexp(-k*z)dz (6.28) 

with k* • k - c (6.29) 

and o - — • I L J L L — expfk^z,) ; (6.30) 
z 2 l-exp(-k*d) l 

exp(-kKz)dz 

z* 

a, 

Monte-Carlo photons emitted in a calculation. 

*' Note the term "zones" for the result domains, not to be confused with the 
term "region" for a physical layer. 
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The number of photons in the real problem which corresponds to dN* 

in the transformed problem is 

dN » dN* exp(-cz) • a exp(-kz)dz . (6.31) 

However, it is known from eq. (6.1) that the number of photons 
2 

emitted in the real problem between z and z + dz per sec and per cm of a 

plane perpendicular to the z-axis is 

dN2 = SQ exp(-k(z-z1))dz . (6. 32) 

Hence, to convert from some energy quantity obtained by the Monte-
2 

Carlo calculation to the corresponding energy quantity per cm per sec in 

the physical problem, it is necessary to multiply by the ratio 

dN, S (l-exp(-k*d)) 
f " T!!I• * ^kK « K c z l> <6*33> 

In the Monte-Carlo calculation the accumulated score of transformed 

deposited energy E^ in each zone and the accumulated transformed energy 

escape E* have been recorded at the termination of the N* photon histories, esc 
Er* is determined as esc 

E* * I e* , (6.34) 
esc v esc, * * ' 

IT 

where the summation extends over all collisions in the N histories with a 
final direction w > 0, each collision giving the statistical estimate e* _ %I . 

x 3 esc,v 
To convert E. to the rea l energy deposition per cm per sec in 

•J 

zone j , the first step is to calculate the quantity E. which in the real problem 

corresponds to E* in the transformed: 

E. * E* exp(-cz.) ; (6. 35) 

Z j is the co-ordinate of a »characteristic point" in zone j , to be discussed 

later. By multiplication of E. by f (eq. (6. 33)), the energy deposition per 
2 * 

cm per sec in zone j is obtained: 

W^ - Ej • f - -Sj- i-espi-fc d? Ej* expfctzj-zj)) . (6.36) 

3 
The energy deposition w. per cm per sec is found by dividing W. 

by A,, the width of zone j . It is convenient to express w. in the unit watt/ 
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3 x 
cm / sec , but to measure the Monte-Carlo energy E. in "normalised units" 

J 

(n. u.). By the aid of the conversion relations 

} 
1 n.u. • 0.51083 MeV 

.13 \ ( « • « ) 
1 MeV/sec - 1.602 • 10 watt 

(6.36) i s recast in the form 

S x 
w. = 0.818- l C T 1 3 - 0 - 1 -exp(-k d) E x ^ ^ „ ( $ 3 g J 

J N1 k 1 4 . ] l J 

j 

3 x 
(w, in watt/cm , E- in n. u. ). 
The other problem is to convert E* to dose rate D at the external 

CSC 

surface in rar/h. Relating D simply to the escape energy means that the 
current definition of dose rate (thin and flat detector) is used instead of the 
flux definition (small spherical detector). The current method i s the more 

13) efficient of the two in the Monte-Carlo sense . 
In the range 60 keV - 7 MeV the following relation i s valid with max. 

25% error ': 

2 3 
1 MeV/cm / sec equivalent to 1.54 • 10 mr/h. (6.39) 

The conversion from E* to D is very similar to that from E?to 
w.: First the equivalent escape energy in the real problem i s calculated as 

E e s c " E e s c « * - < * ) • <6-40> 

where Z is the co-ordinate of the external surface. The real energy escape 
2 

per cm per sec is then 

W • E e s c * £ ' <6'41> 

Inserting the expressions for E and f and using the conversion 
relation (6.39), one obtains the dose rate formula 

S x 
D - 0.000787 • — | *-exp(-k d) E x e x p < c ( z Z)) (6.42) 

(D in mr/h, E j g c in n. u.). 
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6,4. The Programme 

A flow diagram of the computer programme MC4 is shown in fig. 6.2. 
Some of the principal elements of this diagram will now be discussed. 

The programme library contains the total group cross sections of the 
elements in table 6.1, calculated from data in ref. 7 by double logarithmic 
interpolation. Compton cross sections were evaluated by means of expres-
sion (5. 2). The energy group structure is the same as in (5.1). 

After input of cross-section library and problem data, the programme 
calculates for each group g and each region i the macroscopic total and 
scattering cross sections 2*°. and 2^ c . (1£ g<27 , l^iKi^^J). 

Next, the exponential transformation constant c is calculated from 
the formula 

where 2 is the total cross section at the scarce energy, averaged 
gs, av 

over the entire configuration. This seems to be the optimum choice in most 
practical cases in the sense that it gives the least variance of the results 
for a given computer-time consumed. 

The heart of the MC4 programme is mapped between the two dashed 
lines in fig. 6.2. The starting position z of the source photons is sampled 
on the basis of the pdf, eq. (6. 8 ). This z determines a region, i. An i so-
tropic starting direction was assumed, leading to the expression u> • 2r-l 
for the cosine of the angle between direction and z-axis (eq. (4.12)). 

We have now come to the label "flightstart" in the diagram. A cross 
section 2 • 2 . i s ascribed to the photon, which is now characterized by 
the quantities E, w , i, z, 2 , W, g. Next, the transformed cross section 
2 s » X - u c i s calculated. Now, depending on the sign of u> , there are 
two possibilities in the flow diagram. The purpose of tills distinction is to 
suppress the backward direction (o> < 0) and favour the forward one. In the 
case w < 0, a game of "Russian Roulette" (see 4.6) is played with a surviving 
probability p * 2 / 2 * . This i s done by sampling a random number r {0< r < 
1) and examining whether r> p. If this i s the case, the photon is killed, other-
wise it survives with its weight increased by the factor-« 2* /2 . In the case 
» >0, one passes through a dose score routine, described below. Both 

branches, w > 0 and w < 0, lead to the label "Distance selecting". 
The dose score routine records the escape energy E* . , given by 

(6,34), e* u i s calculated as * ' esc,v 
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eesc.v a E W e *P<- ?*? x i> • {«•**> 

The exp-factor in (6.44) contains the optical distance to the escape 
point in the transformed problem and is formally equal to the probability of 
uncollided escape, also in the transformed problem. 

The next step is sampling of a flight distance. This is done by the 
aid of equations (6.13) - (6.27). The previous description of these equations 
should make it easy to follow the different links in the distance sampling 
routine in the flow diagram. Therefore, at this place it should suffice to 
discuss the sampling formulas applied in connection with (6.13), (6.17), 
(6.21). A common form of these equations is 

f**^} . ±L^ exp (- A ) , Q< x <X . (6.45) 
l-exp(-2rX) 

Such a truncated exponential leads to the sampling formula 

x - - JL In [ l - r ( l - « p ( - A ) ) J • (6.46) 

(6.46) implies both an In- and an exp-calculation. In ref. 14 is given 
an alternative sampling formula: 

i . UDR f ^ 2 £ 
2* {I** 

n for z" > 0 
z"XJ 

x - <{ (6.47) 

X + i - U D R f M E l ] for Z*< 0 . 

^ z* l ^x j 
UDR stands for the undivided remainder, e. g. UDR ( 13fe8?) - 1.83. 

(6.47) involves no exp- calculation and is much faster than (6.46). It is ap-
plied in our case. 

The collisions may be treated in two different ways: 

(a) A game is played to decide whether an absorption or a scattering 
occurs. 

(b) The collision is always treated as a scattering, but the weight is 
reduced to 

•sc 
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Normally, (b) is the more favourable method, but for photons of 
little importrnce (small E and W) it is desirable to kill the photon, and then 
(a) is best. 

In this work a combination of (a) and (b) is used. Above the energy 
E s 1 n. u. (0.51 MeV), (b) is used, otherwise (a). 

In both cases one easily accounts for the contribution to energy de-
position of the collision. In the case of scattering, the energy E' after col-
lision must be sampled. This is done by Carlson's method, see 5.1. The 
cosine a of the deflection angle is calculated by means of Compton's formula 

a " * * E " S1" ' ( 6'4B* 

From a and the direction cosine t» before scattering, the direction 
»• after scattering is sampled by m^ans of the formula 

- ) | ( l -«f t ( l -a 2 ) • cos(rw) . « ' « a« - 1(1-af)(l-a") * cos(rw) . (6.49) 

(6.48) is a one-dimensional version of eqs. (4.23). 
Finally, the new group number, g, determined by E', is assigned 

and one returns to "flightstart", where a new flight starts, and so on. 
When the prescribed number of photon histories is reached, one 

jumps out from the heart of the programme, and the results as obtained by 
the formulas (6. 38) and (6.42) will be printed out. However, formula (6.38) 
is somewhat ambiguous owing to the z., the co-ordinate of a "characteristic 
point" P. in zone j . The choice of P. as the central point of the zone is not 
adequate and will introduce a significant error, unless the thickness A . of 
the result zone is much smaller than — (in most cases A. and — are of the 
same order of magnitude). A better estimate of x, is obtained by assuming 
constant density of energy deposition in the transformed problem. This 
leads to the equation 

Ai* 4 i 

'i 

exp(-cz)dz * A-exp(-cz.) , (6.50) 

where a. is the co-ordinate of the left boundary of result zone %. When (6. 50) 
is introduced into (0.38), the latter equation is modified to 
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-13 S o l-exnf-kxd) l-exp(-c&.) 
w. - 0.818 • 10" l d - | 1 ~ e x H - * <*/ . 2 - — i - s f exptctz.-a.)) 

J 

(6. 51). 
3 x 

(w. in watt /cm , E. i n n . a . ) , 

in which form we use it. 

6.5. Calculation Results 

Calculations performed by means of MC4 have been compared with 
measurements. The arrangement is the Swedish R2-0 reactor with a bulk 
shield of magnetite concrete preceded by 20 cm water and 1 cm aluminium. 
It i s identical with the second of the two configurations studied in 3 .3 . 

The problem is to calculate the Y-radiation absorbed throughout the 
concrete shield, in watt/cm or in mrad/h. In the MC4 calculations the 
thickness of the concrete was limited to about 1 metre just as in the REMDIFF 
problem discussed in 3 .3 . Also here the restriction i s due to trouble, now 
overcome, with the limited range of the IBM 7090. 

The Y-radiation field in the concrete i s almost exclusively due to two 
sources. The first is the Y-source in the core; it originates from fissions, 
from decay of fission products, and from neutron captures. The second i s 
the capture-Y source in the concrete shield itself. 

The spectrum of the Y-source in the core region i s given in a rather 
detailed form in ref. 15. It appears reasonable to approximate the spectrum 
with a single Y-line of 2 MeV energy. This source is assumed constant over 
the source region (k = 0 in eq. (6.1)). In the same manner, the capture-Y 
source in the concrete, mainly due to neutron absorption in the iron com-
ponent, i s well approximated by a single Y-line of 7 MeV energy. The spatial 
variation of this source follows the thermal flux curve. Three points of the 
latter are available as experimental results, see fig. 3. 5. They lie approx-
imately on a straight line in this figure, so that the capture-Y source can be 
approximated by a single exponential with k * 0.119 (eq. (6.1)). The 
strengths of the Y-sources in core and concrete are calculated by means of 
data from ref. 15. 

It was not found worm while to correct lor the finite lateral extension 
of the core as was done in 3.3 for REMDIFF. Of course, only the core-Y 
radiation (primary radiation) should have been corrected, but at those 
distances from the core where the correction factor becomes significant, 
the primary radiation is weak as compared with the secondary (capture-Y) 
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radiation. 
The results of the calculations together with the R2-0 measurements 

are presented in fig. 6 .3 . The figure shows the MC4 results for the primary 
radiation (upper diagram), the secondary radiation (middle diagram) and the 
sum radiation (lower diagram). In the last curve, the absorbed radiation 
energy (watt/cm ) was converted to dose rate (mrad/h) by multiplication by 

'* p* = 0.963 * 10 . This curve can then be compared directly with 
the three experimental points taken from ref. 15. The agreement is quite 
satisfactory. No estimated statistical errors are given in fig. 6.3 because 
they are small, in fact only slightly greater than the errors in drawing. 

The same problem has been solved by the aid of the simple build-up 
programmes PRIGAM and SEGAM I (sect. 1). The result of these calcula-
tions is shown as the three dashed curves in fig. 6.3. The agreement be-
tween the total dose curve and the experimental points i s hardly inferior to 
that in the MC4 calculation. This good agreement is not surprising in view 
of the comments given in sect. 1 on the validity of the build-up codes: they 
are valid for infinite, homogeneous shield layers, which condition is met to 
a fair degree of approximation in the present bulk concrete shield. 

Note that the energy deposition calculated with PRIGAM diverges at 
the core-water interface. The reason for this i s that PRIGAM operates 
with an "equivalent surface source", giving infinite flux at the surface itself. 
PRIGAM results are only applicable some relaxation lengths from the surface. 

While, as we have seen, the PRIGAM and SEGAM codes are quite 
suitable for bulk shields, they cannot handle pronouncedly laminated shields 
correctly. As an illustrative example, consider a shield composed of 2 cm 
lead and 30 cm water. On one side of this system is situated a uniform 
isotropic surface source of photons with the energy 0.5 MeV, and one wishes 
to find the dose rate at the opposite (external) surface. The answer to this 
problem depends on the order of the laminae ' '. It i s clear, however, 
that a calculation with the build-up code (in this case SEGAM H) gives a 
result independent of the order of the layers, unless special "tailor-made" 
build-up coefficients depending on the said order are applied; but such a 
device does not fit well into the simple build-up programme system described 
in sect. 1, On the other hand, MC4 is sensitive to the lamina order, as 
seen from the results obtained with this code for the problem mentioned 
above: 

Lead followed by water: Dose rate * 1.32 + 0.06 mr/h 

Water followed by lead: Dose rate * 0.63 + 0.03 mr/h. 
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7 2 
The surface source strength was 10 photons/cm /sec. 
This result has not been tested experimentally, but it is in harmony 

with results from similar calculations ' '. 
The running time for an MC4-problem is of the order of 10 min. on 

the IBM 7090. 

Table 6.1 

Permissible Elements for MC4 
Atomic no. 

1 
3 
4 
5 
6 
7 
8 

11 
12 
13 
14 
15 
16 
19 
20 
22 
24 
25 
26 
27 
28 
29 
40 
42 
56 
74 
82 
92 

Symbol 

H 
Li 
Be 
B 
C 
N 
O 
Na 
Mg 
Al 
Si 
P 
S 
K 
Ca 
Ti 
Cr 
Mn 

Fe 
Co 
Ni 
Cu 
Zr 
Mo 

Ba 
W 
Pb 

U 
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7. MONTE-CARLO CALCULATION OF THE AXIAL NEUTRON FLUX 
DISTRIBUTION IN A SHORT, ABSORBING ROD 

In this section is presented a Monte-Carlo method for calculating the 
relative axial neutron flux distribution in a finite cylindrical rod consisting 
of a homogeneous, absorbing material. 

The rod may be surrounded by either a homogeneous, purely scat-
tering medium or concentric layers of absorbing and scattering materials. 

Also the relative surface distribution of the neutron current on black 
cylindrical rods of finite length is calculated. 

The computer programme exists in a GIER-ALGOL version as well 
as in a FORTRAN IV version for the IBM 7090. 

Comparison between calculations and measurements has been carried 
out for a number of cases. 

7.1. Description of the Problem 

If a cylindrical rod of absorbing material is placed in a scattering 
medium, it i s a well-known fact that the axial neutron flux in the rod will 
increase from its unperturbed value far from the ends to a somewhat larger 
value near the ends. This effect is sometimes referred to as Wilkin's ef-
fect. It plays an important role, e. g. for the heat production along a fissile 
specimen in a reactor, and an estimate of its magnitude is therefore of 
importance. 

The problem has previously been solved theoretically by using one-
171 group diffusion theory '. However, diffusion theory is a rather doubtful 

method when applied to thin and strongly absorbing rods. This section 
presents a Monte-Carlo method of solution. 

In the following, relative one-group flux distributions are described. 
The programme system (Monte-Carlo 5) i s able to handle three types of 
problems: 

(a) Calculation of the neutron current along the surface of a black 
rod surrounded by a homogeneous and isotropically scattering 
medium without absorption. The source may be either a volume 
source outside the rod or a surface source on a cylinder con-
centric with the rod. 

(b) Calculation of the axial flux distribution in a grey rod under the 
same conditions as for (a). 
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(c) Calculation of the axial flux distribution in a periodic system of 

grey rods separated by spacers and surrounded by a number of 

concentric regions* of different materials. No source is allowed 

in the column formed by the rods and the spacers between them. 

Isotropic scattering is assumed, and each region is character-

ized by a scattering cross section (corrected for anisotropy) and 

an absorption cross section. This "heterogeneous" model can 

also be used to solve single rod problems. 

7.2. Discussion of the Models 

It is the grey rod calculations (types (b) and (c)) which are most im-

portant for the applications. However, as will be clear from the following, 

an efficient method of solving these problems is to divide the calculation 

into two steps, the first of which is a black rod calculation. 

In the case of the grey rod in a homogeneous medium (type (b)) one 

considers the whole number, N, of neutrons which in a certain time interval 

pass into the rod region. These N neutrons can be divided into two categories: 

those which have never been in the rod before (N ) and those which have been 
o 

there before (Nj), so that N * NQ + Nj. 

The N neutrons can be interpreted as the source in the Monte-Carlo 

calculation. This source is an inward-directed surface source, distributed 

over the whole surface of the rod. The spatial and angular distribution of 

the source is exactly the same as the distribution of neutrons on the surface 

">f a black rod, with the same dimensions as the grey rod and immersed in 

tb*-, same medium. Thus, this method of treating the grey rod requires an 

auxiliary calculation of the current distribution on the black rod. This 

distribution is not uniform because of the shadowing effect, which decreases 

towards the ends of the rod. Of course the grey rod problem could be solved 

without any recourse at all to the black rod calculation, by direct simulation 

of the source neutrons. From a computational viewpoint, however, the 

method of introducing the black rod is much more favourable because in the 

grey rod calculation one can save the computer time necessary to follow the 

neutrons from their real source points to their entrance into the. rod. Further-

more, the black rod problem is simple enough to permit a Monte-Carlo so-

lution, although several refinements of the straightforward Monte-Carlo 

technique were necessary to avoid excessive computing time. The black 

rod problems contains very few parameters: If the rod is not so short that 

a coupling between the ends occurs, the result depends only on the quantity 
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o » 2a Z . (7.1) 

i. e. the rod diameter measured in mean free paths of the surrounding medi-
um. If coupling occurs, the rod length will enter as another parameter. 
Owing to this small number of parameters, it is possible to run a number of 
black rod calculations and to express the results in condensed form (poly-
nomial fits). These fits can be used for grey rod calculations. Thus, a 
grey rod routine calculation involves only a calculation with, a source on the 
rod itself, which means favourable conditions for a Monte-Carlo run. 

In the heterogeneous case (type (c)) a similar argumentation as above 
leads to a model where the neutrons in the Monte-Carlo calculation start 
uniformly distributed from the entire curved surface of the infinite cylinder, 
of which the rod in question is a part - independently of the radial distribu-
tion of the sources outside this cylinder. The sources are of course as -
sumed to be axially uniformly distributed. The application of this model is 
clearly restricted to cases where no sources are present inside the infinite 
cylinder mentioned above. 

7.3. Description of the Monte-Carlo Methods 

7 .3 .1 . The black rod calculation 

Fig. 7.1 shows the geometry in the black rod problem. The ex-
tension of the medium around the rod shoulu be infinite, but application of ' 
the Monte-Carlo technique requires a spatial cut-off. This cut-off is chosen 
as the surface of a large cylinder. In practice, the cut-off cylinder i s 
"large" when no part of it is nearer the rod than 2. 5 - 3 mean free paths of 
the medium outside the rod. 

The black rod surface is divided into 2Z current scoring zones, 
arranged symmetrically about the middle plane z =» 0, Two types of zones 
appear: plane end (radial) and curved (axial) zones. For an arbitrary col-
lision point (x, y, z) one has a set of probabilities Pjt*. y, z) of hitting zone i 
in the next flight, and a total probability p(x, y, z) » Z p.(x, y, z) of hitting 
the rod. Straightforward Monte-Carlo would then kill the neutron if a 
sampled random number r(0 < r < 1) was less than p, and would otherwise 
continue with the neutron without giving any contribution at all to the score 
from this collision point. This method gives poor statistics, especially 
for small rods. Another method was applied which in every collision gives 
a contribution to the current in all the visible zones (the "spray method"). 
The neutron with the weight W, colliding at (x, y, z), will lose the fraction 
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W • p(x, y, z) by absorption on the rod surface, and this amount of absorption 

is distributed on all the zones visible from (x, y, z) according to the pi(x> y, z)-

. values. After that, a new flight direction Q is sampled (isotropic scattering), 

and also a new track length 1. This flight may result in a hit of the rod. This 

event must, however, be considered as forbidden because the amount of ab-

sorption has already been taken into account. It is therefore necessary to try 

a new sampling ( jf , 1) from the previous collisioii point. Sooner or later an 

"allowed" sample is obtained, and the neutron then continues i ts history, 

now carrying the reduced weight W * (l-p(x, y, z)). Escape through the cut-

off cylinder cannot occur because this surface is regarded as reflecting in 

the optical sense. The only possibility of a termination of a neutron history 

is then loss of weight to such an extent that W drops below a certain cut-off 

value, W ". . The previously mentioned probabilities p.(x, y, z) and p(x,y,z) 

• Zpj a re continuous functions of (x, y, z). One possible approach is to cal-

culate these quantities whenever a new collision point (x, y, z) has been 

sampled. This method is rather time-consuming. Instead, we have chosen 

a discrete representation of the p. 's and p ' s , corresponding to the network 

shown in fig. 7 . 1 . Because of the cylindrical symmetry, the network i s 

essentially plane (we set y » 0 at each new collision). It appeared to be 

favourable to have two different mesh systems, a fine network near the rod 

and a coarse one farther from the rod. The mesh probabilities p.., (rod 

zone i, mesh indices j , k) and p.. (total hit probability from mesh jk) a re 

taken as the p.Qf. y, z) and p(x, y, z), calculated in the middle point of the 

mesh, p., » 2 p.., will be denoted pOT , , . . . All the p... form a three-Jk i = 1
 rx]k '2I i+l ,3k rrjk 

diznensional set of numbers, which is calculated before the real Monte-Carlo 

run and stored in the programme. 

Calculation of these probabilities leads to double integrals. To be 

specific, consider first the probability s that a neutron, after being scat-

tered isotropically at P(x, 0, z) outside the rod (fig. 7.1), reaches a plane, 

annular zone with the radii P1 and P2 on the end face z - k. Of course, 

s » 0 for z <k. Assuming z > k, one has 

s - f emXr f g - with d Q = p d p d | c o s 0 ^ „ . ^ 

a r 

f i s the angular position of the area element dA« p dp d p , and r is the distance 
from P to dA, 

p2 . . . r
n -S r V J \ m - <2-k> a.,- a* 
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2 2 2 2 
and insertion of r • x + (z-k) + p - 2p x c o s ^ yields 

A 
p d p e x p ^ x W k ) 2 * P ^ P x c o g y ) 1 / ^ 

(xz+(»-k)*+ p-2pxco«ør'^ 
Jo 

The corresponding probability of hitting a cylindrical surface zone 
on the rod limited by the planes z • z* and z • z„ i s denoted s . We have 
s„ • 0 if x x a, where a i s the radius of the rod, and for x > a: 

• c - f e - & j - | - with dft * a d * d S 2
c o e e 

->a r 

and cos 8 - fr-*»?,*«••*»• , z-£ ) . ( c o f i | p ^ ^ ^ Q ) „ x c o s e -a 

£ i s -the z-co-ordlnate of the area elaaent a df d t . 
One now has 

r
Z 2 *o 

S c - | | d L e - S r xcos<p-a d y ^ ^ „ A,«. c o 8 | # 

2 2 2 2 
and substitution o f r • x + ( z - £ ) + a - 2ax cos«p yields 

z 0 <f> 

° 2% J z J 0 ( ? + ( « * ) * + aZ-2axcos<p)3 /2 

(7.3) 

The Monte-Carlo procedure itself i s mapped in the flow diagrams 
fig. 7 .4 (coarse diagram fig. 7 , 4 . 1 , detailed diagram fig. 7 . 4 . 2 ) . 

The neutrons start either from the volume between the rod and the 
cut-off cylinder or from the surface of the cut-off cylinder, according to 
the type of source. The neutron has a weight parameter W, which i s 1 at 
the starting point. The y-co-ordinate of the source i s always zero; further, 
x and z are both positive. This i s bound up with the cylindrical symmetry 
of the problem. Referring to fig. 7 . 4 . 2 , a neutron f i g h t starts at the label 
"flight", either as a source neutron or as a scattered neutron. The c o -
ordinates are in both c a s e s normalized to the form (x, 0, z) with x > 0, z > 0. 
If x < a, one goes directly to the laber "inner11. The flight routine has a main 
label "escol" (escape or collision), to which one jumps if the black rod i s not 
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hit. During the tracing of the flight, several possibilities of jumping to 
"escol" occur. 

If x > a, the following consecutive tests are made: 

(1) Sign of x-direction cosine u. u > 0 leads to "escol". 
2 2 2 

(2) Intersection of the flight line with the surface x + y • a . The 
case of no intersection point leads to "escol". 

(3) Comparison of the distance t along the flight path to the inter-
section point P with the sampled disposal length 1. t > 1 leads 
to "escol". 

(4) z-co-ordinate z_ of intersection point P_. |z I > h leads to 
"escol", while ^ z_| < k means hitting of the rod. 

The third possibility in test (4), k < | z | ^ h, leads to entrance in-
2 2 2 

to the "inner" region, given byx + y ^ a , k < | z | < h . However, before 
further tracing of such a neutron, one renormalizes P_(x_, y s , z_) to the form 

B B S S ' 
(a» 0, z_) by simultaneously transforming the components (u, v) of the direction 

yB vector to (u*, v') by rotating an angle -«p (tg «p • —•) so that 
*s 

uxo'**vy« • * -uy 
(u«, V) • (u, v) • exp(-up), leading to u« - — | , V « —£-— - , (7.4) 

S 3. 

The disposal length 1 is diminished by the "consumed" length t. We 
are now at the label "inner" (fig. 7.4,2), and also in this case consecutive 
testings for jumps to "escol" are made: 

(1) Sign of w z(w*z-direction cosine), w z> 0 leads to "escol". 
(2) Calculation of the distance t along the flight line to the inter-

section point Pofr^yj., t k )* t > * leads to "escol". 

(3) Situation of P R . x r + y r ^ ^ leads to "escol", otherwise the 
rod i s hit. 

Arriving at the label "escol", one ascertains whether a collision or 
a hitting of the cut-off cylinder has taken place. In the latter case, the 
neutron is reflected optically in the cut-off cylinder. The planes z • + h 
reflectlthe flight aimply by reversion of the sign of w. The curved surface 
reflection gives a slightly more complicated formula for the reflected di-
rection vector (u1# Vj, Wj): 

-ux -vy v xe"uye 
u l * — R , vx « ^ , Wj»w. (R» cut-off radius), (7.5) 
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corresponding to a normalizing of the mirror point from (xc, yc, z ) to 
(R, 0, z„). If, on the other hand, collision occurs, one scores zone currents 
according to the previously mentioned "spraying" principle. 

The output is processed in the usual way for the estimation of mean 
values and variances. 

7.3.2. The grey rod in a homogeneous medium 

The Monte-Carlo run of this problem is mapped in the flow diagram 
fig. 7.3. The neutrons start from the whole rod surface. Stratilied sampling 
of position is feasible in this problem. The surface source strength should 
have the distribution calculated in the black rod problem. However, we de-
cided instead to sample from a constant source and then compensate by a-
scribing the weight W(P) to the neutron. W(P) is a function of the pointe P 
on the total rod surface, normalized to an average value of unity over the 
rod. W(P) is given by the black rod calculation. The source directions are 
chosen from an inward cosine distribution, which is a good approximation in 
this problem. A track length 1 in the rod is sampled. Otoe ascertains wheth-
er the neutron has collided in the rod or escaped from it. If a rod collision 
occurs, the score in the zone containing the collision point is increased by 
W. The weight after collision is 

£ - £ 

^o 
where £ and £ are the absorption and the total cross section of the rod. 

ao o 
If W < W ., one returns to "start", otherwise one proceeds to the isotropic 
scattering routine, after which a new flight in the rod is sampled, and so on. 
If the neutrons pass out from the rod, one applies a similar flight routine for 
the medium outside the rod (total cross section Z, no absorption). After a 
certain number of collisions here, the neutron will hit either the rod or the 
cut-off cylinder. In the former case one continues to trace the neutron in 
the rod. In the latter case the neutron is transferred to a random point P of 
the rod surface, from which it starts with inward cosine distribution and the 
weight multiplied by W(P). The contents of the box in fig. 7.3 labelled 
"entrance in rod 2" are exactly the same as shown in fig. 7.4.2 for the black 
rod. 

The flow diagram fig. 7.3 refers to the simple flux score routine 
discussed above. However, this routine has recently been modified. Instead 
of scoring the zone collisions, one makes a statistical estimate of the zone 
flux increment for every track length occurring in the zone. This procedure 
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is carried out in the following way: Track lengths in the rod are sampled 
from the scattering cross section r instead of the total ZL . This incorrect 
method of sampling is corrected fjs follows: each time a neutron track L in a 
zone i ceases - either by escape £rom the sone or by a collision - one mul-
tiplies the neutron weight W by espt-S • L). "The statistical estimate of 
the flux increment in sone i is then W(l-eaqp(-2: • I.)). This modified flux 

ao i 
scoring device, which is also introduced in the "heterogeneous" problem, 
has increased the calculation efficiency by a factor 4 for rods with rather 
thin zones. 

7.3.3. The grey rod in a heterogeneous medium 

Fig. 7.2 shows the geometry of wis problem, and the Monte-Carlo 
run is mapped in fig. 7.5.- The rather involved structure of this diagram 
derives from the routines which decide the momentary zone of the neutron. 
These routines are described in ref. 6. 

2 2 2 The neutrons start stratified from the cylinder surface x + y « a „ 
z h. (2h * height of cut-off cylinder.) The directions have an inward 

cosine distribution. The planes z » + h act as mirrors, while the neutrons, 
when passing through the curved surface of the cut-off cylinder, are killed. 

7.4. The Computer Programme System 

- The computer programme system includes five codes: 

(1) NETPROB, in GIER-ALGOL, preparing auxiliary input for MC5A. 

(2) MC5A, in FORTRAN IV, solving problems of type (a) (subsec. 
7.1). 

(3) FITAB, in GIER-ALGOL, which processes the output of MC5A 
to be used as input in MC5B1. 

(4) MCSB1, in GLER-ALGOL and FORTRAN IV, solving problems 
of type (b) (subsec. 7.1). 

(5) MC5C1, in GIER-ALGOL and FORTRAN IV, solving problems 
of type (c) (subsec. 7.1). 

The GIER-ALGOL programmes are run on the GIER computer at 
Rise, while the FORTRAN IV programmes are run on the IBM 7090, installed 
at the Technical University of Denmark in Lyngby. 

NETPROB calculates the mesh probabilities to be used as input in 
MC5A. 



- 74 -

MCSA gives as output the values for the neutron current (n/cm /time 
unit) in the radial as well as the axial zones. 

FITAB is discussed in some detail below. It is a link code between 
MC5A and MC5B1. It carries out a smoothening of the stepwise varying 
currents which MC5A gives as output. 

Fig. 7.6 shows a graph of such an output. The level is arbitrary. 
This representation is replaced by expressions of the form 

F j t ø - A ^ expi-AgOMzI)) + A^ (axial current) (7.6) 

and Gjtø-Bjj + B^x2 (radial current) . (7.7) 

the fits being least square-fits. After this one must normalize to an overall 
incoming current of the average unity, thus obtaining the final expressions 

F(z) « A0 exrf-Ajjtk-1 z I)) + A4, -k <z <k (7.8) 

G ( x ) - B 0 + B 2x 2 , x < a . (7.9) 

The forms of the fitting expressions above seem to be the simplest 
possible to extract the main features of the black rod current distribution 
obtained. If k is large enough to exclude coupling between the ends, men 
F(z)<* A* will be valid for a range of z-values, i. e. the rod has a middle 
part with no axial perturbation of the flux. The only essential drawback of 
the form (7.8) is that F(z) has a bend at z • 0; however, this only matters 
if the rod is very short. 

In order to obtain the form (7,6) in a straightforward manner, we 
simply set A^ • fj (fig. 7. 6). Clearly, mis requires mat the level fj is 
sufficiently stable statistically, and that k-Zj is large enough to ensure that 
the axial flux perturbation is small at z . . These conditions should be borne 
in mind when one uses MC5A. The least square condition to be met by the 
axial fit is now applied to the logarithms of increments f. - f« : 

J g Wjdn^-fj) - In AQ + A^ (k-ty)" - min. (7. IQ) 

w i m t i - J t a + z ^ ) 

A natural choice for the weights w. is 

w£- ( f^ty • (• i-» i.1> . (7.11) 
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The solution of (7.10) is 

4 • "it»'»»y"iIi"t;it. (712) 

and A ; • exp I * * £ w / ^—i J (7.13) 

with the abbreviations C. • k-t. and ""I. « ln(f.-fj). 

The summations extend from i • 2 to i * n. 
The form (7.7) is obtained by applying the least square condition to 

the integrated zone currents. This gives the equation 

(notation, see fig. 7.6). 
As the detailed shape of the radial fit is not very important, no 

weights have been carried along. The solution of (7.14) is 

hjh4-h2 " i V 1 ^ 

with the abbreviations 

hj - Zaj2, h2 - S^p. , hg » S a . p ^ , h4 » Z p 2 . h& - zp^g. 

° i " "2<xi4-*i4-i> • h " *?- x i- i • 

the summation extending from 1 torn. 
The normalized expressions (7.8) and (7.9) are finally obtained by 

requiring 

(A^ Ag, A4, B^. B2) - (kA'0, A'2. kA4, JdBj,, kB'2) (7.16) 

a k a k 
and j (B0+B2x

2)2nxdx + I (Aoexp(-A2(k-z))+A4)2rcadz • j 2icxdx +[ 2nads 
J-o -'o . - 4> -'o 

(7.17) 
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The final expressions (7.8) and (7.9) constitute the function W(P) in 
7.3.2, and the constants (AQj, Ay A4, BQ, B2) form the input of MC5B1. 

However, MC5B1 has an option permitting automatic calculation of 
( A . A., A>, B , B»). This has been possible after a parameter study of 
black rod calculations, by varying a (eq. (7.1)): The said study has only 
been completed where there i s no coupling between the ends of the rods and 
in cases with surface sources. 

Both MC5B1 and MC5C1 give as output mean volume fluxes over the 
cylindrical zones into which the rod i s divided. The division into zones is 
arbitrary apart from the requirement that the zones must lie symmetrically 
about the centre of the rod. 

FITAB and the GIER version of MC5B1 and MC5C1 also present the 
output in graphic form by means of a plotter. 

2 hours 
2 hours 
1 min. 

10 min. on IBM 7090, 3 hours on GIER 
20 min. on IBM 7090, 5 hours on GIER. 

All the figures for running times refer to typical cases with reasonably 
good statistics. 

7. 5. Presentation of Calculations and Comparisons with Experiments 

7 .5 .1 . 

In this subsection a number of calculations are presented, and some 
are compared with measurements. 

As the literature available on such experiments was very limited, it 
was decided that supplementary experiments should be carried out in the 
Ris5 facilities. The measurements were performed in a heavy-water ex-
ponential facility. A description of the experiments is given in 7.6. 

Table 7.1 gives a summary of the comparisons. 

Running times: 

KETPROB 
MC5A 
FITAB 
MC5B1 
MC5C1 

about 
n 
« 

it 

ii 
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Table 7.1 

Model Code Experimental set-up Carried out Results 
at in fig. 

Black rod MC5A Cadmium cylinder, 2.5 cm RisB 7.9.1 
dia., in heavy water 
(exponential facility) 

Grey rod in Natural uraiium rod, ANL 7.10.1 
hom. medium MC5B1 1. 796 cm dia., in graphite 

(thermal column) 

- " - - " - do., 2.54 cm dia. - " - 7.10.2 

Grey rod in Copper rods (1. 27 cm KisO 7.11.1 
net. medium MC5C1 dia.) with lead spacers and 

heavy water outside 
(exponential facility) 

- " - - " - do., 2.54 cm dia. - n - 7.11.2 

The experiments at ANL are described in ref. 18. This report also 
describes a number of experiments on rods with cadmium as the main ab-
sorbing component. However, it was recognized that thermal Cd-experi-
ments were not feasible for testing one-group models because of the rapidly 
varying cross-section curve of Cd. 

Most of the digital computer calculations have been performed at 
NEUCC (Northern Europe University Computing Center), Technical Uni-
versity of Denmark, on an IBM 7090 computer. 

In the following, a short description of the results i s given. 

7 .5 .2 . Black rod, a s 1, surface source. Comparison with Ris8 

experiment 

Fig. 7,9.1 shows the measured as well as the calculated axial current 
distribution on a black rod (Cd) in heavy water. The diameter of the rod was 
2,5 cm. The scattering cross section (corrected for anisotropy) of the heavy 
water was taken to be 0.4012 cm" . So, in this case, a " 2 . 5 « 0.4012 »1.00. 

In both experiment and calculation the current values were normalized 
to unity at the midpoint on the curved surface, where the current i s essenti-
ally constant. As can be seen from fig. 7 .9 .1 , a finer zone division was used 
in the experiment than in the calculation. Therefore a"conve.rted<( experi-
mental curve has been drawn to meet the zone specification in the calculation. 
This curve agrees quite well with the calculated distribution. No statistical 
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error limits have been stated in the Monte-Carlo calculation because the 
error is here very small (-»»0.3 pet.). 

The calculations were made with MC5A, a constant surface source 
on the cut-off cylinder being used to simulate the actual physical conditions. 

7 .5 .3 . q-parameter study on black rods (surface source) 

To make possible an automatic black rod calculation preceding a 
routine grey rod calculation (see 7.2), a number of black rod calculations 
with different a-values (see 7.2) were carried out. The values a « 0.5, 1, 
2, 3 were considered. The calculations refer to cases with so coupling 
between the ends and to cases where the surface source model i s valid. The 
results of this parameter study are shown in figs. 7.7 and 7.8. The radial 
distributions shown are not very reliable because of statistical errors. It 
is seen that the flux perturbation increases steadily with increasing a. 

To extract the essential feature of these calculations, F1TAB was 
used to smoothen the stepwise varying currents by fitting them to simple 
analytic expressions. 

If one renormalizes me expressions (7.14) and (7.15) to the forms 

f(z) = a o exp(-a2 ^2L) + 1 (7.18) 

g ( x ) « b o + b 2 ( | ) 2 (7.19) 

(a s rod radius, k = half rod length), 

corresponding to the current density unity at the midpoint of the axial 
surface (z * 0), then the constants (a ., a-, b , bj) will depend only on a, 
provided the rods are long enough to exclude end coupling effects, and 
these constants themselves can be fitted to simple polynomial functions of a. 

Our calculation gave the result shown in fig. 7.12, which shows bom 
the 4 • 4 calculation points and the graphs of four fits, the equations of 
which were chosen as follows: 

a - 0.0233 o 2 + 0.1466 a (7.20) 
o 

a2 • 0.2 o + 0.85 (7.21) 

b 0 - 1 + 0.12 a (7.22) 

b 2 • 0 .02916o2 + 0.02418 a . (7.23) 
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a , for a • 0.5 could be determined only very crudely from the MC5A result. 

The expression (7.21) i s used for all o 4 3 because the perturbation is in 

any case small (a small) for small a-values. 

These functions have been built into MC5B1 to be used when an auto-

matic black rod calculation is to precede a grey rod calculation. 

The formulas (7. 22), (7. 23) for the constants in the radial distribu-

tions are not claimed to be very reliable, owing to statistical e r ro r s . 

The Ris6 experiment mentioned in 7.5.2 has been used to make a 

test of the formulas (7. 20) to (7. 23). The mean radial current j and the 

a z k 
mean axial current i , 

a z 

f j(x) 2Ttx dx f j(z) 2tca dz 
J J (a « rod radius, 

j r • — j , j 2 = £ k a h a l f length), O- 24> 
2Ttx dx P 2 n a dz 

o 

are found both from the experiments and from the fits (7.20) to (7. 23). j 

and j are in units of the current at the midpoint of the curved surface 

(z = 0). The results are seen in table 7. 2. 

Table 7. 2 

h 
experimental 1.047 

fits (7. 20) to (7. 23) 1. 049 

h 
1.138 

1.147 

The agreement is satisfactory. 

A parameter study for the corresponding problems with volume 

sources instead of surface sources has not so far been made. However, 

in a single case (a = 3), a calculation with constant volume sources between 

the rod and the cut-off cylinder was made and compared with the result for 

surface source, see fig. 7. 9.2. It appears, as would be expected that the 

perturbation is not so great for volume sources ås for surface sources. 
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7. 5.4. Calculations on grey rods in a homogeneous medium. 

Comparisons with ANL measurements 

Some calculations have been made with the code MC5B1 with the 

built-in formulas (7. 20) - (7. 23). The calculations refer to the two rods 

(table 7.1) for which ANL measurements have been reported. Results of 

Monte-Carlo calculations as well as of ANL measurements appear from 

fig. 7.10. There seems to be a slight gradient in the experimental flux at 

distances where the end effect cannot be significant. This complicates the 

comparisons somewhat. Otherwise the agreement seems to be satisfactory. 

In the calculations, the macroscopic cross section of natural uranium r e -

ported in ref.18 was applied, and for graphite the scattering cross section 

(corrected for anisotropy) was taken to be 0. 3748 cm" . 

7. 5. 5. Calculations on grey rods in a heterogeneous medium. 

Comparisons with Riso experiments 

The heterogeneous model (MC5C1) has been compared with RisO ex-

periments with copper rods of 8 cm length, separated by lead spacers of 10 

cm length and surrounded by heavy water. Two diameters of the rods, 0. 5" 

and 1", have been considered. The cross sections applied in the calcula-

tions a re Z e
2 (1-u) = 0.4012 cm"1 , z f b ( l - u ) - 0. 303 c m ' 1 , iF**** 0.005 

- 1 Cu -1 Cii -1 a 

cm , 2T (1-u) = 0.604 cm \ ZT = 0.285 cm \ For Pb, the s a 
scattering cross section has been obtained by averaging over a Maxwell 

spectrum. 

7.6. The Ris& Measurements 

7. 6 .1 . Measurements on a black rod 

The experimental arrangement was as follows: 

A cadmium cylinder (diameter 2. 5 era, length 10 cm) standing on 

four legs was placed centrally on the bottom of the exponential tank men-

tioned in 7. 5 (diameter 7G.4 cm, height 170 cm). This tank, filled with 

heavy water, is situated on the top of the DR1 reactor. Between the reac-

tor core and the bottom of the tank there is 120 cm of graphite. In the ac-

tivation position the cadmium ratio R« , was > 4500. 

It is assumed that all neutrons entering the cadmium are absorbed. 

The scattering effect in the Cd-cylinder is neglected. This is a very good 
2 

approximation. Manganese foil detectors (50 mg/cm ) were glued to the 
Cd-cylinder both along a cylinder generator and on the end face. Their 
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acttvities are proportional to the neutron current perpendicular to the surface. 
The result for the longitudinal distribution appears from fig.7.9.1.and 

was discussed in 7. 5. 2. The radial distribution was integrated over the 
surface as mentioned in 7.5. 3 (table 7. 2). 

7 2 
The neutron flux at the bottom of the tank was about 10 n/cm / s ec . 

After activation for two hours the activity of the Mn-foils was measured with 
a gas flow counter. 

7. 6. 2. Measurements on grey rods 

The geometry was described in 7. 5.5, and the set-up was identical 
with that in 7.6,1. The subdivision of the Cu-cylinder appears from fig. 7.11. 
The activity of the middle zone was used to normalize the results. 

The irradiation time was 3 hours, and as before the neutron flux was 
7 2 

10 n/cm / sec . 
As seen from fig. 7.11, the measurements were made in five zones. 

The corresponding five Cu-pellets were dissolved in nitric acid; thus the 
mean value of the absorption in the pellets was obtained. The Y-activity of 
this solution was measured in a Nal crystal with a well. 

The figure shows good agreement between experiment and calculation. 
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